1
|
Ma J, Lv C, Gong Z, Zhang K, Wang S, Li R, Chen K, Zhu F, Wang D, Qiu Z, Ding C. Promotion of microplastic degradation on the conjugative transfer of antibiotic resistance genes in the gut of macrobenthic invertebrates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:117999. [PMID: 40068546 DOI: 10.1016/j.ecoenv.2025.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/09/2025] [Accepted: 03/01/2025] [Indexed: 03/23/2025]
Abstract
Microplastics and antibiotic resistance genes are two new pollutants in water environments, and they have potential risks to human health and ecological safety. On the basis of the accumulation of pollutants and microorganisms in sediment, macrobenthic invertebrates are considered as potential practitioners of microplastic degradation and antibiotic resistance gene (ARG) transfer. However, whether microplastic degradation can affect ARG transfer in aquatic environments, especially in the gut of macrobenthic invertebrates, remains unclear. In this study, we demonstrated that microplastics including polyethylene terephthalate (PET), polyvinyl chloride(PVC), polyamide (PA), polystyrene (PS), polypropylene (PP), polyethylene (PE), and polyurethane (PU), and ARGs including tetA, sul1, sul2, and sul3 were widely distributed in sediment and benthic invertebrates in Nansi lake. The distribution of ARGs was related to the number and size of microplastic particles. In particular, it was found for the first time that the content of ARGs corresponding to individual particles was linearly and negatively correlated with the size of microplastics. The results of animal feeding experiments showed that microplastic degradation in the gut of Chironomidae larvae could promote the conjugative transfer of ARGs. The underlying molecular mechanism was SOS response. This study provides a new method for the analysis of the interaction effect of multiple pollutants in freshwater environments.
Collapse
Affiliation(s)
- Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province 277160, China
| | - Chunhong Lv
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province 277160, China
| | - Zheng Gong
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province 277160, China
| | - Kai Zhang
- Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, Henan Province 464000, China
| | - Shu Wang
- Tai'erzhuang District People's Hospital, Zaozhuang, Shandong Province 277499, China
| | - Rui Li
- Tai'erzhuang District People's Hospital, Zaozhuang, Shandong Province 277499, China
| | - Kang Chen
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province 277160, China
| | - Feng Zhu
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province 277160, China
| | - Deya Wang
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province 277160, China.
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province 277160, China.
| |
Collapse
|
2
|
He R, Zuo Y, Li Q, Yan Q, Huang L. Cooperative mechanisms of LexA and HtpG in the regulation of virulence gene expression in Pseudomonas plecoglossicida. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100351. [PMID: 39980631 PMCID: PMC11840546 DOI: 10.1016/j.crmicr.2025.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
LexA is a well-known transcriptional repressor of DNA repair genes induced by DNA damage in Escherichia coli and other bacterial species. Recently, this paradigm-that LexA solely regulates the SOS response-has been challenged as studies reveal its involvement in various biological functions linked to virulence. Pseudomonas plecoglossicida, a major pathogen in mariculture, causes substantial economic losses annually in China. Our previous research suggested that LexA might collaboratively regulate virulence gene expression with HtpG during infection. This study aims to elucidate the molecular mechanism by which LexA controls virulence gene expression. We employed an array of methods including molecular dynamics simulations, molecular docking, ChIP-seq, RNA-seq, mass spectrometry, gene mutagenesis, LacZ reporter assays, electrophoretic mobility shift assays, co-immunoprecipitation, and in vitro LexA degradation experiments. Our findings identified 36 downstream virulence genes regulated by LexA, define three critical LexA binding motifs, and provide an in-depth analysis of LexA's recognition and binding to promoters, thereby regulating virulence gene expression. Additionally, we confirm the cooperative regulatory roles of HtpG, RecA, and LexA in virulence gene modulation. This is the first report of an endogenous accessory factor aiding in the binding of LexA to DNA. This study enhances our understanding of LexA's role in virulence regulation and offers a valuable theoretical and practical foundation for disease prevention and control.
Collapse
Affiliation(s)
- Rongchao He
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Yanfei Zuo
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Qiu Li
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Qingpi Yan
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
- State Key Laboratory of Mariculture Breeding, Fisheries college of Jimei university, Xiamen, Fujian, PR China
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, PR China
| | - Lixing Huang
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
- State Key Laboratory of Mariculture Breeding, Fisheries college of Jimei university, Xiamen, Fujian, PR China
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
3
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
4
|
Hibshman JD, Clark-Hachtel CM, Bloom KS, Goldstein B. A bacterial expression cloning screen reveals single-stranded DNA-binding proteins as potent desicco-protectants. Cell Rep 2024; 43:114956. [PMID: 39531375 PMCID: PMC11654893 DOI: 10.1016/j.celrep.2024.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Desiccation kills most cells. Some proteins have been identified to help certain cells survive desiccation, but many protein protectants are likely to be unknown. Moreover, the mechanisms ensuring protection of key cellular components are incompletely understood. We devised an expression-cloning approach to discover further protectants. We expressed cDNA libraries from two species of tardigrades in E. coli, and we subjected the bacteria to desiccation to select for survivors. Sequencing the populations of surviving bacteria revealed enrichment of mitochondrial single-stranded DNA-binding proteins (mtSSBs) from both tardigrade species. Expression of mtSSBs in bacteria improved desiccation survival as strongly as the best tardigrade protectants known to date. We found that DNA-binding activity of mtSSBs was necessary and sufficient to improve the desiccation tolerance of bacteria. Although tardigrade mtSSBs were among the strongest protectants we found, single-stranded DNA binding proteins in general offered some protection. These results identify single-stranded DNA-binding proteins as potent desicco-protectants.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | - Kerry S Bloom
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Ghosh S, Orman MA. UV-Induced DNA Repair Mechanisms and Their Effects on Mutagenesis and Culturability in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623584. [PMID: 39605428 PMCID: PMC11601333 DOI: 10.1101/2024.11.14.623584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mutagenic processes drive evolutionary progress, with ultraviolet (UV) radiation significantly affecting evolution. Despite extensive research on SOS response-mediated mutagenesis, UV-induced repair mechanisms remain complex, and their effects on cell survival and mutagenesis are not fully understood. We previously observed a near-perfect correlation between RecA-mediated SOS response and mutation levels in Escherichia coli following UV treatment. However, prolonged UV exposure caused transient non-culturability and impaired SOS-mediated mutagenesis. Using fluorescent reporters, flow cytometry, promoter-reporter assays, single-gene deletions, knockouts, and clonogenic assays, we found that excessive UV exposure disrupts cellular translation, reducing SOS gene expression, albeit with minimal impact on membrane permeability or reactive oxygen species levels. While our findings underline the abundance of repair mechanisms in E. coli cells, enabling them to compensate when specific genes are disrupted, they also highlighted the differential impacts of gene deletions on mutagenesis versus culturability, leading to three major outcomes: (i) Disruption of proteins involved in DNA polymerase for translesion synthesis (UmuC and UmuD) or Holliday junction resolution (RuvC) results in significantly decreased mutagenesis levels while maintaining a transient non-culturability pattern after UV exposure. (ii) Disruption of proteins involved in homologous recombination (RecA and RecB) and nucleotide excision repair (UvrA) leads to both significantly reduced mutagenesis and a more severe transient non-culturability pattern after UV exposure, making these cells more sensitive to UV. (iii) Disruption of DNA Helicase II (UvrD), which functions in mismatch repair, does not affect mutagenesis levels from UV radiation but results in a very pronounced transient non-culturability pattern following UV exposure. Overall, our results further advance our understanding of bacterial adaptation mechanisms and the role of DNA repair pathways in shaping mutagenesis.
Collapse
Affiliation(s)
- Sreyashi Ghosh
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Mehmet A. Orman
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
6
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
7
|
Sass TH, Lovett ST. The DNA damage response of Escherichia coli, revisited: Differential gene expression after replication inhibition. Proc Natl Acad Sci U S A 2024; 121:e2407832121. [PMID: 38935560 PMCID: PMC11228462 DOI: 10.1073/pnas.2407832121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
In 1967, in this journal, Evelyn Witkin proposed the existence of a coordinated DNA damage response in Escherichia coli, which later came to be called the "SOS response." We revisited this response using the replication inhibitor azidothymidine (AZT) and RNA-Seq analysis and identified several features. We confirm the induction of classic Save our ship (SOS) loci and identify several genes, including many of the pyrimidine pathway, that have not been previously demonstrated to be DNA damage-inducible. Despite a strong dependence on LexA, these genes lack LexA boxes and their regulation by LexA is likely to be indirect via unknown factors. We show that the transcription factor "stringent starvation protein" SspA is as important as LexA in the regulation of AZT-induced genes and that the genes activated by SspA change dramatically after AZT exposure. Our experiments identify additional LexA-independent DNA damage inducible genes, including 22 small RNA genes, some of which appear to activated by SspA. Motility and chemotaxis genes are strongly down-regulated by AZT, possibly as a result of one of more of the small RNAs or other transcription factors such as AppY and GadE, whose expression is elevated by AZT. Genes controlling the iron siderophore, enterobactin, and iron homeostasis are also strongly induced, independent of LexA. We confirm that IraD antiadaptor protein is induced independent of LexA and that a second antiadaptor, IraM is likewise strongly AZT-inducible, independent of LexA, suggesting that RpoS stabilization via these antiadaptor proteins is an integral part of replication stress tolerance.
Collapse
Affiliation(s)
- Thalia H. Sass
- Department of Biology, Brandeis University, Waltham, MA02454-9110
- Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA02454-9110
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, MA02454-9110
- Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA02454-9110
| |
Collapse
|
8
|
Chollet S, Hernandez Padilla AC, Daix T, Gaschet M, François B, Piguet C, Gachard N, Da Re S, Jeannet R, Ploy MC. Phagosomal granulocytic ROS in septic patients induce the bacterial SOS response. iScience 2024; 27:109825. [PMID: 38799552 PMCID: PMC11126768 DOI: 10.1016/j.isci.2024.109825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/14/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Septic patients with worst clinical prognosis have increased circulating immature granulocytes (IG), displaying limited phagocytosis and reactive oxygen species (ROS) production. Here, we developed an ex vivo model of incubation of human granulocytes, from septic patients or healthy donors, with Escherichia coli. We showed that the ROS production in Sepsis-IG is lower due to decreased activation and protein expression of the NADPH oxidase complex. We also demonstrated that the low level of ROS production and lower phagocytosis of IG in sepsis induce the bacterial SOS response, leading to the expression of the SOS-regulated quinolone resistance gene qnrB2. Without antimicrobial pressure, the sepsis immune response alone may promote antibiotic resistance expression.
Collapse
Affiliation(s)
- Stecy Chollet
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | | | - Thomas Daix
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
- CHU Limoges, Service de Réanimation Polyvalente, Limoges, France
- Inserm CIC 1435, Limoges, France
| | - Margaux Gaschet
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Bruno François
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
- CHU Limoges, Service de Réanimation Polyvalente, Limoges, France
- Inserm CIC 1435, Limoges, France
| | | | - Nathalie Gachard
- CHU Limoges, Laboratoire d’hématologie, Limoges, France
- CNRS UMR 7276, Inserm UMR 1262, Université de Limoges, Limoges, France
| | - Sandra Da Re
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Robin Jeannet
- Inserm CIC 1435, Limoges, France
- CNRS UMR 7276, Inserm UMR 1262, Université de Limoges, Limoges, France
| | - Marie-Cécile Ploy
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| |
Collapse
|
9
|
Candra B, Cook D, Hare J. Repression of Acinetobacter baumannii DNA damage response requires DdrR-assisted binding of UmuDAb dimers to atypical SOS box. J Bacteriol 2024; 206:e0043223. [PMID: 38727225 PMCID: PMC11332147 DOI: 10.1128/jb.00432-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/14/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA damage response of the multi-drug-resistant nosocomial pathogen Acinetobacter baumannii possesses multiple features that distinguish it from the commonly used LexA repression system. These include the absence of LexA in this genus, the evolution of a UmuD polymerase manager into the UmuDAb repressor of error-prone polymerases, the use of a corepressor unique to Acinetobacter (DdrR), and an unusually large UmuDAb binding site. We defined cis- and trans-acting factors required for UmuDAb DNA binding and gene repression, and tested whether DdrR directly enhances its DNA binding. We used DNA binding assays to characterize UmuDAb's binding to its proposed operator present upstream of the six co-repressed umuDC or umuC genes. UmuDAb bound tightly and cooperatively to this site with ~10-fold less affinity than LexA. DdrR enhanced the binding of both native and dimerization-deficient UmuDAb forms, but only in greater than equimolar ratios relative to UmuDAb. UmuDAb mutants unable to dimerize or effect gene repression showed impaired DNA binding, and a strain expressing the G124D dimerization mutant could not repress transcription of the UmuDAb-DdrR regulon. Competition electrophoretic mobility shift assays conducted with mutated operator probes showed that, unlike typical SOS boxes, the UmuDAb operator possessed a five-base pair central core whose sequence was more crucial for binding than the flanking palindrome. The presence of only one of the two flanking arms of the palindrome was necessary for UmuDAb binding. Overall, the data supported a model of an operator with two UmuDAb binding sites. The distinct characteristics of UmuDAb and its regulated promoters differ from the typical LexA repression model, demonstrating a novel method of repression.IMPORTANCEAcinetobacter baumannii is a gram-negative bacterium responsible for hospital-acquired infections. Its unique DNA damage response can activate multiple error-prone polymerase genes, allowing it to gain mutations that can increase its virulence and antibiotic resistance. The emergence of infectious strains carrying multiple antibiotic resistance genes, including carbapenem resistance, lends urgency to discovering and developing ways to combat infections resistant to treatment with known antibiotics. Deciphering how the regulators UmuDAb and DdrR repress the error-prone polymerases could lead to developing complementary treatments to halt this mechanism of generating resistance.
Collapse
Affiliation(s)
- Belinda Candra
- Baylor College of Medicine, Houston, Texas, USA
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| | - Deborah Cook
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| | - Janelle Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| |
Collapse
|
10
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Chang S, Laureti L, Thrall ES, Kay MS, Philippin G, Jergic S, Pagès V, Loparo JJ. A bipartite interaction with the processivity clamp potentiates Pol IV-mediated TLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596738. [PMID: 38853898 PMCID: PMC11160790 DOI: 10.1101/2024.05.30.596738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Processivity clamps mediate polymerase switching for translesion synthesis (TLS). All three E. coli TLS polymerases interact with the β2 processivity clamp through a conserved clamp-binding motif (CBM), which is indispensable for TLS. Notably, Pol IV also makes a unique secondary contact with the clamp through non-CBM residues. However, the role of this "rim contact" in Pol IV-mediated TLS remains poorly understood. Here we show that the rim contact is critical for TLS past strong replication blocks. In in vitro reconstituted Pol IV-mediated TLS, ablating the rim contact compromises TLS past 3-methyl dA, a strong block, while barely affecting TLS past N2-furfuryl dG, a weak block. Similar observations are also made in E. coli cells bearing a single copy of these lesions in the genome. Within lesion-stalled replication forks, the rim interaction and ssDNA binding protein cooperatively poise Pol IV to better compete with Pol III for binding to a cleft through its CBM. We propose that this bipartite clamp interaction enables Pol IV to rapidly resolve lesion-stalled replication through TLS at the fork, which reduces damage induced mutagenesis.
Collapse
Affiliation(s)
- Seungwoo Chang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Luisa Laureti
- Cancer Research Center of Marseille: Team DNA Damage and Genome Instability | CNRS, Aix Marseille Univ, Inserm, Institut Paoli-Calmettes, Marseille, France
| | - Elizabeth S. Thrall
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marguerite S Kay
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gaëlle Philippin
- Cancer Research Center of Marseille: Team DNA Damage and Genome Instability | CNRS, Aix Marseille Univ, Inserm, Institut Paoli-Calmettes, Marseille, France
| | - Slobodan Jergic
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, NSW, Australia
| | - Vincent Pagès
- Cancer Research Center of Marseille: Team DNA Damage and Genome Instability | CNRS, Aix Marseille Univ, Inserm, Institut Paoli-Calmettes, Marseille, France
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Recacha E, Kuropka B, Díaz-Díaz S, García-Montaner A, González-Tortuero E, Docobo-Pérez F, Rodríguez-Rojas A, Rodríguez-Martínez JM. Impact of suppression of the SOS response on protein expression in clinical isolates of Escherichia coli under antimicrobial pressure of ciprofloxacin. Front Microbiol 2024; 15:1379534. [PMID: 38659986 PMCID: PMC11039860 DOI: 10.3389/fmicb.2024.1379534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction/objective Suppression of the SOS response in combination with drugs damaging DNA has been proposed as a potential target to tackle antimicrobial resistance. The SOS response is the pathway used to repair bacterial DNA damage induced by antimicrobials such as quinolones. The extent of lexA-regulated protein expression and other associated systems under pressure of agents that damage bacterial DNA in clinical isolates remains unclear. The aim of this study was to assess the impact of this strategy consisting on suppression of the SOS response in combination with quinolones on the proteome profile of Escherichia coli clinical strains. Materials and methods Five clinical isolates of E. coli carrying different chromosomally- and/or plasmid-mediated quinolone resistance mechanisms with different phenotypes were selected, with E. coli ATCC 25922 as control strain. In addition, from each clinical isolate and control, a second strain was created, in which the SOS response was suppressed by deletion of the recA gene. Bacterial inocula from all 12 strains were then exposed to 1xMIC ciprofloxacin treatment (relative to the wild-type phenotype for each isogenic pair) for 1 h. Cell pellets were collected, and proteins were digested into peptides using trypsin. Protein identification and label-free quantification were done by liquid chromatography-mass spectrometry (LC-MS) in order to identify proteins that were differentially expressed upon deletion of recA in each strain. Data analysis and statistical analysis were performed using the MaxQuant and Perseus software. Results The proteins with the lowest expression levels were: RecA (as control), AphA, CysP, DinG, DinI, GarL, PriS, PsuG, PsuK, RpsQ, UgpB and YebG; those with the highest expression levels were: Hpf, IbpB, TufB and RpmH. Most of these expression alterations were strain-dependent and involved DNA repair processes and nucleotide, protein and carbohydrate metabolism, and transport. In isolates with suppressed SOS response, the number of underexpressed proteins was higher than overexpressed proteins. Conclusion High genomic and proteomic variability was observed among clinical isolates and was not associated with a specific resistant phenotype. This study provides an interesting approach to identify new potential targets to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Esther Recacha
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sara Díaz-Díaz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Andrea García-Montaner
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Fernando Docobo-Pérez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Alexandro Rodríguez-Rojas
- Division for Small Animal Internal Medicine, Department for Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jose Manuel Rodríguez-Martínez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
13
|
Kalalah AA, Koenig SSK, Feng P, Bosilevac JM, Bono JL, Eppinger M. Pathogenomes of Shiga Toxin Positive and Negative Escherichia coli O157:H7 Strains TT12A and TT12B: Comprehensive Phylogenomic Analysis Using Closed Genomes. Microorganisms 2024; 12:699. [PMID: 38674643 PMCID: PMC11052207 DOI: 10.3390/microorganisms12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Peter Feng
- U.S. Food and Drug Administration (FDA), College Park, MD 20740, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| |
Collapse
|
14
|
Misra HS, Rajpurohit YS. DNA damage response and cell cycle regulation in bacteria: a twist around the paradigm. Front Microbiol 2024; 15:1389074. [PMID: 38605710 PMCID: PMC11007091 DOI: 10.3389/fmicb.2024.1389074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
The co-protease activity in the RecA-ssDNA complex cleaves the autorepressor LexA, resulting in the derepression of a large number of genes under LexA control. This process is called the SOS response, and genes that are expressed in response to DNA damage are called SOS genes. The proteins encoded by the SOS genes are involved in both DNA repair and maintaining the functions of crucial cell division proteins (e.g., FtsZ) under check until the damaged DNA is presumably repaired. This mechanism of SOS response is the only known mechanism of DNA damage response and cell cycle regulation in bacteria. However, there are bacteria that do not obey this rule of DNA damage response and cell cycle regulation, yet they respond to DNA damage, repair it, and survive. That means such bacteria would have some alternate mechanism(s) of DNA damage response and cell cycle regulation beyond the canonical pathway of the SOS response. In this study, we present the perspectives that bacteria may have other mechanisms of DNA damage response and cell cycle regulation mediated by bacterial eukaryotic type Ser/Thr protein kinases as an alternate to the canonical SOS response and herewith elaborate on them with a well-studied example in the radioresistant bacterium Deinococcus radiodurans.
Collapse
Affiliation(s)
- Hari Sharan Misra
- School of Sciences, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
15
|
Bergum OET, Singleton AH, Røst LM, Bodein A, Scott-Boyer MP, Rye MB, Droit A, Bruheim P, Otterlei M. SOS genes are rapidly induced while translesion synthesis polymerase activity is temporally regulated. Front Microbiol 2024; 15:1373344. [PMID: 38596376 PMCID: PMC11002266 DOI: 10.3389/fmicb.2024.1373344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
The DNA damage inducible SOS response in bacteria serves to increase survival of the species at the cost of mutagenesis. The SOS response first initiates error-free repair followed by error-prone repair. Here, we have employed a multi-omics approach to elucidate the temporal coordination of the SOS response. Escherichia coli was grown in batch cultivation in bioreactors to ensure highly controlled conditions, and a low dose of the antibiotic ciprofloxacin was used to activate the SOS response while avoiding extensive cell death. Our results show that expression of genes involved in error-free and error-prone repair were both induced shortly after DNA damage, thus, challenging the established perception that the expression of error-prone repair genes is delayed. By combining transcriptomics and a sub-proteomics approach termed signalomics, we found that the temporal segregation of error-free and error-prone repair is primarily regulated after transcription, supporting the current literature. Furthermore, the heterology index (i.e., the binding affinity of LexA to the SOS box) was correlated to the maximum increase in gene expression and not to the time of induction of SOS genes. Finally, quantification of metabolites revealed increasing pyrimidine pools as a late feature of the SOS response. Our results elucidate how the SOS response is coordinated, showing a rapid transcriptional response and temporal regulation of mutagenesis on the protein and metabolite levels.
Collapse
Affiliation(s)
| | - Amanda Holstad Singleton
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lisa Marie Røst
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Antoine Bodein
- Department of Molecular Medicine, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Department of Molecular Medicine, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arnaud Droit
- Department of Molecular Medicine, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
16
|
Kerek Á, Török B, Laczkó L, Somogyi Z, Kardos G, Bányai K, Kaszab E, Bali K, Jerzsele Á. In Vitro Microevolution and Co-Selection Assessment of Amoxicillin and Cefotaxime Impact on Escherichia coli Resistance Development. Antibiotics (Basel) 2024; 13:247. [PMID: 38534682 DOI: 10.3390/antibiotics13030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The global spread of antimicrobial resistance has become a prominent issue in both veterinary and public health in the 21st century. The extensive use of amoxicillin, a beta-lactam antibiotic, and consequent resistance development are particularly alarming in food-producing animals, with a focus on the swine and poultry sectors. Another beta-lactam, cefotaxime, is widely utilized in human medicine, where the escalating resistance to third- and fourth-generation cephalosporins is a major concern. The aim of this study was to simulate the development of phenotypic and genotypic resistance to beta-lactam antibiotics, focusing on amoxicillin and cefotaxime. The investigation of the minimal inhibitory concentrations (MIC) of antibiotics was performed at 1×, 10×, 100×, and 1000× concentrations using the modified microbial evolution and growth arena (MEGA-plate) method. Our results indicate that amoxicillin significantly increased the MIC values of several tested antibiotics, except for oxytetracycline and florfenicol. In the case of cefotaxime, this increase was observed in all classes. A total of 44 antimicrobial resistance genes were identified in all samples. Chromosomal point mutations, particularly concerning cefotaxime, revealed numerous complex mutations, deletions, insertions, and single nucleotide polymorphisms (SNPs) that were not experienced in the case of amoxicillin. The findings suggest that, regarding amoxicillin, the point mutation of the acrB gene could explain the observed MIC value increases due to the heightened activity of the acrAB-tolC efflux pump system. However, under the influence of cefotaxime, more intricate processes occurred, including complex amino acid substitutions in the ampC gene promoter region, increased enzyme production induced by amino acid substitutions and SNPs, as well as mutations in the acrR and robA repressor genes that heightened the activity of the acrAB-tolC efflux pump system. These changes may contribute to the significant MIC increases observed for all tested antibiotics. The results underscore the importance of understanding cross-resistance development between individual drugs when choosing clinical alternative drugs. The point mutations in the mdtB and emrR genes may also contribute to the increased activity of the mdtABC-tolC and emrAB-tolC pump systems against all tested antibiotics. The exceptionally high mutation rate induced by cephalosporins justifies further investigations to clarify the exact mechanism behind.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Bence Török
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Levente Laczkó
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Gábor Kardos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- National Public Health Center, Albert Flórián út 2-6, H-1097 Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Sóstói út 2-4, H-4400 Nyíregyháza, Hungary
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Eszter Kaszab
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary
| | - Krisztina Bali
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| |
Collapse
|
17
|
Heredia-Ponce Z, Secchi E, Toyofuku M, Marinova G, Savorana G, Eberl L. Genotoxic stress stimulates eDNA release via explosive cell lysis and thereby promotes streamer formation of Burkholderia cenocepacia H111 cultured in a microfluidic device. NPJ Biofilms Microbiomes 2023; 9:96. [PMID: 38071361 PMCID: PMC10710452 DOI: 10.1038/s41522-023-00464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
DNA is a component of biofilms, but the triggers of DNA release during biofilm formation and how DNA contributes to biofilm development are poorly investigated. One key mechanism involved in DNA release is explosive cell lysis, which is a consequence of prophage induction. In this article, the role of explosive cell lysis in biofilm formation was investigated in the opportunistic human pathogen Burkholderia cenocepacia H111 (H111). Biofilm streamers, flow-suspended biofilm filaments, were used as a biofilm model in this study, as DNA is an essential component of their matrix. H111 contains three prophages on chromosome 1 of its genome, and the involvement of each prophage in causing explosive cell lysis of the host and subsequent DNA and membrane vesicle (MV) release, as well as their contribution to streamer formation, were studied in the presence and absence of genotoxic stress. The results show that two of the three prophages of H111 encode functional lytic prophages that can be induced by genotoxic stress and their activation causes DNA and MVs release by explosive cell lysis. Furthermore, it is shown that the released DNA enables the strain to develop biofilm streamers, and streamer formation can be enhanced by genotoxic stress. Overall, this study demonstrates the involvement of prophages in streamer formation and uncovers an often-overlooked problem with the use of antibiotics that trigger the bacterial SOS response for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Zaira Heredia-Ponce
- Department of Plant and Microbial Biology, University of Zürich, 8008, Zürich, Switzerland
| | - Eleonora Secchi
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093, Zürich, Switzerland
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Gabriela Marinova
- Department of Plant and Microbial Biology, University of Zürich, 8008, Zürich, Switzerland
| | - Giovanni Savorana
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, 8008, Zürich, Switzerland.
| |
Collapse
|
18
|
Lin T, Pan J, Gregory C, Wang Y, Tincher C, Rivera C, Lynch M, Long H, Zhang Y. Contribution of the SOS response and the DNA repair systems to norfloxacin induced mutations in E. coli. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:538-550. [PMID: 38045542 PMCID: PMC10689325 DOI: 10.1007/s42995-023-00185-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/27/2023] [Indexed: 12/05/2023]
Abstract
Antibiotic-resistant bacteria severely threaten human health. Besides spontaneous mutations generated by endogenous factors, the resistance might also originate from mutations induced by certain antibiotics, such as the fluoroquinolones. Such antibiotics increase the genome-wide mutation rate by introducing replication errors from the SOS response pathway or decreasing the efficiency of the DNA repair systems. However, the relative contributions of these molecular mechanisms remain unclear, hindering understanding of the generation of resistant pathogens. Here, using newly-accumulated mutations of wild-type and SOS-uninducible Escherichia coli strains, as well as those of the strains deficient for the mismatch repair (MMR) and the oxidative damage repair pathways, we find that the SOS response is the major mutagenesis contributor in mutation elevation, responsible for ~ 30-50% of the total base-pair substitution (BPS) mutation-rate elevation upon treatment with sublethal levels of norfloxacin (0 ~ 50 ng/mL). We further estimate the significance of the effects on other mutational features of these mechanisms (i.e., transversions, structural variations, and mutation spectrum) in E. coli using linear models. The SOS response plays a positive role in all three mutational features (mutation rates of BPSs, transversions, structural variations) and affects the mutational spectrum. The repair systems significantly reduce the BPS mutation rate and the transversion rate, regardless of whether antibiotics are present, while significantly increasing the structural variation rate in E. coli. Our results quantitatively disentangle the contributions of the SOS response and DNA repair systems in antibiotic-induced mutagenesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00185-y.
Collapse
Affiliation(s)
- Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Colin Gregory
- Department of Biology, Indiana University, Bloomington, 47405 USA
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Clayton Tincher
- Department of Biology, Indiana University, Bloomington, 47405 USA
| | - Caitlyn Rivera
- Department of Biology, Indiana University, Bloomington, 47405 USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, 85281 USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Yu Zhang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- School of Mathematics Science, Ocean University of China, Qingdao, 266000 China
| |
Collapse
|
19
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Abstract
Oxidative stress is an important and pervasive physical stress encountered by all kingdoms of life, including bacteria. In this review, we briefly describe the nature of oxidative stress, highlight well-characterized protein-based sensors (transcription factors) of reactive oxygen species that serve as standards for molecular sensors in oxidative stress, and describe molecular studies that have explored the potential of direct RNA sensitivity to oxidative stress. Finally, we describe the gaps in knowledge of RNA sensors-particularly regarding the chemical modification of RNA nucleobases. RNA sensors are poised to emerge as an essential layer of understanding and regulating dynamic biological pathways in oxidative stress responses in bacteria and, thus, also represent an important frontier of synthetic biology.
Collapse
Affiliation(s)
- Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Phillip Sweet
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| | - Aparna Anantharaman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Lydia Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
- Integrative Life Sciences Program, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
21
|
Cd-induced cytosolic proteome changes in the cyanobacterium Anabaena sp. PCC7120 are mediated by LexA as one of the regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140902. [PMID: 36716944 DOI: 10.1016/j.bbapap.2023.140902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
LexA, a well-characterized transcriptional repressor of SOS genes in heterotrophic bacteria, has been shown to regulate diverse genes in cyanobacteria. An earlier study showed that LexA overexpression in a cyanobacterium, Anabaena sp. PCC7120 reduces its tolerance to Cd stress. This was later shown to be due to modulation of photosynthetic redox poising by LexA under Cd stress. However, due to the global regulatory nature of LexA and the prior prediction of AnLexA-box in a few heavy metal-responsive genes, we speculated that LexA has a broad role in Cd tolerance, with regulation over a variety of Cd stress-responsive genes in addition to photosynthetic genes. Thus, to further expand the knowledge on the regulatory role of LexA in Cd stress tolerance, a cytosolic proteome profiling of Anabaena constitutively overexpressing LexA upon Cd stress was performed. The proteomic study revealed 25 differentially accumulated proteins (DAPs) in response to the combined effect of LexA overexpression and Cd stress, and the other 11 DAPs exclusively in response to either LexA overexpression or Cd stress. The 36 identified proteins were related with a variety of functions, including photosynthesis, C-metabolism, antioxidants, protein turnover, post-transcriptional modifications, and a few unknown and hypothetical proteins. The regulation of LexA on corresponding genes, and six previously reported Cd efflux transporters, was further validated by the presence of AnLexA-boxes, transcript, and/or promoter analyses. In a nutshell, this study identifies the regulation of Anabaena LexA on several Cd stress-responsive genes of various functions, hence expanding the regulatory role of LexA under Cd stress.
Collapse
|
22
|
Sweet P, Blacutt J, Gordon V, Contreras L. Exposure of Shewanella oneidensis MR-1 to Sublethal Doses of Ionizing Radiation Triggers Short-Term SOS Activation and Longer-Term Prophage Activation. Appl Environ Microbiol 2023; 89:e0171622. [PMID: 36847540 PMCID: PMC10057963 DOI: 10.1128/aem.01716-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023] Open
Abstract
Currently, there is a lack of bacterial biomarkers indicative of exposure to ionizing radiation (IR). IR biomarkers have applications for medical treatment planning, population exposure surveillance, and IR sensitivity studies. In this study, we compared the utility of signals originating from prophages and the SOS regulon as biomarkers of IR exposure in the radiosensitive bacterium Shewanella oneidensis. Using RNA sequencing, we demonstrated that 60 min after exposure to acute doses of IR (40, 1, 0.5, and 0.25 Gy), the transcriptional activation of the SOS regulon and the lytic cycle of the T-even lysogenic prophage So Lambda are comparable. Using quantitative PCR (qPCR), we showed that 300 min after exposure to doses as low as 0.25 Gy, the fold change of transcriptional activation of the So Lambda lytic cycle surpassed that of the SOS regulon. We observed an increase in cell size (a phenotype of SOS activation) and plaque production (a phenotype of prophage maturation) 300 min after doses as low as 1 Gy. While the transcriptional responses of the SOS and So Lambda regulons have been examined in S. oneidensis after lethal IR exposures, the potential of these (and other transcriptome-wide) responses as biomarkers of sublethal levels of IR (<10 Gy) and the longer-term activity of these two regulons have not been investigated. A major finding is that after exposure to sublethal doses of IR, the most upregulated transcripts are associated with a prophage regulon and not with a DNA damage response. Our findings suggest that prophage lytic cycle genes are a promising source of biomarkers of sublethal DNA damage. IMPORTANCE The bacterial minimum threshold of sensitivity to ionizing radiation (IR) is poorly understood, which hinders our understanding of how living systems recover from the doses of IR experienced in medical, industrial, and off-world environments. Using a transcriptome-wide approach, we studied how in the highly radiosensitive bacterium S. oneidensis, genes (including the SOS regulon and the So Lambda prophage) are activated after exposure to low doses of IR. We found that 300 min after exposure to doses as low as 0.25 Gy, genes within the So Lambda regulon remained upregulated. As this is the first transcriptome-wide study of how bacteria respond to acute sublethal doses of IR, these findings serve as a benchmark for future bacterial IR sensitivity studies. This is the first work to highlight the utility of prophages as biomarkers of exposure to very low (i.e., sublethal) doses of IR and to examine the longer-term impacts of sublethal IR exposure on bacteria.
Collapse
Affiliation(s)
- Philip Sweet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Jacob Blacutt
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Vernita Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas, USA
| | - Lydia Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
23
|
Diaz-Diaz S, Recacha E, Pulido MR, Romero-Muñoz M, de Gregorio-Iaria B, Docobo-Pérez F, Pascual A, Rodríguez-Martínez JM. Synergistic Effect of SOS Response and GATC Methylome Suppression on Antibiotic Stress Survival in Escherichia coli. Antimicrob Agents Chemother 2023; 67:e0139222. [PMID: 36802234 PMCID: PMC10019295 DOI: 10.1128/aac.01392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/22/2023] [Indexed: 02/23/2023] Open
Abstract
The suppression of the SOS response has been shown to enhance the in vitro activity of quinolones. Furthermore, Dam-dependent base methylation has an impact on susceptibility to other antimicrobials affecting DNA synthesis. Here, we investigated the interplay between these two processes, alone and in combination, in terms of antimicrobial activity. A genetic strategy was used employing single- and double-gene mutants for the SOS response (recA gene) and the Dam methylation system (dam gene) in isogenic models of Escherichia coli both susceptible and resistant to quinolones. Regarding the bacteriostatic activity of quinolones, a synergistic sensitization effect was observed when the Dam methylation system and the recA gene were suppressed. In terms of growth, after 24 h in the presence of quinolones, the Δdam ΔrecA double mutant showed no growth or delayed growth compared to the control strain. In bactericidal terms, spot tests showed that the Δdam ΔrecA double mutant was more sensitive than the ΔrecA single mutant (about 10- to 102-fold) and the wild type (about 103- to 104-fold) in both susceptible and resistant genetic backgrounds. Differences between the wild type and the Δdam ΔrecA double mutant were confirmed by time-kill assays. The suppression of both systems, in a strain with chromosomal mechanisms of quinolone resistance, prevents the evolution of resistance. This genetic and microbiological approach demonstrated the enhanced sensitization of E. coli to quinolones by dual targeting of the recA (SOS response) and Dam methylation system genes, even in a resistant strain model.
Collapse
Affiliation(s)
- S. Diaz-Diaz
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - E. Recacha
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Marina R. Pulido
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - María Romero-Muñoz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - B. de Gregorio-Iaria
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - F. Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - A. Pascual
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - J. M. Rodríguez-Martínez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
24
|
Lai YH, Franke R, Pinkert L, Overwin H, Brönstrup M. Molecular Signatures of the Eagle Effect Induced by the Artificial Siderophore Conjugate LP-600 in E. coli. ACS Infect Dis 2023; 9:567-581. [PMID: 36763039 PMCID: PMC10012262 DOI: 10.1021/acsinfecdis.2c00567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Achieving cellular uptake is a central challenge for novel antibiotics targeting Gram-negative bacterial pathogens. One strategy is to hijack the bacterial iron transport system by siderophore-antibiotic conjugates that are actively imported into the cell. This was realized with the MECAM-ampicillin conjugate LP-600 we recently reported that was highly active against E. coli. In the present study, we investigate a paradoxical regrowth of E. coli upon treatment of LP-600 at concentrations 16-32 times above the minimum inhibitory concentration (MIC). The phenomenon, coined "Eagle-effect" in other systems, was not due to resistance formation, and it occurred for the siderophore conjugate but not for free ampicillin. To investigate the molecular imprint of the Eagle effect, a combined transcriptome and untargeted metabolome analysis was conducted. LP-600 induced the expression of genes involved in iron acquisition, SOS response, and the e14 prophage upon regrowth conditions. The Eagle effect was diminished in the presence of sulbactam, which we ascribe to a putative synergistic antibiotic action but not to β-lactamase inhibition. The study highlights the relevance of the Eagle effect for siderophore conjugates. Through the first systematic -omics investigations, it also demonstrates that the Eagle effect manifests not only in a paradoxical growth but also in unique gene expression and metabolite profiles.
Collapse
Affiliation(s)
- Yi-Hui Lai
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Heike Overwin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany
| |
Collapse
|
25
|
Pradhan M, Kumar A, Kirti A, Pandey S, Rajaram H. NtcA, LexA and heptamer repeats involved in the multifaceted regulation of DNA repair genes recF, recO and recR in the cyanobacterium Nostoc PCC7120. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194907. [PMID: 36638863 DOI: 10.1016/j.bbagrm.2023.194907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Regulation of DNA repair genes in cyanobacteria is an unexplored field despite some of them exhibiting high radio-resistance. With RecF pathway speculated to be the major double strand break repair pathway in Nostoc sp. strain PCC7120, regulation of recF, recO and recR genes was investigated. Bioinformatic approach-based identification of promoter and regulatory elements was validated using qRT-PCR analysis, reporter gene and DNA binding assays. Different deletion constructs of the upstream regulatory regions of these genes were analysed in host Nostoc as well as heterologous system Escherichia coli. Studies revealed: (1) Positive regulation of all three genes by NtcA, (2) Negative regulation by LexA, (3) Involvement of contiguous heptamer repeats with/without its yet to be identified interacting partner in regulating (i) binding of NtcA and LexA to recO promoter and its translation, (ii) transcription or translation of recF, (4) Translational regulation of recF and recO through non-canonical and distant S.D. sequence and of recR through a rare initiation codon. Presence of NtcA either precludes binding of LexA to AnLexA-Box or negates its repressive action resulting in higher expression of these genes under nitrogen-fixing conditions in Nostoc. Thus, in Nostoc, expression of recF, recO and recR genes is intricately regulated through multiple regulatory elements/proteins. Contiguous heptamer repeats present across the Nostoc genome in the vicinity of start codon or promoter is likely to have a global regulatory role. This is the first report detailing regulation of DSB repair genes in any algae.
Collapse
Affiliation(s)
- Mitali Pradhan
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arvind Kumar
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anurag Kirti
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sarita Pandey
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
26
|
Yee JX, Kim J, Yeom J. Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria. J Microbiol 2023; 61:331-341. [PMID: 36800168 DOI: 10.1007/s12275-023-00024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023]
Abstract
Antibiotic treatment failure threatens our ability to control bacterial infections that can cause chronic diseases. Persister bacteria are a subpopulation of physiological variants that becomes highly tolerant to antibiotics. Membrane proteins play crucial roles in all living organisms to regulate cellular physiology. Although a diverse membrane component involved in persistence can result in antibiotic treatment failure, the regulations of antibiotic persistence by membrane proteins has not been fully understood. In this review, we summarize the recent advances in our understanding with regards to membrane proteins in Gram-negative bacteria as a regulator for antibiotic persistence, highlighting various physiological mechanisms in bacteria.
Collapse
Affiliation(s)
- Jia Xin Yee
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Juhyun Kim
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jinki Yeom
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
27
|
Tang K, Zhao H. Quinolone Antibiotics: Resistance and Therapy. Infect Drug Resist 2023; 16:811-820. [PMID: 36798480 PMCID: PMC9926991 DOI: 10.2147/idr.s401663] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The clinical application of quinolone antibiotics is particularly extensive. In addition to their high efficiency in infectious diseases, the treatment process brings multiple hidden dangers or side effects. In this regard, drug resistance becomes a major challenge and is almost unavoidable in the clinical application of quinolones. Both genetic and phenotypic variations contribute to bacterial survival resistance under antibiotic therapy. This review is focusing on the drug discovery history, compound structure, and bactericidal mechanism of quinolone antibiotics. Recent studies bring a more in-depth insight into the research progress of quinolone antibiotics in the causes of death, drug resistance formation, and closely related SOS response after disease treatment at this stage. Combined with the latest clinical studies, we summarize the clinical application of quinolone antibiotics and further lay a theoretical foundation for the mechanism study of resistant or sensitive bacteria in response to quinolone treatment.
Collapse
Affiliation(s)
- Kai Tang
- Fujian Provincial Key Laboratory of Innate Immune Biology, Fujian Normal University, Fujian, People’s Republic of China
| | - Heng Zhao
- Fujian Provincial Key Laboratory of Innate Immune Biology, Fujian Normal University, Fujian, People’s Republic of China,Correspondence: Heng Zhao, Fujian Provincial Key Laboratory of Innate Immune Biology, Fujian Normal University, Fujian, People’s Republic of China, Tel +86-17689970104, Email
| |
Collapse
|
28
|
RecA inactivation as a strategy to reverse the heteroresistance phenomenon in clinical isolates of Escherichia coli. Int J Antimicrob Agents 2023; 61:106721. [PMID: 36642235 DOI: 10.1016/j.ijantimicag.2023.106721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/25/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
RecA inhibition could be an important strategy to combat antimicrobial resistance because of its key role in the SOS response, DNA repair and homologous recombination contributing to bacterial survival. This study evaluated the impact of RecA inactivation on heteroresistance in clinical isolates of Escherichia coli and their corresponding recA-deficient isogenic strains to multiple classes of antimicrobial agents. A high frequency (>30%) of heteroresistance was observed in this collection of clinical isolates. Deletion of the recA gene led to a marked reduction in heteroresistant subpopulations, especially against quinolones or β-lactams. The molecular basis of heteroresistance was associated with an increase in copy number of plasmid-borne resistance genes (blaTEM-1B) or tandem gene amplifications (qnrA1). Of note, in the absence of the recA gene, the increase in copy number of resistance genes was suppressed. This makes the recA gene a promising target for combating heteroresistance.
Collapse
|
29
|
Schuurs ZP, McDonald JP, Croft LV, Richard DJ, Woodgate R, Gandhi NS. Integration of molecular modelling and in vitro studies to inhibit LexA proteolysis. Front Cell Infect Microbiol 2023; 13:1051602. [PMID: 36936756 PMCID: PMC10020695 DOI: 10.3389/fcimb.2023.1051602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction As antibiotic resistance has become more prevalent, the social and economic impacts are increasingly pressing. Indeed, bacteria have developed the SOS response which facilitates the evolution of resistance under genotoxic stress. The transcriptional repressor, LexA, plays a key role in this response. Mutation of LexA to a non-cleavable form that prevents the induction of the SOS response sensitizes bacteria to antibiotics. Achieving the same inhibition of proteolysis with small molecules also increases antibiotic susceptibility and reduces drug resistance acquisition. The availability of multiple LexA crystal structures, and the unique Ser-119 and Lys-156 catalytic dyad in the protein enables the rational design of inhibitors. Methods We pursued a binary approach to inhibit proteolysis; we first investigated β-turn mimetics, and in the second approach we tested covalent warheads targeting the Ser-119 residue. We found that the cleavage site region (CSR) of the LexA protein is a classical Type II β-turn, and that published 1,2,3-triazole compounds mimic the β-turn. Generic covalent molecule libraries and a β-turn mimetic library were docked to the LexA C-terminal domain using molecular modelling methods in FlexX and CovDock respectively. The 133 highest-scoring molecules were screened for their ability to inhibit LexA cleavage under alkaline conditions. The top molecules were then tested using a RecA-mediated cleavage assay. Results The β-turn library screen did not produce any hit compounds that inhibited RecA-mediated cleavage. The covalent screen discovered an electrophilic serine warhead that can inhibit LexA proteolysis, reacting with Ser-119 via a nitrile moiety. Discussion This research presents a starting point for hit-to-lead optimisation, which could lead to inhibition of the SOS response and prevent the acquisition of antibiotic resistance.
Collapse
Affiliation(s)
- Zachariah P. Schuurs
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Laura V. Croft
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| | - Neha S. Gandhi
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| |
Collapse
|
30
|
Munro-Ehrlich M, Nothaft DB, Fones EM, Matter JM, Templeton AS, Boyd ES. Parapatric speciation of Meiothermus in serpentinite-hosted aquifers in Oman. Front Microbiol 2023; 14:1138656. [PMID: 37125170 PMCID: PMC10130571 DOI: 10.3389/fmicb.2023.1138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
The factors that control the distribution and evolution of microbial life in subsurface environments remain enigmatic due to challenges associated with sampling fluids from discrete depth intervals via boreholes while avoiding mixing of fluids. Here, using an inflatable packer system, fracture waters were isolated and collected from three discrete depth intervals spanning >130 m in a borehole intersecting an ultramafic rock formation undergoing serpentinization in the Samail Ophiolite, Sultanate of Oman. Near surface aquifer waters were moderately reducing and had alkaline pH while deeper aquifer waters were reduced and had hyperalkaline pH, indicating extensive influence by serpentinization. Metagenomic sequencing and analysis of DNA from filtered biomass collected from discrete depth intervals revealed an abundance of aerobes in near surface waters and a greater proportion of anaerobes at depth. Yet the abundance of the putatively obligate aerobe, Meiothermus, increased with depth, providing an opportunity to evaluate the influence of chemical and spatial variation on its distribution and speciation. Two clades of Meiothermus metagenome assembled genomes (MAGs) were identified that correspond to surface and deep populations termed Types I (S) and II (D), respectively; both clades comprised an apparently Oman-specific lineage indicating a common ancestor. Type II (D) clade MAGs encoded fewer genes and were undergoing slower genome replication as inferred from read mapping. Further, single nucleotide variants (SNVs) and mobile genetic elements identified among MAGs revealed detectable, albeit limited, evidence for gene flow/recombination between spatially segregated Type I (S) and Type II (D) populations. Together, these observations indicate that chemical variation generated by serpentinization, combined with physical barriers that reduce/limit dispersal and gene flow, allowed for the parapatric speciation of Meiothermus in the Samail Ophiolite or a geologic precursor. Further, Meiothermus genomic data suggest that deep and shallow aquifer fluids in the Samail Ophiolite may mix over shorter time scales than has been previously estimated from geochemical data.
Collapse
Affiliation(s)
- Mason Munro-Ehrlich
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Daniel B. Nothaft
- Department of Geosciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Elizabeth M. Fones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Juerg M. Matter
- School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom
| | - Alexis S. Templeton
- Department of Geosciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
- *Correspondence: Eric S. Boyd,
| |
Collapse
|
31
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
32
|
Cory MB, Li A, Hurley CM, Hostetler ZM, Venkatesh Y, Jones CM, Petersson EJ, Kohli RM. Engineered RecA Constructs Reveal the Minimal SOS Activation Complex. Biochemistry 2022; 61:2884-2896. [PMID: 36473084 PMCID: PMC9982712 DOI: 10.1021/acs.biochem.2c00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SOS response is a bacterial DNA damage response pathway that has been heavily implicated in bacteria's ability to evolve resistance to antibiotics. Activation of the SOS response is dependent on the interaction between two bacterial proteins, RecA and LexA. RecA acts as a DNA damage sensor by forming lengthy oligomeric filaments (RecA*) along single-stranded DNA (ssDNA) in an ATP-dependent manner. RecA* can then bind to LexA, the repressor of SOS response genes, triggering LexA degradation and leading to induction of the SOS response. Formation of the RecA*-LexA complex therefore serves as the key "SOS activation signal." Given the challenges associated with studying a complex involving multiple macromolecular interactions, the essential constituents of RecA* that allow LexA cleavage are not well defined. Here, we leverage head-to-tail linked and end-capped RecA constructs as tools to define the minimal RecA* filament that can engage LexA. In contrast to previously postulated models, we found that as few as three linked RecA units are capable of ssDNA binding, LexA binding, and LexA cleavage. We further demonstrate that RecA oligomerization alone is insufficient for LexA cleavage, with an obligate requirement for ATP and ssDNA binding to form a competent SOS activation signal with the linked constructs. Our minimal system for RecA* highlights the limitations of prior models for the SOS activation signal and offers a novel tool that can inform efforts to slow acquired antibiotic resistance by targeting the SOS response.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Allen Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christina M. Hurley
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zachary M. Hostetler
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chloe M. Jones
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
33
|
Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway. Structure 2022; 30:1479-1493.e9. [DOI: 10.1016/j.str.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/29/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
|
34
|
Jiang M, Wang Z, Xia F, Wen Z, Chen R, Zhu D, Wang M, Zhuge X, Dai J. Reductions in bacterial viability stimulate the production of Extra-intestinal Pathogenic Escherichia coli (ExPEC) cytoplasm-carrying Extracellular Vesicles (EVs). PLoS Pathog 2022; 18:e1010908. [PMID: 36260637 PMCID: PMC9621596 DOI: 10.1371/journal.ppat.1010908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Extra-intestinal Pathogenic Escherichia coli (ExPEC) is defined as an extra-intestinal foodborne pathogen, and several dominant sequence types (STs) ExPEC isolates are highly virulent, with zoonotic potential. Bacteria extracellular vesicles (EVs) carry specific subsets of molecular cargo, which affect various biological processes in bacteria and host. The mechanisms of EVs formation in ExPEC remains to be elucidated. Here, the purified EVs of ExPEC strains of different STs were isolated with ultracentrifugation processes. A comparative analysis of the strain proteomes showed that cytoplasmic proteins accounted for a relatively high proportion of the proteins among ExPEC EVs. The proportion of cytoplasm-carrying vesicles in ExPEC EVs was calculated with a simple green fluorescent protein (GFP) expression method. The RecA/LexA-dependent SOS response is a critical mediator of generation of cytoplasm-carrying EVs. The SOS response activates the expression of prophage-associated endolysins, Epel1, Epel2.1, and Epel2.2, which triggered cell lysis, increasing the production of ExPEC cytoplasm-carrying EVs. The repressor LexA controlled directly the expression of these endolysins by binding to the SOS boxes in the endolysin promoter regions. Reducing bacterial viability stimulated the production of ExPEC EVs, especially cytoplasm-carrying EVs. The imbalance in cell division caused by exposure to H2O2, the deletion of ftsK genes, or t6A synthesis defects activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, and thus increasing the proportion of cytoplasm-carrying EVs in the total ExPEC EVs. Antibiotics, which decreased bacterial viability, also increase the production of ExPEC cytoplasm-carrying EVs through the SOS response. Changes in the proportion of cytoplasm-carrying EVs affected the total DNA content of ExPEC EVs. When macrophages are exposed to a higher proportion of cytoplasm-carrying vesicles, ExPEC EVs were more cytotoxic to macrophages, accompanied with more-severe mitochondrial disruption and a higher level of induced intrinsic apoptosis. In summary, we offered comprehensive insight into the proteome analysis of ExPEC EVs. This study demonstrated the novel formation mechanisms of E. coli cytoplasm-carrying EVs. Bacteria can release extracellular vesicles (EVs) into the extracellular environment. Bacterial EVs are primarily composed of protein, DNA, RNA, lipopolysaccharide (LPS), and diverse metabolite molecules. The molecular cargoes of EVs are critical for the interaction between microbes and their hosts, and affected various host biological processes. However, the mechanisms underlying the biogenesis of bacterial EVs had not been fully clarified in extra-intestinal pathogenic Escherichia coli (ExPEC). In this study, we demonstrated ExPEC EVs contained at least three types of vesicles, including outer membrane vesicles (OMVs), outer-inner membrane vesicles (OIMVs), and explosive outer membrane vesicles (EOMVs). Our results systematically identified important factors affecting the production of ExPEC cytoplasm-carrying EVs, especially EOMVs. A reduction in bacterial viability activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, which increased the production of ExPEC cytoplasm-carrying EVs. This increase in the proportion of cytoplasm-carrying EVs increased the cytotoxicity of EVs. It was noteworthy that antibiotics increased the production of ExPEC EVs, especially the numbers of cytoplasm-carrying EVs, which in turn increased EV cytotoxicity, suggesting that the treatment of infections of multidrug-resistant strains infection with antibiotics might cause greater host damage. Our study should improve the prevention and treatment of ExPEC infections.
Collapse
Affiliation(s)
- Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Rui Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Dongyu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China,* E-mail: (XZ); (JD)
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,College of Pharmacy, China Pharmaceutical University, Nanjing, China,* E-mail: (XZ); (JD)
| |
Collapse
|
35
|
Replication stalling activates SSB for recruitment of DNA damage tolerance factors. Proc Natl Acad Sci U S A 2022; 119:e2208875119. [PMID: 36191223 PMCID: PMC9565051 DOI: 10.1073/pnas.2208875119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.
Collapse
|
36
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
37
|
Feliciello I, Đermić E, Malović H, Ivanković S, Zahradka D, Ljubić S, Procino A, Đermić D. Regulation of ssb Gene Expression in Escherichia coli. Int J Mol Sci 2022; 23:ijms231810917. [PMID: 36142827 PMCID: PMC9505508 DOI: 10.3390/ijms231810917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial SSB proteins, as well as their eukaryotic RPA analogues, are essential and ubiquitous. They avidly bind single-stranded DNA and regulate/coordinate its metabolism, hence enabling essential DNA processes such as replication, transcription, and repair. The prototypic Escherichia coli SSB protein is encoded by an ssb gene. Although the ssb gene promoters harbor an SOS box, multiple studies over several decades failed to elucidate whether ssb gene expression is inducible and SOS dependent. The SOS regulon is comprised of about 50 genes, whose transcription is coordinately induced under stress conditions. Using quantitative real-time PCR, we determined the ssb gene expression kinetics in UV- and γ-irradiated E. coli and revealed that ssb gene expression is elevated in irradiated cells in an SOS-dependent manner. Additionally, the expression of the sulA gene was determined to indicate the extent of SOS induction. In a mutant with a constitutively induced SOS regulon, the ssb gene was overexpressed in the absence of DNA damage. Furthermore, we measured ssb gene expression by droplet digital PCR during unaffected bacterial growth and revealed that ssb gene expression was equal in wild-type and SOS- bacteria, whereas sulA expression was higher in the former. This study thus reveals a complex pattern of ssb gene expression, which under stress conditions depends on the SOS regulon, whereas during normal bacterial growth it is unlinked to SOS induction. The E. coli ssb gene is SOS regulated in such a way that its basal expression is relatively high and can be increased only through stronger SOS induction. The remarkable SOS induction observed in undisturbed wild-type cells may challenge our notion of the physiological role of the SOS response in bacteria.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 81031 Naples, Italy
| | - Edyta Đermić
- Department of Plant Pathology, Division for Phytomedicine, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Malović
- Department of Plant Pathology, Division for Phytomedicine, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Siniša Ivanković
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Davor Zahradka
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Sven Ljubić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Alfredo Procino
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Damir Đermić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
38
|
Characterization of Dextran Produced by the Food-Related Strain Weissella cibaria C43-11 and of the Relevant Dextransucrase Gene. Foods 2022; 11:foods11182819. [PMID: 36140946 PMCID: PMC9498152 DOI: 10.3390/foods11182819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
A metabolic feature of lactic acid bacteria (LAB) is the production of exopolysaccharides (EPSs), which have technological and functional properties of interest to the food sector. The present study focused on the characterization of the Weissella cibaria strain C43-11, a high EPS producer in the presence of sucrose, in comparison with a low-producing strain (C2-32), and on possible genetic regulatory elements responsible for the modulation of dextransucrase (dsr) genes expression. NMR analysis of the polymeric material produced by the C43-11 strain indicated the presence of dextran consisting mainly of a linear scaffold formed by α-(1–6) glycosidic linkages and a smaller amounts of branches derived from α-(1–2), α-(1–3), and α-(1–4) linkages. Molecular analysis of the dsr genes and the putative transcriptional promoters of the two strains showed differences in their regulatory regions. Such variations may have a role in the modulation of dsr expression levels in the presence of sucrose. The strong upregulation of the dsr gene in the C43-11 strain resulted in a high accumulation of EPS. This is the first report showing differences in the regulatory elements of the dsr gene in W. cibaria and indicates a new perspective of investigation to identify the regulatory mechanism of EPS production.
Collapse
|
39
|
ArsR Family Regulator MSMEG_6762 Mediates the Programmed Cell Death by Regulating the Expression of HNH Nuclease in Mycobacteria. Microorganisms 2022; 10:microorganisms10081535. [PMID: 36013953 PMCID: PMC9416677 DOI: 10.3390/microorganisms10081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Programmed cell death (PCD) is the result of an intracellular program and is accomplished by a regulated process in both prokaryotic and eukaryotic organisms. Here, we report a programed cell death process in Mycobacterium smegmatis, an Actinobacteria species which involves a transcription factor and a DNase of the HNH family. We found that over-expression of an ArsR family member of the transcription factor, MSMEG_6762, leads to cell death. Transcriptome analysis revealed an increase in the genes' transcripts involved in DNA repair and homologous recombination, and in three members of HNH family DNases. Knockout of one of the DNase genes, MSMEG_1275, alleviated cell death and its over-expression of programmed cell death. Purified MSMEG_1275 cleaved the M. smegmatis DNA at multiple sites. Overall, our results indicate that the MSMEG_6762 affects cell death and is mediated, at least partially, by activation of the HNH nuclease expression under a stress condition.
Collapse
|
40
|
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol 2022; 217:931-943. [PMID: 35905765 DOI: 10.1016/j.ijbiomac.2022.07.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
41
|
Jaramillo‐Riveri S, Broughton J, McVey A, Pilizota T, Scott M, El Karoui M. Growth-dependent heterogeneity in the DNA damage response in Escherichia coli. Mol Syst Biol 2022; 18:e10441. [PMID: 35620827 PMCID: PMC9136515 DOI: 10.15252/msb.202110441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
In natural environments, bacteria are frequently exposed to sub-lethal levels of DNA damage, which leads to the induction of a stress response (the SOS response in Escherichia coli). Natural environments also vary in nutrient availability, resulting in distinct physiological changes in bacteria, which may have direct implications on their capacity to repair their chromosomes. Here, we evaluated the impact of varying the nutrient availability on the expression of the SOS response induced by chronic sub-lethal DNA damage in E. coli. We found heterogeneous expression of the SOS regulon at the single-cell level in all growth conditions. Surprisingly, we observed a larger fraction of high SOS-induced cells in slow growth as compared with fast growth, despite a higher rate of SOS induction in fast growth. The result can be explained by the dynamic balance between the rate of SOS induction and the division rates of cells exposed to DNA damage. Taken together, our data illustrate how cell division and physiology come together to produce growth-dependent heterogeneity in the DNA damage response.
Collapse
Affiliation(s)
| | - James Broughton
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
| | - Alexander McVey
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
- Present address:
OGI Bio LtdEdinburghUK
| | - Teuta Pilizota
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
| | - Matthew Scott
- Department of Applied MathematicsUniversity of WaterlooWaterlooONCanada
| | - Meriem El Karoui
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
| |
Collapse
|
42
|
Su WL, Bredèche MF, Dion S, Dauverd J, Condamine B, Gutierrez A, Denamur E, Matic I. TisB Protein Protects Escherichia coli Cells Suffering Massive DNA Damage from Environmental Toxic Compounds. mBio 2022; 13:e0038522. [PMID: 35377167 PMCID: PMC9040746 DOI: 10.1128/mbio.00385-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Toxin-antitoxin systems are genetic elements that are widespread in prokaryotes. Although molecular mode of action of many of these toxins has been identified, their biological functions are mostly unknown. We investigated the functional integration of the TisB/IstR toxin-antitoxin system in the Escherichia coli SOS genotoxic stress response network. We showed that the tisB gene is induced in cells exposed to high doses of the genotoxic antibiotic trimethoprim. However, we also found that TisB contributes to trimethoprim-induced lethality. This is a consequence of the TisB-induced drop in the proton motive force (PMF), which results in blocking the thymine import and therefore the functioning of the pyrimidine salvage pathway. Conversely, a TisB-induced PMF drop protects cells by preventing the import of some other toxic compounds, like the aminoglycoside antibiotic gentamicin and colicin M, in the SOS-induced cells. Colicins are cytotoxic molecules produced by Enterobacterales when they are exposed to strong genotoxic stresses in order to compete with other microbiota members. We indeed found that TisB contributes to E. coli's fitness during mouse gut colonization. Based on the results obtained here, we propose that the primary biological role of the TisB toxin is to increase the probability of survival and maintenance in the mammalian gut of their bacterial hosts when they have to simultaneously deal with massive DNA damages and a fierce chemical warfare with other microbiota members. IMPORTANCE The contribution of toxin-antitoxin systems to the persistence of bacteria to antibiotics has been intensively studied. This is also the case with the E. coli TisB/IstR toxin-antitoxin system, but the contribution of TisB to the persistence to antibiotics turned out to be not as straightforward as anticipated. In this study, we show that TisB can decrease, but also increase, cytotoxicity of different antibiotics. This inconsistency has a common origin, i.e., TisB-induced collapse of the PMF, which impacts the import and the action of different antibiotics. By taking into account the natural habitat of TisB bacterial hosts, the facts that this toxin-antitoxin system is integrated into the genotoxic stress response regulon SOS and that both SOS regulon and TisB are required for E. coli to colonize the host intestine, and the phenotypic consequences of the collapse of the PMF, we propose that TisB protects its hosts from cytotoxic molecules produced by competing intestinal bacteria.
Collapse
Affiliation(s)
- Wei-Lin Su
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | | | - Sara Dion
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, Paris, France
| | - Julie Dauverd
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Bénédicte Condamine
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, Paris, France
| | - Arnaud Gutierrez
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Erick Denamur
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Ivan Matic
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| |
Collapse
|
43
|
Zou J, Peng B, Qu J, Zheng J. Are Bacterial Persisters Dormant Cells Only? Front Microbiol 2022; 12:708580. [PMID: 35185807 PMCID: PMC8847742 DOI: 10.3389/fmicb.2021.708580] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial persisters are a sub-population of phenotypic variants that tolerate high concentrations of antibiotics within the genetically homogeneous cells. They resume division upon the removal of drugs. Bacterial persistence is one of major causes of antibiotic treatment failure and recurrent infection. Cell dormancy, triggered by toxin/antitoxin pair, (p)ppGpp, SOS response and ATP levels, is known to be the mechanistic basis for persistence. However, recent studies have demonstrated that bacteria with active metabolism can maintain persistence by lowering intracellular antibiotic concentration via an efflux pump. Additionally, others and our work have showed that cell wall deficient bacteria (CWDB), including both L-form and spheroplasts that produced by β-lactam antibiotics, are associated with antibiotic persistence. They are not dormant cells as their cell walls have been completely damaged. In this review, we discuss the various types of persisters and highlight the contribution of non-walled bacteria on bacterial persistence.
Collapse
Affiliation(s)
- Jin Zou
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China.,Faculty of Health Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Bo Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Zhuhai, Macau SAR, China.,Institute of Translational Medicine, University of Macau, Zhuhai, Macau SAR, China
| |
Collapse
|
44
|
Thompson MK, Nocedal I, Culviner PH, Zhang T, Gozzi KR, Laub MT. Escherichia coli SymE is a DNA-binding protein that can condense the nucleoid. Mol Microbiol 2021; 117:851-870. [PMID: 34964191 DOI: 10.1111/mmi.14877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Type I toxin-antitoxin (TA) systems typically consist of a protein toxin that imbeds in the inner membrane where it can oligomerize and form pores that change membrane permeability, and an RNA antitoxin that interacts directly with toxin mRNA to inhibit its translation. In Escherichia coli, symE/symR is annotated as a type I TA system with a non-canonical toxin. SymE was initially suggested to be an endoribonuclease, but has predicted structural similarity to DNA binding proteins. To better understand SymE function, we used RNA-seq to examine cells ectopically producing it. Although SymE drives major changes in gene expression, we do not find strong evidence of endoribonucleolytic activity. Instead, our biochemical and cell biological studies indicate that SymE binds DNA. We demonstrate that the toxicity of symE overexpression likely stems from its ability to drive severe nucleoid condensation, which disrupts DNA and RNA synthesis and leads to DNA damage, similar to the effects of overproducing the nucleoid-associated protein H-NS. Collectively, our results suggest that SymE represents a new class of nucleoid-associated proteins that is widely distributed in bacteria.
Collapse
Affiliation(s)
- Mary K Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Isabel Nocedal
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter H Culviner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin R Gozzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
45
|
Diaz-Diaz S, Recacha E, García-Duque A, Docobo-Pérez F, Blázquez J, Pascual A, Rodríguez-Martínez JM. Effect of RecA inactivation and detoxification systems on the evolution of ciprofloxacin resistance in Escherichia coli. J Antimicrob Chemother 2021; 77:641-645. [PMID: 34878138 PMCID: PMC8864997 DOI: 10.1093/jac/dkab445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background Suppression of SOS response and overproduction of reactive oxygen species (ROS) through detoxification system suppression enhance the activity of fluoroquinolones. Objectives To evaluate the role of both systems in the evolution of resistance to ciprofloxacin in an isogenic model of Escherichia coli. Methods Single-gene deletion mutants of E. coli BW25113 (wild-type) (ΔrecA, ΔkatG, ΔkatE, ΔsodA, ΔsodB), double-gene (ΔrecA-ΔkatG, ΔrecA-ΔkatE, ΔrecA-ΔsodA, ΔrecA-ΔsodB, ΔkatG-ΔkatE, ΔsodB-ΔsodA) and triple-gene (ΔrecA-ΔkatG-ΔkatE) mutants were included. The response to sudden high ciprofloxacin pressure was evaluated by mutant prevention concentration (MPC). The gradual antimicrobial pressure response was evaluated through experimental evolution and antibiotic resistance assays. Results For E. coli BW25113 strain, ΔkatE, ΔsodB and ΔsodB/ΔsodA mutants, MPC values were 0.25 mg/L. The ΔkatG, ΔsodA, ΔkatG/katE and ΔrecA mutants showed 2-fold reductions (0.125 mg/L). The ΔkatG/ΔrecA, ΔkatE/ΔrecA, ΔsodA/ΔrecA, ΔsodB/ΔrecA and ΔkatG/ΔkatE/ΔrecA strains showed 4–8-fold reductions (0.03–0.06 mg/L) relative to the wild-type. Gradual antimicrobial pressure increased growth capacity for ΔsodA and ΔsodB and ΔsodB/ΔsodA mutants (no growth in 4 mg/L) compared with the wild-type (no growth in the range of 0.5–2 mg/L). Accordingly, increased growth was observed with the mutants ΔrecA/ΔkatG (no growth in 2 mg/L), ΔrecA/ΔkatE (no growth in 2 mg/L), ΔrecA/ΔsodA (no growth in 0.06 mg/L), ΔrecA/ΔsodB (no growth in 0.25 mg/L) and ΔrecA/ΔkatG/ΔkatE (no growth in 0.5 mg/L) compared with ΔrecA (no growth in the range of 0.002–0.015 mg/L). Conclusions After RecA inactivation, gradual exposure to ciprofloxacin reduces the evolution of resistance. After suppression of RecA and detoxification systems, sudden high exposure to ciprofloxacin reduces the evolution of resistance in E. coli.
Collapse
Affiliation(s)
- S Diaz-Diaz
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - E Recacha
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - A García-Duque
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
| | - F Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J Blázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - A Pascual
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J M Rodríguez-Martínez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
46
|
Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. Microbiol Spectr 2021; 9:e0028921. [PMID: 34756069 PMCID: PMC8579933 DOI: 10.1128/spectrum.00289-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics.
Collapse
|
47
|
Sánchez-Osuna M, Cortés P, Lee M, Smith AT, Barbé J, Erill I. Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes. Nucleic Acids Res 2021; 49:11050-11066. [PMID: 34614190 PMCID: PMC8565304 DOI: 10.1093/nar/gkab773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lesions to DNA compromise chromosome integrity, posing a direct threat to cell survival. The bacterial SOS response is a widespread transcriptional regulatory mechanism to address DNA damage. This response is coordinated by the LexA transcriptional repressor, which controls genes involved in DNA repair, mutagenesis and cell-cycle control. To date, the SOS response has been characterized in most major bacterial groups, with the notable exception of the Bacteroidetes. No LexA homologs had been identified in this large, diverse and ecologically important phylum, suggesting that it lacked an inducible mechanism to address DNA damage. Here, we report the identification of a novel family of transcriptional repressors in the Bacteroidetes that orchestrate a canonical response to DNA damage in this phylum. These proteins belong to the S24 peptidase family, but are structurally different from LexA. Their N-terminal domain is most closely related to CI-type bacteriophage repressors, suggesting that they may have originated from phage lytic phase repressors. Given their role as SOS regulators, however, we propose to designate them as non-canonical LexA proteins. The identification of a new class of repressors orchestrating the SOS response illuminates long-standing questions regarding the origin and plasticity of this transcriptional network.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Ivan Erill
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
48
|
Cyto-genotoxic potential of petroleum refinery wastewater mixed with domestic sewage used for irrigation of food crops in the vicinity of an oil refinery. Heliyon 2021; 7:e08116. [PMID: 34693051 PMCID: PMC8515247 DOI: 10.1016/j.heliyon.2021.e08116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/02/2020] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Petroleum refinery wastewater combined with domestic sewage were collected from the open channel in the vicinity of Mathura oil refinery, UP (India) and analysed by inductively coupled plasma optical emission spectrometry (ICP-OES) and gas chromatography-mass spectrometry (GC-MS) for elemental analysis and organic pollutants, respectively. Several potentially toxic and non-toxic elements were found to be present in the wastewater samples. GC-MS analysis revealed the presence of several organic contaminants including pesticides. Wastewater samples were extracted using amberlite XAD4/8 resins and liquid-liquid extraction procedures using different organic solvents. The extracts were tested for their cyto-genotoxic potential using bacterial (Salmonella mutagenicity test, E. coli K-12 DNA repair defective mutants, Bacteriophage λ assay) and plant (Vigna mungo phytotoxicity test, Allium cepa chromosomal aberration assay) systems. A significant increase was observed in the number of revertants of TA97a, TA98 and TA100 strains with the test samples and XAD concentrated samples were found to be more mutagenic than liquid-liquid extracts. Colony forming units (CFUs) of DNA repair defective mutants of E. coli K-12 recA, lexA and polA declined significantly as compared to their isogenic wild-type counterparts with the test samples. Significant reduction in plaque forming units (PFUs) of bacteriophage λ was also found on treatment with the solvent extracts. Presence of several toxic pollutants in the wastewater apply prohibitive action on the seed germination process. Germination rate of Vigna mungo seeds as well as radicle and plumule lengths were found to be affected when treated with different concentration of wastewater as compared to control. Present study also indicated concentration dependent reduction in mitotic index of A. cepa i.e., 16.38% at 5% and 9.74% at 100% wastewater and percentage of aberrant cells were highest at 100% effluent. Present findings indicated that mutagenicity/genotoxicity of wastewater is due to the mixture of genotoxins; poses serious hazards to the receiving waterbodies which require continuous monitoring and remedial measures for their improvement.
Collapse
|
49
|
Lodato PB. The effect of two ribonucleases on the production of Shiga toxin and stx-bearing bacteriophages in Enterohaemorrhagic Escherichia coli. Sci Rep 2021; 11:18372. [PMID: 34526533 PMCID: PMC8443680 DOI: 10.1038/s41598-021-97736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of intestinal pathogens responsible for a range of illnesses, including kidney failure and neurological compromise. EHEC produce critical virulence factors, Shiga toxin (Stx) 1 or 2, and the synthesis of Stx2 is associated with worse disease manifestations. Infected patients only receive supportive treatment because some conventional antibiotics enable toxin production. Shiga toxin 2 genes (stx2) are carried in λ-like bacteriophages (stx2-phages) inserted into the EHEC genome as prophages. Factors that cause DNA damage induce the lytic cycle of stx2-phages, leading to Stx2 production. The phage Q protein is critical for transcription antitermination of stx2 and phage lytic genes. This study reports that deficiency of two endoribonucleases (RNases), E and G, significantly delayed cell lysis and impaired production of both Stx2 and stx2-phages, unlike deficiency of either enzyme alone. Moreover, scarcity of both enzymes reduced the concentrations of Q and stx2 transcripts and slowed cell growth.
Collapse
Affiliation(s)
- Patricia B Lodato
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| |
Collapse
|
50
|
McDonald JP, Quiros DR, Vaisman A, Mendez AR, Reyelt J, Schmidt M, Gonzalez M, Woodgate R. CroS R391 , an ortholog of the λ Cro repressor, plays a major role in suppressing polV R391 -dependent mutagenesis. Mol Microbiol 2021; 116:877-889. [PMID: 34184328 PMCID: PMC8460599 DOI: 10.1111/mmi.14777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022]
Abstract
When subcloned into low-copy-number expression vectors, rumAB, encoding polVR391 (RumA'2 B), is best characterized as a potent mutator giving rise to high levels of spontaneous mutagenesis in vivo. This is in dramatic contrast to the poorly mutable phenotype when polVR391 is expressed from the native 88.5 kb R391, suggesting that R391 expresses cis-acting factors that suppress the expression and/or the activity of polVR391 . Indeed, we recently discovered that SetRR391 , an ortholog of λ cI repressor, is a transcriptional repressor of rumAB. Here, we report that CroSR391 , an ortholog of λ Cro, also serves as a potent transcriptional repressor of rumAB. Levels of RumA are dependent upon an interplay between SetRR391 and CroSR391 , with the greatest reduction of RumA protein levels observed in the absence of SetRR391 and the presence of CroSR391 . Under these conditions, CroSR391 completely abolishes the high levels of mutagenesis promoted by polVR391 expressed from low-copy-number plasmids. Furthermore, deletion of croSR391 on the native R391 results in a dramatic increase in mutagenesis, indicating that CroSR391 plays a major role in suppressing polVR391 mutagenesis in vivo. Inactivating mutations in CroSR391 therefore have the distinct possibility of increasing cellular mutagenesis that could lead to the evolution of antibiotic resistance of pathogenic bacteria harboring R391.
Collapse
Affiliation(s)
- John P. McDonald
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Dominic R. Quiros
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Alexandra Vaisman
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | | | - Jan Reyelt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
- Present address:
AGC Biologics GmbHHeidelbergGermany
| | - Marlen Schmidt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
| | | | - Roger Woodgate
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|