1
|
Alexandrova AS, Boyanov VS, Mihova KY, Gergova RT. Phylogenetic Lineages and Diseases Associated with Moraxella catarrhalis Isolates Recovered from Bulgarian Patients. Int J Mol Sci 2024; 25:9769. [PMID: 39337257 PMCID: PMC11431480 DOI: 10.3390/ijms25189769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Moraxella catarrhalis has been recognized as an important cause of upper respiratory tract and middle ear infections in children, as well as chronic obstructive pulmonary disease and chronic bronchitis in adults. We aim to study the clonal structure, antimicrobial resistance, and serotypes of M. catarrhalis strains recovered from patients of different ages. Nasopharyngeal swabs, middle ear fluid, and sputum samples were collected. In vitro susceptibility testing was performed according to EUCAST criteria. The monoclonal Ab hybridoma technique was used for serotyping. All strains were subjected to MLST. The studied population demonstrated susceptibility to all tested antimicrobials M. catarrhalis strains, with the majority being serotype A (90.4%), followed by B (6.8%), and C (2.7%). We observed a predominant clonal complex CC224 (21.9%) along with other clusters including CC141 (8.2%), CC184 (8.2%), CC449 (6.8%), CC390 (5.5%), and CC67 (2.7%). Two primary founders, namely, ST224 and ST141, were identified. The analyzed genetic lineages displayed diversity but revealed the predominance of two main clusters, CC224 and CC141, encompassing multidrug-resistant sequence types distributed in other regions. These data underscore the need for ongoing epidemiological monitoring of successfully circulating clones and the implementation of adequate antibiotic policies to limit or delay the spread of multidrug-resistant strains in our region.
Collapse
Affiliation(s)
- Alexandra S Alexandrova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Vasil S Boyanov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Kalina Y Mihova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Raina T Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
2
|
AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, Randall LP, Lemma F, Crook DW, Teale C, Smith RP, Anjum MF. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother 2018; 72:2745-2749. [PMID: 29091227 DOI: 10.1093/jac/dkx286] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 07/13/2017] [Indexed: 11/14/2022] Open
Abstract
Objectives To determine the occurrence of mcr-1 and mcr-2 genes in Gram-negative bacteria isolated from healthy pigs in Great Britain. Methods Gram-negative bacteria (n = 657) isolated from pigs between 2014 and 2015 were examined by WGS. Results Variants of mcr-1 and mcr-2 were identified in Moraxella spp. isolated from pooled caecal contents of healthy pigs at slaughter collected from six farms in Great Britain. Other bacteria, including Escherichia coli from the same farms, were not detected harbouring mcr-1 or mcr-2. A Moraxella porci-like isolate, MSG13-C03, harboured MCR-1.10 with 98.7% identity to MCR-1, and a Moraxella pluranimalium-like isolate, MSG47-C17, harboured an MCR-2.2 variant with 87.9% identity to MCR-2, from E. coli; the isolates had colistin MICs of 1-2 mg/L. No intact insertion elements were identified in either MSG13-C03 or MSG47-C17, although MSG13-C03 harboured the conserved nucleotides abutting the ISApl1 composite transposon found in E. coli plasmids and the intervening ∼2.6 kb fragment showed 97% identity. Six Moraxella osloensis isolates were positive for phosphoethanolamine transferase (EptA). They shared 62%-64.5% identity to MCR-1 and MCR-2, with colistin MICs from 2 to 4 mg/L. Phylogenetic analysis indicated that MCR and EptA have evolved from a common ancestor. In addition to mcr, the β-lactamase gene, blaBRO-1, was found in both isolates, whilst the tetracycline resistance gene, tetL, was found in MSG47-C17. Conclusions Our results add further evidence for the mobilization of the mcr-pap2 unit from Moraxella via composite transposons leading to its global dissemination. The presence of mcr-pap2 from recent Moraxella isolates indicates they may comprise a reservoir for mcr.
Collapse
Affiliation(s)
- Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK.,National Institute for Health Research Health Protection Research Unit, University of Oxford in partnership with PHE, Oxford, UK
| | - Emma J Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK
| | - Nick A Duggett
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK
| | - Miranda Kirchner
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK
| | - Luisa Dormer
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK
| | - Javier Nunez-Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK
| | - Luke P Randall
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK
| | - Fabrizio Lemma
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK
| | - Derrick W Crook
- National Institute for Health Research Health Protection Research Unit, University of Oxford in partnership with PHE, Oxford, UK.,Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christopher Teale
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK
| | - Richard P Smith
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey KT153NB, UK.,Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
4
|
Earl JP, de Vries SPW, Ahmed A, Powell E, Schultz MP, Hermans PWM, Hill DJ, Zhou Z, Constantinidou CI, Hu FZ, Bootsma HJ, Ehrlich GD. Comparative Genomic Analyses of the Moraxella catarrhalis Serosensitive and Seroresistant Lineages Demonstrate Their Independent Evolution. Genome Biol Evol 2016; 8:955-74. [PMID: 26912404 PMCID: PMC4860680 DOI: 10.1093/gbe/evw039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
The bacterial speciesMoraxella catarrhalishas been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages-the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ß-lactamase genes. The four divergent strains aresui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate taxonomic group. The SR and SS lineages, although distinct, clearly form a single species based on multiple criteria including a large common core genome, average nucleotide identity values, GC content, and genome size. Although neither of these lineages arose from within the other based on phylogenetic analyses, the question of how and when these lineages split and then subsequently reunited in the human nasopharynx is explored.
Collapse
Affiliation(s)
- Joshua P Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Stefan P W de Vries
- Present address: Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Azad Ahmed
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Evan Powell
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Matthew P Schultz
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA
| | - Peter W M Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Darryl J Hill
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Fen Z Hu
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA
| | - Hester J Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
5
|
Yi H, Yong D, Lee K, Cho YJ, Chun J. Profiling bacterial community in upper respiratory tracts. BMC Infect Dis 2014; 14:583. [PMID: 25391813 PMCID: PMC4236460 DOI: 10.1186/s12879-014-0583-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Infection by pathogenic viruses results in rapid epithelial damage and significantly impacts on the condition of the upper respiratory tract, thus the effects of viral infection may induce changes in microbiota. Thus, we aimed to define the healthy microbiota and the viral pathogen-affected microbiota in the upper respiratory tract. In addition, any association between the type of viral agent and the resultant microbiota profile was assessed. METHODS We analyzed the upper respiratory tract bacterial content of 57 healthy asymptomatic people (17 health-care workers and 40 community people) and 59 patients acutely infected with influenza, parainfluenza, rhino, respiratory syncytial, corona, adeno, or metapneumo viruses using culture-independent pyrosequencing. RESULTS The healthy subjects harbored primarily Streptococcus, whereas the patients showed an enrichment of Haemophilus or Moraxella. Quantifying the similarities between bacterial populations by using Fast UniFrac analysis indicated that bacterial profiles were apparently divisible into 6 oropharyngeal types in the tested subjects. The oropharyngeal types were not associated with the type of viruses, but were rather linked to the age of the subjects. Moraxella nonliquefaciens exhibited unprecedentedly high abundance in young subjects aged <6 years. The genome of M. nonliquefaciens was found to encode various proteins that may play roles in pathogenesis. CONCLUSIONS This study identified 6 oropharyngeal microbiome types. No virus-specific bacterial profile was discovered, but comparative analysis of healthy adults and patients identified a bacterium specific to young patients, M. nonliquefaciens.
Collapse
Affiliation(s)
- Hana Yi
- School of Biosystem and Biomedial Science, Korea University, Seoul, Republic of Korea.
- Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea.
- Korea University Guro Hospital, Korea University, Seoul, Republic of Korea.
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | | | - Jongsik Chun
- ChunLab, Inc., Seoul, Republic of Korea.
- School of Biological Sciences & Institute of Bioinformatics (BIOMAX), Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Blakeway LV, Power PM, Jen FEC, Worboys SR, Boitano M, Clark TA, Korlach J, Bakaletz LO, Jennings MP, Peak IR, Seib KL. ModM DNA methyltransferase methylome analysis reveals a potential role for Moraxella catarrhalis phasevarions in otitis media. FASEB J 2014; 28:5197-207. [PMID: 25183669 DOI: 10.1096/fj.14-256578] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moraxella catarrhalis is a significant cause of otitis media and exacerbations of chronic obstructive pulmonary disease. Here, we characterize a phase-variable DNA methyltransferase (ModM), which contains 5'-CAAC-3' repeats in its open reading frame that mediate high-frequency mutation resulting in reversible on/off switching of ModM expression. Three modM alleles have been identified (modM1-3), with modM2 being the most commonly found allele. Using single-molecule, real-time (SMRT) genome sequencing and methylome analysis, we have determined that the ModM2 methylation target is 5'-GAR(m6)AC-3', and 100% of these sites are methylated in the genome of the M. catarrhalis 25239 ModM2 on strain. Proteomic analysis of ModM2 on and off variants revealed that ModM2 regulates expression of multiple genes that have potential roles in colonization, infection, and protection against host defenses. Investigation of the distribution of modM alleles in a panel of M. catarrhalis strains, isolated from the nasopharynx of healthy children or middle ear effusions from patients with otitis media, revealed a statistically significant association of modM3 with otitis media isolates. The modulation of gene expression via the ModM phase-variable regulon (phasevarion), and the significant association of the modM3 allele with otitis media, suggests a key role for ModM phasevarions in the pathogenesis of this organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Tyson A Clark
- Pacific Biosciences, Menlo Park, California, USA; and
| | - Jonas Korlach
- Pacific Biosciences, Menlo Park, California, USA; and
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | - Ian R Peak
- Institute for Glycomics and School of Medical Science, Griffith University, Southport, Queensland, Australia
| | | |
Collapse
|
7
|
Draft Genome Sequence of Moraxella bovoculi Strain 237T (ATCC BAA-1259T) Isolated from a Calf with Infectious Bovine Keratoconjunctivitis. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00612-14. [PMID: 24970830 PMCID: PMC4073114 DOI: 10.1128/genomea.00612-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Moraxella bovoculi is a recently identified species, recovered from the bovine eye, which is under investigation as an etiological agent of infectious bovine keratoconjunctivitis. A draft genome sequence of the Moraxella bovoculi type strain 237T has been determined to identify features that may be important during host colonization.
Collapse
|
8
|
Shaffer TL, Balder R, Buskirk SW, Hogan RJ, Lafontaine ER. Use of the Chinchilla model to evaluate the vaccinogenic potential of the Moraxella catarrhalis filamentous hemagglutinin-like proteins MhaB1 and MhaB2. PLoS One 2013; 8:e67881. [PMID: 23844117 PMCID: PMC3699455 DOI: 10.1371/journal.pone.0067881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Moraxella catarrhalis causes significant health problems, including 15–20% of otitis media cases in children and ∼10% of respiratory infections in adults with chronic obstructive pulmonary disease. The lack of an efficacious vaccine, the rapid emergence of antibiotic resistance in clinical isolates, and high carriage rates reported in children are cause for concern. In addition, the effectiveness of conjugate vaccines at reducing the incidence of otitis media caused by Streptococcus pneumoniae and nontypeable Haemophilus influenzae suggest that M. catarrhalis infections may become even more prevalent. Hence, M. catarrhalis is an important and emerging cause of infectious disease for which the development of a vaccine is highly desirable. Studying the pathogenesis of M. catarrhalis and the testing of vaccine candidates have both been hindered by the lack of an animal model that mimics human colonization and infection. To address this, we intranasally infected chinchilla with M. catarrhalis to investigate colonization and examine the efficacy of a protein-based vaccine. The data reveal that infected chinchillas produce antibodies against antigens known to be major targets of the immune response in humans, thus establishing immune parallels between chinchillas and humans during M. catarrhalis infection. Our data also demonstrate that a mutant lacking expression of the adherence proteins MhaB1 and MhaB2 is impaired in its ability to colonize the chinchilla nasopharynx, and that immunization with a polypeptide shared by MhaB1 and MhaB2 elicits antibodies interfering with colonization. These findings underscore the importance of adherence proteins in colonization and emphasize the relevance of the chinchilla model to study M. catarrhalis–host interactions.
Collapse
Affiliation(s)
- Teresa L. Shaffer
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Rachel Balder
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Sean W. Buskirk
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Spaniol V, Wyder S, Aebi C. RNA-Seq-based analysis of the physiologic cold shock-induced changes in Moraxella catarrhalis gene expression. PLoS One 2013; 8:e68298. [PMID: 23844181 PMCID: PMC3699543 DOI: 10.1371/journal.pone.0068298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.
Collapse
Affiliation(s)
- Violeta Spaniol
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
10
|
Moraxella catarrhalis uses a twin-arginine translocation system to secrete the β-lactamase BRO-2. BMC Microbiol 2013; 13:140. [PMID: 23782650 PMCID: PMC3695778 DOI: 10.1186/1471-2180-13-140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/10/2013] [Indexed: 12/13/2022] Open
Abstract
Background Moraxella catarrhalis is a human-specific gram-negative bacterium readily isolated from the respiratory tract of healthy individuals. The organism also causes significant health problems, including 15-20% of otitis media cases in children and ~10% of respiratory infections in adults with chronic obstructive pulmonary disease. The lack of an efficacious vaccine, the rapid emergence of antibiotic resistance in clinical isolates, and high carriage rates reported in children are cause for concern. Virtually all Moraxella catarrhalis isolates are resistant to β-lactam antibiotics, which are generally the first antibiotics prescribed to treat otitis media in children. The enzymes responsible for this resistance, BRO-1 and BRO-2, are lipoproteins and the mechanism by which they are secreted to the periplasm of M. catarrhalis cells has not been described. Results Comparative genomic analyses identified M. catarrhalis gene products resembling the TatA, TatB, and TatC proteins of the well-characterized Twin Arginine Translocation (TAT) secretory apparatus. Mutations in the M. catarrhalis tatA, tatB and tatC genes revealed that the proteins are necessary for optimal growth and resistance to β-lactams. Site-directed mutagenesis was used to replace highly-conserved twin arginine residues in the predicted signal sequence of M. catarrhalis strain O35E BRO-2, which abolished resistance to the β-lactam antibiotic carbanecillin. Conclusions Moraxella catarrhalis possesses a TAT secretory apparatus, which plays a key role in growth of the organism and is necessary for secretion of BRO-2 into the periplasm where the enzyme can protect the peptidoglycan cell wall from the antimicrobial activity of β-lactam antibiotics.
Collapse
|
11
|
Akochy PM, Lapointe J, Roy PH. Natural insertion of the bro-1 β-lactamase gene into the gatCAB operon affects Moraxella catarrhalis aspartyl-tRNAAsn amidotransferase activity. Microbiology (Reading) 2012; 158:2363-2371. [DOI: 10.1099/mic.0.060095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Pierre-Marie Akochy
- Centre de Recherche en Infectiologie, CHUQ Pavillon CHUL, 2705 boul. Laurier, RC-709, QC G1V 4G2, Canada
- Institut Pasteur de Côte d’Ivoire, 01 BP 490 Abidjan, Côte d’Ivoire
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, QC G1V 0A6, Canada
| | - Jacques Lapointe
- Institut de biologie intégrative et des systèmes (IBIS), Pavillon Charles-Eugène-Marchand, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, QC G1V 0A6, Canada
| | - Paul H. Roy
- Centre de Recherche en Infectiologie, CHUQ Pavillon CHUL, 2705 boul. Laurier, RC-709, QC G1V 4G2, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Hays J. Mobile genetic elements in Moraxella catarrhalis. Mob Genet Elements 2011; 1:155-158. [PMID: 22016866 DOI: 10.4161/mge.1.2.17632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 12/26/2022] Open
Abstract
Moraxella catarrhalis is a Gram-negative diplococcus that is a strict human pathogen, which for a long period of time was regarded as a simple commensal. Research now shows that this organism is a pathogen its own right and is associated with both upper and lower respiratory tract infections. Further, there appears to be a dichotomy in the pathogenic potential of M. catarrhalis with upper respiratory tract infections mainly occurring in children, and lower respiratory tract infections mainly occurring in adults with predisposing pulmonary complications e.g., chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- John Hays
- Deptartment of Medical Microbiology and Infectious Disease; Erasmus MC; Rotterdam, The Netherlands
| |
Collapse
|
13
|
Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother 2011; 55:3845-53. [PMID: 21576428 DOI: 10.1128/aac.01772-10] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Moraxella catarrhalis is a common pathogen found in children with upper respiratory tract infections and in patients with chronic obstructive pulmonary disease during exacerbations. The bacterial species is often isolated together with Streptococcus pneumoniae and Haemophilus influenzae. Outer membrane vesicles (OMVs) are released by M. catarrhalis and contain phospholipids, adhesins, and immunomodulatory compounds such as lipooligosaccharide. We have recently shown that M. catarrhalis OMVs exist in patients upon nasopharyngeal colonization. As virtually all M. catarrhalis isolates are β-lactamase positive, the goal of this study was to investigate whether M. catarrhalis OMVs carry β-lactamase and to analyze if OMV consequently can prevent amoxicillin-induced killing. Recombinant β-lactamase was produced and antibodies were raised in rabbits. Transmission electron microscopy, flow cytometry, and Western blotting verified that OMVs carried β-lactamase. Moreover, enzyme assays revealed that M. catarrhalis OMVs contained active β-lactamase. OMVs (25 μg/ml) incubated with amoxicillin for 1 h completely hydrolyzed amoxicillin at concentrations up to 2.5 μg/ml. In functional experiments, preincubation of amoxicillin (10× MIC) with M. catarrhalis OMVs fully rescued amoxicillin-susceptible M. catarrhalis, S. pneumoniae, and type b or nontypeable H. influenzae from β-lactam-induced killing. Our results suggest that the presence of amoxicillin-resistant M. catarrhalis originating from β-lactamase-containing OMVs may pave the way for respiratory pathogens that by definition are susceptible to β-lactam antibiotics.
Collapse
|
14
|
Khan MA, Northwood JB, Levy F, Verhaegh SJC, Farrell DJ, Van Belkum A, Hays JP. bro {beta}-lactamase and antibiotic resistances in a global cross-sectional study of Moraxella catarrhalis from children and adults. J Antimicrob Chemother 2010; 65:91-7. [PMID: 19889789 DOI: 10.1093/jac/dkp401] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To compare and contrast the geographic and demographic distribution of bro beta-lactamase and antibiotic MIC(50/90) for 1440 global Moraxella catarrhalis isolates obtained from children and adults between 2001 and 2002. METHODS One thousand four hundred and forty M. catarrhalis isolates originating from seven world regions were investigated. The isolates were recovered from 411 children <5 years of age and 1029 adults >20 years of age. PCR-restriction fragment length polymorphism (RFLP) was performed to determine bro prevalence and to distinguish between bro types. MIC values of 12 different antibiotics were determined using the CLSI (formerly NCCLS) broth microdilution method. RESULTS Of the 1440 isolates, 1313 (91%) possessed the bro-1 gene and 64 (4%) possessed the bro-2 gene. Additionally, the prevalence of bro positivity between the child and adult age groups was significantly different (P < 0.0001), though bro-1 and bro-2 prevalences within age groups were not significantly different. Consistently higher beta-lactam MICs were observed for M. catarrhalis isolates originating in the Far East. Significant correlations in MICs were observed for several antibiotic combinations, including all five beta-lactams with each other, and among the two quinolones. CONCLUSIONS The worldwide prevalence of bro gene carriage in clinical isolates of M. catarrhalis is now approaching 95%, with children significantly more likely to harbour bro-positive isolates than adults. Further, statistically significant differences in the distribution of beta-lactam MICs were observed between different world regions, particularly with respect to the Far East.
Collapse
Affiliation(s)
- Mushtaq A Khan
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
15
|
Molecular aspects of Moraxella catarrhalis pathogenesis. Microbiol Mol Biol Rev 2009; 73:389-406, Table of Contents. [PMID: 19721084 DOI: 10.1128/mmbr.00007-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, Moraxella catarrhalis has established its position as an important human mucosal pathogen, no longer being regarded as just a commensal bacterium. Further, current research in the field has led to a better understanding of the molecular mechanisms involved in M. catarrhalis pathogenesis, including mechanisms associated with cellular adherence, target cell invasion, modulation of the host's immune response, and metabolism. Additionally, in order to be successful in the host, M. catarrhalis has to be able to interact and compete with the commensal flora and overcome stressful environmental conditions, such as nutrient limitation. In this review, we provide a timely overview of the current understanding of the molecular mechanisms associated with M. catarrhalis virulence and pathogenesis.
Collapse
|
16
|
Hag mediates adherence of Moraxella catarrhalis to ciliated human airway cells. Infect Immun 2009; 77:4597-608. [PMID: 19667048 DOI: 10.1128/iai.00212-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a human pathogen causing otitis media in infants and respiratory infections in adults, particularly patients with chronic obstructive pulmonary disease. The surface protein Hag (also designated MID) has previously been shown to be a key adherence factor for several epithelial cell lines relevant to pathogenesis by M. catarrhalis, including NCIH292 lung cells, middle ear cells, and A549 type II pneumocytes. In this study, we demonstrate that Hag mediates adherence to air-liquid interface cultures of normal human bronchial epithelium (NHBE) exhibiting mucociliary activity. Immunofluorescent staining and laser scanning confocal microscopy experiments demonstrated that the M. catarrhalis wild-type isolates O35E, O12E, TTA37, V1171, and McGHS1 bind principally to ciliated NHBE cells and that their corresponding hag mutant strains no longer associate with cilia. The hag gene product of M. catarrhalis isolate O35E was expressed in the heterologous genetic background of a nonadherent Haemophilus influenzae strain, and quantitative assays revealed that the adherence of these recombinant bacteria to NHBE cultures was increased 27-fold. These experiments conclusively demonstrate that the hag gene product is responsible for the previously unidentified tropism of M. catarrhalis for ciliated NHBE cells.
Collapse
|
17
|
Gergova R, Markovska R, Mitov I. Antimicrobial resistance and production of beta-lactamases in Bulgarian clinical isolatesMoraxella catarrhalis. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Pearson MM, Hansen EJ. Identification of gene products involved in biofilm production by Moraxella catarrhalis ETSU-9 in vitro. Infect Immun 2007; 75:4316-25. [PMID: 17562762 PMCID: PMC1951151 DOI: 10.1128/iai.01347-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis ETSU-9 was subjected to random transposon insertion mutagenesis to identify genes encoding products involved in the ability of the organism to form biofilms in vitro. Screening of approximately 3,000 transposon insertion mutants in the crystal violet-based biofilm assay system yielded six mutants that exhibited greatly reduced abilities to form biofilms. Three of these mutants had transposon insertions in the uspA2H gene, which encodes a surface protein previously shown to be involved in the ability of M. catarrhalis to both attach to human cell lines in vitro and resist killing by normal human serum. Random insertion mutagenesis of the uspA2H gene, involving the introduction of a 15-nucleotide fragment encoding 5 amino acids, was used to attempt to identify the domain(s) necessary for biofilm formation. Most of these insertions adversely affected biofilm formation, whereas the abilities of these same mutants to attach to Chang conjunctival epithelial cells in vitro were usually not reduced. Gain-of-function experiments showed that introduction of the M. catarrhalis ETSU-9 uspA2H gene into Escherichia coli conferred biofilm formation ability on this recombinant strain. Two of the other three M. catarrhalis ETSU-9 transposon insertion mutants that had greatly reduced abilities to form biofilms were shown to have insertions in genes encoding products predicted to be directly or indirectly involved in cell wall metabolism.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
19
|
Hays JP, Gorkink R, Simons G, Peeters JK, Eadie K, Verduin CM, Verbrugh H, van Belkum A. High-throughput amplification fragment length polymorphism (htAFLP) analysis identifies genetic lineage markers but not complement phenotype-specific markers in Moraxella catarrhalis. Clin Microbiol Infect 2007; 13:55-62. [PMID: 17184288 DOI: 10.1111/j.1469-0691.2006.01582.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparative high-throughput amplified fragment length polymorphism (htAFLP) analysis was performed on a set of 25 complement-resistant and 23 complement-sensitive isolates of Moraxella catarrhalis in order to determine whether there were complement phenotype-specific markers within this species. The htAFLP analysis used 21 primer-pair combinations, generating 41 364 individual fragments and 2273 fragment length polymorphisms, with an average of 862 polymorphisms per isolate. Analysis of polymorphism data clearly indicated the presence of two phylogenetic lineages and 40 (2%) lineage-specific polymorphisms. However, despite the presence of 361 (16%) statistically significant complement phenotype-associated polymorphisms, no single marker was 100% complement phenotype-specific. Furthermore, no complement phenotype-specific marker was found within different phylogenetic lineages. These findings agree with previous results indicating that the complement resistance phenotype within M. catarrhalis is probably defined by multiple genes, although not all of these genes may be present within all M. catarrhalis isolates.
Collapse
Affiliation(s)
- J P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Deshpande LM, Sader HS, Fritsche TR, Jones RN. Contemporary prevalence of BRO beta-lactamases in Moraxella catarrhalis: report from the SENTRY antimicrobial surveillance program (North America, 1997 to 2004). J Clin Microbiol 2006; 44:3775-7. [PMID: 17021108 PMCID: PMC1594778 DOI: 10.1128/jcm.00456-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 7,860 community-acquired Moraxella catarrhalis isolates (SENTRY Antimicrobial Surveillance Program, 1997 to 2004) were tested by broth microdilution methods, and 399 randomly selected strains from North American sites were tested for BRO-1 and BRO-2 by PCR methods. Several antimicrobials remained very active, including amoxicillin-clavulanate (MIC90s, < or =0.25 microg/ml), azithromycin (MIC90s, < or =0.12 microg/ml), ceftriaxone (MIC90s, 0.5 microg/ml), and levofloxacin (MIC90s, < or =0.03 to 0.06 microg/ml). The BRO-2 incidence rates by year were 3 to 4% overall (96 to 97% for BRO-1) and were the highest in Canada (7.9%), with the incidence in the United States being only 2.0%.
Collapse
|
21
|
Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, Yagi T, Kato H, Arakawa Y. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet 2003; 362:1888-93. [PMID: 14667745 DOI: 10.1016/s0140-6736(03)14959-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Bacteria develop resistance to aminoglycosides by producing aminoglycoside-modifying enzymes such as acetyltransferase, phosphorylase, and adenyltransferase. These enzymes, however, cannot confer consistent resistance to various aminoglycosides because of their substrate specificity. Notwithstanding, a Pseudomonas aeruginosa strain AR-2 showing high-level resistance (minimum inhibitory concentration >1024 mg/L) to various aminoglycosides was isolated clinically. We aimed to clone and characterise the genetic determinant of this resistance. METHODS We used conventional methods for DNA manipulation, susceptibility testing, and gene analyses to clone and characterise the genetic determinant of the resistance seen. PCR detection of the gene was also done on a stock of P aeruginosa strains that were isolated clinically since 1997. FINDINGS An aminoglycoside-resistance gene, designated rmtA, was identified in P aeruginosa AR-2. The Escherichia coli transformant and transconjugant harbouring the rmtA gene showed very high-level resistance to various aminoglycosides, including amikacin, tobramycin, isepamicin, arbekacin, kanamycin, and gentamicin. The 756-bp nucleotide rmtA gene encoded a protein, RmtA. This protein showed considerable similarity to the 16S rRNA methylases of aminoglycoside-producing actinomycetes, which protect bacterial 16S rRNA from intrinsic aminoglycosides by methylation. Incorporation of radiolabelled methyl groups into the 30S ribosome was detected in the presence of RmtA. Of 1113 clinically isolated P aeruginosa strains, nine carried the rmtA gene, as shown by PCR analyses. INTERPRETATION Our findings strongly suggest intergeneric lateral gene transfer of 16S rRNA methylase gene from some aminoglycoside-producing microorganisms to P aeruginosa. Further dissemination of the rmtA gene in nosocomial bacteria could be a matter of concern in the future.
Collapse
Affiliation(s)
- Keiko Yokoyama
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Felmingham D, Feldman C, Hryniewicz W, Klugman K, Kohno S, Low DE, Mendes C, Rodloff AC. Surveillance of resistance in bacteria causing community-acquired respiratory tract infections. Clin Microbiol Infect 2002; 8 Suppl 2:12-42. [PMID: 12427206 DOI: 10.1046/j.1469-0691.8.s.2.5.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial resistance to antibiotics in community-acquired respiratory tract infections is a serious problem and is increasing in prevalence world-wide at an alarming rate. Streptococcus pneumoniae, one of the main organisms implicated in respiratory tract infections, has developed multiple resistance mechanisms to combat the effects of most commonly used classes of antibiotics, particularly the beta-lactams (penicillin, aminopenicillins and cephalosporins) and macrolides. Furthermore, multidrug-resistant strains of S. pneumoniae have spread to all regions of the world, often via resistant genetic clones. A similar spread of resistance has been reported for other major respiratory tract pathogens, including Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pyogenes. To develop and support resistance control strategies it is imperative to obtain accurate data on the prevalence, geographic distribution and antibiotic susceptibility of respiratory tract pathogens and how this relates to antibiotic prescribing patterns. In recent years, significant progress has been made in developing longitudinal national and international surveillance programs to monitor antibiotic resistance, such that the prevalence of resistance and underlying trends over time are now well documented for most parts of Europe, and many parts of Asia and the Americas. However, resistance surveillance data from parts of the developing world (regions of Central America, Africa, Asia and Central/Eastern Europe) remain poor. The quantity and quality of surveillance data is very heterogeneous; thus there is a clear need to standardize or validate the data collection, analysis and interpretative criteria used across studies. If disseminated effectively these data can be used to guide empiric antibiotic therapy, and to support-and monitor the impact of-interventions on antibiotic resistance.
Collapse
|
23
|
Carnoy C, Floquet S, Marceau M, Sebbane F, Haentjens-Herwegh S, Devalckenaere A, Simonet M. The superantigen gene ypm is located in an unstable chromosomal locus of Yersinia pseudotuberculosis. J Bacteriol 2002; 184:4489-99. [PMID: 12142419 PMCID: PMC135243 DOI: 10.1128/jb.184.16.4489-4499.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pseudotuberculosis produces YPM (Y. pseudotuberculosis-derived mitogen), a superantigenic toxin that exacerbates the virulence of the bacterium in vivo. To date, three alleles of the superantigen gene (ypmA, ypmB, and ypmC) have been described. These genes are not found in all Y. pseudotuberculosis strains and have a low GC content, suggesting their location on mobile genetic elements. To elucidate this question, the genetic environment of the superantigen-encoding genes was characterized and 11 open reading frames (ORFs) were defined. Sequence analysis revealed that the ypm genes were not associated with plasmids, phages, transposons, or pathogenicity islands and that the superantigen genes were always located in the chromosome between ORF3 and ORF4. Nonsuperantigenic strains exhibited the same genetic organization of the locus but lacked the ypm gene between ORF3 and ORF4. A new insertion sequence, designated IS1398, which displays features of the Tn3 family, was characterized downstream of the ypmA and ypmC genes. A 13.3-kb region containing the ypm genes was not found in the genome of Y. pestis (CO92 and KIM 5 strains). We experimentally induced deletion of the ypm gene from a superantigen-expressing Y. pseudotuberculosis: using the association of aph(3')-IIIa and sacB genes, we demonstrated that when these reporter genes were present in the ypm locus, deletion of these genes was about 250 times more frequent than when they were located in another region of the Y. pseudotuberculosis chromosome. These results indicate that unlike other superantigenic toxin genes, the Yersinia ypm genes are not associated with mobile genetic elements but are inserted in an unstable locus of the genome.
Collapse
Affiliation(s)
- Christophe Carnoy
- Equipe Mixte Inserm E9919-Université JE 2225-Institut Pasteur de Lille, Lille, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Schmitz FJ, Beeck A, Perdikouli M, Boos M, Mayer S, Scheuring S, Köhrer K, Verhoef J, Fluit AC. Production of BRO beta-lactamases and resistance to complement in European Moraxella catarrhalis isolates. J Clin Microbiol 2002; 40:1546-8. [PMID: 11923393 PMCID: PMC140350 DOI: 10.1128/jcm.40.4.1546-1548.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of the 419 Moraxella catarrhalis isolates collected during the 1997-1999 European SENTRY surveillance study, 385 (92%) were beta-lactamase positive. Twenty-two (5.7%) produced BRO-2 beta-lactamase. Twenty-one new mutations were found in the putative promoter region of the bro genes. Nineteen percent of all isolates tested were complement sensitive. Resistance to beta-lactams is not linked to the phylogenetic lineages associated with susceptibility to complement.
Collapse
Affiliation(s)
- Franz-Josef Schmitz
- Institute for Medical Microbiology and Virology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The evolution of antibiotic resistance provides a well-documented, rapid, and recent example of a selection driven process that has occurred in many bacterial species. An exhaustive collection of Moraxella catarrhalis that spans a transition to chromosomally encoded penicillin resistance was used to analyze genetic changes accompanying the transition. The population was characterized by high haplotypic diversity with 148 distinct haplotypes among 372 isolates tested at three genomic regions. The power of a temporally stratified sample from a single population was highlighted by the finding of high genetic diversity throughout the transition to resistance, population numbers that remained high over time, and no evidence of departures from neutrality in the allele frequency spectra throughout the transition. The direct temporal analysis documented the persistence, antibiotic status, and haplotypic identity of strains undergoing apparent clonal expansions. Several haplotypes that were beta-lactamase nonproducers in early samples converted to producers in later years. Maintenance of genetic diversity and haplotype conversions from sensitive to resistant supported the hypothesis that penicillin resistance determinants spread to a diverse array of strains via horizontal exchange. Genetic differentiation between sample years, estimated by F(ST), was increasing at a rate that could cause complete haplotype turnover in less than 150 years. Widespread linkage disequilibrium among sites within one locus (copB) suggested recent mutation followed by clonal expansion. Nonrandom associations between haplotypes and resistance phenotypes provided further evidence of clonal expansion for some haplotypes. Nevertheless, the population structure was far from clonal as evidenced by a relatively low frequency of disequilibria both within sites at a second locus (M46) as well as between loci. The haplotype-antibiotic resistance association that was accompanied by gradual haplotype turnover is consistent with a hypothesis of genetic drift at marker loci with directional selection at the resistance locus.
Collapse
Affiliation(s)
- E S Walker
- James H. Quillen Veterans Affairs Medical Center, Mountain Home, Tennessee 37684, USA.
| | | |
Collapse
|
26
|
|
27
|
du Plessis M. Rapid discrimination between BRO beta-lactamases from clinical isolates of Moraxella catarrhalis using restriction endonuclease analysis. Diagn Microbiol Infect Dis 2001; 39:65-7. [PMID: 11173194 DOI: 10.1016/s0732-8893(00)00220-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An important feature of Moraxella catarrhalis is the production of beta-lactamases, which causes resistance to the penicillins. Restriction enzyme analysis was able to distinguish between the bro-1 and bro-2 beta-lactamase-encoding genes from 89 clinical isolates of M. catarrhalis. This is a rapid, simple and cost effective method of characterizing these genes.
Collapse
Affiliation(s)
- M du Plessis
- South African Institute for Medical Research, Pneumococcal Diseases Research Unit, de Korte St, Hillbrow, Jhb, P. O. Box 1038, 2000, Johannesburg, South Africa.
| |
Collapse
|