1
|
Karimullina E, Guo Y, Khan HM, Emde T, Quade B, Di Leo R, Otwinowski Z, Tieleman DP, Borek D, Savchenko A. Structural architecture of TolQ-TolR inner membrane protein complex from opportunistic pathogen Acinetobacter baumannii. SCIENCE ADVANCES 2025; 11:eadq9845. [PMID: 40184442 PMCID: PMC11970459 DOI: 10.1126/sciadv.adq9845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Gram-negative bacteria harness the proton motive force (PMF) within their inner membrane (IM) to uphold cell envelope integrity, an indispensable aspect for both division and survival. The IM TolQ-TolR complex is the essential part of the Tol-Pal system, serving as a conduit for PMF energy transfer to the outer membrane. Here we present cryo-electron microscopy reconstructions of Acinetobacter baumannii TolQ in apo and TolR-bound forms at atomic resolution. The apo TolQ configuration manifests as a symmetric pentameric pore, featuring a transmembrane funnel leading toward a cytoplasmic chamber. In contrast, the TolQ-TolR complex assumes a proton nonpermeable stance, characterized by the TolQ pentamer's flexure to accommodate the TolR dimer, where two protomers undergo a translation-based relationship. Our structure-guided analysis and simulations support the rotor-stator mechanism of action, wherein the rotation of the TolQ pentamer harmonizes with the TolR protomers' interplay. These findings broaden our mechanistic comprehension of molecular stator units empowering critical functions within the Gram-negative bacterial cell envelope.
Collapse
Affiliation(s)
- Elina Karimullina
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
| | - Yirui Guo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Ligo Analytics, 2207 Chunk Ct., Dallas, TX 75206, USA
| | - Hanif M. Khan
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada
| | - Tabitha Emde
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rosa Di Leo
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Chemical Engineering and Applied Sciences, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Zbyszek Otwinowski
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - D. Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada
| | - Dominika Borek
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexei Savchenko
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, IL 60611, USA
| |
Collapse
|
2
|
Karimullina E, Guo Y, Khan HM, Emde T, Quade B, Leo RD, Otwinowski Z, Tieleman Peter D, Borek D, Savchenko A. Structural architecture of TolQ-TolR inner membrane protein complex from opportunistic pathogen Acinetobacter baumannii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599759. [PMID: 38948712 PMCID: PMC11212960 DOI: 10.1101/2024.06.19.599759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Gram-negative bacteria harness the proton motive force (PMF) within their inner membrane (IM) to uphold the integrity of their cell envelope, an indispensable aspect for both division and survival. The IM TolQ-TolR complex is the essential part of the Tol-Pal system, serving as a conduit for PMF energy transfer to the outer membrane. Here we present cryo-EM reconstructions of Acinetobacter baumannii TolQ in apo and TolR- bound forms at atomic resolution. The apo TolQ configuration manifests as a symmetric pentameric pore, featuring a trans-membrane funnel leading towards a cytoplasmic chamber. In contrast, the TolQ-TolR complex assumes a proton non-permeable stance, characterized by the TolQ pentamer's flexure to accommodate the TolR dimer, where two protomers undergo a translation-based relationship. Our structure-guided analysis and simulations support the rotor-stator mechanism of action, wherein the rotation of the TolQ pentamer harmonizes with the TolR protomers' interplay. These findings broaden our mechanistic comprehension of molecular stator units empowering critical functions within the Gram-negative bacterial cell envelope. Teaser Apo TolQ and TolQ-TolR structures depict structural rearrangements required for cell envelope organization in bacterial cell division.
Collapse
|
3
|
Williams-Jones DP, Webby MN, Press CE, Gradon JM, Armstrong SR, Szczepaniak J, Kleanthous C. Tunable force transduction through the Escherichia coli cell envelope. Proc Natl Acad Sci U S A 2023; 120:e2306707120. [PMID: 37972066 PMCID: PMC10666116 DOI: 10.1073/pnas.2306707120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is not energised and so processes requiring a driving force must connect to energy-transduction systems in the inner membrane (IM). Tol (Tol-Pal) and Ton are related, proton motive force- (PMF-) coupled assemblies that stabilise the OM and import essential nutrients, respectively. Both rely on proton-harvesting IM motor (stator) complexes, which are homologues of the flagellar stator unit Mot, to transduce force to the OM through elongated IM force transducer proteins, TolA and TonB, respectively. How PMF-driven motors in the IM generate mechanical work at the OM via force transducers is unknown. Here, using cryoelectron microscopy, we report the 4.3Å structure of the Escherichia coli TolQR motor complex. The structure reaffirms the 5:2 stoichiometry seen in Ton and Mot and, with motor subunits related to each other by 10 to 16° rotation, supports rotary motion as the default for these complexes. We probed the mechanism of force transduction to the OM through in vivo assays of chimeric TolA/TonB proteins where sections of their structurally divergent, periplasm-spanning domains were swapped or replaced by an intrinsically disordered sequence. We find that TolA mutants exhibit a spectrum of force output, which is reflected in their respective abilities to both stabilise the OM and import cytotoxic colicins across the OM. Our studies demonstrate that structural rigidity of force transducer proteins, rather than any particular structural form, drives the efficient conversion of PMF-driven rotary motions of 5:2 motor complexes into physiologically relevant force at the OM.
Collapse
Affiliation(s)
| | - Melissa N. Webby
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Cara E. Press
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Jan M. Gradon
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Sophie R. Armstrong
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Joanna Szczepaniak
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
4
|
Pellegri C, Moreau A, Duché D, Houot L. Direct interaction between fd phage pilot protein pIII and the TolQ-TolR proton-dependent motor provides new insights into the import of filamentous phages. J Biol Chem 2023; 299:105048. [PMID: 37451481 PMCID: PMC10424213 DOI: 10.1016/j.jbc.2023.105048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Filamentous phages are one of the simplest examples of viruses with a protein capsid that protects a circular single-stranded DNA genome. The infection is very specific, nonlytic, and can strongly affect the physiology or provide new pathogenic factors to its bacterial host. The infection process is proposed to rely on a pore-forming mechanism similar to that of certain nonenveloped eukaryotic viruses. The Ff coliphages (including M13, fd, and f1) have been intensively studied and were used to establish the sequence of events taking place for efficient crossing of the host envelope structure. However, the mechanism involved in the penetration of the cell inner membrane is not well understood. Here, we identify new host players involved in the phage translocation mechanism. Interaction studies by a combination of in vivo biochemical methods demonstrate that the adhesion protein pIII located at the tip of the phage binds to TolQ and TolR, two proteins that form a conserved proton-dependent molecular motor in the inner membrane of the host cell. Moreover, in vivo cysteine cross-linking studies reveal that the interactions between the pIII and TolQ or TolR occur between their transmembrane helix domains and may be responding to the proton motive force status of the cell. These results allow us to propose a model for the late stage of filamentous phage translocation mediated by multiple interactions with each individual component of the host TolQRA complex.
Collapse
Affiliation(s)
- Callypso Pellegri
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Ambre Moreau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France.
| |
Collapse
|
5
|
Chaouche AA, Houot L, Duché D, Iobbi-Nivol C, Giudici-Orticoni MT, Fons M, Méjean V. The Tol-Pal system of Escherichia coli plays an unexpected role in the import of the oxyanions chromate and phosphate. Res Microbiol 2022; 173:103967. [PMID: 35660524 DOI: 10.1016/j.resmic.2022.103967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Chromate is a toxic metal that enters bacteria by using oxyanion importers. Here, we show that each mutant of the Tol-Pal system of Escherichia coli exhibited increased chromate resistance. This system, which spans the cell envelope, plays a major role in envelope integrity and septation. The ΔtolQR mutant accumulated three-fold less chromate than the wild-type. Addition of phosphate but not sulfate to rich medium drastically reduced chromate toxicity and import in the wild-type strain. Furthermore, the intracellular concentration of free inorganic phosphate was significantly reduced for the ΔtolR mutant in comparison to the wild-type strain. Moreover, extracellular labelled phosphate was significantly less incorporated into the ΔtolR mutant. Finally, two distinct TolQR mutant complexes, specifically affected in Tol-Pal energization without affecting the TolQRA complex structure, did not complement the ΔtolQR mutant for inorganic phosphate accumulation. We thus propose that, while the Pst system is well known to import inorganic phosphate, the Tol-Pal system participates to phosphate uptake in particular at medium to high extracellular phosphate concentrations. Since mutations disabling the Tol-Pal system lead to pleiotropic effects, chromate resistance and reduced inorganic phosphate import could occur from an indirect effect of mutations in components of the Tol-Pal system.
Collapse
Affiliation(s)
- Amine Ali Chaouche
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, IM2B, 31 Chemin Joseph Aiguier, CS70071, 13402, Marseille Cedex 09, France.
| | - Laetitia Houot
- Aix Marseille Univ, CNRS, LISM UMR 7255, IMM, IM2B, 31 Chemin Joseph Aiguier, CS70071, 13402, Marseille Cedex 09, France.
| | - Denis Duché
- Aix Marseille Univ, CNRS, LISM UMR 7255, IMM, IM2B, 31 Chemin Joseph Aiguier, CS70071, 13402, Marseille Cedex 09, France.
| | - Chantal Iobbi-Nivol
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, IM2B, 31 Chemin Joseph Aiguier, CS70071, 13402, Marseille Cedex 09, France.
| | - Marie-Thérèse Giudici-Orticoni
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, IM2B, 31 Chemin Joseph Aiguier, CS70071, 13402, Marseille Cedex 09, France.
| | - Michel Fons
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, IM2B, 31 Chemin Joseph Aiguier, CS70071, 13402, Marseille Cedex 09, France.
| | - Vincent Méjean
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, IM2B, 31 Chemin Joseph Aiguier, CS70071, 13402, Marseille Cedex 09, France
| |
Collapse
|
6
|
Park S, Cho H. The Tol-Pal System Plays an Important Role in Maintaining Cell Integrity During Elongation in Escherichia coli. Front Microbiol 2022; 13:891926. [PMID: 35592005 PMCID: PMC9111525 DOI: 10.3389/fmicb.2022.891926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
The Tol-Pal system is a transenvelope complex widely conserved among Gram-negative bacteria. It is recruited to the septal ring during cytokinesis, and its inactivation causes pleiotropic phenotypes mainly associated with the division process. From our genetic screen to identify factors required for delaying lysis upon treatment of beta lactams, we discovered that the tol-pal mutant shares similar defects with mutants of the major class A PBP system (PBP1b-LpoB) in terms of lysis prevention. Further phenotypic analyses revealed that the Tol-Pal system plays an important role in maintaining cell integrity not only during septation, but also during cell elongation. Simultaneous inactivation of the Tol-Pal system and the PBP1b-LpoB system leads to lysis during cell elongation as well as during division. Moreover, production of the Lpo activator-bypass PBP1b, but not wild-type PBP1b, partially suppressed the Tol-Pal defect in maintaining cell integrity upon treatment of mecillinam specific for the Rod system, suggesting that the Tol-Pal system is likely to be involved in the activation of aPBP by Lpo factors. Overall, our results indicate that the Tol-Pal system plays an important role in maintaining cell wall integrity during elongation in addition to its multifaceted roles during cytokinesis.
Collapse
Affiliation(s)
- Sohee Park
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Yeow J, Chng SS. Of zones, bridges and chaperones - phospholipid transport in bacterial outer membrane assembly and homeostasis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35384832 DOI: 10.1099/mic.0.001177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The outer membrane (OM) is a formidable permeability barrier that protects Gram-negative bacteria from detergents and antibiotics. It possesses exquisite lipid asymmetry, requiring the placement and retention of lipopolysaccharides (LPS) in the outer leaflet, and phospholipids (PLs) in the inner leaflet. To establish OM lipid asymmetry, LPS are transported from the inner membrane (IM) directly to the outer leaflet of the OM. In contrast, mechanisms for PL trafficking across the cell envelope are much less understood. In this review, we summarize and discuss recent advances in our understanding of PL transport, making parallel comparisons to well-established pathways for OM lipoprotein (Lol) and LPS (Lpt). Insights into putative PL transport systems highlight possible connections back to the 'Bayer bridges', adhesion zones between the IM and the OM that had been observed more than 50 years ago, and proposed as passages for export of OM components, including LPS and PLs.
Collapse
Affiliation(s)
- Jiang Yeow
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
8
|
Webby MN, Williams-Jones DP, Press C, Kleanthous C. Force-Generation by the Trans-Envelope Tol-Pal System. Front Microbiol 2022; 13:852176. [PMID: 35308353 PMCID: PMC8928145 DOI: 10.3389/fmicb.2022.852176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
The Tol-Pal system spans the cell envelope of Gram-negative bacteria, transducing the potential energy of the proton motive force (PMF) into dissociation of the TolB-Pal complex at the outer membrane (OM), freeing the lipoprotein Pal to bind the cell wall. The primary physiological role of Tol-Pal is to maintain OM integrity during cell division through accumulation of Pal molecules at division septa. How the protein complex couples the PMF at the inner membrane into work at the OM is unknown. The effectiveness of this trans-envelope energy transduction system is underscored by the fact that bacteriocins and bacteriophages co-opt Tol-Pal as part of their import/infection mechanisms. Mechanistic understanding of this process has been hindered by a lack of structural data for the inner membrane TolQ-TolR stator, of its complexes with peptidoglycan (PG) and TolA, and of how these elements combined power events at the OM. Recent studies on the homologous stators of Ton and Mot provide a starting point for understanding how Tol-Pal works. Here, we combine ab initio protein modeling with previous structural data on sub-complexes of Tol-Pal as well as mutagenesis, crosslinking, co-conservation analysis and functional data. Through this composite pooling of in silico, in vitro, and in vivo data, we propose a mechanism for force generation in which PMF-driven rotary motion within the stator drives conformational transitions within a long TolA helical hairpin domain, enabling it to reach the TolB-Pal complex at the OM.
Collapse
Affiliation(s)
| | | | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Vincent MS, Comas Hervada C, Sebban-Kreuzer C, Le Guenno H, Chabalier M, Kosta A, Guerlesquin F, Mignot T, McBride MJ, Cascales E, Doan T. Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLoS Biol 2022; 20:e3001443. [PMID: 35333857 PMCID: PMC8986121 DOI: 10.1371/journal.pbio.3001443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/06/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Motile bacteria usually rely on external apparatus like flagella for swimming or pili for twitching. By contrast, gliding bacteria do not rely on obvious surface appendages to move on solid surfaces. Flavobacterium johnsoniae and other bacteria in the Bacteroidetes phylum use adhesins whose movement on the cell surface supports motility. In F. johnsoniae, secretion and helicoidal motion of the main adhesin SprB are intimately linked and depend on the type IX secretion system (T9SS). Both processes necessitate the proton motive force (PMF), which is thought to fuel a molecular motor that comprises the GldL and GldM cytoplasmic membrane proteins. Here, we show that F. johnsoniae gliding motility is powered by the pH gradient component of the PMF. We further delineate the interaction network between the GldLM transmembrane helices (TMHs) and show that conserved glutamate residues in GldL TMH2 are essential for gliding motility, although having distinct roles in SprB secretion and motion. We then demonstrate that the PMF and GldL trigger conformational changes in the GldM periplasmic domain. We finally show that multiple GldLM complexes are distributed in the membrane, suggesting that a network of motors may be present to move SprB along a helical path on the cell surface. Altogether, our results provide evidence that GldL and GldM assemble dynamic membrane channels that use the proton gradient to power both T9SS-dependent secretion of SprB and its motion at the cell surface.
Collapse
Affiliation(s)
- Maxence S. Vincent
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Caterina Comas Hervada
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Corinne Sebban-Kreuzer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Hugo Le Guenno
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Maïalène Chabalier
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Françoise Guerlesquin
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7283, Marseille, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Thierry Doan
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| |
Collapse
|
10
|
BACCELLI P, RACHEDI R, SERRANO B, PETITI M, BERNARD C, HOUOT L, DUCHE D. Timing of TolA and TolQ recruitment at the septum depends on the functionality of the Tol-Pal system. J Mol Biol 2022; 434:167519. [DOI: 10.1016/j.jmb.2022.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
11
|
Tan WB, Chng SS. Genetic interaction mapping highlights key roles of the Tol-Pal complex. Mol Microbiol 2022; 117:921-936. [PMID: 35066953 DOI: 10.1111/mmi.14882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
The conserved Tol-Pal trans-envelope complex is important for outer membrane (OM) stability and cell division in Gram-negative bacteria. It is proposed to mediate OM constriction during cell division via cell wall tethering. Yet, recent studies suggest the complex has additional roles in OM lipid homeostasis and septal wall separation. How Tol-Pal facilitates all these processes is unclear. To gain insights into its function(s), we applied transposon-insertion sequencing, and report here a detailed network of genetic interactions with the tol-pal locus in Escherichia coli. We found one positive and >20 negative strong interactions based on fitness. Disruption osmoregulated-periplasmic glucan biosynthesis restores fitness and OM barrier function, but not proper division, in tol-pal mutants. In contrast, deleting genes involved in OM homeostasis and cell wall remodeling cause synthetic growth defects in strains lacking Tol-Pal, especially exacerbating OM barrier and/or division phenotypes. Notably, the ΔtolA mutant having additional defects in OM protein assembly (ΔbamB) exhibited severe division phenotypes, even when single mutants divided normally; this highlights the possibility for OM phenotypes to indirectly impact cell division. Overall, our work underscores the intricate nature of Tol-Pal function, and reinforces its key roles in cell wall-OM tethering, cell wall remodeling, and in particular, OM homeostasis.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore
| |
Collapse
|
12
|
Recruitment of the TolA protein to cell constriction sites in Escherichia coli via three separate mechanisms, and a critical role for FtsWI activity in recruitment of both TolA and TolQ. J Bacteriol 2021; 204:e0046421. [PMID: 34748387 DOI: 10.1128/jb.00464-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Tol-Pal system of Gram-negative bacteria helps maintain integrity of the cell envelope and ensures that invagination of the envelope layers during cell fission occurs in a well-coordinated manner. In E. coli, the five Tol-Pal proteins (TolQ, R, A, B and Pal) accumulate at cell constriction sites in a manner that normally requires the activity of the cell constriction initiation protein FtsN. While septal recruitment of TolR, TolB and Pal also requires the presence of TolQ and/or TolA, each of the the latter two can recognize constriction sites independently of the other system proteins. What attracts TolQ or TolA to these sites is unclear. We show that FtsN attracts both proteins in an indirect fashion, and that PBP1A, PBP1B and CpoB are dispensable for their septal recruitment. However, the β-lactam aztreonam readily interferes with septal accumulation of both TolQ and TolA, indicating that FtsN-stimulated production of septal peptidoglycan by the FtsWI synthase is critical to their recruitment. We also discovered that each of TolA's three domains can recognize division sites in a separate fashion. Notably, the middle domain (TolAII) is responsible for directing TolA to constriction sites in the absence of other Tol-Pal proteins and CpoB, while recruitment of TolAI and TolAIII requires TolQ and a combination of TolB, Pal, and CpoB, respectively. Additionally, we describe the construction and use of functional fluorescent sandwich fusions of the ZipA division protein, which should be more broadly valuable in future studies of the E. coli cell division machinery. IMPORTANCE Cell division (cytokinesis) is a fundamental biological process that is incompletely understood for any organism. Division of bacterial cells relies on a ring-like machinery called the septal ring or divisome that assembles along the circumference of the mother cell at the site where constriction will eventually occur. In the well-studied bacterium Escherichia coli, this machinery contains over thirty distinct proteins. We studied how two such proteins, TolA and TolQ, which also play a role in maintaining integrity of the outer-membrane, are recruited to the machinery. We find that TolA can be recruited by three separate mechanisms, and that both proteins rely on the activity of a well-studied cell division enzyme for their recruitment.
Collapse
|
13
|
Szczepaniak J, Press C, Kleanthous C. The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiol Rev 2021; 44:490-506. [PMID: 32472934 PMCID: PMC7391070 DOI: 10.1093/femsre/fuaa018] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the 1960s several groups reported the isolation and preliminary genetic mapping of
Escherichia coli strains tolerant towards the
action of colicins. These pioneering studies kick-started two new fields in bacteriology;
one centred on how bacteriocins like colicins exploit the Tol (or more commonly Tol-Pal)
system to kill bacteria, the other on the physiological role of this cell
envelope-spanning assembly. The following half century has seen significant advances in
the first of these fields whereas the second has remained elusive, until recently. Here,
we review work that begins to shed light on Tol-Pal function in Gram-negative bacteria.
What emerges from these studies is that Tol-Pal is an energised system with fundamental,
interlinked roles in cell division – coordinating the re-structuring of peptidoglycan at
division sites and stabilising the connection between the outer membrane and underlying
cell wall. This latter role is achieved by Tol-Pal exploiting the proton motive force to
catalyse the accumulation of the outer membrane peptidoglycan associated lipoprotein Pal
at division sites while simultaneously mobilising Pal molecules from around the cell.
These studies begin to explain the diverse phenotypic outcomes of tol-pal
mutations, point to other cell envelope roles Tol-Pal may have and raise many new
questions.
Collapse
Affiliation(s)
- Joanna Szczepaniak
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Cara Press
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
14
|
Alattas H, Wong S, Slavcev RA. Identification of Escherichia coli Host Genes That Influence the Bacteriophage Lambda (λ) T4 rII Exclusion (Rex) Phenotype. Genetics 2020; 216:1087-1102. [PMID: 33033112 PMCID: PMC7768251 DOI: 10.1534/genetics.120.303643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
The T4rII exclusion (Rex) phenotype is the inability of T4rII mutant bacteriophage to propagate in hosts (Escherichia coli) lysogenized by bacteriophage lambda (λ). The Rex phenotype, triggered by T4rII infection of a rex+ λ lysogen, results in rapid membrane depolarization imposing a harsh cellular environment that resembles stationary phase. Rex "activation" has been proposed as an altruistic cell death system to protect the λ prophage and its host from T4rII superinfection. Although well studied for over 60 years, the mechanism behind Rex still remains unclear. We have identified key nonessential genes involved in this enigmatic exclusion system by examining T4rII infection across a collection of rex+ single-gene knockouts. We further developed a system for rapid, one-step isolation of host mutations that could attenuate/abrogate the Rex phenotype. For the first time, we identified host mutations that influence Rex activity and rex+ host sensitivity to T4rII infection. Among others, notable genes include tolA, ompA, ompF, ompW, ompX, ompT, lpp, mglC, and rpoS They are critical players in cellular osmotic balance and are part of the stationary phase and/or membrane distress regulons. Based on these findings, we propose a new model that connects Rex to the σS, σE regulons and key membrane proteins.
Collapse
Affiliation(s)
- Hibah Alattas
- School of Pharmacy, University of Waterloo, Ontario N2L 3G1, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
15
|
Multilamellar and Multivesicular Outer Membrane Vesicles Produced by a Buttiauxella agrestis tolB Mutant. Appl Environ Microbiol 2020; 86:AEM.01131-20. [PMID: 32801184 DOI: 10.1128/aem.01131-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Outer membrane vesicles (OMVs) are naturally released from Gram-negative bacteria and play important roles in various biological functions. Released vesicles are not uniform in shape, size, or characteristics, and little is known about this diversity of OMVs. Here, we show that deletion of tolB, which encodes a part of the Tol-Pal system, leads to the production of multiple types of vesicles and increases overall vesicle production in the high-vesicle-forming Buttiauxella agrestis type strain JCM 1090. The ΔtolB mutant produced small OMVs and multilamellar/multivesicular OMVs (M-OMVs) as well as vesicles with a striking similarity to the wild type. M-OMVs, previously undescribed, contained triple-lamellar membrane vesicles and multiple vesicle-incorporating vesicles. Ultracentrifugation enabled the separation and purification of each type of OMV released from the ΔtolB mutant, and visualization by quick-freeze deep-etch and replica electron microscopy indicated that M-OMVs are composed of several lamellar membranes. Visualization of intracellular compartments of ΔtolB mutant cells showed that vesicles were accumulated in the broad periplasm, which is probably due to the low linkage between the outer and inner membranes attributed to the Tol-Pal defect. The outer membrane was invaginating inward by wrapping a vesicle, and the precursor of M-OMVs existed in the cell. Thus, we demonstrated a novel type of bacterial OMV and showed that unconventional processes enable the B. agrestis ΔtolB mutant to form unique vesicles.IMPORTANCE Membrane vesicle (MV) formation has been recognized as a common mechanism in prokaryotes, and MVs play critical roles in intercellular interaction. However, a broad range of MV types and their multiple production processes make it difficult to gain a comprehensive understanding of MVs. In this work, using vesicle separation and electron microscopic analyses, we demonstrated that diverse types of outer membrane vesicles (OMVs) were released from an engineered strain, Buttiauxella agrestis JCM 1090T ΔtolB mutant. We also discovered a previously undiscovered type of vesicle, multilamellar/multivesicular outer membrane vesicles (M-OMVs), which were released by this mutant using unconventional processes. These findings have facilitated considerable progress in understanding MV diversity and expanding the utility of MVs in biotechnological applications.
Collapse
|
16
|
Jiang X, Tan WB, Shrivastava R, Seow DCS, Chen SL, Guan XL, Chng SS. Mutations in enterobacterial common antigen biosynthesis restore outer membrane barrier function in Escherichia coli tol-pal mutants. Mol Microbiol 2020; 114:991-1005. [PMID: 32808719 DOI: 10.1111/mmi.14590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/12/2020] [Indexed: 12/27/2022]
Abstract
The outer membrane (OM) is an essential component of the Gram-negative bacterial envelope that protects the cells against external threats. To maintain a functional OM, cells require distinct mechanisms to ensure balance of proteins and lipids in the membrane. Mutations in OM biogenesis and/or homeostasis pathways often result in permeability defects, but how molecular changes in the OM affect barrier function is unclear. Here, we seek potential mechanism(s) that can alleviate permeability defects in Escherichia coli cells lacking the Tol-Pal complex, which accumulate excess PLs in the OM. We identify mutations in enterobacterial common antigen (ECA) biosynthesis that re-establish OM barrier function against large hydrophilic molecules, yet did not restore lipid homeostasis. Furthermore, we demonstrate that build-up of biosynthetic intermediates, but not loss of ECA itself, contributes to the rescue. This suppression of OM phenotypes is unrelated to known effects that accumulation of ECA intermediates have on the cell wall. Finally, we reveal that an unusual diacylglycerol pyrophosphoryl-linked lipid species also accumulates in ECA mutants, and might play a role in the rescue phenotype. Our work provides insights into how OM barrier function can be restored independent of lipid homeostasis, and highlights previously unappreciated effects of ECA-related species in OM biology.
Collapse
Affiliation(s)
- Xiang'Er Jiang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Wee Boon Tan
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, Singapore
| | - Rahul Shrivastava
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Deborah Chwee San Seow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Swaine Lin Chen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, Singapore
| |
Collapse
|
17
|
Yakhnina AA, Bernhardt TG. The Tol-Pal system is required for peptidoglycan-cleaving enzymes to complete bacterial cell division. Proc Natl Acad Sci U S A 2020; 117:6777-6783. [PMID: 32152098 PMCID: PMC7104345 DOI: 10.1073/pnas.1919267117] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tol-Pal is a multiprotein system present in the envelope of Gram-negative bacteria. Inactivation of this widely conserved machinery compromises the outer membrane (OM) layer of these organisms, resulting in hypersensitivity to many antibiotics. Mutants in the tol-pal locus fail to complete division and form cell chains. This phenotype along with the localization of Tol-Pal components to the cytokinetic ring in Escherichia coli has led to the proposal that the primary function of the system is to promote OM constriction during division. Accordingly, a poorly constricted OM is believed to link the cell chains formed upon Tol-Pal inactivation. However, we show here that cell chains of E. coli tol-pal mutants are connected by an incompletely processed peptidoglycan (PG) layer. Genetic suppressors of this defect were isolated and found to overproduce OM lipoproteins capable of cleaving the glycan strands of PG. Among the factors promoting cell separation in mutant cells was a protein of previously unknown function (YddW), which we have identified as a divisome-localized glycosyl hydrolase that cleaves peptide-free PG glycans. Overall, our results indicate that the cell chaining defect of Tol-Pal mutants cannot simply be interpreted as a defect in OM constriction. Rather, the complex also appears to be required for the activity of several OM-localized enzymes with cell wall remodeling activity. Thus, the Tol-Pal system may play a more general role in coordinating OM invagination with PG remodeling at the division site than previously appreciated.
Collapse
Affiliation(s)
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Boston, MA 02115
| |
Collapse
|
18
|
Mitchell RJ, Mun W, Mabekou SS, Jang H, Choi SY. Compounds affecting predation by and viability of predatory bacteria. Appl Microbiol Biotechnol 2020; 104:3705-3713. [DOI: 10.1007/s00253-020-10530-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
|
19
|
Szczepaniak J, Holmes P, Rajasekar K, Kaminska R, Samsudin F, Inns PG, Rassam P, Khalid S, Murray SM, Redfield C, Kleanthous C. The lipoprotein Pal stabilises the bacterial outer membrane during constriction by a mobilisation-and-capture mechanism. Nat Commun 2020; 11:1305. [PMID: 32161270 PMCID: PMC7066135 DOI: 10.1038/s41467-020-15083-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/13/2020] [Indexed: 11/24/2022] Open
Abstract
Coordination of outer membrane constriction with septation is critical to faithful division in Gram-negative bacteria and vital to the barrier function of the membrane. This coordination requires the recruitment of the peptidoglycan-binding outer-membrane lipoprotein Pal at division sites by the Tol system. Here, we show that Pal accumulation at Escherichia coli division sites is a consequence of three key functions of the Tol system. First, Tol mobilises Pal molecules in dividing cells, which otherwise diffuse very slowly due to their binding of the cell wall. Second, Tol actively captures mobilised Pal molecules and deposits them at the division septum. Third, the active capture mechanism is analogous to that used by the inner membrane protein TonB to dislodge the plug domains of outer membrane TonB-dependent nutrient transporters. We conclude that outer membrane constriction is coordinated with cell division by active mobilisation-and-capture of Pal at division septa by the Tol system.
Collapse
Affiliation(s)
| | - Peter Holmes
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Karthik Rajasekar
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Evotec SE, 112-114 Innovation Drive, Milton Park, Abingdon, OX14 4RZ, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Firdaus Samsudin
- Department of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | | | - Patrice Rassam
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Laboratoire de Bioimagerie et Pathologie, UMR 7021, CNRS, Université de Strasbourg, Faculté de pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Syma Khalid
- Department of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043, Marburg, Germany
| | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
20
|
Jones-Carson J, Yahashiri A, Kim JS, Liu L, Fitzsimmons LF, Weiss DS, Vázquez-Torres A. Nitric oxide disrupts bacterial cytokinesis by poisoning purine metabolism. SCIENCE ADVANCES 2020; 6:eaaz0260. [PMID: 32133408 PMCID: PMC7043908 DOI: 10.1126/sciadv.aaz0260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/04/2019] [Indexed: 06/02/2023]
Abstract
Cytostasis is the most salient manifestation of the potent antimicrobial activity of nitric oxide (NO), yet the mechanism by which NO disrupts bacterial cell division is unknown. Here, we show that in respiring Escherichia coli, Salmonella, and Bacillus subtilis, NO arrests the first step in division, namely, the GTP-dependent assembly of the bacterial tubulin homolog FtsZ into a cytokinetic ring. FtsZ assembly fails in respiring cells because NO inactivates inosine 5'-monophosphate dehydrogenase in de novo purine nucleotide biosynthesis and quinol oxidases in the electron transport chain, leading to drastic depletion of nucleoside triphosphates, including the GTP needed for the polymerization of FtsZ. Despite inhibiting respiration and dissipating proton motive force, NO does not destroy Z ring formation and only modestly decreases nucleoside triphosphates in glycolytic cells, which obtain much of their ATP by substrate-level phosphorylation and overexpress inosine 5'-monophosphate dehydrogenase. Purine metabolism dictates the susceptibility of early morphogenic steps in cytokinesis to NO toxicity.
Collapse
Affiliation(s)
- Jessica Jones-Carson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Atsushi Yahashiri
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Ju-Sim Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Liam F. Fitzsimmons
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Veterans Administration Eastern Colorado Health Care System, Aurora, CO, USA
| |
Collapse
|
21
|
Decoupling Filamentous Phage Uptake and Energy of the TolQRA Motor in Escherichia coli. J Bacteriol 2020; 202:JB.00428-19. [PMID: 31636109 DOI: 10.1128/jb.00428-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Filamentous phages are nonlytic viruses that specifically infect bacteria, establishing a persistent association with their host. The phage particle has no machinery for generating energy and parasitizes its host's existing structures in order to cross the bacterial envelope and deliver its genetic material. The import of filamentous phages across the bacterial periplasmic space requires some of the components of a macrocomplex of the envelope known as the Tol system. This complex uses the energy provided by the proton motive force (pmf) of the inner membrane to perform essential and highly energy-consuming functions of the cell, such as envelope integrity maintenance and cell division. It has been suggested that phages take advantage of pmf-driven conformational changes in the Tol system to transit across the periplasm. However, this hypothesis has not been formally tested. In order to decouple the role of the Tol system in cell physiology and during phage parasitism, we used mutations on conserved essential residues known for inactivating pmf-dependent functions of the Tol system. We identified impaired Tol complexes that remain fully efficient for filamentous phage uptake. We further demonstrate that the TolQ-TolR homologous motor ExbB-ExbD, normally operating with the TonB protein, is able to promote phage infection along with full-length TolA.IMPORTANCE Filamentous phages are widely distributed symbionts of Gram-negative bacteria, with some of them being linked to genome evolution and virulence of their host. However, the precise mechanism that permits their uptake across the cell envelope is poorly understood. The canonical phage model Fd requires the TolQRA protein complex in the host envelope, which is suspected to translocate protons across the inner membrane. In this study, we show that phage uptake proceeds in the presence of the assembled but nonfunctional TolQRA complex. Moreover, our results unravel an alternative route for phage import that relies on the ExbB-ExbD proteins. This work provides new insights into the fundamental mechanisms of phage infection and might be generalized to other filamentous phages responsible for pathogen emergence.
Collapse
|
22
|
Abstract
The outer membrane (OM) of Gram-negative bacteria exhibits unique lipid asymmetry, with lipopolysaccharides (LPS) residing in the outer leaflet and phospholipids (PLs) in the inner leaflet. This asymmetric bilayer protects the bacterium against intrusion of many toxic substances, including antibiotics and detergents, yet allows acquisition of nutrients necessary for growth. To build the OM and ensure its proper function, the cell produces OM constituents in the cytoplasm or inner membrane and transports these components across the aqueous periplasmic space separating the two membranes. Of note, the processes by which the most basic membrane building blocks, i.e. PLs, are shuttled across the cell envelope remain elusive. This review highlights our current understanding (or lack thereof) of bacterial PL trafficking, with a focus on recent developments in the field. We adopt a mechanistic approach and draw parallels and comparisons with well-characterized systems, particularly OM lipoprotein and LPS transport, to illustrate key challenges in intermembrane lipid trafficking. Pathways that transport PLs across the bacterial cell envelope are fundamental to OM biogenesis and homeostasis and are potential molecular targets that could be exploited for antibiotic development.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
23
|
Cho G, Kwon J, Soh SM, Jang H, Mitchell RJ. Sensitivity of predatory bacteria to different surfactants and their application to check bacterial predation. Appl Microbiol Biotechnol 2019; 103:8169-8178. [PMID: 31407038 DOI: 10.1007/s00253-019-10069-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
We evaluated the toxicity of surfactants against different predatory bacteria. Tests with Bdellovibrio bacteriovorus HD100 and SDS, an anionic surfactant, showed the predator was very sensitive; 0.02% SDS completely killed the predatory population (7-log loss; < 10 PFU/ml remaining) both when free-swimming or within the bdelloplast, i.e., intraperiplasmic. Similar results were also observed with B. bacteriovorus 109J and Peredibacter starrii. In contrast, none of the prey (E. coli, Klebsiella pneumoniae, Acinetobacter baumannii, or Pseudomonas sp. DSM 50906) viabilities were negatively affected by SDS. Triton X-100, a nonionic surfactant, was slightly less toxic towards B. bacteriovorus HD100 (viability loss of only 4-log), while two cationic surfactants, i.e., benzalkonium chloride (BZC) and cetyltrimethylammonium bromide (CTAB), were toxic towards both the predator and prey. Based on the above findings, we tested the potential use of SDS as a means to control predation. Addition of 0.02% SDS immediately halted predation based upon the prey bioluminescence, which leveled off and remained steady. This was confirmed using the predator viabilities; no predators were found in any of the samples where SDS was added. Consequently, low concentrations of SDS can be used as a simple means to control B. bacteriovorus HD100 activities.
Collapse
Affiliation(s)
- Gayoung Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jisoo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sandrine Mabekou Soh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
24
|
Tol Energy-Driven Localization of Pal and Anchoring to the Peptidoglycan Promote Outer-Membrane Constriction. J Mol Biol 2019; 431:3275-3288. [DOI: 10.1016/j.jmb.2019.05.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
|
25
|
Jacek P, Ryngajłło M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol 2019; 103:5339-5353. [PMID: 31037382 PMCID: PMC6570709 DOI: 10.1007/s00253-019-09846-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
Bacterial nanocellulose (BNC) synthesized by Komagataeibacter hansenii is a polymer that recently gained an attention of tissue engineers, since its features make it a suitable material for scaffolds production. Nevertheless, it is still necessary to modify BNC to improve its properties in order to make it more suitable for biomedical use. One approach to address this issue is to genetically engineer K. hansenii cells towards synthesis of BNC with modified features. One of possible ways to achieve that is to influence the bacterial movement or cell morphology. In this paper, we described for the first time, K. hansenii ATCC 23769 motA+ and motB+ overexpression mutants, which displayed elongated cell phenotype, increased motility, and productivity. Moreover, the mutant cells produced thicker ribbons of cellulose arranged in looser network when compared to the wild-type strain. In this paper, we present a novel development in obtaining BNC membranes with improved properties using genetic engineering tools.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Małgorzata Ryngajłło
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| |
Collapse
|
26
|
Abstract
The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the "chlamydial anomaly." In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages.
Collapse
|
27
|
Duché D, Houot L. Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells. EcoSal Plus 2019; 8. [PMID: 30681066 PMCID: PMC11573288 DOI: 10.1128/ecosalplus.esp-0030-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 06/09/2023]
Abstract
Gram-negative bacteria have evolved a complex envelope to adapt and survive in a broad range of ecological niches. This physical barrier is the first line of defense against noxious compounds and viral particles called bacteriophages. Colicins are a family of bactericidal proteins produced by and toxic to Escherichia coli and closely related bacteria. Filamentous phages have a complex structure, composed of at least five capsid proteins assembled in a long thread-shaped particle, that protects the viral DNA. Despite their difference in size and complexity, group A colicins and filamentous phages both parasitize multiprotein complexes of their sensitive host for entry. They first bind to a receptor located at the surface of the target bacteria before specifically recruiting components of the Tol system to cross the outer membrane and find their way through the periplasm. The Tol system is thought to use the proton motive force of the inner membrane to maintain outer membrane integrity during the life cycle of the cell. This review describes the sequential docking mechanisms of group A colicins and filamentous phages during their uptake by their bacterial host, with a specific focus on the translocation step, promoted by interactions with the Tol system.
Collapse
Affiliation(s)
- Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 13402 Marseille, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université- CNRS, 13402 Marseille, France
| |
Collapse
|
28
|
Abstract
The peptidoglycan sacculus is a net-like polymer that surrounds the cytoplasmic membrane in most bacteria. It is essential to maintain the bacterial cell shape and protect from turgor. The peptidoglycan has a basic composition, common to all bacteria, with species-specific variations that can modify its biophysical properties or the pathogenicity of the bacteria. The synthesis of peptidoglycan starts in the cytoplasm and the precursor lipid II is flipped across the cytoplasmic membrane. The new peptidoglycan strands are synthesised and incorporated into the pre-existing sacculus by the coordinated activities of peptidoglycan synthases and hydrolases. In the model organism Escherichia coli there are two complexes required for the elongation and division. Each of them is regulated by different proteins from both the cytoplasmic and periplasmic sides that ensure the well-coordinated synthesis of new peptidoglycan.
Collapse
|
29
|
Sulaiman JE, Hao C, Lam H. Specific Enrichment and Proteomics Analysis of Escherichia coli Persisters from Rifampin Pretreatment. J Proteome Res 2018; 17:3984-3996. [PMID: 30336045 DOI: 10.1021/acs.jproteome.8b00625] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacterial persisters, a dormant and multidrug tolerant subpopulation that are able to resuscitate after antibiotic treatment, have recently received considerable attention as a major cause of relapse of various infectious diseases in the clinic. However, because of their low abundance and inherent transience, it is extremely difficult to study them by proteomics. Here we developed a magnetic-beads-based separation approach to enrich Escherichia coli persisters and then subjected them to shotgun proteomics. Rifampin pretreatment was employed to increase persister formation, and the resulting cells were exposed to a high concentration of ampicillin (10× MIC) to remove nonpersisters. The survivors were analyzed by spectral counting-based quantitative proteomics. On average, 710 proteins were identified at a false discovery rate of 0.01 for enriched E. coli persisters. By spectral counting-based quantification, 105 proteins (70 down-regulated, 35 up-regulated) were shown to be differentially expressed compared with normal cells. A comparison of the differentially expressed proteins between the magnetic beads-enriched persisters and nonenriched persisters (a mixture of persisters and intact dead cells) shows only around half (∼58%) overlap and different protein-protein interaction networks. This suggest that persister enrichment is important to eliminate the cumulative effect of dead cells that will obscure the proteome of persisters. As expected, proteins involved in carbohydrate metabolism, fatty acid and amino acid biosynthesis, and bacterial chemotaxis were found to be down-regulated in the persisters. Interestingly, membrane proteins including some transport proteins were up-regulated, indicating that they might be important for the drug tolerance of persisters. Knockout of the pal gene expressing peptidoglycan-associated lipoprotein, one of the most up-regulated proteins detected in persisters, led to 10-fold reduced persister formation under ampicillin treatment.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Chunlin Hao
- Department of Chemical and Biological Engineering , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong
| |
Collapse
|
30
|
Salmonella Tol-Pal Reduces Outer Membrane Glycerophospholipid Levels for Envelope Homeostasis and Survival during Bacteremia. Infect Immun 2018; 86:IAI.00173-18. [PMID: 29735519 PMCID: PMC6013679 DOI: 10.1128/iai.00173-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
Abstract
Salmonellae regulate membrane lipids during infection, but the exact proteins and mechanisms that promote their survival during bacteremia remain largely unknown. Mutations in genes encoding the conserved Salmonella enterica serovar Typhimurium (S. Typhimurium) Tol-Pal apparatus caused the outer membrane (OM) sensor lipoprotein, RcsF, to become activated. The capsule activation phenotype for the mutants suggested that Tol-Pal might influence envelope lipid homeostasis. The mechanism involves reducing OM glycerophospholipid (GPL) levels, since the mutant salmonellae similarly accumulated phosphatidylglycerols (PGl) and phosphatidylethanolamines (PE) within the OM in comparison to the wild type. The data support the Escherichia coli model, whereby Tol-Pal directs retrograde GPL translocation across the periplasm. The S. Typhimurium mechanism involves contributions from YbgC, a cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase, and CpoB, a periplasmic TolA-binding protein. The functional relationship between Tol-Pal and YbgC and CpoB was previously unresolved. The S. Typhimurium Tol-Pal proteins contribute similarly toward promoting OM-GPL homeostasis and Rcs signaling inactivity but differently toward promoting bacterial morphology, rifampin resistance, survival in macrophages, and survival in mice. For example, tolQ, tolR, tolA, and cpoB mutants were significantly more attenuated than ybgC, tolB, and pal mutants in a systemic mouse model of disease. Therefore, key roles exist for TolQ, TolR, TolA, and CpoB during murine bacteremia, which are independent of maintaining GPL homeostasis. The ability of TolQR to channel protons across the inner membrane (IM) is necessary for S. Typhimurium TolQRA function, since mutating conserved channel-facing residues rendered TolQ ineffective at rescuing deletion mutant phenotypes. Therefore, Tol-Pal promotes S. Typhimurium survival during bacteremia, in part, by reducing OM GPL concentrations, while TolQRA and CpoB enhance systemic virulence by additional mechanisms.
Collapse
|
31
|
Rassam P, Long KR, Kaminska R, Williams DJ, Papadakos G, Baumann CG, Kleanthous C. Intermembrane crosstalk drives inner-membrane protein organization in Escherichia coli. Nat Commun 2018. [PMID: 29540681 PMCID: PMC5852019 DOI: 10.1038/s41467-018-03521-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gram-negative bacteria depend on energised protein complexes that connect the two membranes of the cell envelope. However, β-barrel outer-membrane proteins (OMPs) and α-helical inner-membrane proteins (IMPs) display quite different organisation. OMPs cluster into islands that restrict their lateral mobility, while IMPs generally diffuse throughout the cell. Here, using live cell imaging of Escherichia coli, we demonstrate that when transient, energy-dependent transmembrane connections are formed, IMPs become subjugated by the inherent organisation of OMPs and that such connections impact IMP function. We show that while establishing a translocon for import, the colicin ColE9 sequesters the IMPs of the proton motive force (PMF)-linked Tol-Pal complex into islands mirroring those of colicin-bound OMPs. Through this imposed organisation, the bacteriocin subverts the outer-membrane stabilising role of Tol-Pal, blocking its recruitment to cell division sites and slowing membrane constriction. The ordering of IMPs by OMPs via an energised inter-membrane bridge represents an emerging functional paradigm in cell envelope biology.
Collapse
Affiliation(s)
- Patrice Rassam
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.,Laboratoire de Bioimagerie et Pathologie, UMR 7021, CNRS, Université de Strasbourg, Faculté de pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Kathleen R Long
- Department of Biology, University of York, York, YO10 5DD, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - David J Williams
- Department of Biology, University of York, York, YO10 5DD, UK.,Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Grigorios Papadakos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.,Division of Neurobiology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
32
|
Egan AJF. Bacterial outer membrane constriction. Mol Microbiol 2018; 107:676-687. [DOI: 10.1111/mmi.13908] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander J. F. Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences; Newcastle University, Baddiley-Clarke Building; Newcastle upon Tyne UK
| |
Collapse
|
33
|
Shrivastava R, Jiang X, Chng SS. Outer membrane lipid homeostasis via retrograde phospholipid transport in Escherichia coli. Mol Microbiol 2017; 106:395-408. [PMID: 28815827 DOI: 10.1111/mmi.13772] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 01/21/2023]
Abstract
Biogenesis of the outer membrane (OM) in Gram-negative bacteria, which is essential for viability, requires the coordinated transport and assembly of proteins and lipids, including lipopolysaccharides (LPS) and phospholipids (PLs), into the membrane. While pathways for LPS and OM protein assembly are well-studied, how PLs are transported to and from the OM is not clear. Mechanisms that ensure OM stability and homeostasis are also unknown. The trans-envelope Tol-Pal complex, whose physiological role has remained elusive, is important for OM stability. Here, we establish that the Tol-Pal complex is required for PL transport and OM lipid homeostasis in Escherichia coli. Cells lacking the complex exhibit defects in lipid asymmetry and accumulate excess PLs in the OM. This imbalance in OM lipids is due to defective retrograde PL transport in the absence of a functional Tol-Pal complex. Thus, cells ensure the assembly of a stable OM by maintaining an excess flux of PLs to the OM only to return the surplus to the inner membrane. Our findings also provide insights into the mechanism by which the Tol-Pal complex may promote OM invagination during cell division.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Xiang'Er Jiang
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore 117456
| |
Collapse
|
34
|
Assessing Energy-Dependent Protein Conformational Changes in the TonB System. Methods Mol Biol 2017. [PMID: 28667620 DOI: 10.1007/978-1-4939-7033-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Changes in conformation can alter a protein's vulnerability to proteolysis. Thus, in vivo differential proteinase sensitivity provides a means for identifying conformational changes that mark discrete states in the activity cycle of a protein. The ability to detect a specific conformational state allows for experiments to address specific protein-protein interactions and other physiological components that potentially contribute to the function of the protein. This chapter presents the application of this technique to the TonB-dependent energy transduction system of Gram-negative bacteria, a strategy that has refined our understanding of how the TonB protein is coupled to the ion electrochemical gradient of the cytoplasmic membrane.
Collapse
|
35
|
Houot L, Navarro R, Nouailler M, Duché D, Guerlesquin F, Lloubes R. Electrostatic interactions between the CTX phage minor coat protein and the bacterial host receptor TolA drive the pathogenic conversion of Vibrio cholerae. J Biol Chem 2017. [PMID: 28642371 DOI: 10.1074/jbc.m117.786061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic environments and converts to a pathogen upon infection by a filamentous phage, CTXΦ, that transmits the cholera toxin-encoding genes. This toxigenic conversion of V. cholerae has evident implication in both genome plasticity and epidemic risk, but the early stages of the infection have not been thoroughly studied. CTXΦ transit across the bacterial periplasm requires binding between the minor coat protein named pIII and a bacterial inner-membrane receptor, TolA, which is part of the conserved Tol-Pal molecular motor. To gain insight into the TolA-pIII complex, we developed a bacterial two-hybrid approach, named Oxi-BTH, suited for studying the interactions between disulfide bond-folded proteins in the bacterial cytoplasm of an Escherichia coli reporter strain. We found that two of the four disulfide bonds of pIII are required for its interaction with TolA. By combining Oxi-BTH assays, NMR, and genetic studies, we also demonstrate that two intermolecular salt bridges between TolA and pIII provide the driving forces of the complex interaction. Moreover, we show that TolA residue Arg-325 involved in one of the two salt bridges is critical for proper functioning of the Tol-Pal system. Our results imply that to prevent host evasion, CTXΦ uses an infection strategy that targets a highly conserved protein of Gram-negative bacteria essential for the fitness of V. cholerae in its natural environment.
Collapse
Affiliation(s)
- Laetitia Houot
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Romain Navarro
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Matthieu Nouailler
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Denis Duché
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Françoise Guerlesquin
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Roland Lloubes
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
36
|
The Rcs-Regulated Colanic Acid Capsule Maintains Membrane Potential in Salmonella enterica serovar Typhimurium. mBio 2017; 8:mBio.00808-17. [PMID: 28588134 PMCID: PMC5461412 DOI: 10.1128/mbio.00808-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation. Colanic acid is a negatively charged polysaccharide capsule produced by Escherichia coli, Salmonella, and other gammaproteobacteria. Research conducted over the 50 years since the discovery of colanic acid suggests that this exopolysaccharide plays an important role for bacteria living in biofilms. However, a precise physiological role for colanic acid has not been defined. In this study, we provide evidence that colanic acid maintains the transmembrane potential and proton motive force during envelope stress. This work provides a new and fundamental insight into bacterial physiology.
Collapse
|
37
|
Baron F, Bonnassie S, Alabdeh M, Cochet MF, Nau F, Guérin-Dubiard C, Gautier M, Andrews SC, Jan S. Global Gene-expression Analysis of the Response of Salmonella Enteritidis to Egg White Exposure Reveals Multiple Egg White-imposed Stress Responses. Front Microbiol 2017; 8:829. [PMID: 28553268 PMCID: PMC5428311 DOI: 10.3389/fmicb.2017.00829] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Chicken egg white protects the embryo from bacterial invaders by presenting an assortment of antagonistic activities that combine together to both kill and inhibit growth. The key features of the egg white anti-bacterial system are iron restriction, high pH, antibacterial peptides and proteins, and viscosity. Salmonella enterica serovar Enteritidis is the major pathogen responsible for egg-borne infection in humans, which is partly explained by its exceptional capacity for survival under the harsh conditions encountered within egg white. However, at temperatures up to 42°C, egg white exerts a much stronger bactericidal effect on S. Enteritidis than at lower temperatures, although the mechanism of egg white-induced killing is only partly understood. Here, for the first time, the impact of exposure of S. Enteritidis to egg white under bactericidal conditions (45°C) is explored by global-expression analysis. A large-scale (18.7% of genome) shift in transcription is revealed suggesting major changes in specific aspects of S. Enteritidis physiology: induction of egg white related stress-responses (envelope damage, exposure to heat and alkalinity, and translation shutdown); shift in energy metabolism from respiration to fermentation; and enhanced micronutrient provision (due to iron and biotin restriction). Little evidence of DNA damage or redox stress was obtained. Instead, data are consistent with envelope damage resulting in cell death by lysis. A surprise was the high degree of induction of hexonate/hexuronate utilization genes, despite no evidence indicating the presence of these substrates in egg white.
Collapse
Affiliation(s)
- Florence Baron
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Sylvie Bonnassie
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- Science de la Vie et de la Terre, Université de Rennes IRennes, France
| | - Mariah Alabdeh
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Marie-Françoise Cochet
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Françoise Nau
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Michel Gautier
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | | | - Sophie Jan
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| |
Collapse
|
38
|
Yeo KJ, Lee WC, Lee S, Hwang E, Park JS, Choi IG, Kim SI, Lee JC, Jeon YH, Cheong C, Kim HY. d-Stereoisomer preference of the OmpA-like domain of Pal in peptidoglycan of Acinetobacter baumannii. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
The mechanism of force transmission at bacterial focal adhesion complexes. Nature 2016; 539:530-535. [PMID: 27749817 DOI: 10.1038/nature20121] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
Various rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility machinery (the Agl-Glt complex) localizes to so-called focal adhesion sites (FASs) that form stationary contact points with the underlying surface. Here we show that the Agl-Glt machinery contains an inner-membrane motor complex that moves intracellularly along a right-handed helical path; when the machinery becomes stationary at FASs, the motor complex powers a left-handed rotation of the cell around its long axis. At FASs, force transmission requires cyclic interactions between the molecular motor and the adhesion proteins of the outer membrane via a periplasmic interaction platform, which presumably involves contractile activity of motor components and possible interactions with peptidoglycan. Our results provide a molecular model of bacterial gliding motility.
Collapse
|
40
|
Bohuszewicz O, Liu J, Low HH. Membrane remodelling in bacteria. J Struct Biol 2016; 196:3-14. [PMID: 27265614 PMCID: PMC6168058 DOI: 10.1016/j.jsb.2016.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
Abstract
In bacteria the ability to remodel membrane underpins basic cell processes such as growth, and more sophisticated adaptations like inter-cell crosstalk, organelle specialisation, and pathogenesis. Here, selected examples of membrane remodelling in bacteria are presented and the diverse mechanisms for inducing membrane fission, fusion, and curvature discussed. Compared to eukaryotes, relatively few curvature-inducing proteins have been characterised so far. Whilst it is likely that many such proteins remain to be discovered, it also reflects the importance of alternative membrane remodelling strategies in bacteria where passive mechanisms for generating curvature are utilised.
Collapse
Affiliation(s)
- Olga Bohuszewicz
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Jiwei Liu
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Harry H Low
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
41
|
Yung PY, Grasso LL, Mohidin AF, Acerbi E, Hinks J, Seviour T, Marsili E, Lauro FM. Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds. Sci Rep 2016; 6:19899. [PMID: 26818886 PMCID: PMC4730218 DOI: 10.1038/srep19899] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022] Open
Abstract
Volatile organic compounds (VOCs) are commonly used as solvents in various industrial settings. Many of them present a challenge to receiving environments, due to their toxicity and low bioavailability for degradation. Microorganisms are capable of sensing and responding to their surroundings and this makes them ideal detectors for toxic compounds. This study investigates the global transcriptomic responses of Escherichia coli K-12 to selected VOCs at sub-toxic levels. Cells grown in the presence of VOCs were harvested during exponential growth, followed by whole transcriptome shotgun sequencing (RNAseq). The analysis of the data revealed both shared and unique genetic responses compared to cells without exposure to VOCs. Results suggest that various functional gene categories, for example, those relating to Fe/S cluster biogenesis, oxidative stress responses and transport proteins, are responsive to selected VOCs in E. coli. The differential expression (DE) of genes was validated using GFP-promoter fusion assays. A variety of genes were differentially expressed even at non-inhibitory concentrations and when the cells are at their balanced-growth. Some of these genes belong to generic stress response and others could be specific to VOCs. Such candidate genes and their regulatory elements could be used as the basis for designing biosensors for selected VOCs.
Collapse
Affiliation(s)
- Pui Yi Yung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE). 60 Nanyang Drive, SBS-01N-27, Singapore 637551
| | - Letizia Lo Grasso
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE). 60 Nanyang Drive, SBS-01N-27, Singapore 637551
| | - Abeed Fatima Mohidin
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE). 60 Nanyang Drive, SBS-01N-27, Singapore 637551
| | - Enzo Acerbi
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE). 60 Nanyang Drive, SBS-01N-27, Singapore 637551
| | - Jamie Hinks
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE). 60 Nanyang Drive, SBS-01N-27, Singapore 637551
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE). 60 Nanyang Drive, SBS-01N-27, Singapore 637551
| | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE). 60 Nanyang Drive, SBS-01N-27, Singapore 637551.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.,School of Biotechnology, Dublin City University, Collins Avenue, Dublin 9, Ireland
| | - Federico M Lauro
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE). 60 Nanyang Drive, SBS-01N-27, Singapore 637551.,Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, N2-01C-45, Singapore 639798
| |
Collapse
|
42
|
French S, Mangat C, Bharat A, Côté JP, Mori H, Brown ED. A robust platform for chemical genomics in bacterial systems. Mol Biol Cell 2016; 27:1015-25. [PMID: 26792836 PMCID: PMC4791123 DOI: 10.1091/mbc.e15-08-0573] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
A robust and sensitive platform was developed for chemical-genomics in bacteria. Kinetic acquisitions of colony growth enable calculation of growth rates alongside conventional endpoint volume measurements, generating a wealth of chemical-genetic interactions. This kinetic platform is highly amenable to prokaryotic or eukaryotic strain collections. While genetic perturbation has been the conventional route to probing bacterial systems, small molecules are showing great promise as probes for cellular complexity. Indeed, systematic investigations of chemical-genetic interactions can provide new insights into cell networks and are often starting points for understanding the mechanism of action of novel chemical probes. We have developed a robust and sensitive platform for chemical-genomic investigations in bacteria. The approach monitors colony volume kinetically using transmissive scanning measurements, enabling acquisition of growth rates and conventional endpoint measurements. We found that chemical-genomic profiles were highly sensitive to concentration, necessitating careful selection of compound concentrations. Roughly 20,000,000 data points were collected for 15 different antibiotics. While 1052 chemical-genetic interactions were identified using the conventional endpoint biomass approach, adding interactions in growth rate resulted in 1564 interactions, a 50–200% increase depending on the drug, with many genes uncharacterized or poorly annotated. The chemical-genetic interaction maps generated from these data reveal common genes likely involved in multidrug resistance. Additionally, the maps identified deletion backgrounds exhibiting class-specific potentiation, revealing conceivable targets for combination approaches to drug discovery. This open platform is highly amenable to kinetic screening of any arrayable strain collection, be it prokaryotic or eukaryotic.
Collapse
Affiliation(s)
- Shawn French
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Chand Mangat
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Amrita Bharat
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jean-Philippe Côté
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
43
|
Egan AJF, Biboy J, van't Veer I, Breukink E, Vollmer W. Activities and regulation of peptidoglycan synthases. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150031. [PMID: 26370943 PMCID: PMC4632607 DOI: 10.1098/rstb.2015.0031] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein-protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein-protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Inge van't Veer
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 Utrecht, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
44
|
Wojdyla JA, Cutts E, Kaminska R, Papadakos G, Hopper JTS, Stansfeld PJ, Staunton D, Robinson CV, Kleanthous C. Structure and function of the Escherichia coli Tol-Pal stator protein TolR. J Biol Chem 2015; 290:26675-87. [PMID: 26354441 PMCID: PMC4646322 DOI: 10.1074/jbc.m115.671586] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/31/2022] Open
Abstract
TolR is a 15-kDa inner membrane protein subunit of the Tol-Pal complex in Gram-negative bacteria, and its function is poorly understood. Tol-Pal is recruited to cell division sites where it is involved in maintaining the integrity of the outer membrane. TolR is related to MotB, the peptidoglycan (PG)-binding stator protein from the flagellum, suggesting it might serve a similar role in Tol-Pal. The only structure thus far reported for TolR is of the periplasmic domain from Haemophilus influenzae in which N- and C-terminal residues had been deleted (TolR(62–133), Escherichia coli numbering). H. influenzae TolR(62–133) is a symmetrical dimer with a large deep cleft at the dimer interface. Here, we present the 1.7-Å crystal structure of the intact periplasmic domain of E. coli TolR (TolR(36–142)). E. coli TolR(36–142) is also dimeric, but the architecture of the dimer is radically different from that of TolR(62–133) due to the intertwining of its N and C termini. TolR monomers are rotated ∼180° relative to each other as a result of this strand swapping, obliterating the putative PG-binding groove seen in TolR(62–133). We found that removal of the strand-swapped regions (TolR(60–133)) exposes cryptic PG binding activity that is absent in the full-length domain. We conclude that to function as a stator in the Tol-Pal complex dimeric TolR must undergo large scale structural remodeling reminiscent of that proposed for MotB, where the N- and C-terminal sequences unfold in order for the protein to both reach and bind the PG layer ∼90 Å away from the inner membrane.
Collapse
Affiliation(s)
- Justyna A Wojdyla
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Erin Cutts
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Renata Kaminska
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Grigorios Papadakos
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Jonathan T S Hopper
- the Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Phillip J Stansfeld
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - David Staunton
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| | - Carol V Robinson
- the Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Colin Kleanthous
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU and
| |
Collapse
|
45
|
Turner L, Praszkier J, Hutton ML, Steer D, Ramm G, Kaparakis-Liaskos M, Ferrero RL. Increased Outer Membrane Vesicle Formation in a Helicobacter pylori tolB Mutant. Helicobacter 2015; 20:269-83. [PMID: 25669590 DOI: 10.1111/hel.12196] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Multiple studies have established the importance of the tol-pal gene cluster in bacterial cell membrane integrity and outer membrane vesicle (OMV) formation in Escherichia coli. In contrast, the functions of Tol-Pal proteins in pathogenic organisms, including those of the Epsilonproteobacteria, remain poorly if at all defined. The aim of this study was to characterize the roles of two key components of the Tol-Pal system, TolB and Pal, in OMV formation in the pathogenic bacterium, Helicobacter pylori. METHODS H. pylori ΔtolB, Δpal and ΔtolBpal mutants, as well as complemented strains, were generated and assessed for changes in morphology and OMV production by scanning electron microscopy and enzyme-linked immunoassay (ELISA), respectively. The protein content and pro-inflammatory properties of OMVs were determined by mass spectroscopy and interleukin-8 (IL-8) ELISA on culture supernatants from OMV-stimulated cells, respectively. RESULTS H. pylori ΔtolB and Δpal bacteria exhibited aberrant cell morphology and/or flagella biosynthesis. Importantly, the disruption of H. pylori tolB but not pal resulted in a significant increase in OMV production. The OMVs from H. pylori ΔtolB and Δpal bacteria harbored many of the major outer membrane and virulence proteins observed in wild-type (WT) OMVs. Interestingly, ΔtolB, Δpal and ΔtolBpal OMVs induced significantly higher levels of IL-8 production by host cells, compared with WT OMVs. CONCLUSIONS This work demonstrates that TolB and Pal are important for membrane integrity in H. pylori. Moreover, it shows how H. pylori tolB-pal genes may be manipulated to develop "hypervesiculating" strains for vaccine purposes.
Collapse
Affiliation(s)
- Lorinda Turner
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| | - Judyta Praszkier
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| | - Melanie L Hutton
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| | - David Steer
- Monash Biomedical Proteomics Facility, Monash University, Wellington Road, Clayton, (3800), Victoria, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| |
Collapse
|
46
|
Santos CA, Janissen R, Toledo MAS, Beloti LL, Azzoni AR, Cotta MA, Souza AP. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1372-81. [PMID: 26049080 DOI: 10.1016/j.bbapap.2015.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development.
Collapse
Affiliation(s)
- Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Richard Janissen
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo A S Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Adriano R Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Monica A Cotta
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anete P Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
47
|
Gray AN, Egan AJF, Van't Veer IL, Verheul J, Colavin A, Koumoutsi A, Biboy J, Altelaar AFM, Damen MJ, Huang KC, Simorre JP, Breukink E, den Blaauwen T, Typas A, Gross CA, Vollmer W. Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. eLife 2015; 4. [PMID: 25951518 PMCID: PMC4458516 DOI: 10.7554/elife.07118] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/06/2015] [Indexed: 02/04/2023] Open
Abstract
To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division. DOI:http://dx.doi.org/10.7554/eLife.07118.001 All bacterial cells are surrounded by a membrane, which forms a protective barrier around the cell. Most bacteria also have a wall surrounding the membrane, which provides structural support. When a bacterial cell divides to produce two daughter cells, it produces a belt-like structure around the middle of the cell. This brings the membrane and cell wall on each side together to a ‘pinch-point’ until the two halves of the cell have been separated. This process must be carefully controlled to ensure that the cell does not burst open at any point. Some bacteria known as ‘Gram-negative’ bacteria have a second membrane on the other side of the cell wall. These cells divide in the same way as other bacteria, but the need to coordinate the movement of three structures instead of two makes it more complicated. Many proteins are known to be involved. For example, one group (or ‘complex’) of proteins—which includes a protein called PBP1B—helps to produce new cell wall material. Another complex called the Tol system provides the energy needed for the outer membrane to be pulled inwards towards the pinch point. However, it has not been clear how these complexes work together to allow the cell to divide. Here, Gray, Egan et al. searched for proteins that can interact with PBP1B during cell division in the Gram-negative bacterium E. coli. The experiments found that a protein called CpoB interacts with both PBP1B and the Tol system. CpoB is found in a band around the middle of the cell, and it regulates the activity of PBP1B in response to signals from the Tol system. If the activity of CpoB is disrupted, cell wall production and the movement of the outer membrane are no longer coordinated, and the membrane falls apart, leading to the death of the bacteria. Gray, Egan et al.'s findings show how the production of new cell wall material can be linked to the inwards movement of the outer membrane during cell division. The next challenges are to understand the precise details of how these processes are coordinated by CpoB and to find out whether CpoB also plays the same role in other bacteria. DOI:http://dx.doi.org/10.7554/eLife.07118.002
Collapse
Affiliation(s)
- Andrew N Gray
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Inge L Van't Veer
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, The Netherlands
| | - Jolanda Verheul
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Alexandra Koumoutsi
- Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Mirjam J Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | | | - Jean-Pierre Simorre
- Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, The Netherlands
| | - Tanneke den Blaauwen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
48
|
Michel LV, Shaw J, MacPherson V, Barnard D, Bettinger J, D'Arcy B, Surendran N, Hellman J, Pichichero ME. Dual orientation of the outer membrane lipoprotein Pal in Escherichia coli. MICROBIOLOGY-SGM 2015; 161:1251-9. [PMID: 25808171 DOI: 10.1099/mic.0.000084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptidoglycan associated lipoprotein (Pal) of Escherichia coli (E. coli) is a characteristic bacterial lipoprotein, with an N-terminal lipid moiety anchoring it to the outer membrane. Since its discovery over three decades ago, Pal has been well studied for its participation in the Tol-Pal complex which spans the periplasm and has been proposed to play important roles in bacterial survival, pathogenesis and virulence. Previous studies of Pal place the lipoprotein in the periplasm of E. coli, allowing it to interact with Tol proteins and the peptidoglycan layer. Here, we describe for the first time, a subpopulation of Pal which is present on the cell surface of E. coli. Flow cytometry and confocal microscopy detect anti-Pal antibodies on the surface of intact E. coli cells. Interestingly, Pal is surface exposed in an 'all or nothing' manner, such that most of the cells contain only internal Pal, with fewer cells ( < 20 %) exhibiting surface Pal.
Collapse
Affiliation(s)
- Lea Vacca Michel
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Juliana Shaw
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Victoria MacPherson
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - David Barnard
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - John Bettinger
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Brooke D'Arcy
- 1School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Naveen Surendran
- 2Rochester General Hospital Research Institute, 1425 Portland Avenue, Rochester, NY 14621, USA
| | - Judith Hellman
- 3Department of Anesthesia and Perioperative Care, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Michael E Pichichero
- 2Rochester General Hospital Research Institute, 1425 Portland Avenue, Rochester, NY 14621, USA
| |
Collapse
|
49
|
Ridley H, Lakey JH. Antibacterial toxin colicin N and phage protein G3p compete with TolB for a binding site on TolA. MICROBIOLOGY-SGM 2014; 161:503-15. [PMID: 25536997 PMCID: PMC4339652 DOI: 10.1099/mic.0.000024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most colicins kill Escherichia coli cells by membrane pore formation or nuclease activity and, superficially, the mechanisms are similar: receptor binding, translocon recruitment, periplasmic receptor binding and membrane insertion. However, in detail, they employ a wide variety of molecular interactions that reveal a high degree of evolutionary diversification. Group A colicins bind to members of the TolQRAB complex in the periplasm and heterotrimeric complexes of colicin–TolA–TolB have been observed for both ColA and ColE9. ColN, the smallest and simplest pore-forming colicin, binds only to TolA and we show here that it uses the binding site normally used by TolB, effectively preventing formation of the larger complex used by other colicins. ColN binding to TolA was by β-strand addition with a KD of 1 µM compared with 40 µM for the TolA–TolB interaction. The β-strand addition and ColN activity could be abolished by single proline point mutations in TolA, which each removed one backbone hydrogen bond. By also blocking TolA–TolB binding these point mutations conferred a complete tol phenotype which destabilized the outer membrane, prevented both ColA and ColE9 activity, and abolished phage protein binding to TolA. These are the only point mutations known to have such pleiotropic effects and showed that the TolA–TolB β-strand addition is essential for Tol function. The formation of this simple binary ColN–TolA complex provided yet more evidence of a distinct translocation route for ColN and may help to explain the unique toxicity of its N-terminal domain.
Collapse
Affiliation(s)
- Helen Ridley
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jeremy H Lakey
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
50
|
Morgan JK, Ortiz JA, Riordan JT. The role for TolA in enterohemorrhagic Escherichia coli pathogenesis and virulence gene transcription. Microb Pathog 2014; 77:42-52. [DOI: 10.1016/j.micpath.2014.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 01/16/2023]
|