1
|
Bullard RL, Olsen EL, Cheslock MA, Embers ME. Evaluation of the available animal models for Bartonella infections. One Health 2024; 18:100665. [PMID: 38223332 PMCID: PMC10784307 DOI: 10.1016/j.onehlt.2023.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
The diseases caused by the Bartonella genus of bacteria are clinically diverse, and can be challenging to cure. The study of bartonellosis has been hampered by the lack of a suitable animal model. Preclinical studies for novel therapeutics and a competent host for vector transmission studies are needed to fill critical knowledge gaps. The studies included here are a representation of in vivo Bartonella research and the corresponding challenges. This review examines the current state of available animal models by assessing the success of various model species and strains in Bartonella infection. With a focus on the strengths and weaknesses of current animal models, the importance of these models for improvement of human health and veterinary care is emphasized.
Collapse
Affiliation(s)
- Rebekah L. Bullard
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| | - Emily L. Olsen
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| | - Mercedes A. Cheslock
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| |
Collapse
|
2
|
Fromm K, Ortelli M, Boegli A, Dehio C. Translocation of YopJ family effector proteins through the VirB/VirD4 T4SS of Bartonella. Proc Natl Acad Sci U S A 2024; 121:e2310348121. [PMID: 38709922 PMCID: PMC11098119 DOI: 10.1073/pnas.2310348121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel4056, Switzerland
| | | | | | | |
Collapse
|
3
|
Liedig C, Neupane P, Lashnits E, Breitschwerdt EB, Maggi RG. Blood Supplementation Enhances Bartonella henselae Growth and Molecular Detection of Bacterial DNA in Liquid Culture. Microbiol Spectr 2023; 11:e0512622. [PMID: 37227273 PMCID: PMC10269525 DOI: 10.1128/spectrum.05126-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023] Open
Abstract
Bacteria of the genus Bartonella, a member of the Alphaproteobacteria, are fastidious, Gram-negative, aerobic bacilli that comprise numerous species, subspecies, and genotypes. Bartonella henselae, with a worldwide distribution, infects cats, dogs, horses, humans, and other mammals. Diagnostically, direct detection of Bartonella henselae in patient blood specimens by culture or molecular methods is required to confirm infection with this bacterium. Enrichment blood culture combined with quantitative PCR (qPCR) or ddPCR enhances the sensitivity of direct detection. The addition of sheep blood to liquid culture media increased the Bartonella henselae DNA concentration compared to controls, additionally improving PCR direct detection sensitivity. IMPORTANCE This study aims to improve diagnostic detection of Bartonella henselae. Patient samples are combined with enriched bacterial cultures aimed at growing Bartonella henselae for the best possible chance at detection. However, current Bartonella growth methods could be improved. The DNA extraction method used by most laboratories should also be optimized. Sheep blood was added to increase the growth of Bartonella henselae and multiple DNA extraction methods were to be compared to each other.
Collapse
Affiliation(s)
- Chance Liedig
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, and the Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Pradeep Neupane
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erin Lashnits
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, and the Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Ricardo G. Maggi
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, and the Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Fromm K, Boegli A, Ortelli M, Wagner A, Bohn E, Malmsheimer S, Wagner S, Dehio C. Bartonella taylorii: A Model Organism for Studying Bartonella Infection in vitro and in vivo. Front Microbiol 2022; 13:913434. [PMID: 35910598 PMCID: PMC9336547 DOI: 10.3389/fmicb.2022.913434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Bartonella spp. are Gram-negative facultative intracellular pathogens that infect diverse mammals and cause a long-lasting intra-erythrocytic bacteremia in their natural host. These bacteria translocate Bartonella effector proteins (Beps) into host cells via their VirB/VirD4 type 4 secretion system (T4SS) in order to subvert host cellular functions, thereby leading to the downregulation of innate immune responses. Most studies on the functional analysis of the VirB/VirD4 T4SS and the Beps were performed with the major zoonotic pathogen Bartonella henselae for which efficient in vitro infection protocols have been established. However, its natural host, the cat, is unsuitable as an experimental infection model. In vivo studies were mostly confined to rodent models using rodent-specific Bartonella species, while the in vitro infection protocols devised for B. henselae are not transferable for those pathogens. The disparities of in vitro and in vivo studies in different species have hampered progress in our understanding of Bartonella pathogenesis. Here we describe the murine-specific strain Bartonella taylorii IBS296 as a new model organism facilitating the study of bacterial pathogenesis both in vitro in cell cultures and in vivo in laboratory mice. We implemented the split NanoLuc luciferase-based translocation assay to study BepD translocation through the VirB/VirD4 T4SS. We found increased effector-translocation into host cells if the bacteria were grown on tryptic soy agar (TSA) plates and experienced a temperature shift immediately before infection. The improved infectivity in vitro was correlating to an upregulation of the VirB/VirD4 T4SS. Using our adapted infection protocols, we showed BepD-dependent immunomodulatory phenotypes in vitro. In mice, the implemented growth conditions enabled infection by a massively reduced inoculum without having an impact on the course of the intra-erythrocytic bacteremia. The established model opens new avenues to study the role of the VirB/VirD4 T4SS and the translocated Bep effectors in vitro and in vivo.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alexandra Boegli
- Department of Biochemistry, Faculty of Biology and Medicine, Université de Lausanne, Epalinges, Switzerland
| | | | | | - Erwin Bohn
- Institute of Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Silke Malmsheimer
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
- Excellence Cluster “Controlling Microbes to Fight Infections” (CMFI), Tübingen, Germany
- Partner-site Tübingen, German Center for Infection Research (DZIF), Tübingen, Germany
| | - Christoph Dehio
- Biozentrum, University of Basel, Basel, Switzerland
- *Correspondence: Christoph Dehio,
| |
Collapse
|
5
|
Siewert LK, Dehio C, Pinschewer DD. Adaptive immune defense prevents Bartonella persistence upon trans-placental transmission. PLoS Pathog 2022; 18:e1010489. [PMID: 35580143 PMCID: PMC9113594 DOI: 10.1371/journal.ppat.1010489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 11/19/2022] Open
Abstract
Vertical transmission of Bartonella infection has been reported for several mammalian species including mice and humans. Accordingly, it is commonly held that acquired immunological tolerance contributes critically to the high prevalence of Bartonellae in wild-ranging rodent populations. Here we studied an experimental model of Bartonella infection in mice to assess the impact of maternal and newborn immune defense on vertical transmission and bacterial persistence in the offspring, respectively. Congenital infection was frequently observed in B cell-deficient mothers but not in immunocompetent dams, which correlated with a rapid onset of an antibacterial antibody response in infected WT animals. Intriguingly, B cell-deficient offspring with congenital infection exhibited long-term bacteremia whereas B cell-sufficient offspring cleared bacteremia within a few weeks after birth. Clearance of congenital Bartonella infection resulted in immunity against bacterial rechallenge, with the animals mounting Bartonella-neutralizing antibody responses of normal magnitude. These observations reveal a key role for humoral immune defense by the mother and offspring in preventing and eliminating vertical transmission. Moreover, congenital Bartonella infection does not induce humoral immune tolerance but results in anti-bacterial immunity, questioning the contribution of neonatal tolerance to Bartonella prevalence in wild-ranging rodents.
Collapse
Affiliation(s)
- Lena K. Siewert
- Biozentrum, University of Basel, Basel, Switzerland
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Fromm K, Dehio C. The Impact of Bartonella VirB/VirD4 Type IV Secretion System Effectors on Eukaryotic Host Cells. Front Microbiol 2022; 12:762582. [PMID: 34975788 PMCID: PMC8714903 DOI: 10.3389/fmicb.2021.762582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. The VirB/VirD4 type IV secretion system (T4SS) is a key virulence factor utilized to translocate Bartonella effector proteins (Beps) into host cells in order to subvert their functions. Crucial for effector translocation is the C-terminal Bep intracellular delivery (BID) domain that together with a positively charged tail sequence forms a bipartite translocation signal. Multiple BID domains also evolved secondary effector functions within host cells. The majority of Beps possess an N-terminal filamentation induced by cAMP (FIC) domain and a central connecting oligonucleotide binding (OB) fold. FIC domains typically mediate AMPylation or related post-translational modifications of target proteins. Some Beps harbor other functional modules, such as tandem-repeated tyrosine-phosphorylation (EPIYA-related) motifs. Within host cells the EPIYA-related motifs are phosphorylated, which facilitates the interaction with host signaling proteins. In this review, we will summarize our current knowledge on the molecular functions of the different domains present in Beps and highlight examples of Bep-dependent host cell modulation.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
7
|
DELEAT: gene essentiality prediction and deletion design for bacterial genome reduction. BMC Bioinformatics 2021; 22:444. [PMID: 34537011 PMCID: PMC8449488 DOI: 10.1186/s12859-021-04348-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background The study of gene essentiality is fundamental to understand the basic principles of life, as well as for applications in many fields. In recent decades, dozens of sets of essential genes have been determined using different experimental and bioinformatics approaches, and this information has been useful for genome reduction of model organisms. Multiple in silico strategies have been developed to predict gene essentiality, but no optimal algorithm or set of gene features has been found yet, especially for non-model organisms with incomplete functional annotation. Results We have developed DELEAT v0.1 (DELetion design by Essentiality Analysis Tool), an easy-to-use bioinformatic tool which integrates an in silico gene essentiality classifier in a pipeline allowing automatic design of large-scale deletions in any bacterial genome. The essentiality classifier consists of a novel logistic regression model based on only six gene features which are not dependent on experimental data or functional annotation. As a proof of concept, we have applied this pipeline to the determination of dispensable regions in the genome of Bartonella quintana str. Toulouse. In this already reduced genome, 35 possible deletions have been delimited, spanning 29% of the genome. Conclusions Built on in silico gene essentiality predictions, we have developed an analysis pipeline which assists researchers throughout multiple stages of bacterial genome reduction projects, and created a novel classifier which is simple, fast, and universally applicable to any bacterial organism with a GenBank annotation file. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04348-5.
Collapse
|
8
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance in Listeria and Production of Antimicrobial and Virulence Factors. Int J Mol Sci 2021; 22:8141. [PMID: 34360905 PMCID: PMC8348566 DOI: 10.3390/ijms22158141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Some Listeria species are important human and animal pathogens that can be found in contaminated food and produce a variety of virulence factors involved in their pathogenicity. Listeria strains exhibiting multidrug resistance are known to be progressively increasing and that is why continuous monitoring is needed. Effective therapy against pathogenic Listeria requires identification of the bacterial strain involved, as well as determining its virulence factors, such as antibiotic resistance and sensitivity. The present study describes the use of liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to do a global shotgun proteomics characterization for pathogenic Listeria species. This method allowed the identification of a total of 2990 non-redundant peptides, representing 2727 proteins. Furthermore, 395 of the peptides correspond to proteins that play a direct role in Listeria pathogenicity; they were identified as virulence factors, toxins and anti-toxins, or associated with either antibiotics (involved in antibiotic-related compounds production or resistance) or resistance to toxic substances. The proteomic repository obtained here can be the base for further research into pathogenic Listeria species and facilitate the development of novel therapeutics for these pathogens.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
9
|
Genomes of Gut Bacteria from Nasonia Wasps Shed Light on Phylosymbiosis and Microbe-Assisted Hybrid Breakdown. mSystems 2021; 6:6/2/e01342-20. [PMID: 33824199 PMCID: PMC8547009 DOI: 10.1128/msystems.01342-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Phylosymbiosis is a cross-system trend whereby microbial community relationships recapitulate the host phylogeny. In Nasonia parasitoid wasps, phylosymbiosis occurs throughout development, is distinguishable between sexes, and benefits host development and survival. Moreover, the microbiome shifts in hybrids as a rare Proteus bacterium in the microbiome becomes dominant. The larval hybrids then catastrophically succumb to bacterium-assisted lethality and reproductive isolation between the species. Two important questions for understanding phylosymbiosis and bacterium-assisted lethality in hybrids are (i) do the Nasonia bacterial genomes differ from other animal isolates and (ii) are the hybrid bacterial genomes the same as those in the parental species? Here, we report the cultivation, whole-genome sequencing, and comparative analyses of the most abundant gut bacteria in Nasonia larvae, Providencia rettgeri and Proteus mirabilis. Characterization of new isolates shows Proteus mirabilis forms a more robust biofilm than Providencia rettgeri and that, when grown in coculture, Proteus mirabilis significantly outcompetes Providencia rettgeri. Providencia rettgeri genomes from Nasonia are similar to each other and more divergent from pathogenic, human associates. Proteus mirabilis from Nasonia vitripennis, Nasonia giraulti, and their hybrid offspring are nearly identical and relatively distinct from human isolates. These results indicate that members of the larval gut microbiome within Nasonia are most similar to each other, and the strain of the dominant Proteus mirabilis in hybrids is resident in parental species. Holobiont interactions between shared, resident members of the wasp microbiome and the host underpin phylosymbiosis and hybrid breakdown. IMPORTANCE Animal and plant hosts often establish intimate relationships with their microbiomes. In varied environments, closely related host species share more similar microbiomes, a pattern termed phylosymbiosis. When phylosymbiosis is functionally significant and beneficial, microbial transplants between host species and host hybridization can have detrimental consequences on host biology. In the Nasonia parasitoid wasp genus, which contains a phylosymbiotic gut community, both effects occur and provide evidence for selective pressures on the holobiont. Here, we show that bacterial genomes in Nasonia differ from other environments and harbor genes with unique functions that may regulate phylosymbiotic relationships. Furthermore, the bacteria in hybrids are identical to those in parental species, thus supporting a hologenomic tenet that the same members of the microbiome and the host genome impact phylosymbiosis, hybrid breakdown, and speciation.
Collapse
|
10
|
Marlaire S, Dehio C. Bartonella effector protein C mediates actin stress fiber formation via recruitment of GEF-H1 to the plasma membrane. PLoS Pathog 2021; 17:e1008548. [PMID: 33508040 PMCID: PMC7842960 DOI: 10.1371/journal.ppat.1008548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called ‘invasome’. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the serine/threonine-protein kinase MRCKα. Knock-out cell lines revealed that only GEF-H1 is required for mediating BepC-triggered stress fiber formation and inhibitor studies implicated activation of the RhoA/ROCK pathway downstream of GEF-H1. Ectopic co-expression of tagged versions of GEF-H1 and BepC truncations revealed that the C-terminal ‘Bep intracellular delivery’ (BID) domain facilitated anchorage of BepC to the plasma membrane, whereas the N-terminal ‘filamentation induced by cAMP’ (FIC) domain facilitated binding of GEF-H1. While FIC domains typically mediate post-translational modifications, most prominently AMPylation, a mutant with quadruple amino acid exchanges in the putative active site indicated that the BepC FIC domain acts in a non-catalytic manner to activate GEF-H1. Our data support a model in which BepC activates the RhoA/ROCK pathway by re-localization of GEF-H1 from microtubules to the plasma membrane. A wide variety of bacterial pathogens evolved numerous virulence factors to subvert cellular processes in support of a successful infection process. Likewise, bacteria of the genus Bartonella translocate a cocktail of effector proteins (Beps) via a type-IV-secretion system into infected cells in order to interfere with host signaling processes involved in cytoskeletal dynamics, apoptosis control, and innate immune responses. In this study, we demonstrate that BepC triggers actin stress fiber formation and a linked cell fragmentation phenotype resulting from distortion of rear-end retraction during cell migration. The ability of BepC to induce actin stress fiber formation is directly associated with its ability to bind GEF-H1, an activator of the RhoA pathway that is sequestered in an inactive state when bound to microtubules but becomes activated upon release to the cytoplasm. Our findings suggest that BepC is anchored via its BID domain to the plasma membrane where it recruits GEF-H1 via its FIC domain, eventually activating the RhoA/ROCK signaling pathway and leading to stress fiber formation.
Collapse
Affiliation(s)
| | - Christoph Dehio
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Iqbal N, Mukhtar MU, Yang J, Niu Q, Li Z, Zhao S, Zhao Y, Guan G, Liu Z, Yin H. Identification and evaluation of midgut protein RL12 of Dermacentor silvarum interacting with Anaplasma ovis VirD4. Ticks Tick Borne Dis 2021; 12:101677. [PMID: 33549977 DOI: 10.1016/j.ttbdis.2021.101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 11/15/2022]
Abstract
Anaplasma ovis, a tick-borne intra-erythrocytic Gram-negative bacterium, is a causative agent of ovine anaplasmosis. It is known that Dermacentor ticks act as biological vectors for A. ovis. VirD4 is the machine component of Type IV Secretion System of A. ovis. To better understand the pathogen-vector interaction, VirD4 was used as a bait protein for screening midgut proteins of Dermacentor silvarum via yeast two-hybrid mating assay. As a result, a ribosomal protein RL12 was identified from the midgut cDNA library of D. silvarum. For further validation, using in vitro Glutathione S-transferase (GST) pull-down assay, interaction between the proteins, GST-RL12 and HIS-VirD4, was observed in Western blot analysis. The study is first of its kind reporting a D. silvarum midgut protein interaction with VirD4 from A. ovis. Functional annotations showed some important cellular processes are attributed to the protein, particularly in the stringent response and biogenesis. The results of the study suggest the involvement of the VirD4-RL12 interaction in the regulation of signaling pathways, which is a tool for understanding the pathogen-vector interaction.
Collapse
Affiliation(s)
- Naveed Iqbal
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Muhammad Uzair Mukhtar
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Zhi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Yaru Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
12
|
Cavassim MIA, Moeskjær S, Moslemi C, Fields B, Bachmann A, Vilhjálmsson BJ, Schierup MH, W. Young JP, Andersen SU. Symbiosis genes show a unique pattern of introgression and selection within a Rhizobium leguminosarum species complex. Microb Genom 2020; 6:e000351. [PMID: 32176601 PMCID: PMC7276703 DOI: 10.1099/mgen.0.000351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Rhizobia supply legumes with fixed nitrogen using a set of symbiosis genes. These can cross rhizobium species boundaries, but it is unclear how many other genes show similar mobility. Here, we investigate inter-species introgression using de novo assembly of 196 Rhizobium leguminosarum sv. trifolii genomes. The 196 strains constituted a five-species complex, and we calculated introgression scores based on gene-tree traversal to identify 171 genes that frequently cross species boundaries. Rather than relying on the gene order of a single reference strain, we clustered the introgressing genes into four blocks based on population structure-corrected linkage disequilibrium patterns. The two largest blocks comprised 125 genes and included the symbiosis genes, a smaller block contained 43 mainly chromosomal genes, and the last block consisted of three genes with variable genomic location. All introgression events were likely mediated by conjugation, but only the genes in the symbiosis linkage blocks displayed overrepresentation of distinct, high-frequency haplotypes. The three genes in the last block were core genes essential for symbiosis that had, in some cases, been mobilized on symbiosis plasmids. Inter-species introgression is thus not limited to symbiosis genes and plasmids, but other cases are infrequent and show distinct selection signatures.
Collapse
Affiliation(s)
- Maria Izabel A. Cavassim
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Sara Moeskjær
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Camous Moslemi
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Asger Bachmann
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | | | | | | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Sorg I, Schmutz C, Lu YY, Fromm K, Siewert LK, Bögli A, Strack K, Harms A, Dehio C. A Bartonella Effector Acts as Signaling Hub for Intrinsic STAT3 Activation to Trigger Anti-inflammatory Responses. Cell Host Microbe 2020; 27:476-485.e7. [PMID: 32101706 DOI: 10.1016/j.chom.2020.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Chronically infecting pathogens avoid clearance by the innate immune system by promoting premature transition from an initial pro-inflammatory response toward an anti-inflammatory tissue-repair response. STAT3, a central regulator of inflammation, controls this transition and thus is targeted by numerous chronic pathogens. Here, we show that BepD, an effector of the chronic bacterial pathogen Bartonella henselae targeted to infected host cells, establishes an exceptional pathway for canonical STAT3 activation, thereby impairing secretion of pro-inflammatory TNF-α and stimulating secretion of anti-inflammatory IL-10. Tyrosine phosphorylation of EPIYA-related motifs in BepD facilitates STAT3 binding and activation via c-Abl-dependent phosphorylation of Y705. The tyrosine-phosphorylated scaffold of BepD thus represents a signaling hub for intrinsic STAT3 activation that is independent from canonical STAT3 activation via transmembrane receptor-associated Janus kinases. We anticipate that our findings on a molecular shortcut to STAT3 activation will inspire new treatment options for chronic infections and inflammatory diseases.
Collapse
Affiliation(s)
- Isabel Sorg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Yun-Yueh Lu
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Katja Fromm
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lena K Siewert
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Kathrin Strack
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | |
Collapse
|
14
|
Deng H, Wu S, Song Q, Zhang J, Sang F, Sun X, Xu T, Gao Y, Zhao B. Cloning and identification of Bartonella α-enolase as a plasminogen-binding protein. Microb Pathog 2019; 135:103651. [DOI: 10.1016/j.micpath.2019.103651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 11/16/2022]
|
15
|
Hingston P, Brenner T, Truelstrup Hansen L, Wang S. Comparative Analysis of Listeria monocytogenes Plasmids and Expression Levels of Plasmid-Encoded Genes during Growth under Salt and Acid Stress Conditions. Toxins (Basel) 2019; 11:toxins11070426. [PMID: 31330827 PMCID: PMC6669625 DOI: 10.3390/toxins11070426] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/31/2023] Open
Abstract
Listeria monocytogenes strains are known to harbour plasmids that confer resistance to sanitizers, heavy metals, and antibiotics; however, very little research has been conducted into how plasmids may influence L. monocytogenes’ ability to tolerate food-related stresses. To investigate this, a library (n = 93) of L. monocytogenes plasmid sequences were compared. Plasmid sequences were divided into two groups (G1 and G2) based on a repA phylogeny. Twenty-six unique plasmid types were observed, with 13 belonging to each of the two repA-based groups. G1 plasmids were significantly (p < 0.05) smaller than G2 plasmids but contained a larger diversity of genes. The most prevalent G1 plasmid (57,083 bp) was observed in 26 strains from both Switzerland and Canada and a variety of serotypes. Quantitative PCR (qPCR) revealed a >2-fold induction of plasmid-contained genes encoding an NADH peroxidase, cadmium ATPase, multicopper oxidase, and a ClpL chaperone protein during growth under salt (6% NaCl) and acid conditions (pH 5) and ProW, an osmolyte transporter, under salt stress conditions. No differences in salt and acid tolerance were observed between plasmid-cured and wildtype strains. This work highlights the abundance of specific plasmid types among food-related L. monocytogenes strains, the unique characteristics of G1 and G2 plasmids, and the possible contributions of plasmids to L. monocytogenes tolerance to food-related stresses.
Collapse
Affiliation(s)
- Patricia Hingston
- Department of Food, Nutrition and Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas Brenner
- Department of Food, Nutrition and Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Siyun Wang
- Department of Food, Nutrition and Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
16
|
Dehio C, Tsolis RM. Type IV Effector Secretion and Subversion of Host Functions by Bartonella and Brucella Species. Curr Top Microbiol Immunol 2019. [PMID: 29536363 DOI: 10.1007/978-3-319-75241-9_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Bartonella and Brucella species comprise closely related genera of the order Rhizobiales within the class α-proteobacteria. Both groups of bacteria are mammalian pathogens with a facultative intracellular lifestyle and are capable of causing chronic infections, but members of each genus have evolved broadly different infection and transmission strategies. While Brucella spp. transmit in general via the reproductive tract in their natural hosts, the Bartonella spp. have evolved to transmit via arthropod vectors. However, a shared feature of both groups of pathogens is their reliance on type IV secretion systems (T4SSs) to interact with cells in their mammalian hosts. The genomes of Bartonella spp. encode three types of T4SS, Trw, Vbh/TraG, and VirB/VirD4, whereas those of Brucella spp. uniformly contain a single T4SS of the VirB type. The VirB systems of Bartonella and Brucella are associated with distinct groups of effector proteins that collectively mediate interactions with host cells. This chapter discusses recent findings on the role of T4SS in the biology of Bartonella spp. and Brucella spp. with emphasis on effector repertoires, on recent advances in our understanding of their evolution, how individual effectors function at the molecular level, and on the consequences of these interactions for cellular and immune responses in the host.
Collapse
Affiliation(s)
| | - Renée M Tsolis
- Medical Microbiology and Immunology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Abstract
Extensive research has been carried out on bacterial secretion systems, as they can pass effector proteins directly into the cytoplasm of host cells. The correct prediction of type IV protein effectors secreted by T4SS is important, since they are known to play a noteworthy role in various human pathogens. Studies on predicting T4SS effectors involve traditional machine learning algorithms. In this work we included a deep learning architecture, i.e., a Convolutional Neural Network (CNN), to predict IVA and IVB effectors. Three feature extraction methods were utilized to represent each protein as an image and these images fed the CNN as inputs in our proposed framework. Pseudo proteins were generated using ADASYN algorithm to overcome the imbalanced dataset problem. We demonstrated that our framework predicted all IVA effectors correctly. In addition, the sensitivity performance of 94.2% for IVB effector prediction exhibited our framework’s ability to discern the effectors in unidentified proteins.
Collapse
|
18
|
Obino D, Duménil G. The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0010-2019. [PMID: 30848239 PMCID: PMC11588304 DOI: 10.1128/microbiolspec.bai-0010-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
A wide variety of pathogens reach the circulatory system during viral, parasitic, fungal, and bacterial infections, causing clinically diverse pathologies. Such systemic infections are usually severe and frequently life-threatening despite intensive care, in particular during the age of antibiotic resistance. Because of its position at the interface between the blood and the rest of the organism, the endothelium plays a central role during these infections. Using several examples of systemic infections, we explore the diversity of interactions between pathogens and the endothelium. These examples reveal that bacterial pathogens target specific vascular beds and affect most aspects of endothelial cell biology, ranging from cellular junction stability to endothelial cell proliferation and inflammation.
Collapse
Affiliation(s)
- Dorian Obino
- Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France
| |
Collapse
|
19
|
Wagner A, Dehio C. Role of distinct type-IV-secretion systems and secreted effector sets in host adaptation by pathogenic Bartonella species. Cell Microbiol 2019; 21:e13004. [PMID: 30644157 PMCID: PMC6519360 DOI: 10.1111/cmi.13004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
The α‐proteobacterial genus Bartonella comprises a large number of facultative intracellular pathogens that share a common lifestyle hallmarked by hemotrophic infection and arthropod transmission. Speciation in the four deep‐branching lineages (L1–L4) occurred by host adaptation facilitating the establishment of long lasting bacteraemia in specific mammalian reservoir host(s). Two distinct type‐IV‐secretion systems (T4SSs) acquired horizontally by different Bartonella lineages mediate essential host interactions during infection and represent key innovations for host adaptation. The Trw‐T4SS confined to the species‐rich L4 mediates host‐specific erythrocyte infection and likely has functionally replaced flagella as ancestral virulence factors implicated in erythrocyte colonisation by bartonellae of the other lineages. The VirB/VirD4‐T4SS translocates Bartonella effector proteins (Bep) into various host cell types to modulate diverse cellular and innate immune functions involved in systemic spreading of bacteria following intradermal inoculation. Independent acquisition of the virB/virD4/bep locus by L1, L3, and L4 was likely driven by arthropod vectors associated with intradermal inoculation of bacteria rather than facilitating direct access to blood. Subsequently, adaptation to colonise specific niches in the new host has shaped the evolution of complex species‐specific Bep repertoires. This diversification of the virulence factor repertoire of Bartonella spp. represents a remarkable example for parallel evolution of host adaptation.
Collapse
Affiliation(s)
- Alexander Wagner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Tay ST, Kho KL, Lye SF, Ngeow YF. Phylogeny and putative virulence gene analysis of Bartonella bovis. J Vet Med Sci 2018; 80:653-661. [PMID: 29311425 PMCID: PMC5938196 DOI: 10.1292/jvms.17-0448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bartonella bovis is a small Gram-negative bacterium recognized as an
etiological agent for bacteremia and endocarditis in cattle. As few reports are available
on the taxonomic position of B. bovis and its mechanism of virulence,
this study aims to resolve the phylogeny of B. bovis and investigate
putative virulence genes based on whole genome sequence analysis. Genome-wide comparisons
based on single nucleotide polymorphisms (SNP) and orthologous genes were performed in
this study for phylogenetic inference of 27 Bartonella species. Rapid
Annotation using Subsystem Technology (RAST) analysis was used for annotation of putative
virulence genes. The phylogenetic tree generated from the genome-wide comparison of
orthologous genes exhibited a topology almost similar to that of the tree generated from
SNP-based comparison, indicating a high concordance in the nucleotide and amino acid
sequences of Bartonella spp. The analyses show consistent grouping of
B. bovis in a cluster related to ruminant-associated species, including
Bartonella australis, Bartonella melophagi and
Bartonella schoenbuchensis. RAST analysis revealed genes encoding
flagellar components, in corroboration with the observation of flagella-like structure of
BbUM strain under negative straining. Genes associated with virulence, disease and
defence, prophages, membrane transport, iron acquisition, motility and chemotaxis are
annotated in B. bovis genome. The flagellin (flaA) gene
of B. bovis is closely related to Bartonella
bacilliformis and Bartonella clarridgeiae but distinct from
other Gram-negative bacteria. The absence of type IV secretion systems, the bona
fide pathogenicity factors of bartonellae, in B. bovis
suggests that it may have a different mechanism of pathogenicity.
Collapse
Affiliation(s)
- Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew Fen Lye
- BioEasy Sdn Bhd. Setia Avenue, 33A-3, Jalan Setia Prima S, U13/S, Setia Alam, Seksyen U13, 40170 Shah Alam, Selangor, Malaysia
| | - Yun Fong Ngeow
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor DE, Malaysia
| |
Collapse
|
21
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
22
|
Harms A, Liesch M, Körner J, Québatte M, Engel P, Dehio C. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. PLoS Genet 2017; 13:e1007077. [PMID: 29073136 PMCID: PMC5675462 DOI: 10.1371/journal.pgen.1007077] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal–the BID (Bep intracellular delivery) domain—similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins. Many bacterial pathogens use secretion systems to translocate effector proteins into host cells where they manipulate cell functions in favor of the pathogen. It is well-known that these secretion systems evolved from ancestors with functions in genuine bacterial contexts, but the origins of their secreted effectors have largely remained elusive. In this article we studied the evolutionary history of a host-targeting effector secretion system of the mammalian pathogen Bartonella that belongs to a group of machineries descended from secretion systems originally mediating DNA transfer between bacterial cells. Intriguingly, we found that such a DNA transfer machinery closely related to the host-targeting secretion system of Bartonella has recruited a bacterial protein involved in modulating DNA topology as an interbacterial effector protein that is translocated together with the DNA into recipient cells. The overall setup of this interbacterial effector is remarkably similar to the host-targeted effectors of Bartonella, and we propose that it represents an evolutionary missing link on the path from a genuine bacterial protein to effectors that manipulates host cell functioning. Further analyses showed that interbacterial effectors in DNA transfer may be a more common phenomenon and represent an important reservoir for the evolution of new host-targeted effectors.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Marius Liesch
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Jonas Körner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Maxime Québatte
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Québatte M, Christen M, Harms A, Körner J, Christen B, Dehio C. Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen. Cell Syst 2017. [PMID: 28624614 PMCID: PMC5496983 DOI: 10.1016/j.cels.2017.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Bartonella gene transfer agent (BaGTA) is an archetypical example for domestication of a phage-derived element to permit high-frequency genetic exchange in bacterial populations. Here we used multiplexed transposon sequencing (TnSeq) and single-cell reporters to globally define the core components and transfer dynamics of BaGTA. Our systems-level analysis has identified inner- and outer-circle components of the BaGTA system, including 55 regulatory components, as well as an additional 74 and 107 components mediating donor transfer and recipient uptake functions. We show that the stringent response signal guanosine-tetraphosphate (ppGpp) restricts BaGTA induction to a subset of fast-growing cells, whereas BaGTA particle uptake depends on a functional Tol-Pal trans-envelope complex that mediates outer-membrane invagination upon cell division. Our findings suggest that Bartonella evolved an efficient strategy to promote genetic exchange within the fittest subpopulation while disfavoring exchange of deleterious genetic information, thereby facilitating genome integrity and rapid host adaptation.
Collapse
Affiliation(s)
- Maxime Québatte
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Matthias Christen
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, HPT E71, 8093 Zürich, Switzerland
| | - Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Jonas Körner
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beat Christen
- Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, HPT E71, 8093 Zürich, Switzerland.
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
24
|
Regier Y, Ballhorn W, Kempf VAJ. Molecular detection of Bartonella henselae in 11 Ixodes ricinus ticks extracted from a single cat. Parasit Vectors 2017; 10:105. [PMID: 28285589 PMCID: PMC5346845 DOI: 10.1186/s13071-017-2042-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/17/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Bartonella henselae is a highly prevalent, vector-borne pathogen. Transmission to humans and animals by ticks is discussed controversially. Here, we present a case report, where eleven Ixodes ricinus ticks all harbouring B. henselae DNA were removed from one single cat. RESULTS The first feeding tick was tested positive for B. henselae DNA. The cat was also found to be seropositive for anti-B. henselae IgG antibodies (titer 1:640). Bartonella henselae was not cultivatable from cat blood. Ten more feeding ticks removed 7 months later contained also B. henselae DNA. Sequence analysis of the 16SrDNA and the 16S-23S internal transcribed spacer (ITS) region revealed 100% sequence homology between all ticks. Bartonella adhesin A (badA) and VirB/VirD4 type IV secretion system (virB) DNA were also detected in all ticks. CONCLUSIONS Our results indicate that cats may serve as a reservoir for adult ticks to acquire B. henselae. Whether this observation implies an increased threat for human and animal health needs to be resolved.
Collapse
Affiliation(s)
- Yvonne Regier
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Wibke Ballhorn
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Walsh SI, Craney A, Romesberg FE. Not just an antibiotic target: Exploring the role of type I signal peptidase in bacterial virulence. Bioorg Med Chem 2016; 24:6370-6378. [PMID: 27769673 PMCID: PMC5279723 DOI: 10.1016/j.bmc.2016.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/23/2023]
Abstract
The looming antibiotic crisis has prompted the development of new strategies towards fighting infection. Traditional antibiotics target bacterial processes essential for viability, whereas proposed antivirulence approaches rely on the inhibition of factors that are required only for the initiation and propagation of infection within a host. Although antivirulence compounds have yet to prove their efficacy in the clinic, bacterial signal peptidase I (SPase) represents an attractive target in that SPase inhibitors exhibit broad-spectrum antibiotic activity, but even at sub-MIC doses also impair the secretion of essential virulence factors. The potential consequences of SPase inhibition on bacterial virulence have not been thoroughly examined, and are explored within this review. In addition, we review growing evidence that SPase has relevant biological functions outside of mediating secretion, and discuss how the inhibition of these functions may be clinically significant.
Collapse
Affiliation(s)
- Shawn I Walsh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
26
|
Labra Á, Arredondo-Zelada O, Flores-Herrera P, Marshall SH, Gómez FA. In sílico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis. Microb Pathog 2015; 92:11-18. [PMID: 26706346 DOI: 10.1016/j.micpath.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
Abstract
Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis.
Collapse
Affiliation(s)
- Álvaro Labra
- Laboratorio de Patógenos Acuícolas, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Oscar Arredondo-Zelada
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Patricio Flores-Herrera
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Sergio H Marshall
- Laboratorio de Patógenos Acuícolas, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile; Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - Fernando A Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| |
Collapse
|
27
|
Abstract
Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature.
Collapse
|
28
|
Okujava R, Guye P, Lu YY, Mistl C, Polus F, Vayssier-Taussat M, Halin C, Rolink AG, Dehio C. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors. PLoS Pathog 2014; 10:e1004187. [PMID: 24945914 PMCID: PMC4063953 DOI: 10.1371/journal.ppat.1004187] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/02/2014] [Indexed: 01/09/2023] Open
Abstract
Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonellaeffector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonellaintracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that infected dermal dendritic cells may be involved in disseminating Bartonella towards the blood stream in a BepE-dependent manner. Cell migration, a fundamental feature of eukaryotic cells, plays a crucial role in mounting an effective immune response. However, several pathogens subvert the migratory properties of infected host cells to their benefit, such as using them as Trojan horses to disseminate within the host. Bartonella effector proteins (Beps) are bona fide virulence factors indispensable for the colonization of mammalian target cells. However, their multiple interferences with host cellular signaling processes might culminate in deleterious secondary effects that require additional effectors to maintain the host cell integrity. A striking example is BepE, which is shown here to preserve endothelial cells (ECs) from fragmentation and to inhibit the defects of dendritic cell (DCs) migration caused by BepC and possibly other Beps. Moreover, BepE is essential for Bartonella dissemination from the dermal site of inoculation to the blood stream where bacteria establish long-lasting intraerythrocytic bacteremia as a hallmark of infection in the mammalian reservoir host. Migration of Bartonella-infected DCs through a monolayer of lymphatic ECs was also found to be dependent of BepE, suggesting that BepE is required to preserve the migratory capability of DCs, a candidate cell type for systemic dissemination from the dermal site of inoculation.
Collapse
Affiliation(s)
- Rusudan Okujava
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Patrick Guye
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Yun-Yueh Lu
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Claudia Mistl
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Florine Polus
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Muriel Vayssier-Taussat
- Unité Sous Contrat Bartonella, Institut national de la recherche agronomique (INRA), Maisons-Alfort, France
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
| | - Antonius G Rolink
- Department of Biomedicine (DBM), University of Basel, Basel, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Québatte M, Dick MS, Kaever V, Schmidt A, Dehio C. Dual input control: activation of theBartonella henselae VirB/D4 type IV secretion system by the stringent sigma factor RpoH1 and the BatR/BatS two-component system. Mol Microbiol 2013; 90:756-75. [DOI: 10.1111/mmi.12396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Maxime Québatte
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Mathias S. Dick
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Volkhard Kaever
- Research Core Unit for Mass Spectrometry - Metabolomics; Institute of Pharmacology; Hannover Medical School; Hannover Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum; University of Basel; Basel Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
30
|
Abstract
Salmonella bongori is a close relative of the highly virulent members of S. enterica subspecies enterica, encompassing more than 2,500 serovars, most of which cause human salmonellosis, one of the leading food-borne illnesses. S. bongori is only very rarely implicated in infections. We here present the sequence of a clinical isolate from Switzerland, S. bongori strain N268-08.
Collapse
|
31
|
Ben-Tekaya H, Gorvel JP, Dehio C. Bartonella and Brucella--weapons and strategies for stealth attack. Cold Spring Harb Perspect Med 2013; 3:3/8/a010231. [PMID: 23906880 DOI: 10.1101/cshperspect.a010231] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host's immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies.
Collapse
Affiliation(s)
- Houchaima Ben-Tekaya
- Focal Area Infection Biology, Biozentrum, University of Basel, 4052 Basel, Switzerland
| | | | | |
Collapse
|
32
|
Omasits U, Quebatte M, Stekhoven DJ, Fortes C, Roschitzki B, Robinson MD, Dehio C, Ahrens CH. Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome. Genome Res 2013; 23:1916-27. [PMID: 23878158 PMCID: PMC3814891 DOI: 10.1101/gr.151035.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ∼90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor.
Collapse
Affiliation(s)
- Ulrich Omasits
- Quantitative Model Organism Proteomics, Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Niu C, Yu D, Wang Y, Ren H, Jin Y, Zhou W, Li B, Cheng Y, Yue J, Gao Z, Liang L. Common and pathogen-specific virulence factors are different in function and structure. Virulence 2013; 4:473-82. [PMID: 23863604 PMCID: PMC5359729 DOI: 10.4161/viru.25730] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the process of host–pathogen interactions, bacterial pathogens always employ some special genes, e.g., virulence factors (VFs) to interact with host and cause damage or diseases to host. A number of VFs have been identified in bacterial pathogens that confer upon bacterial pathogens the ability to cause various types of damage or diseases. However, it has been clarified that some of the identified VFs are also encoded in the genomes of nonpathogenic bacteria, and this finding gives rise to considerable controversy about the definition of virulence factor.
Here 1988 virulence factors of 51 sequenced pathogenic bacterial genomes from the virulence factor database (VFDB) were collected, and an orthologous comparison to a non-pathogenic bacteria protein database was conducted using the reciprocal-best-BLAST-hits approach. Six hundred and twenty pathogen-specific VFs and 1368 common VFs (present in both pathogens and nonpathogens) were identified, which account for 31.19% and 68.81% of the total VFs, respectively. The distribution of pathogen-specific VFs and common VFs in pathogenicity islands (PAIs) was systematically investigated, and pathogen-specific VFs were more likely to be located in PAIs than common VFs. The function of the two classes of VFs were also analyzed and compared in depth. Our results indicated that most but not all T3SS proteins are pathogen-specific. T3SS effector proteins tended to be distributed in pathogen-specific VFs, whereas T3SS translocation proteins, apparatus proteins, and chaperones were inclined to be distributed in common VFs. We also observed that exotoxins were located in both pathogen-specific and common VFs. In addition, the architecture of the two classes of VFs was compared, and the results indicated that common VFs had a higher domain number and lower domain coverage value, revealed that common VFs tend to be more complex and less compact proteins.
Collapse
Affiliation(s)
- Chao Niu
- Tianjin Institute of Health & Environmental Medicine, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhu L, Yan Z, Zhang Z, Zhou Q, Zhou J, Wakeland EK, Fang X, Xuan Z, Shen D, Li QZ. Complete genome analysis of three Acinetobacter baumannii clinical isolates in China for insight into the diversification of drug resistance elements. PLoS One 2013; 8:e66584. [PMID: 23826102 PMCID: PMC3691203 DOI: 10.1371/journal.pone.0066584] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/08/2013] [Indexed: 01/19/2023] Open
Abstract
Background The emergence and rapid spreading of multidrug-resistant Acinetobacter baumannii strains has become a major health threat worldwide. To better understand the genetic recombination related with the acquisition of drug-resistant elements during bacterial infection, we performed complete genome analysis on three newly isolated multidrug-resistant A. baumannii strains from Beijing using next-generation sequencing technology. Methodologies/Principal Findings Whole genome comparison revealed that all 3 strains share some common drug resistant elements including carbapenem-resistant blaOXA-23 and tetracycline (tet) resistance islands, but the genome structures are diversified among strains. Various genomic islands intersperse on the genome with transposons and insertions, reflecting the recombination flexibility during the acquisition of the resistant elements. The blood-isolated BJAB07104 and ascites-isolated BJAB0868 exhibit high similarity on their genome structure with most of the global clone II strains, suggesting these two strains belong to the dominant outbreak strains prevalent worldwide. A large resistance island (RI) of about 121-kb, carrying a cluster of resistance-related genes, was inserted into the ATPase gene on BJAB07104 and BJAB0868 genomes. A 78-kb insertion element carrying tra-locus and blaOXA-23 island, can be either inserted into one of the tniB gene in the 121-kb RI on the chromosome, or transformed to conjugative plasmid in the two BJAB strains. The third strains of this study, BJAB0715, which was isolated from spinal fluid, exhibit much more divergence compared with above two strains. It harbors multiple drug-resistance elements including a truncated AbaR-22-like RI on its genome. One of the unique features of this strain is that it carries both blaOXA-23 and blaOXA-58 genes on its genome. Besides, an Acinetobacter lwoffii adeABC efflux element was found inserted into the ATPase position in BJAB0715. Conclusions Our comparative analysis on currently completed Acinetobacter baumannii genomes revealed extensive and dynamic genome organizations, which may facilitate the bacteria to acquire drug-resistance elements into their genomes.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhongqiang Yan
- Department of Clinical Microbiology, General Hospital of People’s Liberation Army, Beijing, China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qiming Zhou
- State Key Laboratory of Mycology, Chinese Academy of Sciences, Beijing, China
| | - Jinchun Zhou
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Edward K. Wakeland
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology and Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas, United States of America
- * E-mail: (ZX); (DS); (QZL)
| | - Dingxia Shen
- Department of Clinical Microbiology, General Hospital of People’s Liberation Army, Beijing, China
- * E-mail: (ZX); (DS); (QZL)
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (ZX); (DS); (QZL)
| |
Collapse
|
35
|
A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella. PLoS Genet 2013; 9:e1003393. [PMID: 23555299 PMCID: PMC3610622 DOI: 10.1371/journal.pgen.1003393] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/08/2013] [Indexed: 12/31/2022] Open
Abstract
Gene transfer agents (GTAs) randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes. Viruses are selfish genetic elements that replicate and transfer their own DNA, often killing the host cell in the process. Unlike viruses, gene transfer agents (GTAs) transfer random pieces of the bacterial genome rather than their own DNA. GTAs are widespread in bacterial genomes, but it is not known whether they are beneficial to the bacterium. In this study, we have used the emerging pathogen Bartonella as our model to study the evolution of GTAs. We sequenced the genomes of six isolates of Bartonella, including two new strains isolated from wild moose in Sweden. Using a comparative genomics approach, we searched for innovations in the last common ancestor that could help explain the explosive radiation of the genus. Surprisingly, we found that a gene cluster for a GTA and a phage-derived origin of replication was the most conserved innovation, indicative of strong selective constraints. We argue that the reason for the remarkable stability of the GTA is that it provides a mechanism to duplicate and recombine genes for secretion systems. This leads to adaptability to a broad range of hosts.
Collapse
|
36
|
Abromaitis S, Nelson CS, Previte D, Yoon KS, Clark JM, DeRisi JL, Koehler JE. Bartonella quintana deploys host and vector temperature-specific transcriptomes. PLoS One 2013; 8:e58773. [PMID: 23554923 PMCID: PMC3595295 DOI: 10.1371/journal.pone.0058773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/06/2013] [Indexed: 11/20/2022] Open
Abstract
The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 105 colony-forming units [CFU]/ml) and vector (more than 108 CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector.
Collapse
Affiliation(s)
- Stephanie Abromaitis
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher S. Nelson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Domenic Previte
- Department of Veterinary and Animal Science, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Kyong S. Yoon
- Department of Veterinary and Animal Science, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - J. Marshall Clark
- Department of Veterinary and Animal Science, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Jane E. Koehler
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Zhu C, Bai Y, Liu Q, Li D, Hong J, Yang Z, Cui L, Hua X, Yuan C. Depolymerization of cytokeratin intermediate filaments facilitates intracellular infection of HeLa cells by Bartonella henselae. J Infect Dis 2013; 207:1397-405. [PMID: 23359593 DOI: 10.1093/infdis/jit040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bartonella henselae is capable of invading epithelial and endothelial cells by modulating the function of actin-dependent cytoskeleton proteins. Although understanding of the pathogenesis has been increased by the development of an in vitro infection model involving endothelial cells, little is known about the mechanism of interaction between B. henselae and epithelial cells. This study aims to identify the binding candidates of B. henselae in epithelial cells and explores their effect on B. henselae infection. Pull-down assays and mass spectrometry analysis confirmed that some of the binding proteins (keratin 14, keratin 6, and F-actin) are cytoskeleton associated. B. henselae infection significantly induces the expression of the cytokeratin genes. Chemical disruption of the keratin network by using ethylene glycol tetraacetic acid promotes the intracellular persistence of B. henselae in HeLa cells. However, cytochalasin B and phalloidin treatment inhibits B. henselae invasion. Immunofluorescent staining demonstrates that B. henselae infection induces an F-actin-dependent rearrangement of the cytoskeleton. However, we demonstrated via immunofluorescent staining and whole-mount cell electron microscopy that keratin intermediate filaments are depolymerized by B. henselae. The results indicate that B. henselae achieves an intracellular persistence in epithelial cells through the depolymerization of cytokeratin intermediate filaments that are protective against B. henselae invasion.
Collapse
Affiliation(s)
- Caixia Zhu
- School of Agriculture and Biology, Shanghai Jiaotong University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gómez FA, Tobar JA, Henríquez V, Sola M, Altamirano C, Marshall SH. Evidence of the presence of a functional Dot/Icm type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis. PLoS One 2013; 8:e54934. [PMID: 23383004 PMCID: PMC3557282 DOI: 10.1371/journal.pone.0054934] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/18/2012] [Indexed: 12/02/2022] Open
Abstract
Piscirickettsia salmonis is a fish bacterial pathogen that has severely challenged the sustainability of the Chilean salmon industry since its appearance in 1989. As this Gram-negative bacterium has been poorly characterized, relevant aspects of its life cycle, virulence and pathogenesis must be identified in order to properly design prophylactic procedures. This report provides evidence of the functional presence in P. salmonis of four genes homologous to those described for Dot/Icm Type IV Secretion Systems. The Dot/Icm System, the major virulence mechanism of phylogenetically related pathogens Legionella pneumophila and Coxiella burnetii, is responsible for their intracellular survival and multiplication, conditions that may also apply to P. salmonis. Our results demonstrate that the four P. salmonis dot/icm homologues (dotB, dotA, icmK and icmE) are expressed both during in vitro tissue culture cells infection and growing in cell-free media, suggestive of their putative constitutive expression. Additionally, as it happens in other referential bacterial systems, temporal acidification of cell-free media results in over expression of all four P. salmonis genes, a well-known strategy by which SSTIV-containing bacteria inhibit phagosome-lysosome fusion to survive. These findings are very important to understand the virulence mechanisms of P. salmonis in order to design new prophylactic alternatives to control the disease.
Collapse
Affiliation(s)
- Fernando A Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | |
Collapse
|
39
|
Paziewska A, Siński E, Harris PD. Recombination, diversity and allele sharing of infectivity proteins between Bartonella species from rodents. MICROBIAL ECOLOGY 2012; 64:525-536. [PMID: 22419104 PMCID: PMC3391547 DOI: 10.1007/s00248-012-0033-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
The alpha-Proteobacterium Bartonella is a common parasite of voles and mice, giving rise to short-lived (4 weeks to 2 months) infections. Here, we report high sequence diversity in genes of the VirB/VirD type IV secretion system (T4SS), amongst Bartonella from natural rodent populations in NE Poland. The VirB5 protein is predicted to consist of three conserved alpha helices separated by loops of variable length which include numerous indels. The C-terminal domain includes repeat stretches of KEK residues, reflecting underlying homopolymeric stretches of adenine residues. A total of 16 variants of VirB5, associated with host identity, but not bacterial taxon, were identified from 22 Bartonella isolates. One was clearly a recombinant from two others, another included an insertion of two KEK repeats. The virB5 gene appears to evolve via both mutation and recombination, as well as slippage mediated insertion/deletion events. The recombinational units are thought to be relatively short, as there was no evidence of linkage disequilibrium between virB5 and the bepA locus only 5.5 kb distant. The diversity of virB5 is assumed to be related to immunological role of this protein in Bartonella infections; diversity of virB5 may assist persistence of Bartonella in the rodent population, despite the relatively short (3-4 weeks) duration of individual infections. It is clear from the distribution of virB5 and bepA alleles that recombination within and between clades is widespread, and frequently crosses the boundaries of conventionally recognised Bartonella species.
Collapse
Affiliation(s)
- Anna Paziewska
- National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172, Blindern, Oslo, Norway.
| | | | | |
Collapse
|
40
|
Voth DE, Broederdorf LJ, Graham JG. Bacterial Type IV secretion systems: versatile virulence machines. Future Microbiol 2012; 7:241-57. [PMID: 22324993 DOI: 10.2217/fmb.11.150] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many bacterial pathogens employ multicomponent protein complexes to deliver macromolecules directly into their eukaryotic host cell to promote infection. Some Gram-negative pathogens use a versatile Type IV secretion system (T4SS) that can translocate DNA or proteins into host cells. T4SSs represent major bacterial virulence determinants and have recently been the focus of intense research efforts designed to better understand and combat infectious diseases. Interestingly, although the two major classes of T4SSs function in a similar manner to secrete proteins, the translocated 'effectors' vary substantially from one organism to another. In fact, differing effector repertoires likely contribute to organism-specific host cell interactions and disease outcomes. In this review, we discuss the current state of T4SS research, with an emphasis on intracellular bacterial pathogens of humans and the diverse array of translocated effectors used to manipulate host cells.
Collapse
Affiliation(s)
- Daniel E Voth
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
41
|
Woodhams KL, Benet ZL, Blonsky SE, Hackett KT, Dillard JP. Prevalence and detailed mapping of the gonococcal genetic island in Neisseria meningitidis. J Bacteriol 2012; 194:2275-85. [PMID: 22366419 PMCID: PMC3347088 DOI: 10.1128/jb.00094-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/16/2012] [Indexed: 11/20/2022] Open
Abstract
The 57-kb gonococcal genetic island (GGI) encodes a type IV secretion system (T4SS) that is found in most strains of N. gonorrhoeae. This T4SS functions to secrete single-stranded DNA that is active in natural transformation. The GGI has also been found in some strains of N. meningitidis. We screened 126 isolates of N. meningitidis and found the GGI in 17.5% of strains, with the prevalence varying widely among serogroups. The GGI is found in a significant number of serogroup C, W-135, and X strains but was not found in strains of serogroup A, B, or Y. Through detailed PCR mapping and DNA sequencing, we identified five distinct GGI types in meningococci. DNA sequencing and a genetic assay revealed that the GGI was likely integrated into the meningococcal chromosome by the site-specific recombinase XerCD and that the GGI can be excised and lost from the genome. Functional studies showed that in contrast with the gonococcal T4SS, the meningococcal T4SS does not secrete DNA, nor does it confer Ton-independent intracellular survival. Deletion of T4SS genes did not affect association with or invasion of host cells. These results demonstrate that the GGI is found in a significant proportion of meningococcal strains and that while some strains carry multiple insertions and deletions in the GGI, other strains carry intact T4SS genes and may produce functional secretion systems.
Collapse
Affiliation(s)
- Katelynn L Woodhams
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
42
|
Gomes DF, da Silva Batista JS, Torres AR, de Souza Andrade D, Galli-Terasawa LV, Hungria M. Two-dimensional proteome reference map of Rhizobium tropici
PRF 81 reveals several symbiotic determinants and strong resemblance with agrobacteria. Proteomics 2012; 12:859-63. [DOI: 10.1002/pmic.201100406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Douglas Fabiano Gomes
- Embrapa Soja; Londrina PR Brazil
- Universidade Federal do Paraná, Departamento de Genética; Curitiba PR Brazil
| | | | | | | | | | - Mariangela Hungria
- Embrapa Soja; Londrina PR Brazil
- Universidade Estadual de Londrina, Departamento de Biotecnologia; Londrina PR Brazil
| |
Collapse
|
43
|
Deng H, Le Rhun D, Buffet JPR, Cotté V, Read A, Birtles RJ, Vayssier-Taussat M. Strategies of exploitation of mammalian reservoirs by Bartonella species. Vet Res 2012; 43:15. [PMID: 22369683 PMCID: PMC3430587 DOI: 10.1186/1297-9716-43-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/17/2012] [Indexed: 11/16/2022] Open
Abstract
Numerous mammal species, including domestic and wild animals such as ruminants, dogs, cats and rodents, as well as humans, serve as reservoir hosts for various Bartonella species. Some of those species that exploit non-human mammals as reservoir hosts have zoonotic potential. Our understanding of interactions between bartonellae and reservoir hosts has been greatly improved by the development of animal models for infection and the use of molecular tools allowing large scale mutagenesis of Bartonella species. By reviewing and combining the results of these and other approaches we can obtain a comprehensive insight into the molecular interactions that underlie the exploitation of reservoir hosts by Bartonella species, particularly the well-studied interactions with vascular endothelial cells and erythrocytes.
Collapse
Affiliation(s)
- Hongkuan Deng
- USC INRA Bartonella et Tiques, ANSES, 23 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Pulliainen AT, Dehio C. Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev 2012; 36:563-99. [PMID: 22229763 DOI: 10.1111/j.1574-6976.2012.00324.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/11/2023] Open
Abstract
Bartonella spp. are facultative intracellular bacteria that typically cause a long-lasting intraerythrocytic bacteremia in their mammalian reservoir hosts, thereby favoring transmission by blood-sucking arthropods. In most cases, natural reservoir host infections are subclinical and the relapsing intraerythrocytic bacteremia may last weeks, months, or even years. In this review, we will follow the infection cycle of Bartonella spp. in a reservoir host, which typically starts with an intradermal inoculation of bacteria that are superficially scratched into the skin from arthropod feces and terminates with the pathogen exit by the blood-sucking arthropod. The current knowledge of bacterial countermeasures against mammalian immune response will be presented for each critical step of the pathogenesis. The prevailing models of the still-enigmatic primary niche and the anatomical location where bacteria reside, persist, and are periodically seeded into the bloodstream to cause the typical relapsing Bartonella spp. bacteremia will also be critically discussed. The review will end up with a discussion of the ability of Bartonella spp., namely Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis, to induce tumor-like vascular deformations in humans having compromised immune response such as in patients with AIDS.
Collapse
|
45
|
Abstract
Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
46
|
Truttmann MC, Misselwitz B, Huser S, Hardt WD, Critchley DR, Dehio C. Bartonella henselae engages inside-out and outside-in signaling by integrin β1 and talin1 during invasome-mediated bacterial uptake. J Cell Sci 2011; 124:3591-602. [PMID: 22045736 DOI: 10.1242/jcs.084459] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The VirB/D4 type IV secretion system (T4SS) of the bacterial pathogen Bartonella henselae (Bhe) translocates seven effector proteins (BepA-BepG) into human cells that subvert host cellular functions. Two redundant pathways dependent on BepG or the combination of BepC and BepF trigger the formation of a bacterial uptake structure termed the invasome. Invasome formation is a multi-step process consisting of bacterial adherence, effector translocation, aggregation of bacteria on the cell surface and engulfment, and eventually, complete internalization of the bacterial aggregate occurs in an F-actin-dependent manner. In the present study, we show that Bhe-triggered invasome formation depends on integrin-β1-mediated signaling cascades that enable assembly of the F-actin invasome structure. We demonstrate that Bhe interacts with integrin β1 in a fibronectin- and VirB/D4 T4SS-independent manner and that activated integrin β1 is essential for both effector translocation and the actin rearrangements leading to invasome formation. Furthermore, we show that talin1, but not talin2, is required for inside-out activation of integrin β1 during invasome formation. Finally, integrin-β1-mediated outside-in signaling by FAK, Src, paxillin and vinculin is necessary for invasome formation. This is the first example of a bacterial entry process that fully exploits the bi-directional signaling capacity of integrin receptors in a talin1-specific manner.
Collapse
Affiliation(s)
- Matthias C Truttmann
- Focal Area Infection Biology, Biozentrum of the University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J Bacteriol 2011; 193:6257-65. [PMID: 21908662 DOI: 10.1128/jb.05905-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial type IV secretion systems (T4SSs) are involved in processes such as bacterial conjugation and protein translocation to animal cells. In this work, we have switched the substrates of T4SSs involved in pathogenicity for DNA transfer. Plasmids containing part of the conjugative machinery of plasmid R388 were transferred by the T4SS of human facultative intracellular pathogen Bartonella henselae to both recipient bacteria and human vascular endothelial cells. About 2% of the human cells expressed a green fluorescent protein (GFP) gene from the plasmid. Plasmids of different sizes were transferred with similar efficiencies. B. henselae codes for two T4SSs: VirB/VirD4 and Trw. A ΔvirB mutant strain was transfer deficient, while a ΔtrwE mutant was only slightly impaired in DNA transfer. DNA transfer was in all cases dependent on protein TrwC of R388, the conjugative relaxase, implying that it occurs by a conjugation-like mechanism. A DNA helicase-deficient mutant of TrwC could not promote DNA transfer. In the absence of TrwB, the coupling protein of R388, DNA transfer efficiency dropped 1 log. The same low efficiency was obtained with a TrwB point mutation in the region involved in interaction with the T4SS. TrwB interacted with VirB10 in a bacterial two-hybrid assay, suggesting that it may act as the recruiter of the R388 substrate for the VirB/VirD4 T4SS. A TrwB ATPase mutant behaved as dominant negative, dropping DNA transfer efficiency to almost null levels. B. henselae bacteria recovered from infected human cells could transfer the mobilizable plasmid into recipient Escherichia coli under certain conditions, underscoring the versatility of T4SSs.
Collapse
|
48
|
Franz B, Kempf VAJ. Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae. Parasit Vectors 2011; 4:54. [PMID: 21489243 PMCID: PMC3083372 DOI: 10.1186/1756-3305-4-54] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/13/2011] [Indexed: 12/27/2022] Open
Abstract
Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA), the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (Vir)B/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail.
Collapse
Affiliation(s)
- Bettina Franz
- University hospital of the Johann Wolfgang Goethe-University, Institute for Medical Microbiology and Infection Control, Paul-Ehrlich-Strasse 40, Frankfurt am Main, D-60596, Germany
| | - Volkhard AJ Kempf
- University hospital of the Johann Wolfgang Goethe-University, Institute for Medical Microbiology and Infection Control, Paul-Ehrlich-Strasse 40, Frankfurt am Main, D-60596, Germany
| |
Collapse
|
49
|
Kienesberger S, Trummler CS, Fauster A, Lang S, Sprenger H, Gorkiewicz G, Zechner EL. Interbacterial macromolecular transfer by the Campylobacter fetus subsp. venerealis type IV secretion system. J Bacteriol 2011; 193:744-58. [PMID: 21115658 PMCID: PMC3021226 DOI: 10.1128/jb.00798-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/11/2010] [Indexed: 12/21/2022] Open
Abstract
We report here the first demonstration of intra- and interspecies conjugative plasmid DNA transfer for Campylobacter fetus. Gene regions carried by a Campylobacter coli plasmid were identified that are sufficient for conjugative mobilization to Escherichia coli and C. fetus recipients. A broader functional range is predicted. Efficient DNA transfer involves the virB9 and virD4 genes of the type IV bacterial secretion system encoded by a pathogenicity island of C. fetus subsp. venerealis. Complementation of these phenotypes from expression constructions based on the promoter of the C. fetus surface antigen protein (sap) locus was temperature dependent, and a temperature regulation of the sap promoter was subsequently confirmed under laboratory conditions. Gene transfer was sensitive to surface or entry exclusion functions in potential recipient cells carrying IncPα plasmid RP4 implying functional relatedness to C. fetus proteins. The virB/virD4 locus is also known to be involved in bacterial invasion and killing of cultured human cells in vitro. Whether specifically secreted effector proteins contribute to host colonization and infection activities is currently unknown. Two putative effector proteins carrying an FIC domain conserved in a few bacterial type III and type IV secreted proteins of pathogens were analyzed for secretion by the C. fetus or heterologous conjugative systems. No evidence for interbacterial translocation of the Fic proteins was found.
Collapse
Affiliation(s)
- Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Caroline Schober Trummler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Astrid Fauster
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Silvia Lang
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Hanna Sprenger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Gregor Gorkiewicz
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | - Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| |
Collapse
|
50
|
Abstract
Adhesion to host cells represents the first step in the infection process and one of the decisive features in the pathogenicity of Bartonella spp. B. henselae and B. quintana are considered to be the most important human pathogenic species, responsible for cat scratch disease, bacillary angiomatosis, trench fever and other diseases. The ability to cause vasculoproliferative disorders and intraerythrocytic bacteraemia are unique features of the genus Bartonella. Consequently, the interaction with endothelial cells and erythrocytes is a focus in Bartonella research. The genus harbours a variety of trimeric autotransporter adhesins (TAAs) such as the Bartonella adhesin A (BadA) of B. henselae and the variably expressed outer-membrane proteins (Vomps) of B. quintana, which display remarkable variations in length and modular construction. These adhesins mediate many of the biologically-important properties of Bartonella spp. such as adherence to endothelial cells and extracellular matrix proteins and induction of angiogenic gene programming. There is also significant evidence that the laterally acquired Trw-conjugation systems of Bartonella spp. mediate host-specific adherence to erythrocytes. Other potential adhesins are the filamentous haemagglutinins and several outer membrane proteins. The exact molecular functions of these adhesins and their interplay with other pathogenicity factors (e.g., the VirB/D4 type 4 secretion system) need to be analysed in detail to understand how these pathogens adapt to their mammalian hosts.
Collapse
|