1
|
Selvaraj S, Weerasinghe L. The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury. Cent Nerv Syst Agents Med Chem 2025; 25:20-38. [PMID: 38676493 DOI: 10.2174/0118715249291999240418112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Recently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nanopulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.
Collapse
Affiliation(s)
- Saranya Selvaraj
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
2
|
Hao S, Yuan S, Liu Z, Hou B, Feng S, Zhang D. Neuroprotective effects of takinib on an experimental traumatic brain injury rat model via inhibition of transforming growth factor beta-activated kinase 1. Heliyon 2024; 10:e29484. [PMID: 38644820 PMCID: PMC11033159 DOI: 10.1016/j.heliyon.2024.e29484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Transforming growth factor β-activated kinase 1 (TAK1) plays a significant role in controlling several signaling pathways involved with regulating inflammation and apoptosis. As such, it represents an important potential target for developing treatments for traumatic brain injury (TBI). Takinib, a small molecule and selective TAK1 inhibitor, has potent anti-inflammatory activity and has shown promising activity in preclinical studies using rat models to evaluate the potential neuroprotective impact on TBI. The current study used a modified Feeney's weight-drop model to cause TBI in mature Sprague-Dawley male rats. At 30 min post-induction of TBI in the rats, they received an intracerebroventricular (ICV) injection of Takinib followed by assessment of their histopathology and behavior. The results of this study demonstrated how Takinib suppressed TBI progression in the rats by decreasing TAK1, p-TAK1, and nuclear p65 levels while upregulating IκB-α expression. Takinib was also shown to significantly inhibit the production of two pro-inflammatory factors, namely tumor necrosis factor-α and interleukin-1β. Furthermore, Takinib greatly upregulated the expression of tight junction proteins zonula occludens-1 and claudin-5, reducing cerebral edema. Additionally, Takinib effectively suppressed apoptosis via downregulation of cleaved caspase 3 and Bax and reduction of TUNEL-positive stained cell count. As a result, an enhancement of neuronal function and survival was observed post-TBI. These findings highlight the medicinal value of Takinib in the management of TBI and offer an experimental justification for further investigation of TAK1 as a potential pharmacological target.
Collapse
Affiliation(s)
- Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Shuai Yuan
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Zhiqiang Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Baohua Hou
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Sijie Feng
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Dingding Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, PR China
| |
Collapse
|
3
|
Geleta U, Prajapati P, Bachstetter A, Nelson PT, Wang WX. Sex-Biased Expression and Response of microRNAs in Neurological Diseases and Neurotrauma. Int J Mol Sci 2024; 25:2648. [PMID: 38473893 PMCID: PMC10931569 DOI: 10.3390/ijms25052648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.
Collapse
Affiliation(s)
- Urim Geleta
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Adam Bachstetter
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Calderone A, Carta D, Cardile D, Quartarone A, Rifici C, Calabrò RS, Corallo F. Use of Virtual Reality in Patients with Acquired Brain Injury: A Systematic Review. J Clin Med 2023; 12:7680. [PMID: 38137752 PMCID: PMC10743630 DOI: 10.3390/jcm12247680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVES ABI is found in all societies as the most severe, disabling neurological disorder. A cognitive rehabilitation program is essential for the clinical recovery of these patients, improving functional outcomes and quality of life. Modern technologies such as virtual reality (VR) offer several advantages over traditional therapies, including the ability to engage people in simulated performance of functional tasks. This review will examine the studies in which virtual reality has been used as an aid, technique, or intervention in patients with acquired brain injury. MATERIALS AND METHODS Studies were identified from an online search of PubMed, Cochrane Library, and Web of Science databases. RESULTS We found that TBI patients responded positively to VR treatment depending on the damaged or impaired cognitive and motor functions they acquired. It is now a tool that is available in the rehabilitation of these patients and supports the recovery of various motor and cognitive functions. CONCLUSIONS This review has shown that VR is an intervention technique that increasingly exists in clinical rehabilitation practice for ABI patients. The device uses advanced technologies that can cause general changes in cognitive, motor, and psychological aspects and create a simulated environment that can partially restore these functions and behaviors, as well as the behaviors of everyday life.
Collapse
Affiliation(s)
| | | | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | | | | | | | | |
Collapse
|
5
|
Harris JP, Mietus CJ, Browne KD, Wofford KL, Keating CE, Brown DP, Johnson BN, Wolf JA, Smith DH, Cohen AS, Duda JE, Cullen DK. Neuronal somatic plasmalemmal permeability and dendritic beading caused by head rotational traumatic brain injury in pigs-An exploratory study. Front Cell Neurosci 2023; 17:1055455. [PMID: 37519631 PMCID: PMC10381956 DOI: 10.3389/fncel.2023.1055455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Closed-head traumatic brain injury (TBI) is induced by rapid motion of the head, resulting in diffuse strain fields throughout the brain. The injury mechanism(s), loading thresholds, and neuroanatomical distribution of affected cells remain poorly understood, especially in the gyrencephalic brain. We utilized a porcine model to explore the relationships between rapid head rotational acceleration-deceleration loading and immediate alterations in plasmalemmal permeability within cerebral cortex, sub-cortical white matter, and hippocampus. To assess plasmalemmal compromise, Lucifer yellow (LY), a small cell-impermeant dye, was delivered intraventricularly and diffused throughout the parenchyma prior to injury in animals euthanized at 15-min post-injury; other animals (not receiving LY) were survived to 8-h or 7-days. Plasmalemmal permeability preferentially occurred in neuronal somata and dendrites, but rarely in white matter axons. The burden of LY+ neurons increased based on head rotational kinematics, specifically maximum angular velocity, and was exacerbated by repeated TBI. In the cortex, LY+ cells were prominent in both the medial and lateral gyri. Neuronal membrane permeability was observed within the hippocampus and entorhinal cortex, including morphological changes such as beading in dendrites. These changes correlated with reduced fiber volleys and synaptic current alterations at later timepoints in the hippocampus. Further histological observations found decreased NeuN immunoreactivity, increased mitochondrial fission, and caspase pathway activation in both LY+ and LY- cells, suggesting the presence of multiple injury phenotypes. This exploratory study suggests relationships between plasmalemmal disruptions in neuronal somata and dendrites within cortical and hippocampal gray matter as a primary response in closed-head rotational TBI and sets the stage for future, traditional hypothesis-testing experiments.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Constance J. Mietus
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kathryn L. Wofford
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Carolyn E. Keating
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Daniel P. Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Brian N. Johnson
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Favorable Effects of Virgin Coconut Oil on Neuronal Damage and Mortality after a Stroke Incidence in the Stroke-Prone Spontaneously Hypertensive Rat. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111857. [PMID: 36430992 PMCID: PMC9694050 DOI: 10.3390/life12111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Stroke is consistently one of the top ten causes of morbidity and mortality globally, whose outcomes are quite variable, necessitating case-specific management. Prophylactic diets before the onset of stroke have been implicated to work. In this research, the effects of virgin coconut oil (VCO) on stroke were evaluated using a stroke-prone spontaneously hypertensive rat (SHRSP) model. Eight-week-old SHRSPs were subjected to the repeated oral administration (5 mL/kg/day) of either 1% Tween 80 (group A) or VCO (group B). An early stroke onset was observed due to hypertension that was aggravation by the administration of 1% NaCl in water ad libitum. The following data were collected: the days until stroke occurred, the survival rate until the animal died, and blood pressure (BP) every two weeks using the tail-cuff method. After necropsy, the organs were harvested, and the brain was processed for a routine histopathological analysis. VCO delayed the incidence of it and prolonged their survival. Compared to group A, group B showed a significantly lowered BP by 20 mmHg at four weeks after the start of VCO treatment. Lastly, the brain histopathology showed that the structurally damaged areas were smaller in group B than they were in group A. The VCO could have protective effects on the brain before and even after stroke incidence.
Collapse
|
7
|
Hwang M, Chattaraj R, Sridharan A, Shin SS, Viaene AN, Haddad S, Khrichenko D, Sehgal C, Lee D, Kilbaugh TJ. Can Ultrasound-Guided Xenon Delivery Provide Neuroprotection in Traumatic Brain Injury? Neurotrauma Rep 2022; 3:97-104. [PMID: 35317306 PMCID: PMC8935480 DOI: 10.1089/neur.2021.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with high mortality and morbidity in children and adults. Unfortunately, there is no effective management for TBI in the acute setting. Rodent studies have shown that xenon, a well-known anesthetic gas, can be neuroprotective when administered post-TBI. Gas inhalation therapy, however, the approach typically used for administering xenon, is expensive, inconvenient, and fraught with systemic side effects. Therapeutic delivery to the brain is minimal, with much of the inhaled gas cleared by the lungs. To bridge major gaps in clinical care and enhance cerebral delivery of xenon, this study introduces a novel xenon delivery technique, utilizing microbubbles, in which a high impulse ultrasound signal is used for targeted cerebral release of xenon. Briefly, an ultrasound pulse is applied along the carotid artery at the level of the neck on intravenous injection of xenon microbubbles (XeMBs) resulting in release of xenon from microbubbles into the brain. This delivery technique employs a hand-held, portable ultrasound system that could be adopted in resource-limited environments. Using a high-fidelity porcine model, this study demonstrates the neuroprotective efficacy of xenon microbubbles in TBI for the first time.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anush Sridharan
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samuel S. Shin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Angela N. Viaene
- Department of Pathology, and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sophie Haddad
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dmitry Khrichenko
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chandra Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Moghadas B, Bharadwaj VN, Tobey JP, Tian Y, Stabenfeldt SE, Kodibagkar VD. GdDO3NI Enhanced Magnetic Resonance Imaging Allows Imaging of Hypoxia After Brain Injury. J Magn Reson Imaging 2021; 55:1161-1168. [PMID: 34499791 DOI: 10.1002/jmri.27912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Brain tissue hypoxia is a common consequence of traumatic brain injury (TBI) due to the rupture of blood vessels during impact and it correlates with poor outcome. The current magnetic resonance imaging (MRI) techniques are unable to provide a direct map of tissue hypoxia. PURPOSE To investigate whether GdDO3NI, a nitroimidazole-based T1 MRI contrast agent allows imaging hypoxia in the injured brain after experimental TBI. STUDY TYPE Prospective. ANIMAL MODEL TBI-induced mice (controlled cortical impact model) were intravenously injected with either conventional T1 agent (gadoteridol) or GdDO3NI at 0.3 mmol/kg dose (n = 5 for each cohort) along with pimonidazole (60 mg/kg) at 1 hour postinjury and imaged for 3 hours following which they were euthanized. FIELD STRENGTH/SEQUENCE 7 T/T2 -weighted spin echo and T1 -weighted gradient echo. ASSESSMENT Injured animals were imaged with T2 -weighted spin-echo sequence to estimate the extent of the injury. The mice were then imaged precontrast and postcontrast using a T1 -weighted gradient-echo sequence for 3 hours postcontrast. Regions of interests were drawn on the brain injury region, the contralateral brain as well as on the cheek muscle region for comparison of contrast kinetics. Brains were harvested immediately post-imaging for immunohistochemical analysis. STATISTICAL TESTS One-way analysis of variance and two-sample t-tests were performed with a P < 0.05 was considered statistically significant. RESULTS GdDO3NI retention in the injury region at 2.5-3 hours post-injection was significantly higher compared to gadoteridol (mean retention fraction 63.95% ± 27.43% vs. 20.68% ± 7.43% for gadoteridol at 3 hours) while it rapidly cleared out of the muscle region. Pimonidazole staining confirmed the presence of hypoxia in both gadoteridol and GdDO3NI cohorts, and the later cohort showed good agreement with MRI contrast enhancement. DATA CONCLUSION GdDO3NI was successfully shown to visualize hypoxia in the brain post-TBI using T1 -weighted MRI at 2.5-3 hours postcontrast. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Babak Moghadas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287-9709, USA
| | - Vimala N Bharadwaj
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287-9709, USA
| | - John P Tobey
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287-9709, USA
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287-9709, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287-9709, USA
| |
Collapse
|
9
|
The effects of Taurine supplementation on inflammatory markers and clinical outcomes in patients with traumatic brain injury: a double-blind randomized controlled trial. Nutr J 2021; 20:53. [PMID: 34103066 PMCID: PMC8186362 DOI: 10.1186/s12937-021-00712-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background Traumatic brain injury is a public health concern and is the main cause of death among various types of trauma. The inflammatory conditions due to TBI are associated with unfavorable clinical outcomes. Taurine has been reported to have immune-modulatory effects. Thus, the aim of this study was to survey the effect of taurine supplementation in TBI patients. Methods In this study, 32 patients with TBI were randomized into two groups. The treatment group received 30 mg/kg/day of taurine in addition to the Standard Entera Meal and the control group received Standard Entera Meal for 14 days. Prior to and following the intervention, the patients were investigated in terms of serum levels of IL-6, IL-10, hs-CRP and TNF-α as well as APACHEII, SOFA and NUTRIC scores, Glasgow coma scale and weight. In addition, the length of Intensive Care Unit stay, days of dependence on ventilator and 30-day mortality were studied. SPSS software (version 13.0) was used for data analysis. Results Taurine significantly decreased the serum levels of IL-6 (p = 0.04) and marginally APACHEII score (p = 0.05). In addition, weight loss was significantly lower in taurine group (p = 0.03). Furthermore, taurine significantly increased the GCS (p = 0.03). The groups were not different significantly in terms of levels of IL-10, hs-CRP, and TNF-α, SOFA and NUTRIC scores, 30-day mortality, length of ICU stay and days of dependence on ventilator. Conclusion According to the results of the present study, taurine supplementation can reduce the IL-6 levels as one of the important inflammatory markers in these patients; and enhances the clinical outcomes too. Trial registration IRCT, IRCT20180514039657N1. Registered 22 June 2018.
Collapse
|
10
|
Keating CE, Browne KD, Cullen DK. Dietary manipulation of vulnerability to traumatic brain injury-induced neuronal plasma membrane permeability. Exp Neurol 2021; 340:113649. [PMID: 33600812 DOI: 10.1016/j.expneurol.2021.113649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 01/22/2023]
Abstract
Traumatic brain injury (TBI) can produce physical disruptions in the plasma membranes of neurons, referred to as mechanoporation, which lead to increased cell permeability. We suspect that such trauma-induced membrane disruptions may be influenced by the physical properties of the plasma membrane, such as elasticity or rigidity. These membrane properties are influenced by lipid composition, which can be modulated via diet, leading to the intriguing possibility of prophylactically altering diet to confer resiliency to this mechanism of acute neuronal damage in TBI. In this proof-of-concept study, we used three different diets-one high in polyunsaturated fatty acids suggested to increase elasticity (Fish Oil), one high in saturated fatty acids and cholesterol suggested to increase rigidity (High Fat), and one standard rat chow (Control)-to alter brain plasma membrane lipid composition before subjecting rats to lateral fluid percussion injury (FPI). Lipid analysis (n = 12 rats) confirmed that diets altered brain fatty acid composition after 4 weeks of feeding, with the Fish Oil diet increasing unsaturated fatty acids, and interestingly, the High Fat diet increasing omega-6 docosapentaenoic acid. One cohort of animals (n = 34 rats) was assessed immediately after FPI or sham injury for acute changes in neuronal membrane permeability in the injury-adjacent cortex. Surprisingly, sham animals fed Fish Oil had increased membrane permeability, suggesting altered passive membrane properties. In contrast, injured animals fed the High Fat diet displayed less intense uptake of permeability marker, suggesting a reduced extent of injury-induced plasma membrane disruption, although the density of affected cells matched the other diet groups. In a separate cohort survived for 7 days after FPI (n = 48 rats), animals fed the High Fat diet exhibited a reduced lesion area. At both time points there were no statistically significant differences in inflammation. Unexpectedly, these results indicate that the High Fat diet, as opposed to the Fish Oil diet, beneficially modulated acute plasma membrane permeability and resulted in a smaller lesion size at 7 days post-injury. Additional studies are necessary to determine the impact of these various diets on behavioral outcomes post-TBI. Further investigation is also needed to understand the physical properties in neuronal plasma membranes that may underlie increased resiliency to trauma-induced disruptions and, importantly, to understand how these properties may be influenced by targeted dietary modifications for vulnerable populations.
Collapse
Affiliation(s)
- Carolyn E Keating
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, 19104, USA.
| | - Kevin D Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, 19104, USA.
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, 19104, USA.
| |
Collapse
|
11
|
Carlson SW, Yan HQ, Li Y, Henchir J, Ma X, Young MS, Ikonomovic MD, Dixon CE. Differential Regional Responses in Soluble Monomeric Alpha Synuclein Abundance Following Traumatic Brain Injury. Mol Neurobiol 2021; 58:362-374. [PMID: 32948930 PMCID: PMC7704579 DOI: 10.1007/s12035-020-02123-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Alpha synuclein (α-synuclein) is a neuronal protein found predominately in presynaptic terminals. While the pathological effect of α-synuclein aggregates has been a topic of intense study in several neurodegenerative conditions, less attention has been placed on changes in monomeric α-synuclein and related physiological consequences on neuronal function. A growing body of evidence supports an important physiological role of α-synuclein in neurotransmission. In the context of traumatic brain injury (TBI), we hypothesized that the regional abundance of soluble monomeric α-synuclein is altered over a chronic time period post-injury. To this end, we evaluated α-synuclein in the cortex, hippocampus, and striatum of adult rats at 6 h, 1 day, 1, 2, 4, and 8 weeks after controlled cortical impact (CCI) injury. Western blot analysis demonstrated decreased levels of monomer α-synuclein protein in the ipsilateral hippocampus at 6 h, 1 day, 1, 2, and 8 weeks, as well as in the ipsilateral cortex at 1 and 2 weeks and in the ipsilateral striatum at 6 h after CCI compared with sham animals. Immunohistochemical analysis revealed lower α-synuclein and a modest reduction in synaptophysin staining in the ipsilateral hippocampus at 1 week after CCI compared with sham animals, with no evidence of intracellular or extracellular α-synuclein aggregates. Collectively, these findings demonstrate that monomeric α-synuclein protein abundance in the hippocampus is reduced over an extensive (acute-to-chronic) post-injury interval. This deficit may contribute to the chronically impaired neurotransmission known to occur after TBI.
Collapse
Affiliation(s)
- S W Carlson
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - H Q Yan
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Y Li
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - J Henchir
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - X Ma
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - M S Young
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - M D Ikonomovic
- Neurology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - C E Dixon
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis 2020; 148:105210. [PMID: 33259894 DOI: 10.1016/j.nbd.2020.105210] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is distinct from other neurological disorders because it is induced by a discrete event that applies extreme mechanical forces to the brain. This review describes how the brain senses, integrates, and responds to forces under both normal conditions and during injury. The response to forces is influenced by the unique mechanical properties of brain tissue, which differ by region, cell type, and sub-cellular structure. Elements such as the extracellular matrix, plasma membrane, transmembrane receptors, and cytoskeleton influence its properties. These same components also act as force-sensors, allowing neurons and glia to respond to their physical environment and maintain homeostasis. However, when applied forces become too large, as in TBI, these components may respond in an aberrant manner or structurally fail, resulting in unique pathological sequelae. This so-called "pathological mechanosensation" represents a spectrum of cellular responses, which vary depending on the overall biomechanical parameters of the injury and may be compounded by repetitive injuries. Such aberrant physical responses and/or damage to cells along with the resulting secondary injury cascades can ultimately lead to long-term cellular dysfunction and degeneration, often resulting in persistent deficits. Indeed, pathological mechanosensation not only directly initiates secondary injury cascades, but this post-physical damage environment provides the context in which these cascades unfold. Collectively, these points underscore the need to use experimental models that accurately replicate the biomechanics of TBI in humans. Understanding cellular responses in context with injury biomechanics may uncover therapeutic targets addressing various facets of trauma-specific sequelae.
Collapse
Affiliation(s)
- Carolyn E Keating
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA.
| |
Collapse
|
13
|
Farokhi M, Mottaghitalab F, Saeb MR, Shojaei S, Zarrin NK, Thomas S, Ramakrishna S. Conductive Biomaterials as Substrates for Neural Stem Cells Differentiation towards Neuronal Lineage Cells. Macromol Biosci 2020; 21:e2000123. [PMID: 33015992 DOI: 10.1002/mabi.202000123] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/10/2020] [Indexed: 01/23/2023]
Abstract
The injuries and defects in the central nervous system are the causes of disability and death of an affected person. As of now, there are no clinically available methods to enhance neural structural regeneration and functional recovery of nerve injuries. Recently, some experimental studies claimed that the injuries in brain can be repaired by progenitor or neural stem cells located in the neurogenic sites of adult mammalian brain. Various attempts have been made to construct biomimetic physiological microenvironment for neural stem cells to control their ultimate fate. Conductive materials have been considered as one the best choices for nerve regeneration due to the capacity to mimic the microenvironment of stem cells and regulate the alignment, growth, and differentiation of neural stem cells. The review highlights the use of conductive biomaterials, e.g., polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene), multi-walled carbon nanotubes, single-wall carbon nanotubes, graphene, and graphite oxide, for controlling the neural stem cells activities in terms of proliferation and neuronal differentiation. The effects of conductive biomaterials in axon elongation and synapse formation for optimal repair of central nervous system injuries are also discussed.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research CentreFaculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | | | - Shahrokh Shojaei
- Stem Cells Research CenterTissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran.,Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, 1316943551, Iran
| | - Negin Khaneh Zarrin
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Sabu Thomas
- School of Chemical Sciences, MG University, Kottayam, Kerala, 686560, India
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
14
|
Ţolescu RĂŞ, ZorilĂ MV, ZĂvoi RE, Popescu C, Dumitru I, Oprica AC, MogoantĂ L. Correlations Between the Glasgow Score and the Survival Period in Patients with Severe Traumatic Brain Injury. CURRENT HEALTH SCIENCES JOURNAL 2020; 46:412-419. [PMID: 33717517 PMCID: PMC7948015 DOI: 10.12865/chsj.46.04.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/15/2020] [Indexed: 11/18/2022]
Abstract
Traumatic brain injury (TBI) contributes by 30% to the mortality induced by traumatic injuries, also being one of the major causes of invalidity worldwide. The clinical classification of the severity of mild, moderate or severe TBI is made according to the Glasgow scale, according to the patient's conscious state, motric changes, speech changes and eye opening. In our study, we evaluated the correlation between the Glasgow score at admission and the survival period of patients suffering from TBI, using the data recorded in the Forensic Medicine Institute of Craiova between 2011-2017 on 1005 cases with the diagnosis of death by TBI. We observed that TBI affects persons of all ages, starting from babies up to the elderly aged over 90 years old. Regarding the generation mechanism, most deaths were caused by fallings (438 cases, 43.58%), followed by car accidents (333 cases, representing 33.13%). The number of patients who presented a post-traumatic survival period was 802 (79.80%), of which 779 adults (77.51%) and 23 children (2.29%). Among these, 785 (78.11%-764 adults and 21 children) were hospitalized, while in 64.58% of the TBI patients there was recorded the Glasgow score at admission. 75% of the TBI patients in whom there was recorded the Glasgow score presented a 1st-4th coma degree, with a Glasgow score from 3 to 8 and only 25% had a slightly altered or preserved conscious state, with a Glasgow score=9-15. The survival period varied from less than 24 hours to over 15 days. In the hospitalized patients, there were performed emergency surgeries in 269 (26.76%) cases, the surgical intervention being temporized in 108 (10.74%) patients.
Collapse
Affiliation(s)
- RĂzvan Ştefan Ţolescu
- PhD Student, Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | - Marian Valentin ZorilĂ
- Department of Forensic Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Roxana Eugenia ZĂvoi
- Department of Forensic Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Cristina Popescu
- Department of Anatomy, University of Medicine and Pharmacy of Craiova, Romania
| | - Ilie Dumitru
- Department of Road Vehicles, Transportation and Industrial Engineering, Faculty of Mechanics, University of Craiova, Romania
| | - Alexandru Constantin Oprica
- PhD Student, Department of Road Vehicles, Transportation and Industrial Engineering, Faculty of Mechanics, University of Craiova, Romania
| | - LaurenŢiu MogoantĂ
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
15
|
Keating CE, Browne KD, Duda JE, Cullen DK. Neurons in Subcortical Oculomotor Regions Are Vulnerable to Plasma Membrane Damage after Repetitive Diffuse Traumatic Brain Injury in Swine. J Neurotrauma 2020; 37:1918-1932. [PMID: 32178582 DOI: 10.1089/neu.2019.6738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oculomotor deficits, such as insufficiencies in accommodation, convergence, and saccades, are common following traumatic brain injury (TBI). Previous studies in patients with mild TBI attributed these deficits to insufficient activation of subcortical oculomotor nuclei, although the exact mechanism is unknown. A possible cause for neuronal dysfunction in these regions is biomechanically induced plasma membrane permeability. We used our established porcine model of head rotational TBI to investigate whether cell permeability changes occurred in subcortical oculomotor areas following single or repetitive TBI, with repetitive injuries separated by 15 min, 3 days, or 7 days. Swine were subjected to sham conditions or head rotational acceleration in the sagittal plane using a HYGE pneumatic actuator. Two hours prior to the final injury, the cell-impermeant dye Lucifer Yellow was injected into the ventricles to diffuse throughout the interstitial space to assess plasmalemmal permeability. Animals were sacrificed 15 min after the final injury for immunohistological analysis. Brain regions examined for cell membrane permeability included caudate, substantia nigra pars reticulata, superior colliculus, and cranial nerve oculomotor nuclei. We found that the distribution of permeabilized neurons varied depending on the number and spacing of injuries. Repetitive injuries separated by 15 min or 3 days resulted in the most permeability. Many permeabilized cells lost neuron-specific nuclear protein reactivity, although no neuronal loss occurred acutely after injury. Microglia contacted and appeared to begin phagocytosing permeabilized neurons in repetitively injured animals. These pathologies within oculomotor areas may mediate transient dysfunction and/or degeneration that may contribute to oculomotor deficits following diffuse TBI.
Collapse
Affiliation(s)
- Carolyn E Keating
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John E Duda
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Jorge RE, Li R, Liu X, McGavin JK, Shorter DI, Acion L, Arndt S. Treating Alcohol Use Disorder in U.S. Veterans: The Role of Traumatic Brain Injury. J Neuropsychiatry Clin Neurosci 2020; 31:319-327. [PMID: 31117905 DOI: 10.1176/appi.neuropsych.18110250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors examined the efficacy of valproate to reduce relapse to heavy drinking among veterans with alcohol use disorder (AUD) and neuropsychiatric comorbidities and whether antecedent traumatic brain injury (TBI) or posttraumatic stress disorder (PTSD) affected treatment response. METHODS Participants were male veterans 18-60 years old with an AUD and no other substance use besides nicotine or cannabis. Sixty-two patients were randomly assigned to receive either valproate or naltrexone. Participants were evaluated at baseline and followed weekly for 24 weeks. All participants received standardized psychosocial interventions as well as treatment for coexistent psychiatric conditions. RESULTS During the follow-up period, nine study subjects in the naltrexone group and 14 in the valproate group relapsed to heavy drinking, but the difference did not reach statistical significance. Participants with a history of moderate to severe TBI were more likely to relapse to heavy drinking compared with those with no TBI (hazard ratio=4.834, 95% CI=1.103-21.194, p=0.033). PTSD status did not significantly affect outcome. CONCLUSIONS Intensive outpatient programs are efficacious alternatives to treat AUD in veterans, although the role of pharmacological treatment is not completely elucidated. Glutamatergic agents appear to be less effective than opiate antagonists to prevent relapse to heavy drinking and to increase cumulative abstinence. Future studies should examine novel pharmacological and nonpharmacological options.
Collapse
Affiliation(s)
- Ricardo E Jorge
- The Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston (Jorge, McGavin, Shorter, Acion); the Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Jorge, McGavin, Shorter, Acion); the Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston (Li, Liu); the Iowa Consortium for Substance Abuse Research and Evaluation, University of Iowa, Iowa City (Acion, Arndt); and the Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City (Arndt)
| | - Ruosha Li
- The Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston (Jorge, McGavin, Shorter, Acion); the Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Jorge, McGavin, Shorter, Acion); the Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston (Li, Liu); the Iowa Consortium for Substance Abuse Research and Evaluation, University of Iowa, Iowa City (Acion, Arndt); and the Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City (Arndt)
| | - Xiangyu Liu
- The Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston (Jorge, McGavin, Shorter, Acion); the Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Jorge, McGavin, Shorter, Acion); the Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston (Li, Liu); the Iowa Consortium for Substance Abuse Research and Evaluation, University of Iowa, Iowa City (Acion, Arndt); and the Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City (Arndt)
| | - Jill K McGavin
- The Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston (Jorge, McGavin, Shorter, Acion); the Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Jorge, McGavin, Shorter, Acion); the Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston (Li, Liu); the Iowa Consortium for Substance Abuse Research and Evaluation, University of Iowa, Iowa City (Acion, Arndt); and the Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City (Arndt)
| | - Daryl I Shorter
- The Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston (Jorge, McGavin, Shorter, Acion); the Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Jorge, McGavin, Shorter, Acion); the Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston (Li, Liu); the Iowa Consortium for Substance Abuse Research and Evaluation, University of Iowa, Iowa City (Acion, Arndt); and the Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City (Arndt)
| | - Laura Acion
- The Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston (Jorge, McGavin, Shorter, Acion); the Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Jorge, McGavin, Shorter, Acion); the Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston (Li, Liu); the Iowa Consortium for Substance Abuse Research and Evaluation, University of Iowa, Iowa City (Acion, Arndt); and the Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City (Arndt)
| | - Stephan Arndt
- The Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston (Jorge, McGavin, Shorter, Acion); the Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Jorge, McGavin, Shorter, Acion); the Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston (Li, Liu); the Iowa Consortium for Substance Abuse Research and Evaluation, University of Iowa, Iowa City (Acion, Arndt); and the Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City (Arndt)
| |
Collapse
|
17
|
Tang YL, Fang LJ, Zhong LY, Jiang J, Dong XY, Feng Z. Hub genes and key pathways of traumatic brain injury: bioinformatics analysis and in vivo validation. Neural Regen Res 2020; 15:2262-2269. [PMID: 32594047 PMCID: PMC7749465 DOI: 10.4103/1673-5374.284996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The exact mechanisms associated with secondary brain damage following traumatic brain injury (TBI) remain unclear; therefore, identifying the critical molecular mechanisms involved in TBI is essential. The mRNA expression microarray GSE2871 was downloaded from the Gene Expression Omnibus (GEO) repository. GSE2871 comprises a total of 31 cerebral cortex samples, including two post-TBI time points. The microarray features eight control and seven TBI samples, from 4 hours post-TBI, and eight control and eight TBI samples from 24 hours post-TBI. In this bioinformatics-based study, 109 and 66 differentially expressed genes (DEGs) were identified in a Sprague-Dawley (SD) rat TBI model, 4 and 24 hours post-TBI, respectively. Functional enrichment analysis showed that the identified DEGs were significantly enriched in several terms, such as positive regulation of nuclear factor-κB transcription factor activity, mitogen-activated protein kinase signaling pathway, negative regulation of apoptotic process, and tumor necrosis factor signaling pathway. Moreover, the hub genes with high connectivity degrees were primarily related to inflammatory mediators. To validate the top five hub genes, a rat model of TBI was established using the weight-drop method, and real-time quantitative polymerase chain reaction analysis of the cerebral cortex was performed. The results showed that compared with control rats, Tnf-α, c-Myc, Spp1, Cxcl10, Ptprc, Egf, Mmp9, and Lcn2 were upregulated, and Fn1 was downregulated in TBI rats. Among these hub genes, Fn1, c-Myc, and Ptprc may represent novel biomarkers or therapeutic targets for TBI. These identified pathways and key genes may provide insights into the molecular mechanisms of TBI and provide potential treatment targets for patients with TBI. This study was approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Nanchang University, China (approval No. 003) in January 2016.
Collapse
Affiliation(s)
- Yun-Liang Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Long-Jun Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ling-Yang Zhong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jian Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Yang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
18
|
Niu F, Qian K, Qi H, Zhao Y, Jiang Y, Sun M. Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury. Neuropsychiatr Dis Treat 2020; 16:2975-2987. [PMID: 33324059 PMCID: PMC7733055 DOI: 10.2147/ndt.s281530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/16/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Compound porcine cerebroside and ganglioside injection (CPCGI) has been used for the treatment of certain brain disorders. Apoptosis and inflammation were reported to be involved in the pathogenesis of traumatic brain injury (TBI). Therefore, this study primarily investigated the effects of CPCGI on mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling in a rat model of controlled cortical impact (CCI). MATERIALS AND METHODS CPCGI (0.6 mL/kg) was administered intraperitoneally 30 min after the induction of CCI. Mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling were evaluated 24 h after CCI, and apoptotic cell death, neutrophil infiltration, and astrocyte and microglial activation were determined by TUNEL and immunofluorescent staining 3 days after CCI. RESULTS 1) CPCGI markedly enhanced cytosolic and mitochondrial Bcl-xL levels, the mitochondrial Bcl-xL/Bax ratio, and mitochondrial cytochrome (cyt) c levels and reduced cytosolic cyt c levels, caspase-3 activity, and nuclear AIF levels in brain tissues after traumatic injury; however, CPCGI had no significant effects on cytosolic or mitochondrial Bax levels, the cytosolic Bcl-xL/Bax ratio, or mitochondrial AIF levels. Moreover, CPCGI markedly reduced the TUNEL staining score in the contusion region. 2) CPCGI markedly reduced cytosolic and nuclear PARP levels and nuclear NF-κB p65 levels in brain tissues after traumatic injury but had no significant effect on cytosolic NF-κB p65 levels. In addition, CPCGI markedly reduced caspase-1 activity and the levels of caspase-1, ICAM-1, TNF-α, and IL-1β in brain tissues after traumatic injury and decreased the immunoreactivities of neutrophils, GFAP and Iba-1 in the region of CCI-induced contusion. CONCLUSION These data suggest that CPCGI can reduce brain injury due to trauma by suppressing both mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling.
Collapse
Affiliation(s)
- Fei Niu
- Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ke Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Hongyan Qi
- Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang City 222000, Jiangsu Province, People's Republic of China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yingying Jiang
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
19
|
Comparing effects of CDK inhibition and E2F1/2 ablation on neuronal cell death pathways in vitro and after traumatic brain injury. Cell Death Dis 2018; 9:1121. [PMID: 30401820 PMCID: PMC6219504 DOI: 10.1038/s41419-018-1156-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) activates multiple neuronal cell death mechanisms, leading to post-traumatic neuronal loss and neurological deficits. TBI-induced cell cycle activation (CCA) in post-mitotic neurons causes regulated cell death involving cyclin-dependent kinase (CDK) activation and initiation of an E2F transcription factor-mediated pro-apoptotic program. Here we examine the mechanisms of CCA-dependent neuronal apoptosis in primary neurons in vitro and in mice exposed to controlled cortical impact (CCI). In contrast to our prior work demonstrating robust neuroprotective effects by CDK inhibitors after TBI, examination of neuronal apoptotic mechanisms in E2F1−/−/E2F2−/− or E2F2−/− transgenic mice following CCI suggests that E2F1 and/or E2F2 likely play only a modest role in neuronal cell loss after brain trauma. To elucidate more critical CCA molecular pathways involved in post-traumatic neuronal cell death, we investigated the neuroprotective effects and mechanisms of the potent CDK inhibitor CR8 in a DNA damage model of cell death in primary cortical neurons. CR8 treatment significantly reduced caspase activation and cleavage of caspase substrates, attenuating neuronal cell death. CR8 neuroprotective effects appeared to reflect inhibition of multiple pathways converging on the mitochondrion, including injury-induced elevation of pro-apoptotic Bcl-2 homology region 3 (BH3)-only proteins Puma and Noxa, thereby attenuating mitochondrial permeabilization and release of cytochrome c and AIF, with reduction of both caspase-dependent and -independent apoptosis. CR8 administration also limited injury-induced deficits in mitochondrial respiration. These neuroprotective effects may be explained by CR8-mediated inhibition of key upstream injury responses, including attenuation of c-Jun phosphorylation/activation as well as inhibition of p53 transactivation of BH3-only targets.
Collapse
|
20
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
21
|
Hogan SR, Phan JH, Alvarado-Velez M, Wang MD, Bellamkonda RV, Fernández FM, LaPlaca MC. Discovery of Lipidome Alterations Following Traumatic Brain Injury via High-Resolution Metabolomics. J Proteome Res 2018; 17:2131-2143. [PMID: 29671324 DOI: 10.1021/acs.jproteome.8b00068] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) can occur across wide segments of the population, presenting in a heterogeneous manner that makes diagnosis inconsistent and management challenging. Biomarkers offer the potential to objectively identify injury status, severity, and phenotype by measuring the relative concentrations of endogenous molecules in readily accessible biofluids. Through a data-driven, discovery approach, novel biomarker candidates for TBI were identified in the serum lipidome of adult male Sprague-Dawley rats in the first week following moderate controlled cortical impact (CCI). Serum samples were analyzed in positive and negative modes by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). A predictive panel for the classification of injured and uninjured sera samples, consisting of 26 dysregulated species belonging to a variety of lipid classes, was developed with a cross-validated accuracy of 85.3% using omniClassifier software to optimize feature selection. Polyunsaturated fatty acids (PUFAs) and PUFA-containing diacylglycerols were found to be upregulated in sera from injured rats, while changes in sphingolipids and other membrane phospholipids were also observed, many of which map to known secondary injury pathways. Overall, the identified biomarker panel offers viable molecular candidates representing lipids that may readily cross the blood-brain barrier (BBB) and aid in the understanding of TBI pathophysiology.
Collapse
Affiliation(s)
- Scott R Hogan
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - John H Phan
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Melissa Alvarado-Velez
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - May Dongmei Wang
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ravi V Bellamkonda
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Michelle C LaPlaca
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
22
|
Wang Y, Sherchan P, Huang L, Akyol O, McBride DW, Zhang JH. Multiple mechanisms underlying neuroprotection by secretory phospholipase A2 preconditioning in a surgically induced brain injury rat model. Exp Neurol 2018; 300:30-40. [PMID: 29074417 PMCID: PMC5745263 DOI: 10.1016/j.expneurol.2017.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/21/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intra-operative bleeding, post-operative brain edema and neuroinflammation are major complications in patients with surgical brain injury (SBI). Phospholipase A2 (PLA2) is the upstream enzyme which initiates the PLA2, 5-lipoxygenase (5-LOX) and leukotriene B4 (LTB4) inflammatory pathway. We hypothesized PLA2preconditioning (PPC) prior to SBI can activate endogenous anti-inflammatory responses to protect against SBI. This study evaluated if PPC can ameliorate neurosurgical complications and elucidated PPC-mediated possible protective mechanisms in a rat SBI model. METHODS Total 105 adult male Sprague Dawley rats were used for this study. SBI was induced by partial resection of the right frontal lobe. PLA2 or 0.9% NaCl was injected via rats' tail vein for 3 consecutive days prior to SBI. For mechanism study, a selective PLA2 inhibitor, Manoalide and 5-LOX inhibitor, Zileuton were injected intravenously with PPC to elucidate the role of PLA2 and 5-LOX in PPC-mediated anti-inflammatory effects. Brain water content (BWC) and lung water content, neurological tests, ELISA, western blot, immunohistochemistry, white blood cells (WBC) count, and spectrophotometric assay for intra-operative hemorrhage volume were evaluated. RESULTS First, PPC reduced brain water content, intra-operative bleeding, and improved neurological function after SBI. Second, PPC decreased 5-LOX expression and brain leukocyte infiltration, while increasing glial fibrillary acidic protein (GFAP) expression in the peri-resection brain tissue after SBI. Third, PPC induced peripheral inflammation represented by mild pulmonary inflammation and increased peripheral blood WBC count and LTB4 level. Lastly, PPC increased blood glucose concentration and glucocorticoid levels after SBI. In addition, PPC mediated above-mentioned changes were partially reversed by administration of PLA2 inhibitor, Manoalide and 5-LOX inhibitor, Zileuton. CONCLUSIONS PPC conferred neuroprotection against SBI via multi-target involvement induced anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Physiology, Jinan University School of Medicine, Guangzhou, Guangdong Province, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Lei Huang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Onat Akyol
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Devin W. McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - John H. Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| |
Collapse
|
23
|
Jeje S, Ola-Mudathir F, Raji Y. Experimental maternal treatment with dexamethasone during lactation induces neonatal testicular and epididymal oxidative stress; Implications for early postnatal exposure. PATHOPHYSIOLOGY 2017; 24:261-265. [DOI: 10.1016/j.pathophys.2017.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022] Open
|
24
|
Betancur MI, Mason HD, Alvarado-Velez M, Holmes PV, Bellamkonda RV, Karumbaiah L. Chondroitin Sulfate Glycosaminoglycan Matrices Promote Neural Stem Cell Maintenance and Neuroprotection Post-Traumatic Brain Injury. ACS Biomater Sci Eng 2017; 3:420-430. [PMID: 29744379 PMCID: PMC5937277 DOI: 10.1021/acsbiomaterials.6b00805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There are currently no effective treatments for moderate-to-severe traumatic brain injuries (TBIs). The paracrine functions of undifferentiated neural stem cells (NSCs) are believed to play a significant role in stimulating the repair and regeneration of injured brain tissue. We therefore hypothesized that fibroblast growth factor (FGF2) enriching chondroitin sulfate glycosaminoglycan (CS-GAG) matrices can maintain the undifferentiated state of neural stem cells (NSCs) and facilitate brain tissue repair subacutely post-TBI. Rats subjected to a controlled cortical impactor (CCI) induced TBI were intraparenchymally injected with CS-GAG matrices alone or with CS-GAG matrices containing PKH26GL labeled allogeneic NSCs. Nissl staining of brain tissue 4 weeks post-TBI demonstrated the significantly enhanced (p < 0.05) tissue protection in CS-GAG treated animals when compared to TBI only control, and NSC only treated animals. CS-GAG-NSC treated animals demonstrated significantly enhanced (p < 0.05) FGF2 retention, and maintenance of PKH26GL labeled NSCs as indicated by enhanced Sox1+ and Ki67+ cell presence over other differentiated cell types. Lastly, all treatment groups and sham controls exhibited a significantly (p < 0.05) attenuated GFAP+ reactive astrocyte presence in the lesion site when compared to TBI only controls.
Collapse
Affiliation(s)
- Martha I. Betancur
- Regenerative Bioscience Center, The University of Georgia, 425 River Road, ADS Complex, Athens, Georgia 30602, United States
| | - Hannah D. Mason
- Regenerative Bioscience Center, The University of Georgia, 425 River Road, ADS Complex, Athens, Georgia 30602, United States
| | - Melissa Alvarado-Velez
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Phillip V. Holmes
- Psychology Department, The University of Georgia, 125 Baldwin Street, Athens, Georgia 30602, United States
| | - Ravi V. Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, The University of Georgia, 425 River Road, ADS Complex, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury. Neurocrit Care 2017; 24:308-19. [PMID: 26399249 DOI: 10.1007/s12028-015-0203-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The objective of this paper is to review the current literature regarding the use of vagus nerve stimulation (VNS) in preclinical models of traumatic brain injury (TBI) as well as discuss the potential role of VNS along with alternative neuromodulation approaches in the treatment of human TBI. Data from previous studies have demonstrated VNS-mediated improvement following TBI in animal models. In these cases, VNS was observed to enhance motor and cognitive recovery, attenuate cerebral edema and inflammation, reduce blood brain barrier breakdown, and confer neuroprotective effects. Yet, the underlying mechanisms by which VNS enhances recovery following TBI remain to be fully elucidated. Several hypotheses have been offered including: a noradrenergic mechanism, reduction in post-TBI seizures and hyper-excitability, anti-inflammatory effects, attenuation of blood-brain barrier breakdown, and cerebral edema. We present other potential mechanisms by which VNS acts including enhancement of synaptic plasticity and recruitment of endogenous neural stem cells, stabilization of intracranial pressure, and interaction with the ghrelin system. In addition, alternative methods for the treatment of TBI including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are discussed. Although the primary source data show that VNS improves TBI outcomes, it remains to be determined if these findings can be translated to clinical settings.
Collapse
|
26
|
Johnson VE, Stewart W, Arena JD, Smith DH. Traumatic Brain Injury as a Trigger of Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2017; 15:383-400. [PMID: 28674990 DOI: 10.1007/978-3-319-57193-5_15] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although millions of individuals suffer a traumatic brain injury (TBI) worldwide each year, it is only recently that TBI has been recognized as a major public health problem. Beyond the acute clinical manifestations, there is growing recognition that a single severe TBI (sTBI) or repeated mild TBIs (rTBI) can also induce insidious neurodegenerative processes, which may be associated with early dementia, in particular chronic traumatic encephalopathy (CTE). Identified at autopsy examination in individuals with histories of exposure to sTBI or rTBI, CTE is recognized as a complex pathology featuring both macroscopic and microscopic abnormalities. These include cavum septum pellucidum, brain atrophy and ventricular dilation, together with pathologies in tau, TDP-43, and amyloid-β. However, the establishment and characterization of CTE as a distinct disease entity is in its infancy. Moreover, the relative "dose" of TBI, such as the frequency and severity of injury, associated with risk of CTE remains unknown. As such, there is a clear and pressing need to improve the recognition and diagnosis of CTE and to identify mechanistic links between TBI and chronic neurodegeneration.
Collapse
Affiliation(s)
- Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Stewart
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.,University of Glasgow, Glasgow, G12 8QQ, UK
| | - John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Chen HCI, Burke JF, Cohen AS. Editorial: Traumatic Brain Injury As a Systems Neuroscience Problem. Front Syst Neurosci 2016; 10:100. [PMID: 28018187 PMCID: PMC5145880 DOI: 10.3389/fnsys.2016.00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Han-Chiao I Chen
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA; Philadelphia Veterans Affairs Medical CenterPhiladelphia, PA, USA
| | - John F Burke
- Department of Neurosurgery, University of California, San Francisco San Francisco, CA, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of PhiladelphiaPhiladelphia, PA, USA; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
28
|
Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats. Exp Ther Med 2016; 12:1671-1680. [PMID: 27602084 PMCID: PMC4998226 DOI: 10.3892/etm.2016.3527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/11/2016] [Indexed: 01/19/2023] Open
Abstract
The present study evaluated the comparative effect of stereotaxically transplanted immature neuronal or glial cells in brain on motor functional recovery and cytokine expression after cold-induced traumatic brain injury (TBI) in adult rats. A total of 60 rats were divided into four groups (n=15/group): Sham group; TBI only group; TBI plus neuronal cells-transplanted group (NC-G); and TBI plus glial cells-transplanted group (GC-G). Cortical lesions were induced by a touching metal stamp, frozen with liquid nitrogen, to the dura mater over the motor cortex of adult rats. Neuronal and glial cells were isolated from rat embryonic and newborn cortices, respectively, and cultured in culture flasks. Rats received neurons or glia grafts (~1×106 cells) 5 days after TBI was induced. Motor functional evaluation was performed with the rotarod test prior to and following glial and neural cell grafts. Five rats from each group were sacrificed at 2, 4 and 6 weeks post-cell transplantation. Immunofluorescence staining was performed on brain section to identify the transplanted neuronal or glial cells using neural and astrocytic markers. The expression levels of cytokines, including transforming growth factor-β, glial cell-derived neurotrophic factor and vascular endothelial growth factor, which have key roles in the proliferation, differentiation and survival of neural cells, were analyzed by immunohistochemistry and western blotting. A localized cortical lesion was evoked in all injured rats, resulting in significant motor deficits. Transplanted cells successfully migrated and survived in the injured brain lesion, and the expression of neuronal and astrocyte markers were detected in the NC-G and GC-G groups, respectively. Rats in the NC-G and GC-G cell-transplanted groups exhibited significant motor functional recovery and reduced histopathologic lesions, as compared with the TBI-G rats that did not receive neural cells (P<0.05, respectively). Furthermore, GC-G treatment induced significantly improved motor functional recovery, as compared with the NC-G group (P<0.05). Increased cytokine expression levels were detected in the NC-G and GC-G groups, as compared with the TBI-G; however, no differences were found between the two groups. These data suggested that transplanted immature neural cells may promote the survival of neural cells in cortical lesion and motor functional recovery. Furthermore, transplanted glial cells may be used as an effective therapeutic tool for TBI patients with abnormalities in motor functional recovery and cytokine expression.
Collapse
|
29
|
Farooqui AA, Horrocks LA. Phospholipase A₂-Generated Lipid Mediators in the Brain: The Good, the Bad, and the Ugly. Neuroscientist 2016; 12:245-60. [PMID: 16684969 DOI: 10.1177/1073858405285923] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phospholipase A2 (PLA2) generates arachidonic acid, docosahexaenoic acid, and lysophospholipids from neural membrane phospholipids. These metabolites have a variety of physiological effects by themselves and also are substrates for the synthesis of more potent lipid mediators such as eicosanoids, platelet activating factor, and 4-hydroxynonenal (4-HNE). At low concentrations, these mediators act as second messengers. They affect and modulate several cell functions, including signal transduction, gene expression, and cell proliferation, but at high concentrations, these lipid mediators cause neurotoxicity. Among the metabolites generated by PLA2, 4-HNE is the most cytotoxic metabolite and is associated with the apoptotic type of neural cell death. Levels of 4-HNE are markedly increased in neurological disorders such as Alzheimer disease, Parkinson disease, ischemia, spinal cord trauma, and head injury. The purpose of this review is to summarize and integrate the vast literature on metabolites generated by PLA2 for a wider audience. The authors hope that this discussion will jump-start more studies not only on the involvement of PLA2 in neurological disorders but also on the importance of PLA2-generated lipid mediators in physiological and pathological processes.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
30
|
White TE, Surles-Zeigler MC, Ford GD, Gates AS, Davids B, Distel T, LaPlaca MC, Ford BD. Bilateral gene interaction hierarchy analysis of the cell death gene response emphasizes the significance of cell cycle genes following unilateral traumatic brain injury. BMC Genomics 2016; 17:130. [PMID: 26912237 PMCID: PMC4765060 DOI: 10.1186/s12864-016-2412-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Delayed or secondary cell death that is caused by a cascade of cellular and molecular processes initiated by traumatic brain injury (TBI) may be reduced or prevented if an effective neuroprotective strategy is employed. Microarray and subsequent bioinformatic analyses were used to determine which genes, pathways and networks were significantly altered 24 h after unilateral TBI in the rat. Ipsilateral hemi-brain, the corresponding contralateral hemi-brain, and naïve (control) brain tissue were used for microarray analysis. RESULTS Ingenuity Pathway Analysis showed cell death and survival (CD) to be a top molecular and cellular function associated with TBI on both sides of the brain. One major finding was that the overall gene expression pattern suggested an increase in CD genes in ipsilateral brain tissue and suppression of CD genes contralateral to the injury which may indicate an endogenous protective mechanism. We created networks of genes of interest (GOI) and ranked the genes by the number of direct connections each had in the GOI networks, creating gene interaction hierarchies (GIHs). Cell cycle was determined from the resultant GIHs to be a significant molecular and cellular function in post-TBI CD gene response. CONCLUSIONS Cell cycle and apoptosis signalling genes that were highly ranked in the GIHs and exhibited either the inverse ipsilateral/contralateral expression pattern or contralateral suppression were identified and included STAT3, CCND1, CCND2, and BAX. Additional exploration into the remote suppression of CD genes may provide insight into neuroprotective mechanisms that could be used to develop therapies to prevent cell death following TBI.
Collapse
Affiliation(s)
- Todd E White
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| | - Monique C Surles-Zeigler
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| | - Gregory D Ford
- Division of Natural Sciences and Physical Education, Georgia Highlands College, 5441 Highway 20, NE, Cartersville, GA, 30121, USA.
| | - Alicia S Gates
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| | - Benem Davids
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| | - Timothy Distel
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
- University of California-Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA.
| | - Michelle C LaPlaca
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Byron D Ford
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
- University of California-Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
31
|
Cullen DK, Harris JP, Browne KD, Wolf JA, Duda JE, Meaney DF, Margulies SS, Smith DH. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration. Methods Mol Biol 2016; 1462:289-324. [PMID: 27604725 DOI: 10.1007/978-1-4939-3816-2_17] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive non-impact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI.
Collapse
Affiliation(s)
- D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA. .,Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA. .,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - James P Harris
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105 Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Kevin D Browne
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105 Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - John A Wolf
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - David F Meaney
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105C Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Susan S Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105D Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Douglas H Smith
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| |
Collapse
|
32
|
Devesa J, Díaz-Getino G, Rey P, García-Cancela J, Loures I, Nogueiras S, Hurtado de Mendoza A, Salgado L, González M, Pablos T, Devesa P. Brain Recovery after a Plane Crash: Treatment with Growth Hormone (GH) and Neurorehabilitation: A Case Report. Int J Mol Sci 2015; 16:30470-82. [PMID: 26703581 PMCID: PMC4691184 DOI: 10.3390/ijms161226244] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/12/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to describe the results obtained after growth hormone (GH) treatment and neurorehabilitation in a young man that suffered a very grave traumatic brain injury (TBI) after a plane crash. Methods: Fifteen months after the accident, the patient was treated with GH, 1 mg/day, at three-month intervals, followed by one-month resting, together with daily neurorehabilitation. Blood analysis at admission showed that no pituitary deficits existed. At admission, the patient presented: spastic tetraplegia, dysarthria, dysphagia, very severe cognitive deficits and joint deformities. Computerized tomography scanners (CT-Scans) revealed the practical loss of the right brain hemisphere and important injuries in the left one. Clinical and blood analysis assessments were performed every three months for three years. Feet surgery was needed because of irreducible equinovarus. Results: Clinical and kinesitherapy assessments revealed a prompt improvement in cognitive functions, dysarthria and dysphagia disappeared and three years later the patient was able to live a practically normal life, walking alone and coming back to his studies. No adverse effects were observed during and after GH administration. Conclusions: These results, together with previous results from our group, indicate that GH treatment is safe and effective for helping neurorehabilitation in TBI patients, once the acute phase is resolved, regardless of whether or not they have GH-deficiency (GHD).
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela 15710, Spain.
| | | | - Pablo Rey
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | | | - Iria Loures
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Sonia Nogueiras
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | | | - Lucía Salgado
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Mónica González
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Tamara Pablos
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Pablo Devesa
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| |
Collapse
|
33
|
Wang X, Gao X, Michalski S, Zhao S, Chen J. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus. J Neurotrauma 2015; 33:721-33. [PMID: 26414411 DOI: 10.1089/neu.2015.4097] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.
Collapse
Affiliation(s)
- Xiaoting Wang
- 1 Spinal Cord and Brain Injury Research Group, Indiana University , Indianapolis, Indiana.,2 Stark Neuroscience Research Institute, Indiana University , Indianapolis, Indiana.,3 Department of Neurological Surgery, Indiana University , Indianapolis, Indiana
| | - Xiang Gao
- 1 Spinal Cord and Brain Injury Research Group, Indiana University , Indianapolis, Indiana.,2 Stark Neuroscience Research Institute, Indiana University , Indianapolis, Indiana.,3 Department of Neurological Surgery, Indiana University , Indianapolis, Indiana
| | - Stephanie Michalski
- 3 Department of Neurological Surgery, Indiana University , Indianapolis, Indiana
| | - Shu Zhao
- 1 Spinal Cord and Brain Injury Research Group, Indiana University , Indianapolis, Indiana.,2 Stark Neuroscience Research Institute, Indiana University , Indianapolis, Indiana.,3 Department of Neurological Surgery, Indiana University , Indianapolis, Indiana
| | - Jinhui Chen
- 1 Spinal Cord and Brain Injury Research Group, Indiana University , Indianapolis, Indiana.,2 Stark Neuroscience Research Institute, Indiana University , Indianapolis, Indiana.,3 Department of Neurological Surgery, Indiana University , Indianapolis, Indiana
| |
Collapse
|
34
|
Portbury SD, Adlard PA. Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer’s Disease: Common Pathologies Potentiated by Altered Zinc Homeostasis. J Alzheimers Dis 2015; 46:297-311. [DOI: 10.3233/jad-143048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Boone DR, Micci MA, Taglialatela IG, Hellmich JL, Weisz HA, Bi M, Prough DS, DeWitt DS, Hellmich HL. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury. PLoS One 2015; 10:e0127287. [PMID: 26016641 PMCID: PMC4446038 DOI: 10.1371/journal.pone.0127287] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Cognitive deficits in survivors of traumatic brain injury (TBI) are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays) to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive) or surviving (Fluoro-Jade- negative) pyramidal neurons obtained by laser capture microdissection (LCM). In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER) stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.
Collapse
Affiliation(s)
- Deborah R. Boone
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Maria-Adelaide Micci
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Isabella G. Taglialatela
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Judy L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Harris A. Weisz
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Min Bi
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Douglas S. DeWitt
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555–0830, United States of America
- * E-mail:
| |
Collapse
|
36
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
37
|
Hyperbaric oxygen effects on neuronal apoptosis associations in a traumatic brain injury rat model. J Surg Res 2015; 197:382-9. [PMID: 25982374 DOI: 10.1016/j.jss.2015.04.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/23/2015] [Accepted: 04/14/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The neuroprotective mechanisms of hyperbaric oxygen (HBO) therapy on traumatic brain injury (TBI) remain unclear, especially neuronal apoptosis associations such as the expression of tumor necrosis factor alpha (TNF-α), transforming growth-interacting factor (TGIF), and TGF-β1 after TBI. The aim of this study was to investigate the neuroprotective effects of HBO therapy in a rat model of TBI. MATERIALS AND METHODS The experimental rats were randomly divided into three groups as follows: TBI + normobaric air (21% O₂ at one absolute atmosphere), TBI + HBO, and sham-operated normobaric air. The TBI + HBO rats received 100% O₂ at 2.0 absolute atmosphere for 1 h immediately after TBI. Local and systemic TNF-α expression, neuropathology, levels of the neuronal apoptosis-associated proteins TGIF and TGF-β1, and functional outcome were evaluated 72 h after the onset of TBI. RESULTS Compared to the TBI control groups, the running speed of rats on the TreadScan after TBI was significantly attenuated by HBO therapy. The TBI-induced local and systemic TNF-α expression, neuronal damage score, and neuronal apoptosis were also significantly reduced by HBO therapy. Moreover, HBO treatment attenuated the expression of TGIF but increased TGF-β1 expression in neurons. CONCLUSIONS We concluded that treatment of TBI with HBO during the acute phase of injury can decrease local and systemic proinflammatory cytokine TNF-α production, resulting in neuroprotective effects. We also suggest that decreased levels of TGIF and increased levels of TGF-β in the injured cortex leading to decreased neuronal apoptosis is one mechanism by which functional recovery may occur.
Collapse
|
38
|
Wang WX, Visavadiya NP, Pandya JD, Nelson PT, Sullivan PG, Springer JE. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol 2015; 265:84-93. [PMID: 25562527 DOI: 10.1016/j.expneurol.2014.12.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 01/10/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the relevance of mitochondria in these pathways is unknown. Here, we present evidence supporting the association of miRNA with hippocampal mitochondria, as well as changes in mitochondria-associated miRNA expression following a controlled cortical impact (CCI) injury in rats. Specifically, we found that the miRNA processing proteins Argonaute (AGO) and Dicer are present in mitochondria fractions from uninjured rat hippocampus, and immunoprecipitation of AGO associated miRNA from mitochondria suggests the presence of functional RNA-induced silencing complexes. Interestingly, RT-qPCR miRNA array studies revealed that a subset of miRNA is enriched in mitochondria relative to cytoplasm. At 12h following CCI, several miRNAs are significantly altered in hippocampal mitochondria and cytoplasm. In addition, levels of miR-155 and miR-223, both of which play a role in inflammatory processes, are significantly elevated in both cytoplasm and mitochondria. We propose that mitochondria-associated miRNAs may play an important role in regulating the response to TBI.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA.
| | - Nishant P Visavadiya
- Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | - Joe E Springer
- Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
39
|
Abstract
Mood disturbances, especially depressive disorders, are the most frequent neuropsychiatric complication of traumatic brain injury (TBI). These disorders have a complex clinical presentation and are highly comorbid with anxiety, substance misuse, and other behavioral alterations such as impulsivity and aggression. Furthermore, once developed, mood disorders tend to have a chronic and refractory course. Thus, the functional repercussion of these disorders is huge, affecting the rehabilitation process and the long-term outcome of TBI patients. The pathophysiology of mood disorders involves the interplay of factors that precede trauma (e.g., genetic vulnerability and previous psychiatric history), factors that pertain to the traumatic injury itself (e.g., type, extent, and location of brain damage) and factors that influence the recovery process (e.g., family and social support). It is hardly surprising that mood disorders are associated with structural and functional changes of neural circuits linking brain areas specialized in emotional processing such as the prefrontal cortex, basal ganglia, and amygdala. In turn, the onset of mood disorders may contribute to further prefrontal dysfunction among TBI patients. Finally, in spite of the prevalence and impact of these disorders, there have been relatively few rigorous studies of therapeutic options. Development of treatment strategies constitutes a priority in this field of research.
Collapse
Affiliation(s)
- Ricardo E Jorge
- Michael E DeBakey VA Medical Center, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
40
|
Jia F, Yin YH, Gao GY, Wang Y, Cen L, Jiang JY. MMP-9 inhibitor SB-3CT attenuates behavioral impairments and hippocampal loss after traumatic brain injury in rat. J Neurotrauma 2014; 31:1225-34. [PMID: 24661104 PMCID: PMC4082357 DOI: 10.1089/neu.2013.3230] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to evaluate the potential efficacy of SB-3CT, a matrix metallopeptidase 9 inhibitor, on behavioral and histological outcomes after traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n=15/group): TBI with SB-3CT treatment, TBI with saline, and sham injury. The TBI model was induced by a fluid percussion TBI device. SB-3CT (50 mg/kg in 10% dimethyl sulfoxide) was administered intraperitoneally at 30 min, 6 h, and 12 h after the TBI. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative Days 1-5 and 11-15, respectively. Fluoro-Jade staining, immunofluorescence, and cresyl violet-staining were carried out for histopathological evaluation at 24 h, 72 h, and 15 days after TBI, respectively. It was shown that TBI can result in significant behavioral deficit induced by acute neurodegeneration, increased expression of cleaved caspase-3, and long-term neuronal loss. SB-3CT intervention via the current regime provides robust behavioral protection and hippocampal neurons preservation from the deleterious effects of TBI. Hence, the efficacy of SB-3CT on TBI prognosis could be ascertained. It is believed that the current study adds to the growing literature in identifying SB-3CT as a potential therapy for human brain injury.
Collapse
Affiliation(s)
- Feng Jia
- Department of Neurosurgery, Shanghai JiaoTong University, Shanghai, China
| | - Yu Hua Yin
- Department of Neurosurgery, Shanghai JiaoTong University, Shanghai, China
| | - Guo Yi Gao
- Department of Neurosurgery, Shanghai JiaoTong University, Shanghai, China
| | - Yu Wang
- Department of Neurosurgery, Shanghai JiaoTong University, Shanghai, China
| | - Lian Cen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Ji-yao Jiang
- Department of Neurosurgery, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
41
|
Addington CP, Pauken CM, Caplan MR, Stabenfeldt SE. The role of SDF-1α-ECM crosstalk in determining neural stem cell fate. Biomaterials 2014; 35:3263-72. [PMID: 24438907 DOI: 10.1016/j.biomaterials.2013.12.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/28/2013] [Indexed: 02/04/2023]
Abstract
The consequences of central nervous system injury are far-reaching and debilitating and, while an endogenous repair response to neural injury has been observed in recent years, the mechanisms behind this response remain unclear. Neural progenitor/stem cell (NPSC) migration to the site of injury from the neural stem cell niches (e.g. subventricular zone and hippocampus) has been observed to be vasophilic in nature. While the chemotactic stimuli directing NPSC homing to injury is not well established, it is thought to be due in part to an increasing gradient of chemotactic cytokines, such as stromal cell-derived factor 1α (SDF-1α). Based on these recent findings, we hypothesize that critical crosstalk between SDF-1α and the extracellular matrix (ECM) drives injury-induced NPSC behavior. In this study, we investigated the effect of SDF-1α and ECM substrates (Matrigel, laminin, and vitronectin) on the migration, differentiation, and proliferation of NPSCs in vitro using standard assays. The results demonstrated that SDF-1α and laminin-based ECM (Matrigel and laminin) significantly and synergistically enhanced NPSC migration and acute neuronal differentiation. These effects were significantly attenuated with the addition of AMD3100 (an antagonist against the SDF-1α receptor, CXCR4). SDF-1α alone significantly increased NPSC proliferation regardless of ECM substrate, however no synergy was observed between SDF-1α and the ECM. These results serve to elucidate the relationship between adhesive and soluble signaling factors of interest and their effect on NPSC behavior following neural injury. Furthermore, these results better inform the next generation of biomaterials aimed at stimulating endogenous neural regeneration for neural injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Caroline P Addington
- School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA
| | - Christine M Pauken
- School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA
| | - Michael R Caplan
- School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA.
| |
Collapse
|
42
|
Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D, Kossmann T, Rosenfeld JV, Morganti-Kossmann MC. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma 2014; 31:618-29. [PMID: 24279428 DOI: 10.1089/neu.2013.3087] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Secondary hypoxia is a known contributor to adverse outcomes in patients with traumatic brain injury (TBI). Based on the evidence that hypoxia and TBI in isolation induce neuroinflammation, we investigated whether TBI combined with hypoxia enhances cerebral cytokine production. We also explored whether increased concentrations of injury biomarkers discriminate between hypoxic (Hx) and normoxic (Nx) patients, correlate to worse outcome, and depend on blood-brain barrier (BBB) dysfunction. Forty-two TBI patients with Glasgow Coma Scale ≤8 were recruited. Cerebrospinal fluid (CSF) and serum were collected over 6 days. Patients were divided into Hx (n=22) and Nx (n=20) groups. Eight cytokines were measured in the CSF; albumin, S100, myelin basic protein (MBP) and neuronal specific enolase (NSE) were quantified in serum. CSF/serum albumin quotient was calculated for BBB function. Glasgow Outcome Scale Extended (GOSE) was assessed at 6 months post-TBI. Production of granulocye macrophage-colony stimulating factor (GM-CSF) was higher, and profiles of GM-CSF, interferon (IFN)-γ and, to a lesser extent, tumor necrosis factor (TNF), were prolonged in the CSF of Hx but not Nx patients at 4-5 days post-TBI. Interleukin (IL)-2, IL-4, IL-6, and IL-10 increased similarly in both Hx and Nx groups. S100, MBP, and NSE were significantly higher in Hx patients with unfavorable outcome. Among these three biomarkers, S100 showed the strongest correlations to GOSE after TBI-Hx. Elevated CSF/serum albumin quotients lasted for 5 days post-TBI and displayed similar profiles in Hx and Nx patients. We demonstrate for the first time that post-TBI hypoxia is associated with prolonged neuroinflammation, amplified extravasation of biomarkers, and poor outcome. S100 and MBP could be implemented to track the occurrence of post-TBI hypoxia, and prompt adequate treatment.
Collapse
Affiliation(s)
- Edwin B Yan
- 1 National Trauma Research Institute, The Alfred Hospital , Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xing G, Barry ES, Benford B, Grunberg NE, Li H, Watson WD, Sharma P. Impact of repeated stress on traumatic brain injury-induced mitochondrial electron transport chain expression and behavioral responses in rats. Front Neurol 2013; 4:196. [PMID: 24376434 PMCID: PMC3859919 DOI: 10.3389/fneur.2013.00196] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022] Open
Abstract
A significant proportion of the military personnel returning from Iraq and Afghanistan conflicts have suffered from both mild traumatic brain injury (mTBI) and post-traumatic stress disorder. The mechanisms are unknown. We used a rat model of repeated stress and mTBI to examine brain activity and behavioral function. Adult male Sprague-Dawley rats were divided into four groups: Naïve; 3 days repeated tail-shock stress; lateral fluid percussion mTBI; and repeated stress followed by mTBI (S-mTBI). Open field activity, sensorimotor responses, and acoustic startle responses (ASRs) were measured at various time points after mTBI. The protein expression of mitochondrial electron transport chain (ETC) complex subunits (CI-V) and pyruvate dehydrogenase (PDHE1α1) were determined in four brain regions at day 7-post mTBI. Compared to Naïves, repeated stress decreased horizontal activity; repeated stress and mTBI both decreased vertical activity; and the mTBI and S-mTBI groups were impaired in sensorimotor and ASRs. Repeated stress significantly increased CI, CII, and CIII protein levels in the prefrontal cortex (PFC), but decreased PDHE1α1 protein in the PFC and cerebellum, and decreased CIV protein in the hippocampus. The mTBI treatment decreased CV protein levels in the ipsilateral hippocampus. The S-mTBI treatment resulted in increased CII, CIII, CIV, and CV protein levels in the PFC, increased CI level in the cerebellum, and increased CIII and CV levels in the cerebral cortex, but decreased CI, CII, CIV, and PDHE1α1 protein levels in the hippocampus. Thus, repeated stress or mTBI alone differentially altered ETC expression in heterogeneous brain regions. Repeated stress followed by mTBI had synergistic effects on brain ETC expression, and resulted in more severe behavioral deficits. These results suggest that repeated stress could have contributed to the high incidence of long-term neurologic and neuropsychiatric morbidity in military personnel with or without mTBI.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of Anesthesiology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Erin S Barry
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Brandi Benford
- Department of Anesthesiology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Neil E Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - He Li
- Department of Psychiatry, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - William D Watson
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Pushpa Sharma
- Department of Anesthesiology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
44
|
Bates K, Vink R, Martins R, Harvey A. Aging, cortical injury and Alzheimer's disease-like pathology in the guinea pig brain. Neurobiol Aging 2013; 35:1345-51. [PMID: 24360504 DOI: 10.1016/j.neurobiolaging.2013.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized histopathologically by the abnormal deposition of the proteins amyloid-beta (Aβ) and tau. A major issue for AD research is the lack of an animal model that accurately replicates the human disease, thus making it difficult to investigate potential risk factors for AD such as head injury. Furthermore, as age remains the strongest risk factor for most of the AD cases, transgenic models in which mutant human genes are expressed throughout the life span of the animal provide only limited insight into age-related factors in disease development. Guinea pigs (Cavia porcellus) are of interest in AD research because they have a similar Aβ sequence to humans and thus may present a useful non-transgenic animal model of AD. Brains from guinea pigs aged 3-48 months were examined to determine the presence of age-associated AD-like pathology. In addition, fluid percussion-induced brain injury was performed to characterize mechanisms underlying the association between AD risk and head injury. No statistically significant changes were detected in the overall response to aging, although we did observe some region-specific changes. Diffuse deposits of Aβ were found in the hippocampal region of the oldest animals and alterations in amyloid precursor protein processing and tau immunoreactivity were observed with age. Brain injury resulted in a strong and sustained increase in amyloid precursor protein and tau immunoreactivity without Aβ deposition, over 7 days. Guinea pigs may therefore provide a useful model for investigating the influence of environmental and non-genetic risk factors on the pathogenesis of AD.
Collapse
Affiliation(s)
- Kristyn Bates
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Psychiatry and Clinical Neuroscience, The University of Western Australia, Crawley, Western Australia, Australia; The McCusker Foundation for Alzheimer's Disease Research Inc, Nedlands, Western Australia, Australia.
| | - Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ralph Martins
- School of Psychiatry and Clinical Neuroscience, The University of Western Australia, Crawley, Western Australia, Australia; The McCusker Foundation for Alzheimer's Disease Research Inc, Nedlands, Western Australia, Australia; School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Alan Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
45
|
Phipps HW, Longo LM, Blaber SI, Blaber M, VanLandingham JW. Kallikrein-related peptidase 6: A biomarker for traumatic brain injury in the rat. Brain Inj 2013; 27:1698-706. [DOI: 10.3109/02699052.2013.823563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Liu Y, Yi XC, Guo G, Long QF, Wang XA, Zhong J, Liu WP, Fei Z, Wang DM, Liu J. Basic fibroblast growth factor increases the transplantation‑mediated therapeutic effect of bone mesenchymal stem cells following traumatic brain injury. Mol Med Rep 2013; 9:333-9. [PMID: 24248266 DOI: 10.3892/mmr.2013.1803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 10/15/2013] [Indexed: 11/05/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) has proven useful for neural stem and progenitor cells during the transplantation‑mediated therapeutic effect of bone mesenchymal stem cells (BMSCs). Endogenous bFGF expression levels increase during brain development and gradually diminish with aging. To date, few studies have been conducted on exogenous bFGF promoting BMSC transplantation‑mediated functional recovery in adult rats following traumatic brain injury (TBI). The results of the present study showed that BMSCs in the TBI cortex and dentate gyrus showed differentiation along the glial and neuronal lines, which are possibly enhanced by bFGF. The neuronal differentiation rate was not consistent with neurological functional recovery rate over time. bFGF may promote the transplantation‑mediated therapeutic effect of BMSCs more significantly and rapidly in rats following TBI, with a small proportion of differentiated neurons. In conclusion, exogenous bFGF functions as a booster of the transplantation‑mediated therapeutic effect of BMSCs following TBI.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, The Third Hospital of Mianyang, Mianyang, Sichuan 621000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chuang CH, Hsu YC, Wang CC, Hu C, Kuo JR. Cerebral blood flow and apoptosis-associated factor with electroacupuncture in a traumatic brain injury rat model. Acupunct Med 2013; 31:395-403. [PMID: 24055977 DOI: 10.1136/acupmed-2013-010406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Electroacupuncture (EA) has been widely used for treatment of stroke, but there is little information on the effect of EA on the neuroprotective function in traumatic brain injury (TBI). The aim of the present study was to investigate the protective effects and mechanisms of EA treatment in a TBI rat model. METHODS Male Sprague-Dawley rats were randomly divided into four groups: sham operation, TBI control, TBI+EA treated for 30 min or TBI+EA treated for 60 min. The animals were treated with EA immediately after TBI. The EA was applied at acupuncture points GV20, GV26, LI4 and KI1 with a dense-dispersed wave, frequencies of 0.2 and 1 Hz, and amplitude of 1 mA for 30 or 60 min. Regional blood flow, cell infarction volume, extent of neuronal apoptosis, expression of cell apoptosis-associated factor transforming growth-interacting factor (TGIF) were studied, and functional outcome was assessed by running speed test. All tests except regional blood flow were performed 72 h after TBI onset. RESULTS Immediately after TBI, compared with the TBI control groups, the regional blood flow was significantly increased by EA treatment for 60 min. Compared with the TBI controls 72 h after TBI, the TBI-induced run speed impairment, infarction volume, neuronal apoptosis and apoptosis-associated TGIF expression were significantly improved by EA treatment. CONCLUSIONS The treatment of TBI in the acute stage with EA for 60 min could increase the regional blood flow and attenuate the levels of TGIF in the injured cortex, might lead to a decrease in neuronal apoptosis and cell infarction volume, and might represent one mechanism by which functional recovery may occur.
Collapse
Affiliation(s)
- Chih Hsiang Chuang
- Department of Chinese Medicine, Chi-Mei Medical Center, , Tainan, Taiwan
| | | | | | | | | |
Collapse
|
48
|
Sheinerman KS, Umansky SR. Circulating cell-free microRNA as biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases and other neurologic pathologies. Front Cell Neurosci 2013; 7:150. [PMID: 24058335 PMCID: PMC3767917 DOI: 10.3389/fncel.2013.00150] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/23/2013] [Indexed: 12/19/2022] Open
Abstract
Many neurodegenerative diseases, such as Alzheimer's disease, Parkinson disease, vascular and frontotemporal dementias, as well as other chronic neurological pathologies, are characterized by slow development with a long asymptomatic period followed by a stage with mild clinical symptoms. As a consequence, these serious pathologies are diagnosed late in the course of a disease, when massive death of neurons has already occurred and effective therapeutic intervention is problematic. Thus, the development of screening tests capable of detecting neurodegenerative diseases during early, preferably asymptomatic, stages is a high unmet need. Since such tests are to be used for screening of large populations, they should be non-invasive and relatively inexpensive. Further, while subjects identified by screening tests can be further tested with more invasive and expensive methods, e.g., analysis of cerebrospinal fluid or imaging techniques, to be of practical utility screening tests should have high sensitivity and specificity. In this review, we discuss advantages and disadvantages of various approaches to developing screening tests based on analysis of circulating cell-free microRNA (miRNA). Applications of circulating miRNA-based tests for diagnosis of acute and chronic brain pathologies, for research of normal brain aging, and for disease and treatment monitoring are also discussed.
Collapse
|
49
|
Irwin DJ, Trojanowski JQ. Many roads to Parkinson's disease neurodegeneration: head trauma-a road more traveled than we know? Mov Disord 2013; 28:1167-70. [PMID: 23836759 DOI: 10.1002/mds.25551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 12/14/2022] Open
|
50
|
Mayer CL, Huber BR, Peskind E. Traumatic brain injury, neuroinflammation, and post-traumatic headaches. Headache 2013; 53:1523-30. [PMID: 24090534 DOI: 10.1111/head.12173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
Concussions following head and/or neck injury are common, and although most people with mild injuries recover uneventfully, a subset of individuals develop persistent post-concussive symptoms that often include headaches. Post-traumatic headaches vary in presentation and may progress to become chronic and in some cases debilitating. Little is known about the pathogenesis of post-traumatic headaches, although shared pathophysiology with that of the brain injury is suspected. Following primary injury to brain tissues, inflammation rapidly ensues; while this inflammatory response initially provides a defensive/reparative function, it can persist beyond its beneficial effect, potentially leading to secondary injuries because of alterations in neuronal excitability, axonal integrity, central processing, and other changes. These changes may account for the neurological symptoms often observed after traumatic brain injury, including headaches. This review considers selected aspects of the inflammatory response following traumatic brain injury, with an emphasis on the role of glial cells as mediators of maladaptive post-traumatic inflammation.
Collapse
Affiliation(s)
- Cynthia L Mayer
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|