1
|
Elmasry A, Aboukamar WA, Hany H, Elmehankar MS. The immunomodulatory effects of roflumilast on tachyzoite-bradyzoite transition in a murine model of Toxoplasma gondii. Int Immunopharmacol 2022; 113:109348. [DOI: 10.1016/j.intimp.2022.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
2
|
Semedo SSL, da Silva Sanfelice RA, Tomiotto-Pellissier F, Silva TF, da Silva Bortoleti BT, de Oliveira GC, de Lion Siervo GEM, Bosqui LR, Lazarin-Bidói D, Conchon-Costa I, de Barros LD, Garcia JL, Nakazato G, Pavanelli WR, Fernandes GSA, da Costa IN. Biogenic silver nanoparticles (AgNp-Bio) restore testosterone levels and increase TNF-α and IL-6 in Leydig cells infected with Toxoplasma gondii. Exp Parasitol 2022; 241:108343. [DOI: 10.1016/j.exppara.2022.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
|
3
|
Arruda da Silva Sanfelice R, Silva TF, Tomiotto-Pellissier F, Bortoleti BTDS, Lazarin-Bidóia D, Scandorieiro S, Nakazato G, de Barros LD, Garcia JL, Verri WA, Conchon-Costa I, Pavanelli WR, Costa IN. Biogenic silver nanoparticles reduce Toxoplasma gondii infection and proliferation in RAW 264.7 macrophages by inducing tumor necrosis factor-alpha and reactive oxygen species production in the cells. Microbes Infect 2022; 24:104971. [PMID: 35341976 DOI: 10.1016/j.micinf.2022.104971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022]
Abstract
Owing to the serious adverse effects caused by pyrimethamine and sulfadiazine, the drugs commonly used to treat toxoplasmosis, there is a need for treatment alternatives for this disease. Nanotechnology has enabled significant advances toward this goal. This study was conducted to evaluate the activity of biogenic silver nanoparticles (AgNp-Bio) in RAW 264.7 murine macrophages infected with the RH strain of Toxoplasma gondii. The macrophages were infected with T. gondii tachyzoites and then treated with various concentrations of AgNp-Bio. The cells were evaluated by microscopy, and culture supernatants were collected for ELISA determination of their cytokine concentration. Treatment with 6 μM AgNp-Bio reduced the infection and parasite load in infected RAW 264.7 macrophages without being toxic to the cells. The treatment also induced the synthesis of reactive oxygen species and tumor necrosis factor-alpha (both pro-inflammatory mediators), which resulted in ultrastructural changes in the tachyzoites and their intramacrophagic destruction. Our findings suggest that AgNp-Bio affect T. gondii tachyzoites by activating microbicidal and pro-inflammatory mechanisms and may be a potential alternative treatment for toxoplasmosis.
Collapse
Affiliation(s)
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil; Carlos Chagas Institute (ICC/FIOCRUZ/PR), Curitiba, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil; Carlos Chagas Institute (ICC/FIOCRUZ/PR), Curitiba, PR, Brazil
| | - Danielle Lazarin-Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Sara Scandorieiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, State University of Londrina, PR, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, State University of Londrina, PR, Brazil
| | - Luiz Daniel de Barros
- Department of Preventive Veterinary Medicine, Laboratory of Animal Protozoology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, 86057-970, Londrina, PR, Brazil
| | - João Luis Garcia
- Department of Preventive Veterinary Medicine, Laboratory of Animal Protozoology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, 86057-970, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil.
| |
Collapse
|
4
|
Sana M, Rashid M, Rashid I, Akbar H, Gomez-Marin JE, Dimier-Poisson I. Immune response against toxoplasmosis-some recent updates RH: Toxoplasma gondii immune response. Int J Immunopathol Pharmacol 2022; 36:3946320221078436. [PMID: 35227108 PMCID: PMC8891885 DOI: 10.1177/03946320221078436] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Cytokines, soluble mediators of immunity, are key factors of the innate and adaptive immune system. They are secreted from and interact with various types of immune cells to manipulate host body's immune cell physiology for a counter-attack on the foreign body. A study was designed to explore the mechanism of Toxoplasma gondii (T. gondii) resistance from host immune response. METHODS AND RESULTS The published data on aspect of host (murine and human) immune response against T. gondii was taken from Google scholar and PubMed. Most relevant literature was included in this study. The basic mechanism of immune response starts from the interactions of antigens with host immune cells to trigger the production of cytokines (pro-inflammatory and anti-inflammatory) which then act by forming a cytokinome (network of cytokine). Their secretory equilibrium is essential for endowing resistance to the host against infectious diseases, particularly toxoplasmosis. A narrow balance lying between Th1, Th2, and Th17 cytokines (as demonstrated until now) is essential for the development of resistance against T. gondii as well as for the survival of host. Excessive production of pro-inflammatory cytokines leads to tissue damage resulting in the production of anti-inflammatory cytokines which enhances the proliferation of Toxoplasma. Stress and other infectious diseases (human immunodeficiency virus (HIV)) that weaken the host immunity particularly the cellular component, make the host susceptible to toxoplasmosis especially in pregnant women. CONCLUSION The current review findings state that in vitro harvesting of IL12 from DCs, Np and MΦ upon exposure with T. gondii might be a source for therapeutic use in toxoplasmosis. Current review also suggests that therapeutic interventions leading to up-regulation/supplementation of SOCS-3, IL12, and IFNγ to the infected host could be a solution to sterile immunity against T. gondii infection. This would be of interest particularly in patients passing through immunosuppression owing to any reason like the ones receiving anti-cancer therapy, the ones undergoing immunosuppressive therapy for graft/transplantation, the ones suffering from immunodeficiency virus (HIV) or having AIDS. Another imortant suggestion is to launch the efforts for a vaccine based on GRA6Nt or other similar antigens of T. gondii as a probable tool to destroy tissue cysts.
Collapse
Affiliation(s)
- Madiha Sana
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, 66920The Islamia University of Bahawalpur, Pakistan
| | - Imran Rashid
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Akbar
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jorge E Gomez-Marin
- Grupo Gepamol, Centro de Investigaciones Biomedicas, Universidad del Quindio, Armenia, CO, South America
| | - Isabelle Dimier-Poisson
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| |
Collapse
|
5
|
Mouveaux T, Roger E, Gueye A, Eysert F, Huot L, Grenier-Boley B, Lambert JC, Gissot M. Primary brain cell infection by Toxoplasma gondii reveals the extent and dynamics of parasite differentiation and its impact on neuron biology. Open Biol 2021; 11:210053. [PMID: 34610266 PMCID: PMC8492179 DOI: 10.1098/rsob.210053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii is a eukaryotic parasite that forms latent cysts in the brain of immunocompetent individuals. The latent parasite infection of the immune-privileged central nervous system is linked to most complications. With no drug currently available to eliminate the latent cysts in the brain of infected hosts, the consequences of neurons' long-term infection are unknown. It has long been known that T. gondii specifically differentiates into a latent form (bradyzoite) in neurons, but how the infected neuron responds to the infection remains to be elucidated. We have established a new in vitro model resulting in the production of mature bradyzoite cysts in brain cells. Using dual, host and parasite RNA-seq, we characterized the dynamics of differentiation of the parasite, revealing the involvement of key pathways in this process. Moreover, we identified how the infected brain cells responded to the parasite infection revealing the drastic changes that take place. We showed that neuronal-specific pathways are strongly affected, with synapse signalling being particularly affected, especially glutamatergic synapse signalling. The establishment of this new in vitro model allows investigating both the dynamics of parasite differentiation and the specific response of neurons to long-term infection by this parasite.
Collapse
Affiliation(s)
- Thomas Mouveaux
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| | - Emmanuel Roger
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| | - Alioune Gueye
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| | - Fanny Eysert
- U1167, University of Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ludovic Huot
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| | | | - Jean-Charles Lambert
- U1167, University of Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Mathieu Gissot
- U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
6
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Hernández-de-Los-Ríos A, Murillo-Leon M, Mantilla-Muriel LE, Arenas AF, Vargas-Montes M, Cardona N, de-la-Torre A, Sepúlveda-Arias JC, Gómez-Marín JE. Influence of Two Major Toxoplasma Gondii Virulence Factors (ROP16 and ROP18) on the Immune Response of Peripheral Blood Mononuclear Cells to Human Toxoplasmosis Infection. Front Cell Infect Microbiol 2019; 9:413. [PMID: 31867288 PMCID: PMC6904310 DOI: 10.3389/fcimb.2019.00413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii ROP16 and ROP18 proteins have been identified as important virulence factors for this parasite. Here, we describe the effect of ROP16 and ROP18 proteins on peripheral blood mononuclear cells (PBMCs) from individuals with different clinical status of infection. We evaluated IFN-γ, IL-10, and IL-1β levels in supernatants from PBMCs cultures infected with tachyzoites of the T. gondii wild-type RH strain or with knock-out mutants of the rop16 and rop18 encoding genes (RHΔrop16 and RHΔrop18). Cytokine secretion was compared between PBMCs obtained from seronegative individuals (n = 10), with those with chronic asymptomatic (n = 8), or ocular infection (n = 12). We also evaluated if polymorphisms in the genes encoding for IFN-γ, IL-10, IL-1β, Toll-like receptor 9 (TLR9), and purinoreceptor P2RX7 influenced the production of the encoded proteins after ex vivo stimulation. In individuals with chronic asymptomatic infection, only a moderate effect on IL-10 levels was observed when PBMCs were infected with RHΔrop16, whereas a significant difference in the levels of inflammatory cytokines IFN-γ and IL-1β was observed in seronegative individuals, but this was also dependent on the host's cytokine gene polymorphisms. Infection with ROP16-deficient parasites had a significant effect on IFN-γ production in previously non-infected individuals, suggesting that ROP16 which is considered as a virulence factor plays a role during the primary infection in humans, but not in the secondary immune response.
Collapse
Affiliation(s)
- Alejandro Hernández-de-Los-Ríos
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Mateo Murillo-Leon
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Luz Eliana Mantilla-Muriel
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Ailan Farid Arenas
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Mónica Vargas-Montes
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Néstor Cardona
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia.,Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.,Universidad Antonio Nariño, Armenia, Colombia
| | - Alejandra de-la-Torre
- Grupo NeURos, Unidad de Inmunología, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Jorge Enrique Gómez-Marín
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
8
|
Nsubuga J, Kato CD, Nanteza A, Matovu E, Alibu VP. Plasma cytokine profiles associated with rhodesiense sleeping sickness and falciparum malaria co-infection in North Eastern Uganda. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2019; 15:63. [PMID: 31687034 PMCID: PMC6820921 DOI: 10.1186/s13223-019-0377-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Immunological Human African Trypanosomiasis (HAT) studies often exclude malaria, although both infections overlap in specific endemic areas. During this co-infection, it is not known whether this parasitic interaction induces synergistic or antagonistic cytokine response among humans. This study determined prevalence of Plasmodium falciparum malaria among Trypanosoma brucei rhodesiense HAT and plasma cytokine profile levels associated with HAT and/or malaria infections. METHODS Participants were recruited at Lwala hospital in north eastern Uganda: healthy controls (30), malaria (28), HAT (17), HAT and malaria (15) diagnosed by microscopy and PCR was carried out for parasite species identification. Plasma cytokine levels of Interferon-gamma (IFN-γ), Tumour Necrosis Factor-alpha (TNF-α), Interleukin (IL)-6, IL-10 and Transforming Growth Factor-beta (TGF-β) were measured by sandwich Enzyme-Linked Immuno Sorbent Assay and data statistically analysed using Graphpad Prism 6.0. RESULTS The prevalence of P. falciparum malaria among T. rhodesiense HAT cases was high (46.8%). Malaria and/or HAT cases presented significant higher plasma cytokine levels of IFN-γ, TNF-α, IL-6, IL-10 and TGF-β than healthy controls (P < 0.05). Levels of IFN-γ, IL-6 and IL-10 were significantly elevated in HAT over malaria (P < 0.05) but no significant difference in TNF-α and TGF-β between HAT and malaria (P > 0.05). Co-infection expressed significantly higher plasma IFN-γ, IL-6, and IL-10 levels than malaria (P < 0.05) but no significant difference with HAT mono-infection (P > 0.05). The TNF-α level was significantly elevated in co-infection over HAT or malaria mono-infections (P < 0.05) unlike TGF-β level. Significant positive correlations were identified between IFN-γ verses TNF-α and IL-6 verses IL-10 in co-infection (Spearman's P < 0.05). CONCLUSIONS The T. b. rhodesiense significantly induced the cytokine response more than P. falciparum infections. Co-infection led to synergistic stimulation of pro-inflammatory (IFN-γ, TNF-α), and anti-inflammatory (IL-6, and IL-10) cytokine responses relative to malaria mono-infection. Level of TNF-α partially indicates the effect induced by T. b. rhodesiense and P. falciparum mono-infections or a synergistic interaction of co-infections which may have adverse effects on pathogenesis, prognosis and resolution of the infections.Trial registration VCD-IRC/021, 26/08/2011; HS 1089, 16/01/2012.
Collapse
Affiliation(s)
- Julius Nsubuga
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Charles Drago Kato
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Ann Nanteza
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, Kampala, Uganda
| | | |
Collapse
|
9
|
Lang D, Schott BH, van Ham M, Morton L, Kulikovskaja L, Herrera-Molina R, Pielot R, Klawonn F, Montag D, Jänsch L, Gundelfinger ED, Smalla KH, Dunay IR. Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition. J Neuroinflammation 2018; 15:216. [PMID: 30068357 PMCID: PMC6090988 DOI: 10.1186/s12974-018-1242-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background Chronic infection with the neurotropic parasite Toxoplasma gondii has been implicated in the risk for several neuropsychiatric disorders. The mechanisms, by which the parasite may alter neural function and behavior of the host, are not yet understood completely. Methods Here, a novel proteomic approach using mass spectrometry was employed to investigate the alterations in synaptic protein composition in a murine model of chronic toxoplasmosis. In a candidate-based strategy, immunoblot analysis and immunohistochemistry were applied to investigate the expression levels of key synaptic proteins in glutamatergic signaling. Results A comparison of the synaptosomal protein composition revealed distinct changes upon infection, with multiple proteins such as EAAT2, Shank3, AMPA receptor, and NMDA receptor subunits being downregulated, whereas inflammation-related proteins showed an upregulation. Treatment with the antiparasitic agent sulfadiazine strongly reduced tachyzoite levels and diminished neuroinflammatory mediators. However, in both conditions, a significant number of latent cysts persisted in the brain. Conversely, infection-related alterations of key synaptic protein levels could be partly reversed by the treatment. Conclusion These results provide evidence for profound changes especially in synaptic protein composition in T. gondii-infected mice with a downregulation of pivotal components of glutamatergic neurotransmission. Our results suggest that the detected synaptic alterations are a consequence of the distinct neuroinflammatory milieu caused by the neurotropic parasite. Electronic supplementary material The online version of this article (10.1186/s12974-018-1242-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Lang
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Medical Faculty, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marco van Ham
- Helmholtz Centre for Infection Research, Cellular Proteomics Group, Braunschweig, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Leonora Kulikovskaja
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rainer Pielot
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank Klawonn
- Helmholtz Centre for Infection Research, Cellular Proteomics Group, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbuettel, Germany
| | - Dirk Montag
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Lothar Jänsch
- Helmholtz Centre for Infection Research, Cellular Proteomics Group, Braunschweig, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Karl Heinz Smalla
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
10
|
Hwang YS, Shin JH, Yang JP, Jung BK, Lee SH, Shin EH. Characteristics of Infection Immunity Regulated by Toxoplasma gondii to Maintain Chronic Infection in the Brain. Front Immunol 2018; 9:158. [PMID: 29459868 PMCID: PMC5807351 DOI: 10.3389/fimmu.2018.00158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/18/2018] [Indexed: 01/28/2023] Open
Abstract
To examine the immune environment of chronic Toxoplasma gondii infection in the brain, the characteristics of infection-immunity (premunition) in infection with T. gondii strain ME49 were investigated for 12 weeks postinfection (PI). The results showed that neuronal cell death, microglia infiltration and activation, inflammatory and anti-inflammatory cytokine expression, Stat1 phosphorylation, and microglia activation and inflammatory gene transcripts related to M1 polarization in the brain were increased during the acute infection (AI) stage (within 6 weeks PI), suggesting that innate and cellular inflammatory response activation and neurodegeneration contributed to excessive inflammatory responses. However, these immune responses decreased during the chronic infection (CI) stage (over 6 weeks PI) with reductions in phosphorylated STAT1 (pSTAT1) and eosinophilic neurons. Notably, increases were observed in transcripts of T-cell exhaustion markers (TIM3, LAG3, KLRG1, etc.), suppressor of cytokines signaling 1 protein (SOCS1), inhibitory checkpoint molecules (PD-1 and PD-L1), and Arg1 from the AI stage (3 weeks PI), implying active immune intervention under the immune environment of M1 polarization of microglia and increases in inflammatory cytokine levels. However, when BV-2 microglia were stimulated with T. gondii lysate antigens (strain RH or ME49) in vitro, nitrite production increased and urea production decreased. Furthermore, when BV-2 cells were infected by T. gondii tachyzoites (strain RH or ME49) in vitro, nitric oxide synthase and COX-2 levels decreased, whereas Arg1 levels significantly increased. Moreover, Arg1 expression was higher in ME49 infection than in RH infection, whereas nitrite production was lower in ME49 infection than in RH infection. Accordingly, these results strongly suggest that immune triggering of T. gondii antigens induces M1 polarization and activation of microglia as well as increase NO production, whereas T. gondii infection induces the inhibition of harmful inflammatory responses, even with M1 polarization and activation of microglia and Th1 inflammatory responses, suggesting a host–parasite relationship through immune regulation during CI. This is a characteristic of infection immunity in infection with T. gondii in the central nervous system, and SOCS1, a negative regulator of toxoplasmic encephalitis, may play a role in the increase in Arg1 levels to suppress NO production.
Collapse
Affiliation(s)
- Young Sang Hwang
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea
| | - Ji-Hun Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea
| | - Jung-Pyo Yang
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea
| | - Bong-Kwang Jung
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea.,Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul, South Korea
| | - Sang Hyung Lee
- Department of Neurosurgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University, Seoul, South Korea.,Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
11
|
Maia MM, Meira-Strejevitch CS, Pereira-Chioccola VL, de Hippólito DDC, Silva VO, Brandão de Mattos CC, Frederico FB, Siqueira RC, de Mattos LC. Evaluation of gene expression levels for cytokines in ocular toxoplasmosis. Parasite Immunol 2018; 39. [PMID: 28836673 DOI: 10.1111/pim.12462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/16/2017] [Indexed: 11/29/2022]
Abstract
This study evaluated levels for mRNA expression of 7 cytokines in ocular toxoplasmosis. Peripheral blood mononuclear cells (PBMC) of patients with ocular toxoplasmosis (OT Group, n = 23) and chronic toxoplasmosis individuals (CHR Group, n = 9) were isolated and stimulated in vitro with T. gondii antigen. Negative controls (NC) were constituted of 7 PBMC samples from individuals seronegative for toxoplasmosis. mRNA expression for cytokines was determined by qPCR. Results showed a significant increase in mRNA levels from antigen stimulated PBMCs derived from OT Group for expressing IL-6 (at P < .005 and P < .0005 for CHR and NC groups, respectively), IL-10 (at P < .0005 and P < .005 for CHR and NC groups, respectively) and TGF-β (at P < .005) for NC group. mRNA levels for TNF-α and IL-12 were also upregulated in patients with OT compared to CHR and NC individuals, although without statistical significance. Additionally, mRNA levels for IL-27 and IFN-γ in PBMC of patients with OT were upregulated in comparison with NC individuals. Differences between OT and NC groups were statistically significant at P < .05 and P < .0005, respectively.
Collapse
Affiliation(s)
- M M Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | - D D C de Hippólito
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - V O Silva
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - C C Brandão de Mattos
- Laboratório de Imunogenética, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - F B Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil
| | - R C Siqueira
- Laboratório de Imunogenética, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - L C de Mattos
- Laboratório de Imunogenética, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | | |
Collapse
|
12
|
Cabral CM, McGovern KE, MacDonald WR, Franco J, Koshy AA. Dissecting Amyloid Beta Deposition Using Distinct Strains of the Neurotropic Parasite Toxoplasma gondii as a Novel Tool. ASN Neuro 2017; 9:1759091417724915. [PMID: 28817954 PMCID: PMC5565021 DOI: 10.1177/1759091417724915] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/13/2023] Open
Abstract
Genetic and pathologic data suggest that amyloid beta (Aβ), produced by processing of the amyloid precursor protein, is a major initiator of Alzheimer's disease (AD). To gain new insights into Aβ modulation, we sought to harness the power of the coevolution between the neurotropic parasite Toxoplasma gondii and the mammalian brain. Two prior studies attributed Toxoplasma-associated protection against Aβ to increases in anti-inflammatory cytokines (TGF-β and IL-10) and infiltrating phagocytic monocytes. These studies only used one Toxoplasma strain making it difficult to determine if the noted changes were associated with Aβ protection or simply infection. To address this limitation, we infected a third human amyloid precursor protein AD mouse model (J20) with each of the genetically distinct, canonical strains of Toxoplasma (Type I, Type II, or Type III). We then evaluated the central nervous system (CNS) for Aβ deposition, immune cell responses, global cytokine environment, and parasite burden. We found that only Type II infection was protective against Aβ deposition despite both Type II and Type III strains establishing a chronic CNS infection and inflammatory response. Compared with uninfected and Type I-infected mice, both Type II- and Type III-infected mice showed increased numbers of CNS T cells and microglia and elevated pro-inflammatory cytokines, but neither group showed a >2-fold elevation of TGF-β or IL-10. These data suggest that we can now use our identification of protective (Type II) and nonprotective (Type III) Toxoplasma strains to determine what parasite and host factors are linked to decreased Aβ burden rather than simply with infection.
Collapse
Affiliation(s)
| | | | - Wes R. MacDonald
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Jenna Franco
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Anita A. Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Mahmoudi S, Mamishi S, Suo X, Keshavarz H. Early detection of Toxoplasma gondii infection by using a interferon gamma release assay: A review. Exp Parasitol 2016; 172:39-43. [PMID: 27988201 DOI: 10.1016/j.exppara.2016.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 11/15/2022]
Abstract
Antibody-based serological tests are currently the most common diagnostic methods for detection of Toxoplasma gondii; however, these tests bear several limitations. Recently, Interferon-gamma release assay (IGRA), a T-cell-based test, was introduced as an in vitro test for detection of T. gondii infection. Few studies have investigated the potential role of cell immunity in diagnosis of toxoplasmosis. IGRA accurately distinguished infected from uninfected individuals, showing strong lymphocyte activation after in vitro stimulation with T. gondii antigens, even during the first days of life. IGRA is an easy-operation and low-cost method to measure cell mediated immunity against T. gondii. The results of this review underline the importance of evaluating cellular immunity to establish an early diagnosis particularly for congenital toxoplasmosis. Therefore, ELISA-based IGRA holds the potential to become a useful diagnostic tool for early detection of T. gondii infection.
Collapse
Affiliation(s)
- Shima Mahmoudi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran; Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran; Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Xun Suo
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China; National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing 100193, China
| | - Hossein Keshavarz
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Parasitology and Mycology, School of Public Heath, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
14
|
Braga-Silva CF, Suhett CSR, Drozino RN, Moreira NM, de Mello Gonçales Sant’Ana D, de Araújo SM. Biotherapic of Toxoplasma gondii reduces parasite load, improves experimental infection, protects myenteric neurons and modulates the immune response in mice with toxoplasmosis. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2016.08.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Kato CD, Matovu E, Mugasa CM, Nanteza A, Alibu VP. The role of cytokines in the pathogenesis and staging of Trypanosoma brucei rhodesiense sleeping sickness. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2016; 12:4. [PMID: 26807135 PMCID: PMC4722787 DOI: 10.1186/s13223-016-0113-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
Human African trypanosomiasis due to Trypanosoma brucei rhodesiense is invariably fatal if untreated with up to 12.3 million people at a risk of developing the disease in Sub-Saharan Africa. The disease is characterized by a wide spectrum of clinical presentation coupled with differences in disease progression and severity. While the factors determining this varied response have not been clearly characterized, inflammatory cytokines have been partially implicated as key players. In this review, we consolidate available literature on the role of specific cytokines in the pathogenesis of T. b. rhodesiense sleeping sickness and further discuss their potential as stage biomarkers. Such information would guide upcoming research on the immunology of sleeping sickness and further assist in the selection and evaluation of cytokines as disease stage or diagnostic biomarkers.
Collapse
Affiliation(s)
- Charles D. Kato
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Enock Matovu
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Claire. M. Mugasa
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Ann Nanteza
- />School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O BOX 7062, Kampala, Uganda
| | - Vincent P. Alibu
- />College of Natural Sciences, Makerere University, P.O. BOX 7062, Kampala, Uganda
| |
Collapse
|
16
|
Wan L, Gong L, Wang W, An R, Zheng M, Jiang Z, Tang Y, Zhang Y, Chen H, Yu L, Shen J, Du J. T. gondii rhoptry protein ROP18 induces apoptosis of neural cells via endoplasmic reticulum stress pathway. Parasit Vectors 2015; 8:554. [PMID: 26489755 PMCID: PMC4618732 DOI: 10.1186/s13071-015-1103-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022] Open
Abstract
Background The neurotropic parasite T. gondii is widespread among mammalian hosts including humans. During the course of T. gondii infection, the central nervous system is the most commonly damaged of all invasive organs. The polymorphic rhoptry protein ROP18 has been identified as a key factor in the pathogenesis of T. gondii; however, the molecular mechanism by which this protein exerts neuropathogenesis remains elusive. Methods Immunofluorescence staining was performed to detect neuropathogenesis of the mouse brain tissues. The apoptosis of neural cells and the expressions of related proteins in the endoplasmic reticulum stress (ER Stress)-mediated apoptosis pathway were detected by flow cytometry and Western blotting. Results Immunofluorescence staining reveals induction of the propidium iodide (PI) - positive neural cells in mouse cerebral cortex and hippocampus infected with ROP18 over-expressing transgenic tachyzoites. Western blotting analyses reveal that ROP18 increases the expressions of cleaved caspase-12, CHOP and cleaved caspase-3 when compared to the control groups. After the pretreatment of Z-ATAD-FMK (a specific caspase-12 inhibitor), the apoptotic level of neural cells had an apparent decline, and correspondingly, the expressions of those related proteins were notably decreased. Conclusions Our findings here highlight that the virulence factor ROP18 in T. gondii may contribute to neuronal apoptosis through the ER stress-mediated apoptosis pathway, which may be a potential molecular mechanism responsible for neurological disorders of toxoplasmosis.
Collapse
Affiliation(s)
- Lijuan Wan
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Lingli Gong
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Wei Wang
- Department of Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Ran An
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Meijuan Zheng
- Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
| | - Zongru Jiang
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Yuewen Tang
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China.
| | - Yihua Zhang
- Department of Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China. .,The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China.
| | - He Chen
- Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China. .,The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China.
| | - Li Yu
- The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China. .,Department of Microbiology, Anhui Medical University, Hefei, China.
| | - Jilong Shen
- Department of Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China. .,The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China.
| | - Jian Du
- Distinguished Young Scholar of Anhui Province. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Anhui, P.O. Box 71, Hefei, 230032, China. .,The Key Laboratory of Zoonoses and Pathogen Biology Anhui, Hefei, China.
| |
Collapse
|
17
|
Haryati S, Prasetyo AA, Sariyatun R, Sari Y, Murkati. Interferon-γ +874A/T polymorphism associated with Toxoplasma gondii seropositivity in HIV patients. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol 2015; 37:159-70. [PMID: 25376390 DOI: 10.1111/pim.12157] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
The zoonotic pathogen Toxoplasma gondii infects over 30% of the human population. The intracellular parasite can persist lifelong in the CNS within neurons modifying their function and structure, thus leading to specific behavioural changes of the host. In recent years, several in vitro studies and murine models have focused on the elucidation of these modifications. Furthermore, investigations of the human population have correlated Toxoplasma seropositivity with changes in neurological functions; however, the complex underlying mechanisms of the subtle behavioural alteration are still not fully understood. The parasites are able to induce direct modifications in the infected cells, for example by altering dopamine metabolism, by functionally silencing neurons as well as by hindering apoptosis. Moreover, indirect effects of the peripheral immune system and alterations of the immune status of the CNS, observed during chronic infection, might also contribute to changes in neuronal connectivity and synaptic plasticity. In this review, we will provide an overview and highlight recent advances, which describe changes in the neuronal function and morphology upon T. gondii infection.
Collapse
Affiliation(s)
- A Parlog
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
19
|
Sahu A, Kumar S, Sreenivasamurthy SK, Selvan LDN, Madugundu AK, Yelamanchi SD, Puttamallesh VN, Dey G, Anil AK, Srinivasan A, Mukherjee KK, Gowda H, Satishchandra P, Mahadevan A, Pandey A, Prasad TSK, Shankar SK. Host response profile of human brain proteome in toxoplasma encephalitis co-infected with HIV. Clin Proteomics 2014; 11:39. [PMID: 25404878 PMCID: PMC4232683 DOI: 10.1186/1559-0275-11-39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/02/2014] [Indexed: 01/27/2023] Open
Abstract
Background Toxoplasma encephalitis is caused by the opportunistic protozoan parasite Toxoplasma gondii. Primary infection with T. gondii in immunocompetent individuals remains largely asymptomatic. In contrast, in immunocompromised individuals, reactivation of the parasite results in severe complications and mortality. Molecular changes at the protein level in the host central nervous system and proteins associated with pathogenesis of toxoplasma encephalitis are largely unexplored. We used a global quantitative proteomic strategy to identify differentially regulated proteins and affected molecular networks in the human host during T. gondii infection with HIV co-infection. Results We identified 3,496 proteins out of which 607 proteins were differentially expressed (≥1.5-fold) when frontal lobe of the brain from patients diagnosed with toxoplasma encephalitis was compared to control brain tissues. We validated differential expression of 3 proteins through immunohistochemistry, which was confirmed to be consistent with mass spectrometry analysis. Pathway analysis of differentially expressed proteins indicated deregulation of several pathways involved in antigen processing, immune response, neuronal growth, neurotransmitter transport and energy metabolism. Conclusions Global quantitative proteomic approach adopted in this study generated a comparative proteome profile of brain tissues from toxoplasma encephalitis patients co-infected with HIV. Differentially expressed proteins include previously reported and several new proteins in the context of T. gondii and HIV infection, which can be further investigated. Molecular pathways identified to be associated with the disease should enhance our understanding of pathogenesis in toxoplasma encephalitis. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-11-39) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apeksha Sahu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Satwant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | - Sreelakshmi K Sreenivasamurthy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Lakshmi Dhevi N Selvan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Soujanya D Yelamanchi
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | | | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Manipal University, Madhav Nagar, Manipal, 576104 India
| | | | - Anand Srinivasan
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Kanchan K Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India ; Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 1205 USA ; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India ; Manipal University, Madhav Nagar, Manipal, 576104 India ; Amrita School of Biotechnology, Amrita University, Kollam, 690525 India ; NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India ; Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| |
Collapse
|
20
|
Meira CS, Pereira-Chioccola VL, Vidal JE, de Mattos CCB, Motoie G, Costa-Silva TA, Gava R, Frederico FB, de Mattos LC. Cerebral and ocular toxoplasmosis related with IFN-γ, TNF-α, and IL-10 levels. Front Microbiol 2014; 5:492. [PMID: 25352834 PMCID: PMC4195364 DOI: 10.3389/fmicb.2014.00492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 11/13/2022] Open
Abstract
This study analyzed the synthesis of Interferon gamma (IFN-γ), Tumor Necrosis Factor alpha (TNF-α), and Interleukin 10 (IL-10) in chronically infected patients which developed the symptomatic disease as cerebral or ocular toxoplasmosis. Blood from 61 individuals were divided into four groups: Cerebral toxoplasmosis/AIDS patients (CT/AIDS group) (n = 15), ocular toxoplasmosis patients (OT group) (n = 23), chronic toxoplasmosis individuals (CHR group) (n = 13) and healthy individuals (HI group) (n = 10). OT, CHR, and HI groups were human immunodeficiency virus (HIV) seronegative. The diagnosis was made by laboratorial (PCR and ELISA) and clinical subjects. For cytokine determination, peripheral blood mononuclear cells (PBMC) of each patient were isolated and stimulated in vitro with T. gondii antigen. IFN-γ, TNF-α, and IL-10 activities were determined by ELISA. Patients from CT/AIDS and OT groups had low levels of IFN-γ when were compared with those from CHR group. These data suggest the low resistance to develop ocular lesions by the low ability to produce IFN-γ against the parasite. The same patients, which developed ocular or cerebral toxoplasmosis had higher TNF-α levels than CHR individuals. High TNF-α synthesis contribute to the inflammatory response and damage of the choroid and retina in OT patients and in AIDS patients caused a high inflammatory response as the TNF-α synthesis is not affected since monocytes are the major source this cytokine in response to soluble T. gondii antigens. IL-10 levels were almost similar in CT/AIDS and OT patients but low when compared with CHR individuals. The deviation to Th2 immune response including the production of anti-inflammatory cytokines, such as IL-10 may promote the parasite's survival causing the tissue immune destruction. IL-10 production in T. gondii-infected brains may support the persistence of parasites as down-regulating the intracerebral immune response. All these indicate that OT and CT/AIDS patients produced low levels of IL-10 (Th2 response) and IFN-γ (Th1 response). They produced high TNF-α suggesting a high inflammatory response triggered by the parasite.
Collapse
Affiliation(s)
- Cristina S Meira
- Centro de Parasitologia e Micologia do Instituto Adolfo Lutz São Paulo, SP, Brazil
| | | | - José E Vidal
- Departamento de Neurologia, Instituto de Infectologia Emílio Ribas São Paulo, SP, Brazil
| | - Cinara C Brandão de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto São José do Rio Preto, SP, Brazil
| | - Gabriela Motoie
- Centro de Parasitologia e Micologia do Instituto Adolfo Lutz São Paulo, SP, Brazil
| | - Thais A Costa-Silva
- Centro de Parasitologia e Micologia do Instituto Adolfo Lutz São Paulo, SP, Brazil
| | - Ricardo Gava
- Centro de Parasitologia e Micologia do Instituto Adolfo Lutz São Paulo, SP, Brazil
| | - Fábio B Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina, Hospital de Base São José do Rio Preto, SP, Brazil
| | - Luiz C de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
21
|
Meira CS, Vidal JE, Costa-Silva TA, Motoie G, Gava R, Hiramoto RM, Pereira-Chioccola VL. IgG4 specific to Toxoplasma gondii excretory/secretory antigens in serum and/or cerebrospinal fluid support the cerebral toxoplasmosis diagnosis in HIV-infected patients. J Immunol Methods 2013; 395:21-8. [PMID: 23811152 DOI: 10.1016/j.jim.2013.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Cerebral toxoplasmosis is the most common neurological opportunistic disease manifested in HIV infected patients. Excretory/secretory antigens (ESA) are serological markers for the diagnosis of reactivation of the infection in HIV-infected patients with cerebral toxoplasmosis. Immunosuppressed patients develop high antibody titers for ESA. However, little is known about the humoral response for these antigens. The present study analyzed the profile of antibody recognition against ESA in comparison with tachyzoite lysate antigen (TLA) in 265 sera and 270 cerebrospinal fluid (CSF) samples from infected patients with Toxoplasma gondii and or HIV and in sera of 50 healthy individuals. The samples of sera and CSF were organized in 8 groups. The sera sample groups were: Group I - Se/CT/AIDS (patients with cerebral toxoplasmosis/AIDS) with 58 samples; Group II - Se/ONinf/AIDS/PosT (patients with AIDS/other neuroinfections/positive toxoplasmosis) with 49 samples; Group III - Se/ONinf/AIDS/NegT (patients with AIDS/other neuroinfections/negative toxoplasmosis) with 58 samples; Group IV - Se/PosT/NegHIV (individuals with asymptomatic toxoplasmosis/negative HIV) with 50 samples and Group V - Se/NegT/NegHIV (healthy individuals/negative toxoplasmosis and HIV) with 50 samples. The CSF sample groups were: Group VI - CSF/CT/AIDS (patients with cerebral toxoplasmosis/AIDS) with 99 samples; Group VII - CSF/ONinf/AIDS/PosT (patients with AIDS/other neuroinfections/positive toxoplasmosis) with 112 samples, and Group VIII - CSF/ONinf/AIDS/NegT (patients with AIDS/other neuroinfections/negative toxoplasmosis) with 59 samples. Levels of IgM, IgA, IgE, IgG and subclasses were determined by ELISA against TLA and ESA antigens. IgM, IgA or IgE antibodies against ESA or TLA were not detected in sera from patients with toxoplasmosis suggesting that all patients were in chronic phase of the infection. High levels of IgG1 against TLA were found in sera samples from groups I, II and IV and in CSF samples from groups VI and VII; whereas IgG2, IgG3 and IgG4 levels were not detected in the same sera or CSF sample groups. However, patients from groups I and VI, that had tachyzoites circulating in blood and CSF respectively, produced a mix of IgG1 and IgG4 antibodies against ESA. IgG2 against ESA were predominant in serum from patients with the latent (non-active) T. gondii infection/HIV negative and in CSF samples from patients with other neuroinfections and positive toxoplasmosis (groups IV and VII, respectively). IgG4 levels against ESA were found to be significantly (P<0.05 and P<0.005) higher in patients with cerebral toxoplasmosis (groups I and VI, respectively) in comparison with groups II, IV and VII. This data suggest that IgG4 can be valuable for supporting the diagnosis of focal brain lesions, caused by T. gondii infection, in HIV-infected patients. This approach might be useful, mainly when molecular investigation to detect parasites is not available.
Collapse
Affiliation(s)
- Cristina S Meira
- Laboratorio de Parasitologia do Instituto Adolfo Lutz, Sao Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Toxoplasma on the brain: understanding host-pathogen interactions in chronic CNS infection. J Parasitol Res 2012; 2012:589295. [PMID: 22545203 PMCID: PMC3321570 DOI: 10.1155/2012/589295] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a prevalent obligate intracellular parasite which chronically infects more than a third of the world's population. Key to parasite prevalence is its ability to form chronic and nonimmunogenic bradyzoite cysts, which typically form in the brain and muscle cells of infected mammals, including humans. While acute clinical infection typically involves neurological and/or ocular damage, chronic infection has been more recently linked to behavioral changes. Establishment and maintenance of chronic infection involves a balance between the host immunity and parasite evasion of the immune response. Here, we outline the known cellular interplay between Toxoplasma gondii and cells of the central nervous system and review the reported effects of Toxoplasma gondii on behavior and neurological disease. Finally, we review new technologies which will allow us to more fully understand host-pathogen interactions.
Collapse
|
23
|
Sternberg JM, Rodgers J, Bradley B, Maclean L, Murray M, Kennedy PGE. Meningoencephalitic African trypanosomiasis: Brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J Neuroimmunol 2005; 167:81-9. [PMID: 16054238 DOI: 10.1016/j.jneuroim.2005.06.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 06/20/2005] [Indexed: 12/27/2022]
Abstract
The relationship of neuropathology to CNS inflammatory and counter-inflammatory cytokine production in African trypanosome-infected mice was studied using an infection model with a defined disease progression. The initial phase of CNS infection by trypanosomes, where only mild neuropathology is evident, was characterised by high levels of IL-10 and IL-6. In the later phase of CNS infection and in a post-drug treatment model, moderate to severe neuropathology was associated with high levels of IFN-gamma and TNF-alpha. The relationship of these cytokines to neuropathological grade suggests that IL-10 and IL-6 protect the CNS from inflammatory pathology when parasites first enter the brain and the data reconcile previously contradictory clinical measurements of CSF cytokines in meningoencephalitic patients with post-mortem histopathology observations.
Collapse
Affiliation(s)
- Jeremy M Sternberg
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Human African trypanosomiasis or sleeping sickness is caused by infection with two subspecies of the tsetse-fly-vectored haemoflagellate parasite Trypanosoma brucei. Historically, epidemic sleeping sickness has caused massive loss of life, and related animal diseases have had a crucial impact on development in sub-Saharan Africa. After a period of moderately successful control during the mid-part of the 20th century, sleeping sickness incidence is currently rising, and control is hampered by a combination of factors, including civil unrest and the possible development of drug resistance by the parasites. The prevailing view is that the disease is invariably fatal without anti-trypanosomal drug treatment. However, there have also been intriguing reports of wide variations in disease severity as well as evidence of asymptomatic carriers of trypanosomes. These differences in the presentation of the disease will be discussed in the context of our knowledge of the immunology of trypanosomiasis. The impact of dysregulated inflammatory responses in both systemic and CNS pathology will be examined and the potential for host genotype variation in disease severity and control will be discussed.
Collapse
Affiliation(s)
- J M Sternberg
- Zoology Building, School of Biological Sciences, University of Aberdeen, UK.
| |
Collapse
|
25
|
Abstract
The choice of drugs for treating cerebral toxoplasmosis is limited. There are only three drugs available, and, of these, pyrimethamine and sulfonamide are invariably used in combination. Clindamycin is an alternative choice. Another drug, spiramycin, has poor central nervous system penetration, but achieves high concentrations in the placenta, and it is useful for treatment of toxoplasmosis during pregnancy. Because long-term maintenance therapy is often necessary, particularly in patients with AIDS, a wider choice of antibiotics is urgently necessary, because of potential problems with drug resistance and side effects. Treatment may be started empirically in any patient with HIV infection and multiple brain lesions. The drugs of choice are a combination of sulfadiazine and pyrimethamine. Folinic acid should be added to prevent pyrimethamine-induced bone marrow suppression. Repeated neuroimaging, 2 weeks after initiating therapy, is needed to assess efficacy of treatment. If CD4 cell counts remain below 100 cells per mm(3), lifelong therapy is needed. Tissue diagnosis should be established in patients who do not respond to treatment, who have solitary lesions, or in patients without AIDS. Recent breakthroughs in the understanding of the biology of Toxoplasma will result in the development of a range of new therapies in the near future.
Collapse
Affiliation(s)
- Avindra Nath
- *Department of Neurology, Johns Hopkins University Medical School, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | |
Collapse
|