1
|
Kitagawa M, Xu X, Jackson D. Trafficking and localization of KNOTTED1 related mRNAs in shoot meristems. Commun Integr Biol 2022; 15:158-163. [PMID: 35832536 PMCID: PMC9272838 DOI: 10.1080/19420889.2022.2095125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
Multicellular organisms use transcripts and proteins as signaling molecules for cell-to-cell communication. Maize KNOTTED1 (KN1) was the first homeodomain transcription factor identified in plants, and functions in maintaining shoot stem cells. KN1 acts non-cell autonomously, and both its messenger RNA (mRNA) and protein traffic between cells through intercellular nanochannels called plasmodesmata. KN1 protein and mRNA trafficking are regulated by a chaperonin subunit and a catalytic subunit of the RNA exosome, respectively. These studies suggest that the function of KN1 in stem cell regulation requires the cell-to-cell transport of both its protein and mRNA. However, in situ hybridization experiments published 25 years ago suggested that KN1 mRNA was missing from the epidermal (L1) layer of shoot meristems, suggesting that only the KN1 protein could traffic. Here, we show evidence that KN1 mRNA is present at a low level in L1 cells of maize meristems, supporting an idea that both KN1 protein and mRNA traffic to the L1 layer. We also summarize mRNA expression patterns of KN1 homologs in diverse angiosperm species, and discuss KN1 trafficking mechanisms.
Collapse
Affiliation(s)
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
2
|
Vasco A, Ambrose BA. Simple and Divided Leaves in Ferns: Exploring the Genetic Basis for Leaf Morphology Differences in the Genus Elaphoglossum (Dryopteridaceae). Int J Mol Sci 2020; 21:E5180. [PMID: 32707812 PMCID: PMC7432805 DOI: 10.3390/ijms21155180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022] Open
Abstract
Despite the implications leaves have for life, their origin and development remain debated. Analyses across ferns and seed plants are fundamental to address the conservation or independent origins of megaphyllous leaf developmental mechanisms. Class I KNOX expression studies have been used to understand leaf development and, in ferns, have only been conducted in species with divided leaves. We performed expression analyses of the Class I KNOX and Histone H4 genes throughout the development of leaf primordia in two simple-leaved and one divided-leaved fern taxa. We found Class I KNOX are expressed (1) throughout young and early developing leaves of simple and divided-leaved ferns, (2) later into leaf development of divided-leaved species compared to simple-leaved species, and (3) at the leaf primordium apex and margins. H4 expression is similar in young leaf primordia of simple and divided leaves. Persistent Class I KNOX expression at the margins of divided leaf primordia compared with simple leaf primordia indicates that temporal and spatial patterns of Class I KNOX expression correlate with different fern leaf morphologies. However, our results also indicate that Class I KNOX expression alone is not sufficient to promote divided leaf development in ferns. Class I KNOX patterns of expression in fern leaves support the conservation of an independently recruited developmental mechanism for leaf dissection in megaphylls, the shoot-like nature of fern leaves compared with seed plant leaves, and the critical role marginal meristems play in fern leaf development.
Collapse
Affiliation(s)
- Alejandra Vasco
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107-3400, USA
| | - Barbara A. Ambrose
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY 10458-5126, USA
| |
Collapse
|
3
|
Xiao W, Ye Z, Yao X, He L, Lei Y, Luo D, Su S. Evolution of ALOG gene family suggests various roles in establishing plant architecture of Torenia fournieri. BMC PLANT BIOLOGY 2018; 18:204. [PMID: 30236061 PMCID: PMC6148777 DOI: 10.1186/s12870-018-1431-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/17/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND ALOG (Arabidopsis LSH1 and Oryza G1) family with a conserved domain widely exists in plants. A handful of ALOG members have been functionally characterized, suggesting their roles as key developmental regulators. However, the evolutionary scenario of this gene family during the diversification of plant species remains largely unclear. METHODS Here, we isolated seven ALOG genes from Torenia fournieri and phylogenetically analyzed them with different ALOG members from representative plants in major taxonomic clades. We further examined their gene expression patterns by RT-PCR, and regarding the protein subcellular localization, we co-expressed the candidates with a nuclear marker. Finally, we explored the functional diversification of two ALOG members, TfALOG1 in euALOG1 and TfALOG2 in euALOG4 sub-clades by obtaining the transgenic T. fournieri plants. RESULTS The ALOG gene family can be divided into different lineages, indicating that extensive duplication events occurred within eudicots, grasses and bryophytes, respectively. In T. fournieri, seven TfALOG genes from four sub-clades exhibit distinct expression patterns. TfALOG1-6 YFP-fused proteins were accumulated in the nuclear region, while TfALOG7-YFP was localized both in nuclear and cytoplasm, suggesting potentially functional diversification. In the 35S:TfALOG1 transgenic lines, normal development of petal epidermal cells was disrupted, accompanied with changes in the expression of MIXTA-like genes. In 35S:TfALOG2 transgenic lines, the leaf mesophyll cells development was abnormal, favoring functional differences between the two homologous proteins. Unfortunately, we failed to observe any phenotypical changes in the TfALOG1 knock-out mutants, which might be due to functional redundancy as the case in Arabidopsis. CONCLUSION Our results unraveled the evolutionary history of ALOG gene family, supporting the idea that changes occurred in the cis regulatory and/or nonconserved coding regions of ALOG genes may result in new functions during the establishment of plant architecture.
Collapse
Affiliation(s)
- Wei Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Ziqing Ye
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Xinran Yao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Liang He
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Yawen Lei
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Da Luo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Shihao Su
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| |
Collapse
|
4
|
Vasco A, Smalls TL, Graham SW, Cooper ED, Wong GKS, Stevenson DW, Moran RC, Ambrose BA. Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes. THE NEW PHYTOLOGIST 2016; 212:745-758. [PMID: 27385116 DOI: 10.1111/nph.14075] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/23/2016] [Indexed: 05/06/2023]
Abstract
Despite the extraordinary significance leaves have for life on Earth, their origin and development remain vigorously debated. More than a century of paleobotanical, morphological, and phylogenetic research has still not resolved fundamental questions about leaves. Developmental genetic data are sparse in ferns, and comparative studies of lycophytes and seed plants have reached opposing conclusions on the conservation of a leaf developmental program. We performed phylogenetic and expression analyses of a leaf developmental regulator (Class III HD-Zip genes; C3HDZs) spanning lycophytes and ferns. We show that a duplication and neofunctionalization of C3HDZs probably occurred in the ancestor of euphyllophytes, and that there is a common leaf developmental mechanism conserved between ferns and seed plants. We show C3HDZ expression in lycophyte and fern sporangia and show that C3HDZs have conserved expression patterns during initiation of lateral primordia (leaves or sporangia). This expression is maintained throughout sporangium development in lycophytes and ferns and indicates an ancestral role of C3HDZs in sporangium development. We hypothesize that there is a deep homology of all leaves and that a sporangium-specific developmental program was coopted independently for the development of lycophyte and euphyllophyte leaves. This provides molecular genetic support for a paradigm shift in theories of lycophyte leaf evolution.
Collapse
Affiliation(s)
- Alejandra Vasco
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico DF, 04510, Mexico
| | - Tynisha L Smalls
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, BC, V6T 1Z4, Canada
| | - Endymion D Cooper
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Dennis W Stevenson
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
| | - Robbin C Moran
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA
| | - Barbara A Ambrose
- The New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, 10458-5126, USA.
| |
Collapse
|
5
|
The Leaf Adaxial-Abaxial Boundary and Lamina Growth. PLANTS 2013; 2:174-202. [PMID: 27137371 PMCID: PMC4844365 DOI: 10.3390/plants2020174] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/04/2013] [Accepted: 03/14/2013] [Indexed: 12/25/2022]
Abstract
In multicellular organisms, boundaries have a role in preventing the intermingling of two different cell populations and in organizing the morphogenesis of organs and the entire organism. Plant leaves have two different cell populations, the adaxial (or upper) and abaxial (or lower) cell populations, and the boundary is considered to be important for lamina growth. At the boundary between the adaxial and abaxial epidermis, corresponding to the margin, margin-specific structures are developed and structurally separate the adaxial and abaxial epidermis from each other. The adaxial and abaxial cells are determined by the adaxial and abaxial regulatory genes (including transcription factors and small RNAs), respectively. Among many lamina-growth regulators identified by recent genetic analyses, it has been revealed that the phytohormone, auxin, and the WOX family transcription factors act at the adaxial-abaxial boundary downstream of the adaxial-abaxial pattern. Furthermore, mutant analyses of the WOX genes shed light on the role of the adaxial-abaxial boundary in preventing the mixing of the adaxial and abaxial features during lamina growth. In this review, we highlight the recent studies on the dual role of the adaxial-abaxial boundary.
Collapse
|
6
|
Gupta S, Rashotte AM. Down-stream components of cytokinin signaling and the role of cytokinin throughout the plant. PLANT CELL REPORTS 2012; 31:801-12. [PMID: 22315145 DOI: 10.1007/s00299-012-1233-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 05/09/2023]
Abstract
Cytokinins constitute a class of plant hormones influencing numerous aspects of growth and development. These processes occur through the downstream components of the cytokinin signaling pathway after its perception and signal transduction. The importance of these downstream signaling components has been revealed through the use of both traditional genetic and advanced molecular approaches studying mutants and transgenic lines involving cytokinin and diverse plant growth and developmental processes. Interestingly, these effects are not always directly via cytokinin, but by interactions with other plants hormones or transcription factor cascades, which can involve regulatory loops that affect transcription as well as hormone concentrations. This review covers recent advancements in understanding the role of cytokinin via its signaling components, specifically the downstream responses regulators in controlling vital plant growth and developmental processes.
Collapse
Affiliation(s)
- Sarika Gupta
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
7
|
Geeta R, Dávalos LM, Levy A, Bohs L, Lavin M, Mummenhoff K, Sinha N, Wojciechowski MF. Keeping it simple: flowering plants tend to retain, and revert to, simple leaves. THE NEW PHYTOLOGIST 2012; 193:481-493. [PMID: 22091556 DOI: 10.1111/j.1469-8137.2011.03951.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• A wide range of factors (developmental, physiological, ecological) with unpredictable interactions control variation in leaf form. Here, we examined the distribution of leaf morphologies (simple and complex forms) across angiosperms in a phylogenetic context to detect patterns in the directions of changes in leaf shape. • Seven datasets (diverse angiosperms and six nested clades, Sapindales, Apiales, Papaveraceae, Fabaceae, Lepidium, Solanum) were analysed using maximum likelihood and parsimony methods to estimate asymmetries in rates of change among character states. • Simple leaves are most frequent among angiosperm lineages today, were inferred to be ancestral in angiosperms and tended to be retained in evolution (stasis). Complex leaves slowly originated ('gains') and quickly reverted to simple leaves ('losses') multiple times, with a significantly greater rate of losses than gains. Lobed leaves may be a labile intermediate step between different forms. The nested clades showed mixed trends; Solanum, like the angiosperms in general, had higher rates of losses than gains, but the other clades had higher rates of gains than losses. • The angiosperm-wide pattern could be taken as a null model to test leaf evolution patterns in particular clades, in which patterns of variation suggest clade-specific processes that have yet to be investigated fully.
Collapse
Affiliation(s)
- R Geeta
- State University of New York, Stony Brook, NY 11794-5245, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Roeder AHK, Tarr PT, Tobin C, Zhang X, Chickarmane V, Cunha A, Meyerowitz EM. Computational morphodynamics of plants: integrating development over space and time. Nat Rev Mol Cell Biol 2011; 12:265-73. [PMID: 21364682 PMCID: PMC4128830 DOI: 10.1038/nrm3079] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The emerging field of computational morphodynamics aims to understand the changes that occur in space and time during development by combining three technical strategies: live imaging to observe development as it happens; image processing and analysis to extract quantitative information; and computational modelling to express and test time-dependent hypotheses. The strength of the field comes from the iterative and combined use of these techniques, which has provided important insights into plant development.
Collapse
Affiliation(s)
- Adrienne H. K. Roeder
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-6895, FAX (626) 449-0756
| | - Paul T. Tarr
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-6895, FAX (626) 449-0756
| | - Cory Tobin
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626) 395-4936,
FAX (626) 449-0756
| | - Xiaolan Zhang
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-8438, FAX (626) 449-0756
| | - Vijay Chickarmane
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-6895, FAX (626) 449-0756
| | - Alexandre Cunha
- Center for Advanced Computing Research MC 158-79, California Institute of
Technology, 1200 E. California Blvd., Pasadena, CA 91125,
, (626) 395-8031
| | - Elliot M. Meyerowitz
- Division of Biology 156-29, California Institute of Technology, 1200 E.
California Blvd., Pasadena, CA 91125, , (626)
395-6889, FAX (626) 449-0756
| |
Collapse
|
9
|
Nishii K, Möller M, Kidner C, Spada A, Mantegazza R, Wang CN, Nagata T. A complex case of simple leaves: indeterminate leaves co-express ARP and KNOX1 genes. Dev Genes Evol 2010; 220:25-40. [PMID: 20502914 DOI: 10.1007/s00427-010-0326-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
The mutually exclusive relationship between ARP and KNOX1 genes in the shoot apical meristem and leaf primordia in simple leaved plants such as Arabidopsis has been well characterized. Overlapping expression domains of these genes in leaf primordia have been described for many compound leaved plants such as Solanum lycopersicum and Cardamine hirsuta and are regarded as a characteristic of compound leaved plants. Here, we present several datasets illustrating the co-expression of ARP and KNOX1 genes in the shoot apical meristem, leaf primordia, and developing leaves in plants with simple leaves and simple primordia. Streptocarpus plants produce unequal cotyledons due to the continued activity of a basal meristem and produce foliar leaves termed "phyllomorphs" from the groove meristem in the acaulescent species Streptocarpus rexii and leaves from a shoot apical meristem in the caulescent Streptocarpus glandulosissimus. We demonstrate that the simple leaves in both species possess a greatly extended basal meristematic activity that persists over most of the leaf's growth. The area of basal meristem activity coincides with the co-expression domain of ARP and KNOX1 genes. We suggest that the co-expression of ARP and KNOX1 genes is not exclusive to compound leaved plants but is associated with foci of meristematic activity in leaves.
Collapse
Affiliation(s)
- Kanae Nishii
- Institute of Ecology and Evolutionary Biology, Department of Life Science, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Canales C, Barkoulas M, Galinha C, Tsiantis M. Weeds of change: Cardamine hirsuta as a new model system for studying dissected leaf development. JOURNAL OF PLANT RESEARCH 2010; 123:25-33. [PMID: 19821009 DOI: 10.1007/s10265-009-0263-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/24/2009] [Indexed: 05/26/2023]
Abstract
Cardamine hirsuta, a small crucifer closely related to the model organism Arabidopsis thaliana, offers high genetic tractability and has emerged as a powerful system for studying the genetic basis for diversification of plant form. Contrary to A. thaliana, which has simple leaves, C. hirsuta produces dissected leaves divided into individual units called leaflets. Leaflet formation requires activity of Class I KNOTTED1-like homeodomain (KNOX) proteins, which also promote function of the shoot apical meristem (SAM). In C. hirsuta, KNOX genes are expressed in the leaves whereas in A. thaliana their expression is confined to the SAM, and differences in expression arise through cis-regulatory divergence of KNOX regulation. KNOX activity in C. hirsuta leaves delays the transition from proliferative growth to differentiation thus facilitating the generation of lateral growth axes that give rise to leaflets. These axes reflect the sequential generation of cell division foci across the leaf proximodistal axis in response to auxin activity maxima, which are generated by the PINFORMED1 (PIN1) auxin efflux carriers in a process that resembles organogenesis at the SAM. Delimitation of C. hirsuta leaflets also requires the activity of CUP SHAPED COTYLEDON (CUC) genes, which direct formation of organ boundaries at the SAM. These observations show how species-specific deployment of fundamental shoot development networks may have sculpted simple versus dissected leaf forms. These studies also illustrate how extending developmental genetic studies to morphologically divergent relatives of model organisms can greatly help elucidate the mechanisms underlying the evolution of form.
Collapse
|
11
|
Uchida N, Kimura S, Koenig D, Sinha N. Coordination of leaf development via regulation of KNOX1 genes. JOURNAL OF PLANT RESEARCH 2010; 123:7-14. [PMID: 19506991 DOI: 10.1007/s10265-009-0248-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/12/2009] [Indexed: 05/09/2023]
Abstract
Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) genes are expressed in the shoot apical meristem (SAM) to effect its formation and maintenance. KNOX1 genes are also involved in leaf shape control throughout angiosperm evolution. Leaves can be classified as either simple or compound, and KNOX1 expression patterns in leaf primordia are highly correlated with leaf shape; in most simple-leafed species, KNOX1 genes are expressed only in the SAM but not in leaf primordia, while in compound-leafed species they are expressed both in the SAM and leaf primordia. How can KNOX1 expression be maintained to a high degree in the SAM, but simultaneously be so variable in leaves? This dichotomy suggests that the processes of leaf and SAM development have been compartmentalized during evolution. Here, we introduce our findings regarding the regulation of expression of SHOOT MERISTEMLESS, a KNOX1 gene, together with a brief review of KNOX1 genes from an evolutionary viewpoint. We also present our findings regarding another aspect of KNOX1 regulation via a protein-protein interaction network involved in the natural variation in leaf shape. Both aspects of KNOX1 regulation could be utilized for fine-tuning leaf morphology during evolution without affecting the essential function of KNOX genes in the shoot.
Collapse
|
12
|
|
13
|
Rosin FM, Kramer EM. Old dogs, new tricks: Regulatory evolution in conserved genetic modules leads to novel morphologies in plants. Dev Biol 2009; 332:25-35. [DOI: 10.1016/j.ydbio.2009.05.542] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/27/2009] [Accepted: 05/01/2009] [Indexed: 01/17/2023]
|
14
|
Morimoto R, Nishioka E, Murai K, Takumi S. Functional conservation of wheat orthologs of maize rough sheath1 and rough sheath2 genes. PLANT MOLECULAR BIOLOGY 2009; 69:273-85. [PMID: 18974935 DOI: 10.1007/s11103-008-9422-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 10/17/2008] [Indexed: 05/10/2023]
Abstract
Maize rough sheath2 (RS2) and Arabidopsis ASYMMETRIC LEAVES1 (AS1) both encode a Myb transcription factor and repress Knotted1-type homeobox (KNOX) genes. The RS2/AS1-KNOX relationship is functionally conserved between maize and Arabidopsis. Here, we cloned wheat orthologs of RS2/AS1 and of a maize rough sheath1 (rs1) KNOX gene and named them WRS2 and WRS1, respectively. WRS1 mRNA was detected at leaf insertion points of the vegetative shoot meristem but was missing in differentiating floral organs. Conversely, WRS2 transcripts accumulated in initiating and developing floral organs. Transgenic tobacco plants expressing WRS1 showed morphological alterations typically observed due to expression of other KNOX genes. WRS2 with a deletion of the Myb domain could interact with NtPHAN to form a heterodimer, and expression of the truncated WRS2 gene conferred a dominant-negative phenotype similar to that expected and induced ectopic expression of an endogenous KNOX gene. Moreover, WRS2 expression alleviated morphological alterations in tobacco plants expressing the wheat KNOX gene. Therefore, the WRS2 gene product represses KNOX expression. These results indicate that the WRS2-KNOX relationship plays a fundamentally important role in lateral organ initiation and differentiation of meristems in wheat development. The antagonistic relationship between WRS2 and KNOX around meristematic tissues has been functionally conserved during wheat evolution.
Collapse
Affiliation(s)
- Ryoko Morimoto
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | | | | | | |
Collapse
|
15
|
Wang H, Chen J, Wen J, Tadege M, Li G, Liu Y, Mysore KS, Ratet P, Chen R. Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. PLANT PHYSIOLOGY 2008; 146:1759-72. [PMID: 18287485 PMCID: PMC2287348 DOI: 10.1104/pp.108.117044] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 02/14/2008] [Indexed: 05/18/2023]
Abstract
Molecular genetic studies suggest that FLORICAULA (FLO)/LEAFY (LFY) orthologs function to control compound leaf development in some legume species. However, loss-of-function mutations in the FLO/LFY orthologs result in reduction of leaf complexity to different degrees in Pisum sativum and Lotus japonicus. To further understand the role of FLO/LFY orthologs in compound leaf development in legumes, we studied compound leaf developmental processes and characterized a leaf development mutant, single leaflet1 (sgl1), from the model legume Medicago truncatula. The sgl1 mutants exhibited strong defects in compound leaf development; all adult leaves in sgl1 mutants are simple due to failure in initiating lateral leaflet primordia. In addition, the sgl1 mutants are also defective in floral development, producing inflorescence-like structures. Molecular cloning of SGL1 revealed that it encodes the M. truncatula FLO/LFY ortholog. When properly expressed, LFY rescued both floral and compound leaf defects of sgl1 mutants, indicating that LFY can functionally substitute SGL1 in compound leaf and floral organ development in M. truncatula. We show that SGL1 and LFY differed in their promoter activities. Although the SGL1 genomic sequence completely rescued floral defects of lfy mutants, it failed to alter the simple leaf structure of the Arabidopsis thaliana plants. Collectively, our data strongly suggest that initiation of lateral leaflet primordia required for compound leaf development involves regulatory processes mediated by the SGL1 function in M. truncatula.
Collapse
Affiliation(s)
- Hongliang Wang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Champagne CEM, Goliber TE, Wojciechowski MF, Mei RW, Townsley BT, Wang K, Paz MM, Geeta R, Sinha NR. Compound leaf development and evolution in the legumes. THE PLANT CELL 2007; 19:3369-78. [PMID: 17993625 PMCID: PMC2174894 DOI: 10.1105/tpc.107.052886] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 10/03/2007] [Accepted: 10/17/2007] [Indexed: 05/19/2023]
Abstract
Across vascular plants, Class 1 KNOTTED1-like (KNOX1) genes appear to play a critical role in the development of compound leaves. An exception to this trend is found in the Fabaceae, where pea (Pisum sativum) uses UNIFOLIATA, an ortholog of the floral regulators FLORICAULA (FLO) and LEAFY (LFY), in place of KNOX1 genes to regulate compound leaf development. To assess the phylogenetic distribution of KNOX1-independent compound leaf development, a survey of KNOX1 protein expression across the Fabaceae was undertaken. The majority of compound-leafed Fabaceae have expression of KNOX1 proteins associated with developing compound leaves. However, in a large subclade of the Fabaceae, the inverted repeat-lacking clade (IRLC), of which pea is a member, KNOX1 expression is not associated with compound leaves. These data suggest that the FLO/LFY gene may function in place of KNOX1 genes in generating compound leaves throughout the IRLC. The contribution of FLO/LFY to leaf complexity in a member of the Fabaceae outside of the IRLC was examined by reducing expression of FLO/LFY orthologs in transgenic soybean (Glycine max). Transgenic plants with reduced FLO/LFY expression showed only slight reductions in leaflet number. Overexpression of a KNOX1 gene in alfalfa (Medicago sativa), a member of the IRLC, resulted in an increase in leaflet number. This implies that KNOX1 targets, which promote compound leaf development, are present in alfalfa and are still sensitive to KNOX1 regulation. These data suggest that KNOX1 genes and the FLO/LFY gene may have played partially overlapping roles in compound leaf development in ancestral Fabaceae but that the FLO/LFY gene took over this role in the IRLC.
Collapse
Affiliation(s)
- Connie E M Champagne
- Section of Plant Biology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jasinski S, Kaur H, Tattersall A, Tsiantis M. Negative regulation of KNOX expression in tomato leaves. PLANTA 2007; 226:1255-63. [PMID: 17628827 DOI: 10.1007/s00425-007-0572-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/25/2007] [Indexed: 05/16/2023]
Abstract
Leaves of seed plants can be described as simple, where the leaf blade is entire, or dissected, where the blade is divided into distinct leaflets. Both simple and dissected leaves are initiated at the flanks of a pluripotent structure termed the shoot apical meristem (SAM). In simple-leafed species, expression of class I KNOTTED1-like homeobox (KNOX) proteins is confined to the meristem while in many dissected leaf plants, including tomato, KNOX expression persists in leaf primordia. Elevation of KNOX expression in tomato leaves can result in increased leaflet number, indicating that tight regulation of KNOX expression may help define the degree of leaf dissection in this species. To test this hypothesis and understand the mechanisms controlling leaf dissection in tomato, we studied the clausa (clau) and tripinnate (tp) mutants both of which condition increased leaflet number phenotypes. We show that TRIPINNATE and CLAUSA act together, to restrict the expression level and domain of the KNOX genes Tkn1 and LeT6/Tkn2 during tomato leaf development. Because loss of CLAU or TP activity results in increased KNOX expression predominantly on the adaxial (upper) leaf domain, our observations indicate that CLAU and TP may participate in a domain-specific KNOX repressive system that delimits the ability of the tomato leaf to generate leaflets.
Collapse
Affiliation(s)
- Sophie Jasinski
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | | | | |
Collapse
|
19
|
Uchida N, Townsley B, Chung KH, Sinha N. Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci U S A 2007; 104:15953-8. [PMID: 17898165 PMCID: PMC2000400 DOI: 10.1073/pnas.0707577104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The indeterminate shoot apical meristem of plants is characterized by the expression of the Class 1 KNOTTED1-LIKE HOMEOBOX (KNOX1) genes. KNOX1 genes have been implicated in the acquisition and/or maintenance of meristematic fate. One of the earliest indicators of a switch in fate from indeterminate meristem to determinate leaf primordium is the down-regulation of KNOX1 genes orthologous to SHOOT MERISTEMLESS (STM) in Arabidopsis (hereafter called STM genes) in the initiating primordia. In simple leafed plants, this down-regulation persists during leaf formation. In compound leafed plants, however, KNOX1 gene expression is reestablished later in the developing primordia, creating an indeterminate environment for leaflet formation. Despite this knowledge, most aspects of how STM gene expression is regulated remain largely unknown. Here, we identify two evolutionarily conserved noncoding sequences within the 5' upstream region of STM genes in both simple and compound leafed species across monocots and dicots. We show that one of these elements is involved in the regulation of the persistent repression and/or the reestablishment of STM expression in the developing leaves but is not involved in the initial down-regulation in the initiating primordia. We also show evidence that this regulation is developmentally significant for leaf formation in the pathway involving ASYMMETRIC LEAVES1/2 (AS1/2) gene expression; these genes are known to function in leaf development. Together, these findings reveal a regulatory point of leaf development mediated through a conserved, noncoding sequence in STM genes.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Section of Plant Biology, University of California, Davis, CA 95616
| | - Brad Townsley
- Section of Plant Biology, University of California, Davis, CA 95616
| | - Kook-Hyun Chung
- Section of Plant Biology, University of California, Davis, CA 95616
| | - Neelima Sinha
- Section of Plant Biology, University of California, Davis, CA 95616
- *To whom correspondence should be addressed at:
Section of Plant Biology, University of California, 1 Shields Avenue, Davis, CA 95616. E-mail:
| |
Collapse
|
20
|
Harrison CJ, Rezvani M, Langdale JA. Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development 2007; 134:881-9. [PMID: 17251270 DOI: 10.1242/dev.001008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A major transition in land plant evolution was from growth in water to growth on land. This transition necessitated major morphological innovations that were accompanied by the development of three-dimensional apical growth. In extant land plants, shoot growth occurs from groups of cells at the apex known as meristems. In different land plant lineages, meristems function in different ways to produce distinct plant morphologies, yet our understanding of the developmental basis of meristem function is limited to the most recently diverged angiosperms. To redress this balance, we have examined meristem function in the lycophyte Selaginella kraussiana. Using a clonal analysis, we show that S. kraussiana shoots are derived from the activity of two short-lived apical initials that facilitate the formation of four axes of symmetry in the shoot. Leaves are initiated from just two epidermal cells, and the mediolateral leaf axis is the first to be established. This pattern of development differs from that seen in flowering plants. These differences are discussed in the context of the development and evolution of diverse land plant forms.
Collapse
Affiliation(s)
- C Jill Harrison
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | |
Collapse
|
21
|
Soucek P, Klíma P, Reková A, Brzobohatý B. Involvement of hormones and KNOXI genes in early Arabidopsis seedling development. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3797-810. [PMID: 17951601 DOI: 10.1093/jxb/erm236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant hormones control plant development by modulating the expression of regulatory genes, including homeobox-containing KNOXI genes. However, much remains to be elucidated about the interactions involved. Therefore, hormonal regulation of KNOXI gene expression was investigated using hormone applications and an inducible transgenic ipt expression system to increase endogenous cytokinin (CK) levels. Treatments with auxin, abscisic acid (ABA), cytokinins, ethylene, and gibberellin (GA) did not result in ectopic expression of the BP (BREVIPEDICELLUS) gene. However, BP expression was strongly reduced by ABA, increased by auxin treatment (correlating with the initiation of lateral root meristems, which strongly express BP), and did not significantly respond to short-term treatments with the other hormones in whole seedlings. Following short-term ipt activation, organ-specific differential regulation of KNOXI gene expression was observed. While several KNOXI genes were transiently up-regulated to low levels, STM was selectively repressed (especially at low light) in hypocotyls. In cotyledons, activation of CK-responsive genes preceded ipt induction, suggesting that CKs are transported more rapidly than the inducing agent (dexamethasone). Long-term increases in CK levels induced raised levels of several KNOXI transcripts in hypocotyls, correlating with the radial expansion of vascular tissues, the main domains of KNOXI gene expression, suggesting that CKs had little effect on KNOXI promoter activity. No alterations in hormone sensitivity were observed in a bp null mutant. Constitutive BP overexpression caused reductions in the length and number of lateral roots, while the primary root remained unaffected. The transgenic seedlings displayed weak, but significant, alterations in sensitivity to ABA, CK, and 1-amino-cyclopropane-1-carboxylic acid.
Collapse
Affiliation(s)
- Premysl Soucek
- Institute of Biophysics, Academy of Sciences of the Czech Republic V.V.i., Královopolská 135, CZ-61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
22
|
Müller KJ, He X, Fischer R, Prüfer D. Constitutive knox1 gene expression in dandelion (Taraxacum officinale, Web.) changes leaf morphology from simple to compound. PLANTA 2006; 224:1023-7. [PMID: 16683160 DOI: 10.1007/s00425-006-0288-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/31/2006] [Indexed: 05/09/2023]
Abstract
Seed plants with compound leaves constitute a polyphyletic group, but studies of diverse taxa show that genes of the class 1 KNOTTED-LIKE HOMEOBOX (KNOX1) family are often involved in compound leaf development. This suggests that knox1 genes have been recruited on multiple occasions during angiosperm evolution (Bharathan et al. in Science 296:1858-1860, 2002). In agreement with this, we demonstrate that the simple leaf of dandelion (Taraxacum officinale Web.) can be converted into a compound leaf by the constitutive expression of heterologous knox1 genes. Dandelion is a rosette plant of the family Asteraceae, characterised by simple leaves with deeply lobed margins and endogenous knox1 gene expression. Transgenic dandelion plants constitutively expressing the barley (Hordeum vulgare L.) hooded gene (bkn3, barley knox3) or the related bkn1 gene, developed compound leaves featuring epiphyllous rosettes. We discuss these results in the context of two current models of compound leaf formation.
Collapse
Affiliation(s)
- Kai J Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074 Aachen, Germany.
| | | | | | | |
Collapse
|
23
|
Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. PLANT PHYSIOLOGY 2006; 142:54-62. [PMID: 16861569 PMCID: PMC1557621 DOI: 10.1104/pp.106.085811] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Some phytohormones such as gibberellins (GAs) and cytokinins (CKs) are potential targets of the KNOTTED1-like homeobox (KNOX) protein. To enhance our understanding of KNOX protein function in plant development, we identified rice (Oryza sativa) genes for adenosine phosphate isopentenyltransferase (IPT), which catalyzes the rate-limiting step of CK biosynthesis. Molecular and biochemical studies revealed that there are eight IPT genes, OsIPT1 to OsIPT8, in the rice genome, including a pseudogene, OsIPT6. Overexpression of OsIPTs in transgenic rice inhibited root development and promoted axillary bud growth, indicating that OsIPTs are functional in vivo. Phenotypes of OsIPT overexpressers resembled those of KNOX-overproducing transgenic rice, although OsIPT overexpressers did not form roots or ectopic meristems, both of which are observed in KNOX overproducers. Expression of two OsIPT genes, OsIPT2 and OsIPT3, was up-regulated in response to the induction of KNOX protein function with similar kinetics to those of down-regulation of GA 20-oxidase genes, target genes of KNOX proteins in dicots. However, expression of these two OsIPT genes was not regulated in a feedback manner. These results suggest that OsIPT2 and OsIPT3 have unique roles in the developmental process, which is controlled by KNOX proteins, rather than in the maintenance of bioactive CK levels in rice. On the basis of these findings, we concluded that KNOX protein simultaneously decreases GA biosynthesis and increases de novo CK biosynthesis through the induction of OsIPT2 and OsIPT3 expression, and the resulting high-CK and low-GA condition is required for formation and maintenance of the meristem.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Field Production Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishi-Tokyo, Tokyo 188-0002, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
How repeated epiphylly correlates with gene expression of resident knox1 in the leaves of tobacco epiphyllous shoots. Open Life Sci 2006. [DOI: 10.2478/s11535-006-0012-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe tobacco knox1 genes tokn1 and tokn2 were isolated and their neomorphic capacities were tested while expressed in tobacco and potato. In addition, their neomorphic capacities were compared to barley bkn3 transgenic plant material. While tokn2 and bkn3 induced epiphylly in tobacco and supercompound leaves in potato, tokn1 failed to produce such prominent knox1 specific phenotypes. In wild type tobacco, alleles of the tokn genes were found to be expressed within distinct zones of the shoot apical meristem (SAM), leaving out regions that correlated with leaf founder cells [1]. In contrast, the expression of the tokn genes was detected throughout the meristem and in leaf primordia of epiphyllous shoots that developed in tobacco over-expressing the barley hooded gene bkn3. It was determined that such extended expression domains of resident tobacco knox1 genes were mediated through an enhanced expression domain of bkn3 within the tissue confined to the epiphylls, and this contributed to “repeated epiphylly”, i.e. an iterated development of epiphyllous shoots on leaves of progenitor epiphylls.
Collapse
|
25
|
Terakura S, Kitakura S, Ishikawa M, Ueno Y, Fujita T, Machida C, Wabiko H, Machida Y. Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles. PLANT & CELL PHYSIOLOGY 2006; 47:664-72. [PMID: 16547081 DOI: 10.1093/pcp/pcj036] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 6b gene in the T-DNA region of the Ti plasmids of Agrobacterium tumefaciens and A. vitis is able to generate shooty calli in phytohormone-free culture of leaf sections of tobacco transformed with 6b. In the present study, we report characteristic morphological abnormalities of the leaves of transgenic tobacco and Arabidopsis that express 6b from pTiAKE10 (AK-6b), and altered expression of genes related to cell division and meristem formation in the transgenic plants. Cotyledons and leaves of both transgenic tobacco and Arabidopsis exhibited various abnormalities including upward curling of leaf blades, and transgenic tobacco leaves produced leaf-like outgrowths from the abaxial side. Transcripts of some class 1 KNOX homeobox genes, which are thought to be related to meristem functions, and cell cycle regulating genes were ectopically accumulated in mature leaves. M phase-specific genes were also ectopically expressed at the abaxial sides of mature leaves. These results suggest that the AK-6b gene stimulates the cellular potential for division and meristematic functions preferentially in the abaxial side of leaves and that the leaf phenotypes generated by AK-6b are at least in part due to such biased cell division during polar development of leaves. The results of the present experiments with a fusion gene between the AK-6b gene and the glucocorticoid receptor gene showed that nuclear import of the AK-6b protein was essential for upward curling of leaves and hormone-free callus formation, suggesting a role for AK-6b in nuclear events.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/microbiology
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cell Division/genetics
- Cell Division/physiology
- Cell Proliferation
- Gene Expression Regulation, Plant/physiology
- Genes, Homeobox/genetics
- Genes, Homeobox/physiology
- Genes, Plant/genetics
- Genes, Plant/physiology
- Meristem/cytology
- Meristem/growth & development
- Meristem/physiology
- Oncogene Proteins/analysis
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Plant Leaves/chemistry
- Plant Leaves/cytology
- Plant Leaves/growth & development
- Plant Proteins/analysis
- Plant Proteins/genetics
- Plant Proteins/physiology
- Plant Stems/chemistry
- Plant Stems/cytology
- Plant Stems/growth & development
- Plant Tumor-Inducing Plasmids/genetics
- Plants, Genetically Modified
- Receptors, Glucocorticoid/analysis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Nicotiana/cytology
- Nicotiana/genetics
- Nicotiana/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Shinji Terakura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Scofield S, Murray JAH. KNOX gene function in plant stem cell niches. PLANT MOLECULAR BIOLOGY 2006; 60:929-46. [PMID: 16724262 DOI: 10.1007/s11103-005-4478-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 10/24/2005] [Indexed: 05/09/2023]
Abstract
Homeobox genes encode transcriptional regulators that control development in multicellular eukaryotes. In plants, post-embryonic shoot growth relies on the activity of indeterminate cell populations termed shoot meristems, within which members of the class-1 KNOX sub-family of homeobox genes are expressed. KNOX genes are differentially required for meristem development and function to inhibit cell expansion and differentiation associated with organogenesis. Mechanisms must therefore be employed to prevent KNOX gene expression in developing lateral organs such as leaves. This review focuses on the expression patterns, meristematic functions and regulation of KNOX genes, and how the activities of these genes are integrated within the framework of pathways that control plant development.
Collapse
Affiliation(s)
- Simon Scofield
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | | |
Collapse
|
27
|
Truernit E, Siemering KR, Hodge S, Grbic V, Haseloff J. A map of KNAT gene expression in the Arabidopsis root. PLANT MOLECULAR BIOLOGY 2006; 60:1-20. [PMID: 16463096 DOI: 10.1007/s11103-005-1673-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 08/01/2005] [Indexed: 05/06/2023]
Abstract
Homeodomain proteins are key regulators of patterning during the development of animal and plant body plans. Knotted1-like TALE homeodomain proteins have been found to play important roles in the development of the Arabidopsis shoot apical meristem and are part of a complex regulatory network of protein interactions. We have investigated the possible role of the knotted1-like genes KNAT1, KNAT3, KNAT4, and KNAT5 in Arabidopsis root development. Root growth is indeterminate, and the organ shows distinct zones of cell proliferation, elongation and differentiation along its longitudinal axis. Here we show that KNAT1, KNAT3, KNAT4 and KNAT5 show cell type specific expression patterns in the Arabidopsis root. Moreover, they are expressed in different spatially restricted patterns along the longitudinal root axis and in lateral root primordia. Hormones play an important role in maintenance of root growth, and we have studied their effect on KNAT gene expression. We show that KNAT3 expression is repressed by moderate levels of cytokinin. In addition, we show that the subcellular localization of KNAT3 and KNAT4 is regulated, indicating post-translational control of the activities of these transcription factors. The regulated expression of KNAT1, KNAT3, KNAT4 and KNAT5 within the Arabidopsis root suggests a role for these genes in root development. Our data provide the first systematic survey of KNAT gene expression in the Arabidopsis root.
Collapse
Affiliation(s)
- Elisabeth Truernit
- Department of Plant Sciences, University of Cambridge, CB2 3EA, Downing Site, Cambridge, UK
| | | | | | | | | |
Collapse
|
28
|
Harrison CJ, Corley SB, Moylan EC, Alexander DL, Scotland RW, Langdale JA. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 2005; 434:509-14. [PMID: 15791256 DOI: 10.1038/nature03410] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 01/28/2005] [Indexed: 11/08/2022]
Abstract
Vascular plants evolved in the Middle to Late Silurian period, about 420 million years ago. The fossil record indicates that these primitive plants had branched stems with sporangia but no leaves. Leaf-like lateral outgrowths subsequently evolved on at least two independent occasions. In extant plants, these events are represented by microphyllous leaves in lycophytes (clubmosses, spikemosses and quillworts) and megaphyllous leaves in euphyllophytes (ferns, gymnosperms and angiosperms). Our current understanding of how leaves develop is restricted to processes that operate during megaphyll formation. Because microphylls and megaphylls evolved independently, different mechanisms might be required for leaf formation. Here we show that this is not so. Gene expression data from a microphyllous lycophyte, phylogenetic analyses, and a cross-species complementation experiment all show that a common developmental mechanism can underpin both microphyll and megaphyll formation. We propose that this mechanism might have operated originally in the context of primitive plant apices to facilitate bifurcation. Recruitment of this pathway to form leaves occurred independently and in parallel in different plant lineages.
Collapse
Affiliation(s)
- C Jill Harrison
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
knox genes encode homeodomain-containing transcription factors that are required for meristem maintenance and proper patterning of organ initiation. In plants with simple leaves, knox genes are expressed exclusively in the meristem and stem, but in dissected leaves, they are also expressed in leaf primordia, suggesting that they may play a role in the diversity of leaf form. This hypothesis is supported by the intriguing phenotypes found in gain-of-function mutations where knox gene misexpression affects leaf and petal shape. Similar phenotypes are also found in recessive mutations of genes that function to negatively regulate knox genes. KNOX proteins function as heterodimers with other homeodomains in the TALE superclass. The gibberellin and lignin biosynthetic pathways are known to be negatively regulated by KNOX proteins, which results in indeterminate cell fates.
Collapse
Affiliation(s)
- Sarah Hake
- Plant Gene Expression Center, USDA-ARS and University of California, Albany, CA 94710, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The leaves of seed plants can be classified as being either simple or compound according to their shape. Two hypotheses address the homology between simple and compound leaves, which equate either individual leaflets of compound leaves with simple leaves or the entire compound leaf with a simple leaf. Here we discuss the genes that function in simple and compound leaf development, such as KNOX1 genes, including how they interact with growth hormones to link growth regulation and development to cause changes in leaf complexity. Studies of transcription factors that control leaf development, their downstream targets, and how these targets are regulated are areas of inquiry that should increase our understanding of how leaf complexity is regulated and how it evolved through time.
Collapse
Affiliation(s)
- Connie Champagne
- Section of Plant Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
31
|
Abstract
Plant hormones are signalling molecules that control growth and development. Growth of the aerial parts of higher plants requires the continuous activity of the shoot apical meristem, a small mound of cells at the apex of a plant. KNOTTED1-like HOMEOBOX (KNOX) genes are involved in regulating meristem activity, however, little is known about how this regulation is mediated. Recent evidence suggests that KNOX transcription factors may control meristem development by regulating the balance of activities of multiple hormones.
Collapse
Affiliation(s)
- Angela Hay
- Plant Sciences Dept, Oxford University, Oxford, UK
| | | | | |
Collapse
|
32
|
Rosin FM, Hart JK, Horner HT, Davies PJ, Hannapel DJ. Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. PLANT PHYSIOLOGY 2003; 132:106-17. [PMID: 12746517 PMCID: PMC166957 DOI: 10.1104/pp.102.015560] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2002] [Revised: 10/24/2002] [Accepted: 01/22/2003] [Indexed: 05/18/2023]
Abstract
Potato (Solanum tuberosum) homeobox 1 (POTH1) is a class I homeobox gene isolated from an early-stage tuber cDNA library. The RNA expression pattern of POTH1, unlike that of most other class I knotted-like homeobox genes, is widespread in the cells of both indeterminate and differentiated tissues. Using in situ hybridization, POTH1 transcripts were detected in meristematic cells, leaf primordia, and the vascular procambium of the young stem. Overexpression of POTH1 produced dwarf plants with altered leaf morphology. Leaves were reduced in size and displayed a "mouse-ear" phenotype. The mid-vein was less prominent, resulting in a palmate venation pattern. The overall plant height of overexpression lines was reduced due to a decrease in internode length. Levels of intermediates in the gibberellin (GA) biosynthetic pathway were altered, and the bioactive GA, GA(1), was reduced by one-half in sense mutants. Accumulation of mRNA for GA 20-oxidase1, a key biosynthetic enzyme, decreased in overexpression lines. In vitro tuberization was enhanced under both short- and long-day photoperiods in several POTH1 overexpression lines. Sense lines produced more tubers at a faster rate than controls. These results imply that POTH1 mediates the development of potato by acting as a negative regulator of GA biosynthesis.
Collapse
Affiliation(s)
- Faye M Rosin
- Interdepartmental Program in Molecular, Cellular, and Developmental Biology, Iowa State University, Ames 50011, USA
| | | | | | | | | |
Collapse
|
33
|
Ito M, Sato Y, Matsuoka M. Involvement of homeobox genes in early body plan of monocot. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 218:1-35. [PMID: 12199516 DOI: 10.1016/s0074-7696(02)18010-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Homeobox genes are known as transcriptional regulators that are involved in various aspects of developmental processes in many organisms. In plants, many types of homeobox genes have been identified, and mutational or expression pattern analyses of these genes have indicated the involvement of several classes of homeobox genes in developmental processes. The fundamental body plan of plants is established during embryogenesis, whereas morphogenetic events in the shoot apical meristem (SAM) continue after embryogenesis. Knotted1-like homeobox genes (knox genes) are preferentially expressed in both the SAM and the immature embryo. Therefore, these genes are considered to be key regulators of plant morphogenesis. In this review, we discuss the regulatory role of knox genes and other types of homeobox genes in SAM establishment during embryogenesis and SAM maintenance after embryogenesis, mainly in rice.
Collapse
Affiliation(s)
- Momoyo Ito
- BioScience Center, Nagoya University, Chikusa, Japan
| | | | | |
Collapse
|
34
|
Ha CM, Kim GT, Kim BC, Jun JH, Soh MS, Ueno Y, Machida Y, Tsukaya H, Nam HG. The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development 2003; 130:161-72. [PMID: 12441300 DOI: 10.1242/dev.00196] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plant leaf provides an ideal system to study the mechanisms of organ formation and morphogenesis. The key factors that control leaf morphogenesis include the timing, location and extent of meristematic activity during cell division and differentiation. We identified an Arabidopsis mutant in which the regulation of meristematic activities in leaves was aberrant. The recessive mutant allele blade-on-petiole1-1 (bop1-1) produced ectopic, lobed blades along the adaxial side of petioles of the cotyledon and rosette leaves. The ectopic organ, which has some of the characteristics of rosette leaf blades with formation of trichomes in a dorsoventrally dependent manner, was generated by prolonged and clustered cell division in the mutant petioles. Ectopic, lobed blades were also formed on the proximal part of cauline leaves that lacked a petiole. Thus, BOP1 regulates the meristematic activity of leaf cells in a proximodistally dependent manner. Manifestation of the phenotypes in the mutant leaves was dependent on the leaf position. Thus, BOP1 controls leaf morphogenesis through control of the ectopic meristematic activity but within the context of the leaf proximodistality, dorsoventrality and heteroblasty. BOP1 appears to regulate meristematic activity in organs other than leaves, since the mutation also causes some ectopic outgrowths on stem surfaces and at the base of floral organs. Three class I knox genes, i.e., KNAT1, KNAT2 and KNAT6, were expressed aberrantly in the leaves of the bop1-1 mutant. Furthermore, the bop1-1 mutation showed some synergistic effect in double mutants with as1-1 or as2-2 mutation that is known to be defective in the regulation of meristematic activity and class I knox gene expression in leaves. The bop1-1 mutation also showed a synergistic effect with the stm-1 mutation, a strong mutant allele of a class I knox gene, STM. We, thus, suggest that BOP1 promotes or maintains a developmentally determinate state in leaf cells through the regulation of class I knox genes.
Collapse
Affiliation(s)
- Chan Man Ha
- Division of Molecular Life Science, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, Kyungbuk, 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stuurman J, Jäggi F, Kuhlemeier C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev 2002; 16:2213-8. [PMID: 12208843 PMCID: PMC186665 DOI: 10.1101/gad.230702] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Accepted: 06/18/2002] [Indexed: 11/25/2022]
Abstract
Plant shoot development depends on the perpetuation of a group of undifferentiated cells in the shoot apical meristem (SAM). In the Petunia mutant hairy meristem (ham), shoot meristems differentiate postembryonically as continuations of the subtending stem. HAM encodes a putative transcription factor of the GRAS family, which acts non-cell-autonomously from L3-derived tissue of lateral organ primordia and stem provasculature. HAM acts in parallel with TERMINATOR (PhWUSCHEL) and is required for continued cellular response to TERMINATOR and SHOOTMERISTEMLESS (PhSTM). This reveals a novel mechanism by which signals from differentiating tissues extrinsically control stem cell fate in the shoot apex.
Collapse
Affiliation(s)
- Jeroen Stuurman
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | | |
Collapse
|
36
|
Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR. Homologies in leaf form inferred from KNOXI gene expression during development. Science 2002; 296:1858-60. [PMID: 12052958 DOI: 10.1126/science.1070343] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
KNOTTEDI-like homeobox (KNOXI) genes regulate development of the leaf from the shoot apical meristem (SAM) and may regulate leaf form. We examined KNOXI expression in SAMs of various vascular plants and found that KNOXI expression correlated with complex leaf primordia. However, complex primordia may mature into simple leaves. Therefore, not all simple leaves develop similarly, and final leaf morphology may not be an adequate predictor of homology.
Collapse
Affiliation(s)
- Geeta Bharathan
- Department of Ecology and Evolution, State University of New York, Stony Brook, NY 11794-5245, USA
| | | | | | | | | | | |
Collapse
|
37
|
Shuai B, Reynaga-Peña CG, Springer PS. The lateral organ boundaries gene defines a novel, plant-specific gene family. PLANT PHYSIOLOGY 2002; 129:747-61. [PMID: 12068116 PMCID: PMC161698 DOI: 10.1104/pp.010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/08/2001] [Accepted: 01/07/2002] [Indexed: 05/17/2023]
Abstract
The LATERAL ORGAN BOUNDARIES (LOB) gene in Arabidopsis defines a new conserved protein domain. LOB is expressed in a band of cells at the adaxial base of all lateral organs formed from the shoot apical meristem and at the base of lateral roots. LOB encodes a predicted protein that does not have recognizable functional motifs, but that contains a conserved domain (the LOB domain) that is present in 42 other Arabidopsis proteins and in proteins from a variety of other plant species. Proteins showing similarity to the LOB domain were not found outside of plant databases, indicating that this unique protein may play a role in plant-specific processes. Genes encoding LOB domain proteins are expressed in a variety of temporal- and tissue-specific patterns, suggesting that they may function in diverse processes. Loss-of-function LOB mutants have no detectable phenotype under standard growth conditions, suggesting that LOB is functionally redundant or required during growth under specific environmental conditions. Ectopic expression of LOB leads to alterations in the size and shape of leaves and floral organs and causes male and female sterility. The expression of LOB at the base of lateral organs suggests a potential role for LOB in lateral organ development.
Collapse
Affiliation(s)
- Bin Shuai
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | | | | |
Collapse
|
38
|
Fletcher JC. Coordination of cell proliferation and cell fate decisions in the angiosperm shoot apical meristem. Bioessays 2002; 24:27-37. [PMID: 11782948 DOI: 10.1002/bies.10020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A unique feature of flowering plants is their ability to produce organs continuously, for hundreds of years in some species, from actively growing tips called apical meristems. All plants possess at least one form of apical meristem, whose cells are functionally analogous to animal stem cells because they can generate specialized organs and tissues. The shoot apical meristem of angiosperm plants acts as a continuous source of pluripotent stem cells, whose descendents become incorporated into organ primordia and acquire different fates. Recent studies are unveiling some of the molecular pathways that specify stem cell fate in the center of the shoot apical meristem, that confer organ founder cell fate on the periphery, and that connect meristem patterning elements with events at the cellular level. The results are providing important insights into the mechanisms through which shoot apical meristems integrate cell fate decisions with cellular proliferation and global regulation of growth and development.
Collapse
Affiliation(s)
- Jennifer C Fletcher
- USDA Plant Gene Expression Center, UC Berkeley Plant and Microbial Biology Department, 800 Buchanan St., Albany, CA 94710, USA.
| |
Collapse
|
39
|
Frank M, Guivarc'h A, Krupková E, Lorenz-Meyer I, Chriqui D, Schmülling T. Tumorous shoot development (TSD) genes are required for co-ordinated plant shoot development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:73-85. [PMID: 12060228 DOI: 10.1046/j.1365-313x.2002.01197.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This report describes the identification of novel plant genes that are required to ensure co-ordinated post-embryonic development. After germination the tumorous shoot development mutants of Arabidopsis thaliana develop disorganized tumorous tissue instead of organized leaves and stems. This results in green callus-like structures, which are capable of unlimited growth in vitro on hormone-free medium. The tsd mutants are recessive and belong to three complementation groups (tsd1, tsd2, tsd3). The genes were mapped to the bottom of chromosomes 5 and 1, and the top of chromosome 3, respectively. Histological analyses showed that the tsd mutants have different developmental defects. The shoot apical meristem of tsd1 formed only rudimentary leaves and was characterized by a degenerating L1 cell layer. tsd2 mutants had reduced cell adhesion and altered cell division planes in the L2 and L3 cell layers. The tumorous tissue of tsd3 mutants originated from the base of the leaf. Cytokinin levels that are inhibitory to the growth of wild-type seedlings bring about an enhanced growth response in all the tsd mutants. The steady state transcript levels of the histidine kinase CKI1 gene and the KNAT1 and STM homeobox genes were increased in tsd mutants, while mRNA levels of cell cycle genes were not altered. We hypothesize that the TSD gene products negatively regulate cytokinin-dependent meristematic activity during vegetative development of Arabidopsis.
Collapse
Affiliation(s)
- Markus Frank
- Universität Tübingen, ZMBP/Allgemeine Genetik, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Zluvova J, Janousek B, Vyskot B. Immunohistochemical study of DNA methylation dynamics during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:2265-73. [PMID: 11709576 DOI: 10.1093/jexbot/52.365.2265] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA methylation represents one of the key processes that play an important role in the transcriptional control of gene expression. The role of cytosine methylation in plant development has been demonstrated by at least three different kinds of evidence: parent-specific expression of some genes in developing seeds, control of flowering time and floral morphogenesis, and correlation with silencing of intrusive DNA sequences (mobile genetic elements and transgenes). In this work global changes in DNA methylation during seed germination and shoot apical meristem development in Silene latifolia have been studied using an indirect immunohistochemical approach. The data presented show that a rapid decrease in global DNA methylation during seed germination occurs first in endosperm tissue and subsequently in the hypocotyl. Using 5-bromo-2'-deoxyuridine pulses, it has been demonstrated that these demethylation events occurred before cell division had begun. In the early post-germination period, a decrease in DNA methylation was detected in cotyledons, also before cell division was observed. Taken together, these results indicate that DNA demethylation takes place in a non-replicative way, probably by an active mechanism. The central zone of the shoot apical meristem remains highly methylated during the whole period of vegetative growth and in this region, only a low cell division activity was found. However, upon the transition of the shoot apical meristem to the floral bud, the meristem both decreased its high methylation status and its cells started to divide. These data indicate that the central zone of the shoot apical meristem can represent a relatively quiescent 'germ-line' which is activated upon flowering to form spores and gametes.
Collapse
Affiliation(s)
- J Zluvova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska str. 135, CZ-612 65 Brno, Czech Republic
| | | | | |
Collapse
|
41
|
Abstract
The leaf is a coordinated mosaic of developmental domains, which are evident from leaf inception on the flanks of the apical meristem. The subdivision of the meristem into molecularly defined domains is regulated by the interactions of a number of gene products and by receptor kinase-mediated signals. The acquisition of symmetry axes in the emerging leaf is a process coordinated by hormones (such as auxin and cytokinins) and the expression of classes of genes (such as the knox and the ARP, as1/rs2/phan, genes). As with simple leaves, the architecture of compound leaves is defined by spatial/temporal gradients of regulatory gene functions: complexity results from the interplay between leaf differentiation processes and genes maintaining a partial level of indeterminacy in the developing primordium. Boundaries between regions with different molecular 'addresses' are considered, in plants as in Drosophila, as organizing centres for lateral organ development.
Collapse
Affiliation(s)
- C Pozzi
- Centro Ricerche e Studi Agroalimentari (CERSA-FPTP), c/o DiProVe Via Celoria 2, 20133, Milano, Italy.
| | | | | |
Collapse
|
42
|
Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 2001; 15:581-90. [PMID: 11238378 PMCID: PMC312643 DOI: 10.1101/gad.867901] [Citation(s) in RCA: 306] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 01/08/2001] [Indexed: 11/25/2022]
Abstract
To identify genes targeted by the tobacco KNOX homeodomain protein, Nicotiana tabacum homeobox 15 (NTH15), we have generated an inducible system using the human glucocorticoid receptor. In this system, steroid treatment strictly induced NTH15 function and immediately suppressed the expression of a gibberellin (GA) biosynthetic gene encoding GA 20-oxidase (Ntc12) and also resulted in a decrease in bioactive GA levels. The repression of Ntc12 was observed even when indirect effects were blocked by cycloheximide. NTH15 mRNA was present in corpus cells of the shoot apical meristem (SAM), whereas Ntc12 mRNA was observed in leaf primordia and rib meristem but not in the corpus. Recombinant NTH15 protein strongly bound to a 5-bp dyadsymmetric sequence, GTGAC, in the first intron of Ntc12 in vitro. Mutation of this sequence in the Ntc12 gene abolished the NTH15-dependent suppression of Ntc12 in the corpus of the SAM. Our results indicate that NTH15 directly represses Ntc12 expression in the corpus of the wild-type SAM to maintain the indeterminate state of corpus cells. The suppression of NTH15 within cells at the flanks of the SAM permits GA biosynthesis, which promotes organized cell proliferation and consequently induces the determination of cell fate.
Collapse
Affiliation(s)
- T Sakamoto
- Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
43
|
Ori N, Eshed Y, Chuck G, Bowman JL, Hake S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 2000; 127:5523-32. [PMID: 11076771 DOI: 10.1242/dev.127.24.5523] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Knotted1-like homeobox (knox) genes are expressed in specific patterns within shoot meristems and play an important role in meristem maintenance. Misexpression of the knox genes, KNAT1 or KNAT2, in Arabidopsis produces a variety of phenotypes, including lobed leaves and ectopic stipules and meristems in the sinus, the region between lobes. We sought to determine the mechanisms that control knox gene expression in the shoot by examining recessive mutants that share phenotypic characteristics with 35S::KNAT1 plants. Double mutants of serrate (se) with either asymmetric1 (as1) or asymmetric2 (as2) showed lobed leaves, ectopic stipules in the sinuses and defects in the timely elongation of sepals, petals and stamens, similar to 35S::KNAT1 plants. Ectopic stipules and in rare cases, ectopic meristems, were detected in the sinuses on plants that were mutant for pickle and either as1 or as2. KNAT1 and KNAT2 were misexpressed in the leaves and flowers of single as1 and as2 mutants and in the sinuses of leaves of the different double mutants, but not in se or pickle single mutants. These results suggest that AS1 and AS2 promote leaf differentiation through repression of knox expression in leaves, and that SE and PKL globally restrict the competence to respond to genes that promote morphogenesis.
Collapse
Affiliation(s)
- N Ori
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
44
|
Fletcher JC, Meyerowitz EM. Cell signaling within the shoot meristem. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:23-30. [PMID: 10679445 DOI: 10.1016/s1369-5266(99)00033-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Shoot apical meristems are self-renewing stem cell populations that generate all of the above-ground organs (i.e. stems, leaves and flowers) of higher plants. Recent studies have identified new molecular components required for proper shoot meristem activity, and they have revealed that complex, intercellular communication pathways play important roles in coordinating meristem function.
Collapse
Affiliation(s)
- J C Fletcher
- US Department of Agriculture-Agricultural Research Service, Plant Gene Expression Center, Albany, NY 94710, USA.
| | | |
Collapse
|