1
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
2
|
Zhang J, Wang Y, Liu X, Liu H, Zhao X, Lv S, Xu H, Zhang H, Hou X, Hou D. Expression Analysis of CoHMGS in Cornus officinalis and Subcellular Localization of the Enzyme It Encodes. DNA Cell Biol 2023; 42:91-96. [PMID: 36730809 DOI: 10.1089/dna.2022.0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cornus officinalis is a perennial deciduous tree or shrub. Its mature fruits are extracted and used in Traditional Chinese Medicine, called Shanzhuyu. The characteristic active components of C. officinalis include loganin and morroniside, which belong to iridoid glycosides. 3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is a key enzyme in the cytoplasmic mevalonate pathway providing the precursor molecules isopentenyl pyrophosphate and dimethylallyl pyrophosphate for isoprenoid biosynthesis such as sterols, triterpenes, and their derivatives such as iridoid glycosides. Different concentrations of methyl jasmonate (MeJA) and ethephon (ETH) solutions were sprayed on C. officinalis seedlings, and the effect of hormones on CoHMGS gene expression was detected by real-time fluorescence quantitative PCR. The quantitative real-time PCR results showed that 750 mg/L ETH treatment had the most significant induction effect on CoHMGS gene expression. The HPLC analysis of extracts revealed that the treatment could also significantly increase the content of morroniside and loganin in the leaves of C. officinalis. By use of a CoHMGS-green fluorescent protein (GFP) fusion construct for heterologous expression in tobacco, laser scanning confocal microscopy revealed a cytoplasmic localization. This preliminary study of the CoHMGS gene could prepare the ground for more precisely elucidating the synthesis of secondary metabolite in C. officinalis.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| | - Yaoyao Wang
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| | - Xiaoran Liu
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| | - Hao Liu
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| | - Xingli Zhao
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| | - Shufang Lv
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| | - Huawei Xu
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| | - Hongxiao Zhang
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| | - Xiaogai Hou
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| | - Dianyun Hou
- Agricultural College, Henan University of Science and Technology, Luoyang, China.,The Luoyang Engineering Research Center of Breeding and Utilization of Dao-di Herbs, Luoyang, China
| |
Collapse
|
3
|
Cloning and Characterization of the Gene Encoding HMGS Synthase in Polygonatum sibiricum. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7441296. [PMID: 36246988 PMCID: PMC9568320 DOI: 10.1155/2022/7441296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
The saponins of Polygonatum sibiricum had many pharmacological activities such as antitumor, antioxidation, and blood sugar lowering, which were synthesized by two pathways: mevalonate (MVA) and methylerythritol phosphate (MEP). 3-Hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) was the key enzyme in the MVA synthesis pathway, and its expression level may affect the accumulation of saponins which were the main active ingredients of P. sibiricum. In this study, we successfully cloned HMGS1 and HMGS2 from P. sibiricum and their sequence similarity was 93.71% with 89 different sites. The multiple sequence alignment results indicated that the N-terminal sequences of HMGS were conserved. Phylogenetic analysis showed that P. sibiricum, A. officinalis, N. tazetta, D. nobile, and other relatives had a common evolutionary ancestor. The expression levels of both HMGSs and the total saponin content in different tissues revealed that HMGS expression in rhizomes was positively correlated with total saponin content. Further study of the abiotic stress effect of Methyl Jasmonate (MeJA) demonstrated that the expression of HMGS1 and HMGS2 genes was induced by MeJA, peaked at 24 h, and fell by 48 h. Our present findings would provide a blueprint for future studies of HMGS and its role in triterpenoid biosynthesis in P. sibiricum.
Collapse
|
4
|
Pathak AR, Patel SR, Joshi AG, Shrivastava N, Sindhav G, Sharma S, Ansari H. Elicitor mediated enhancement of shoot biomass and lupeol production in Hemidesmus indicus (L.) R. Br. ex. Schult. and Tylophora indica (Burm. F.) Merrill using yeast extract and salicylic acid. Nat Prod Res 2022; 37:1767-1773. [PMID: 36059233 DOI: 10.1080/14786419.2022.2119388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hemidesmus indicus (L.) R. Br. ex Schult. and Tylophora indica (Burm. F.) Merrill shoot cultures were treated with different concentrations of yeast extract (YE; 25-200 mg/L) and salicylic acid (SA; 50-200 µM), and their effect on lupeol production was assessed. The maximum dry weight (DW) biomass was recorded when H. indicus shoots were treated with SA (50 µM) and T. indica shoots with YE (200 mg/L). Highest lupeol yield (335.40 ± 0.04 µg/g DW) was obtained in H. indicus shoots after treatment with 50 µM of SA for 3 weeks. Whereas in T. indica, maximum lupeol content (584.26 ± 8.14 µg/g DW) was recorded by giving treatment with 25 μM of SA for 6 weeks.
Collapse
Affiliation(s)
- Ashutosh R Pathak
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.,Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India
| | - Swati R Patel
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Aruna G Joshi
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Neeta Shrivastava
- B.V. Patel Pharmaceutical Education & Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| | - Gaurang Sindhav
- Department of Zoology, Biomedical Technology, Human Genetics, and Wildlife Biology & Conservation, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Sonal Sharma
- B.V. Patel Pharmaceutical Education & Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Department of Science and Technology, Govt. of Gujarat, Ahmedabad, Gujarat, India
| | - Hafsa Ansari
- Department of Zoology, Biomedical Technology, Human Genetics, and Wildlife Biology & Conservation, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Co-Expression Analysis Reveals Differential Expression of Homologous Genes Associated with Specific Terpenoid Biosynthesis in Rehmannia glutinosa. Genes (Basel) 2022; 13:genes13061092. [PMID: 35741854 PMCID: PMC9222246 DOI: 10.3390/genes13061092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Terpenoids are naturally occurring compounds involved in respiration, photosynthesis, membrane fluidity, and pathogen interactions and are classified according to the structure of their carbon skeleton. Although most terpenoids possess pharmacological activity, knowledge about terpenoid metabolism in medicinal plants is insufficient. Rehmannia glutinosa (R. glutinosa) is a traditional herb that is widely used in East Asia and has been reported to contain various terpenoids. In this study, we performed a comprehensive transcriptome analysis of terpenoid metabolism in R. glutinosa using two RNA sequencing platforms: Illumina and PacBio. The results show that the sterol, saponin, iridoid, and carotenoid pathways are active in R. glutinosa. Sterol and saponin biosynthesis were mevalonate pathway dependent, whereas iridoid and carotenoid biosynthesis were methylerythritol 4-phosphate pathway dependent. In addition, we found that the homologous genes of key enzymes involved in terpenoid metabolism were expressed differentially and that the differential expression of these genes was associated with specific terpenoid biosynthesis. The different expression of homologous genes encoding acetyl-CoA acetyltransferase, 3-hydroxy-3-methylglutaryl-CoA reductase, mevalonate kinase, mevalonate diphosphate decarboxylase, farnesyl pyrophosphate synthase, squalene synthase, and squalene epoxidase was associated with sterol and saponin biosynthesis. Homologous genes encoding 1-deoxy-D-xylulose 5-phosphate synthase were also differentially expressed and were associated with carotenoid and iridoid biosynthesis. These results suggest that the biosynthesis of specific terpenoids can be regulated by the homologous of key enzymes involved in plant terpenoid metabolism.
Collapse
|
6
|
Singh A, Singh S, Singh R, Kumar S, Singh SK, Singh IK. Dynamics of Zea mays transcriptome in response to a polyphagous herbivore, Spodoptera litura. Funct Integr Genomics 2021; 21:571-592. [PMID: 34415472 DOI: 10.1007/s10142-021-00796-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/17/2021] [Accepted: 07/02/2021] [Indexed: 12/01/2022]
Abstract
Zea mays defense response is well-crafted according to the physical and chemical weapons utilized by their invaders during the coevolutionary period. Maize plants employ diversified defense strategies and alter the spatiotemporal distribution of several classes of defensive compounds to affect insect herbivore performance. However, only little knowledge is available about the defense orchestration of maize in response to Spodoptera litura, a voracious Noctuidae pest. In order to decipher the defense status of Zea mays (African tall variety) against S. litura, a comparative feeding bioassay was executed, which revealed reduced performance of the herbivore on maize. In order to understand the molecular mechanism behind maize tolerance against S. litura, a microarray-based genome-wide expression analysis was performed. The comparative analysis displayed 792 differentially expressed genes (DEGs), wherein 357 genes were upregulated and 435 genes were downregulated at fold change ≥ 2 and p value ≤ 0.05. The upregulated genes were identified and categorized as defense-related, oxidative stress-related, transcription regulatory genes, protein synthesis genes, phytohormone-related, and primary and secondary metabolism-related. In contrast, downregulated genes were mainly associated with plant growth and development, indicating a balance of growth and defense response and utilization of a highly evolved C-diversion response were noticed. Maize plants showed better tolerance against herbivory and maintained its fitness using a combinatorial strategy. This peculiar response of Zea mays against S. litura offers an excellent possibility of managing polyphagous pests by spicing up the plant's defensive response with tolerance mechanism.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi-110007, India.
| | - Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India
| | - Ragini Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi-110007, India
| | - Sumit Kumar
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India
| | - Sanjay Kumar Singh
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India. .,DBC i4 Centre, Deshbandhu College, University of Delhi, Kalkaji, Delhi-110019, India.
| |
Collapse
|
7
|
Liao P, Lung SC, Chan WL, Hu M, Kong GKW, Bach TJ, Hao Q, Lo C, Chye ML. Overexpression and Inhibition of 3-Hydroxy-3-Methylglutaryl-CoA Synthase Affect Central Metabolic Pathways in Tobacco. PLANT & CELL PHYSIOLOGY 2021; 62:205-218. [PMID: 33340324 DOI: 10.1093/pcp/pcaa154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Little has been established on the relationship between the mevalonate (MVA) pathway and other metabolic pathways except for the sterol and glucosinolate biosynthesis pathways. In the MVA pathway, 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to form 3-hydroxy-3-methylglutaryl-coenzyme A. Our previous studies had shown that, while the recombinant Brassica juncea HMGS1 (BjHMGS1) mutant S359A displayed 10-fold higher enzyme activity than wild-type (wt) BjHMGS1, transgenic tobacco overexpressing S359A (OE-S359A) exhibited higher sterol content, growth rate and seed yield than OE-wtBjHMGS1. Herein, untargeted proteomics and targeted metabolomics were employed to understand the phenotypic effects of HMGS overexpression in tobacco by examining which other metabolic pathways were affected. Sequential window acquisition of all theoretical mass spectra quantitative proteomics analysis on OE-wtBjHMGS1 and OE-S359A identified the misregulation of proteins in primary metabolism and cell wall modification, while some proteins related to photosynthesis and the tricarboxylic acid cycle were upregulated in OE-S359A. Metabolomic analysis indicated corresponding changes in carbohydrate, amino acid and fatty acid contents in HMGS-OEs, and F-244, a specific inhibitor of HMGS, was applied successfully on tobacco to confirm these observations. Finally, the crystal structure of acetyl-CoA-liganded S359A revealed that improved activity of S359A likely resulted from a loss in hydrogen bonding between Ser359 and acyl-CoA, which is evident in wtBjHMGS1. This work suggests that regulation of plant growth by HMGS can influence the central metabolic pathways. Furthermore, this study demonstrates that the application of the HMGS-specific inhibitor (F-244) in tobacco represents an effective approach for studying the HMGS/MVA pathway.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wai Lung Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Menglong Hu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Thomas J Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Mol�culaire des Plantes, Universit� de Strasbourg, Strasbourg 67084, France
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, CUHK, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
8
|
Wu L, Zhao Y, Zhang Q, Chen Y, Gao M, Wang Y. Overexpression of the 3-hydroxy-3-methylglutaryl-CoA synthase gene LcHMGS effectively increases the yield of monoterpenes and sesquiterpenes. TREE PHYSIOLOGY 2020; 40:1095-1107. [PMID: 32325486 DOI: 10.1093/treephys/tpaa045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/15/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Monoterpenes are important components of plant essential oils and have long been used as raw materials for spices and food flavorings. A number of studies have been performed to increase the content of monoterpenes in plants, but no obvious effect was observed. Exchange was observed between the methylerythritol phosphate (MEP) and mevalonic acid (MVA) metabolic pathways, which produce monoterpenes and sesquiterpenes, respectively. However, the specific details of the communication have not been elucidated. In the present study, we investigated the effects of overexpressing Litsea cubeba (Lour.) Persoon 3-hydroxy-3-methylglutaryl-coenzyme A synthase (LcHMGS) on the production of monoterpenes and sesquiterpenes. In addition, we also explored the flow of metabolic flux between the MEP and MVA pathways. We cloned LcHMGS and analyzed its expression pattern in various tissues. The overexpression of LcHMGS significantly increased the species and content of monoterpenes and sesquiterpenes. In addition, LcHMGS overexpression in plants induced such phenotypes as excessive growth, enlarged vegetative organs and early flowering by elevating the GA3 content. Our results demonstrate a metabolic engineering strategy to improve the yield of monoterpenes and sesquiterpenes and simultaneously increase the biomass of plants.
Collapse
Affiliation(s)
- Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qiyan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
9
|
Lin CY, Eudes A. Strategies for the production of biochemicals in bioenergy crops. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:71. [PMID: 32318116 PMCID: PMC7158082 DOI: 10.1186/s13068-020-01707-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/02/2020] [Indexed: 05/12/2023]
Abstract
Industrial crops are grown to produce goods for manufacturing. Rather than food and feed, they supply raw materials for making biofuels, pharmaceuticals, and specialty chemicals, as well as feedstocks for fabricating fiber, biopolymer, and construction materials. Therefore, such crops offer the potential to reduce our dependency on petrochemicals that currently serve as building blocks for manufacturing the majority of our industrial and consumer products. In this review, we are providing examples of metabolites synthesized in plants that can be used as bio-based platform chemicals for partial replacement of their petroleum-derived counterparts. Plant metabolic engineering approaches aiming at increasing the content of these metabolites in biomass are presented. In particular, we emphasize on recent advances in the manipulation of the shikimate and isoprenoid biosynthetic pathways, both of which being the source of multiple valuable compounds. Implementing and optimizing engineered metabolic pathways for accumulation of coproducts in bioenergy crops may represent a valuable option for enhancing the commercial value of biomass and attaining sustainable lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
10
|
Villano C, D’Amelia V, Esposito S, Adelfi MG, Contaldi F, Ferracane R, Vitaglione P, Aversano R, Carputo D. Genome-Wide HMG Family Investigation and Its Role in Glycoalkaloid Accumulation in Wild Tuber-Bearing Solanum commersonii. Life (Basel) 2020; 10:life10040037. [PMID: 32290207 PMCID: PMC7235733 DOI: 10.3390/life10040037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Steroidal glycoalkaloids (SGAs) are a class of nitrogen-containing glycosides occurring in several plant families and biosynthesized through a specific pathway. HMG-CoA reductase is the first enzyme of this pathway, and its transcription can be regulated by biotic and abiotic stressors and even in a tissue-specific manner. This study aimed to characterize the HMG genes family in a tuber-bearing potato species, Solanum commersonii, using transcriptional and functional approaches. Our results provided evidence that four ScHMGs with different tissue-specificities represent the HMG gene family in S. commersonii and that they originated from ScHMG1 through segmental duplications. Phylogenetic analysis suggests that ScHMG1 is the direct ortholog of AtHMG1, which is associated with SGAs accumulation in plants. Its overexpression in S. commersonii revealed that this gene plays a key role in the accumulation of glycoalkaloids regulating the production of dehydrocommersonine.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Vincenzo D’Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, NA, Italy;
| | - Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, SA, Italy; (S.E.); (F.C.)
| | - Maria Grazia Adelfi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Felice Contaldi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, SA, Italy; (S.E.); (F.C.)
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
- Correspondence:
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| |
Collapse
|
11
|
Liao P, Lung SC, Chan WL, Bach TJ, Lo C, Chye ML. Overexpression of HMG-CoA synthase promotes Arabidopsis root growth and adversely affects glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:272-289. [PMID: 31557302 PMCID: PMC6913736 DOI: 10.1093/jxb/erz420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/10/2019] [Indexed: 05/06/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) catalyses the second step of the mevalonate (MVA) pathway. An HMGS inhibitor (F-244) has been reported to retard growth in wheat, tobacco, and Brassica juncea, but the mechanism remains unknown. Although the effects of HMGS on downstream isoprenoid metabolites have been extensively reported, not much is known on how it might affect non-isoprenoid metabolic pathways. Here, the mechanism of F-244-mediated inhibition of primary root growth in Arabidopsis and the relationship between HMGS and non-isoprenoid metabolic pathways were investigated by untargeted SWATH-MS quantitative proteomics, quantitative real-time PCR, and target metabolite analysis. Our results revealed that the inhibition of primary root growth caused by F-244 was a consequence of reduced stigmasterol, auxin, and cytokinin levels. Interestingly, proteomic analyses identified a relationship between HMGS and glucosinolate biosynthesis. Inhibition of HMGS activated glucosinolate biosynthesis, resulting from the induction of glucosinolate biosynthesis-related genes, suppression of sterol biosynthesis-related genes, and reduction in sterol levels. In contrast, HMGS overexpression inhibited glucosinolate biosynthesis, due to down-regulation of glucosinolate biosynthesis-related genes, up-regulation of sterol biosynthesis-related genes, and increase in sterol content. Thus, HMGS might represent a target for the manipulation of glucosinolate biosynthesis, given the regulatory relationship between HMGS in the MVA pathway and glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, CUHK, Shatin, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wai Lung Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Thomas J Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, CUHK, Shatin, Hong Kong, China
| |
Collapse
|
12
|
Gong XX, Yan BY, Tan YR, Gao X, Wang D, Zhang H, Wang P, Li SJ, Wang Y, Zhou LY, Liu JP. Identification of cis-regulatory regions responsible for developmental and hormonal regulation of HbHMGS1 in transgenic Arabidopsis thaliana. Biotechnol Lett 2019; 41:1077-1091. [PMID: 31236789 DOI: 10.1007/s10529-019-02703-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/21/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVES 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase (HMGS) is an important enzyme in mevalonate (MVA) pathway of isoprenoid biosynthesis, which regulates the rubber biosynthetic pathway in rubber tree (Hevea brasiliensis) in coordination with HMG-CoA reductase (HMGR). However, little information is available about the regulation of HMGS gene expression. To understand the mechanism controlling the HbHMGS1 gene expression, we characterized the HbHMGS1 promoter sequence in transgenic plants with the β-glucuronidase (GUS) reporter gene. RESULTS GUS activity analysis of the transgenic plants showed that the HbHMGS1 promoter is active in all organs of the transgenic Arabidopsis plants during various developmental stages (from 6 to 45-day-old). Deletion of different portions of the upstream HbHMGS1 promoter identified sequences responsible for either positive or negative regulation of the GUS expression. Particularly, the - 454 bp HbHMGS1 promoter resulted in a 2.19-fold increase in promoter activity compared with the CaMV 35S promoter, suggesting that the - 454 bp HbHMGS1 promoter is a super-strong near-constitutive promoter. In addition, a number of promoter regions important for the responsiveness to ethylene, methyl jasmonate (MeJA) and gibberellic acid (GA) were identified. CONCLUSION The - 454 bp HbHMGS1 promoter has great application potential in plant transformation studies as an alternative to the CaMV 35S promoter. The HbHMGS1 promoter may play important roles in regulating ethylene-, MeJA- and GA-mediated gene expression. The functional complexity of cis-elements revealed by this study remains to be elucidated.
Collapse
Affiliation(s)
- Xiao-Xiao Gong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Bing-Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yu-Rong Tan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Xuan Gao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Dan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Heng Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Shuang-Jiang Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yi Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Lu-Yao Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jin-Ping Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
| |
Collapse
|
13
|
Liu W, Zhang Z, Zhu W, Ren Z, Jia L, Li W, Ma Z. Evolutionary Conservation and Divergence of Genes Encoding 3-Hydroxy-3-methylglutaryl Coenzyme A Synthase in the Allotetraploid Cotton Species Gossypium hirsutum. Cells 2019; 8:cells8050412. [PMID: 31058869 PMCID: PMC6562921 DOI: 10.3390/cells8050412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 11/16/2022] Open
Abstract
Polyploidization is important for the speciation and subsequent evolution of many plant species. Analyses of the duplicated genes produced via polyploidization events may clarify the origin and evolution of gene families. During terpene biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) functions as a key enzyme in the mevalonate pathway. In this study, we first identified a total of 53 HMGS genes in 23 land plant species, while no HMGS genes were detected in three green algae species. The phylogenetic analysis suggested that plant HMGS genes may have originated from a common ancestral gene before clustering in different branches during the divergence of plant lineages. Then, we detected six HMGS genes in the allotetraploid cotton species (Gossypium hirsutum), which was twice that of the two diploid cotton species (Gossypium raimondii and Gossypium arboreum). The comparison of gene structures and phylogenetic analysis of HMGS genes revealed conserved evolution during polyploidization in Gossypium. Moreover, the expression patterns indicated that six GhHMGS genes were expressed in all tested tissues, with most genes considerably expressed in the roots, and they were responsive to various phytohormone treatments and abiotic stresses. The sequence and expression divergence of duplicated genes in G. hirsutum implied the sub-functionalization of GhHMGS1A and GhHMGS1D as well as GhHMGS3A and GhHMGS3D, whereas it implied the pseudogenization of GhHMGS2A and GhHMGS2D. Collectively, our study unraveled the evolutionary history of HMGS genes in green plants and from diploid to allotetraploid in cotton and illustrated the different evolutionary fates of duplicated HMGS genes resulting from polyploidization.
Collapse
Affiliation(s)
- Wei Liu
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhiqiang Zhang
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wei Zhu
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Lin Jia
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wei Li
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zongbin Ma
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
14
|
Tang XX, Yan X, Fu WH, Yi LQ, Tang BW, Yu LB, Fang MJ, Wu Z, Qiu YK. New β-Lactone with Tea Pathogenic Fungus Inhibitory Effect from Marine-Derived Fungus MCCC3A00957. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2877-2885. [PMID: 30785752 DOI: 10.1021/acs.jafc.9b00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium solani H915 (MCCC3A00957), a fungus originating from mangrove sediment, showed potent inhibitory activity against tea pathogenic fungus Pestalotiopsis theae. Successive chromatographic separation on an ethyl acetate (EtOAc) extract of F. solani H915 resulted in the isolation of five new alkenoic diacid derivatives: fusarilactones A-C (1-3), and fusaridioic acids B (4) and C (5), in addition to seven known compounds (6-12). The chemical structures of these metabolites were elucidated on the basis of UV, IR, HR-ESI-MS, and NMR spectroscopic data. The antifungal activity of the isolated compounds was evaluated. Compounds with a β-lactone ring (1, 2, and 7) exhibited potent inhibitory activities, while none of the other compounds show activity. The ED50 values of the compounds 1, 2, and 7 were 38.14 ± 1.67, 42.26 ± 1.96, and 18.35 ± 1.27 μg/mL, respectively. In addition, inhibitory activity of these compounds against 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase gene expression was also detected using real-time RT-PCR. Results indicated that compounds 1, 2, and 7 may inhibit the growth of P. theae by interfering with the biosynthesis of ergosterol by down-regulating the expression of HMG-CoA synthase.
Collapse
Affiliation(s)
- Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources , Third Institute of Oceanography State, Ministry of Natural Resources , Da-Xue Road , Xiamen 361005 , China
| | - Xia Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center , Ningbo University , Ningbo 315832 , China
| | - Wen-Hao Fu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Lu-Qi Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Bo-Wen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Li-Bo Yu
- Key Laboratory of Marine Biogenetic Resources , Third Institute of Oceanography State, Ministry of Natural Resources , Da-Xue Road , Xiamen 361005 , China
| | - Mei-Juan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Ying-Kun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| |
Collapse
|
15
|
Niu S, Tang XX, Fan Z, Xia JM, Xie CL, Yang XW. Fusarisolins A⁻E, Polyketides from the Marine-Derived Fungus Fusarium solani H918. Mar Drugs 2019; 17:md17020125. [PMID: 30791608 PMCID: PMC6410219 DOI: 10.3390/md17020125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 02/02/2023] Open
Abstract
Five new (fusarisolins A⁻E, 1 to 5) and three known (6 to 8) polyketides were isolated from the marine-derived fungus Fusarium solani H918, along with six known phenolics (9 to 14). Their structures were established by comprehensive spectroscopic data analyses, methoxyphenylacetic acid (MPA) method, chemical conversion, and by comparison with data reported in the literature. Compounds 1 and 2 are the first two naturally occurring 21 carbons polyketides featuring a rare β- and γ-lactone unit, respectively. All isolates (1 to 14) were evaluated for their inhibitory effects against tea pathogenic fungus Pestalotiopsis theae and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase gene expression. Compound 8 showed potent antifungal activity with an ED50 value of 55 μM, while 1, 8, 13, and 14 significantly inhibited HMG-CoA synthase gene expression.
Collapse
Affiliation(s)
- Siwen Niu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| | - Xi-Xiang Tang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| | - Zuowang Fan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| | - Jin-Mei Xia
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| | - Chun-Lan Xie
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| | - Xian-Wen Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| |
Collapse
|
16
|
Liao P, Chen X, Wang M, Bach TJ, Chye M. Improved fruit α-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-HYDROXY-3-METHYLGLUTARYL-COA SYNTHASE1 in transgenic tomato. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:784-796. [PMID: 28881416 PMCID: PMC5814594 DOI: 10.1111/pbi.12828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/20/2017] [Accepted: 08/26/2017] [Indexed: 05/20/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild-type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up-regulated several genes in sterol biosynthesis and increased sterol content. Recombinant S359A had earlier displayed a 10-fold higher in vitro enzyme activity. Furthermore, tobacco HMGS overexpressors (OEs) exhibited improved sterol content, plant growth and seed yield. Increased growth and seed yield in tobacco OE-S359A over OE-wtBjHMGS1 coincided with elevations in NtSQS expression and sterol content. Herein, the overexpression of wt and mutant (S359A) BjHMGS1 in a crop plant, tomato (Solanum lycopersicum), caused an accumulation of MVA-derived squalene and phytosterols, as well as methylerythritol phosphate (MEP)-derived α-tocopherol (vitamin E) and carotenoids, which are important to human health as antioxidants. In tomato HMGS-OE seedlings, genes associated with the biosyntheses of C10, C15 and C20 universal precursors of isoprenoids, phytosterols, brassinosteroids, dolichols, methylerythritol phosphate, carotenoid and vitamin E were up-regulated. In OE-S359A tomato fruits, increased squalene and phytosterol contents over OE-wtBjHMGS1 were attributed to heightened SlHMGR2, SlFPS1, SlSQS and SlCYP710A11 expression. In both tomato OE-wtBjHMGS1 and OE-S359A fruits, the up-regulation of SlGPS and SlGGPPS1 in the MEP pathway that led to α-tocopherol and carotenoid accumulation indicated cross-talk between the MVA and MEP pathways. Taken together, the manipulation of BjHMGS1 represents a promising strategy to simultaneously elevate health-promoting squalene, phytosterols, α-tocopherol and carotenoids in tomato, an edible fruit.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
- Partner State Key Laboratory of AgrobiotechnologyCUHKShatinHong KongChina
| | - Xinjian Chen
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
| | - Mingfu Wang
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
| | - Thomas J. Bach
- Centre National de la Recherche ScientifiqueUPR 2357Institut de Biologie Moléculaire des PlantesStrasbourgFrance
| | - Mee‐Len Chye
- School of Biological SciencesThe University of Hong KongPokfulamHong KongChina
- Partner State Key Laboratory of AgrobiotechnologyCUHKShatinHong KongChina
| |
Collapse
|
17
|
Meng X, Song Q, Ye J, Wang L, Xu F. Characterization, Function, and Transcriptional Profiling Analysis of 3-Hydroxy-3-methylglutaryl-CoA Synthase Gene (GbHMGS1) towards Stresses and Exogenous Hormone Treatments in Ginkgo biloba. Molecules 2017; 22:molecules22101706. [PMID: 29023415 PMCID: PMC6151752 DOI: 10.3390/molecules22101706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/08/2017] [Indexed: 12/11/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is one of the rate-limiting enzymes in the mevalonate pathway as it catalyzes the condensation of acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA. In this study, A HMGS gene (designated as GbHMGS1) was cloned from Ginkgo biloba for the first time. GbHMGS1 contained a 1422-bp open-reading frame encoding 474 amino acids. Comparative and bioinformatics analysis revealed that GbHMGS1 was extensively homologous to HMGSs from other plant species. Phylogenetic analysis indicated that the GbHMGS1 belonged to the plant HMGS superfamily, sharing a common evolutionary ancestor with other HMGSs, and had a further relationship with other gymnosperm species. The yeast complement assay of GbHMGS1 in HMGS-deficient Saccharomyces cerevisiae strain YSC6274 demonstrated that GbHMGS1 gene encodes a functional HMGS enzyme. The recombinant protein of GbHMGS1 was successfully expressed in E. coli. The in vitro enzyme activity assay showed that the kcat and Km values of GbHMGS1 were 195.4 min−1 and 689 μM, respectively. GbHMGS1 was constitutively expressed in all tested tissues, including the roots, stems, leaves, female flowers, male flowers and fruits. The transcript accumulation for GbHMGS1 was highest in the leaves. Expression profiling analyses revealed that GbHMGS1 expression was induced by abiotic stresses (ultraviolet B and cold) and hormone treatments (salicylic acid, methyl jasmonate, and ethephon) in G. biloba, indicating that GbHMGS1 gene was involved in the response to environmental stresses and plant hormones.
Collapse
Affiliation(s)
- Xiangxiang Meng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Qiling Song
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
18
|
Pandey A, Swarnkar V, Pandey T, Srivastava P, Kanojiya S, Mishra DK, Tripathi V. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera. Sci Rep 2016; 6:34464. [PMID: 27703261 PMCID: PMC5050527 DOI: 10.1038/srep34464] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Calotropis procera is a medicinal plant of immense importance due to its pharmaceutical active components, especially cardiac glycosides (CG). As genomic resources for this plant are limited, the genes involved in CG biosynthetic pathway remain largely unknown till date. Our study on stage and tissue specific metabolite accumulation showed that CG's were maximally accumulated in stems of 3 month old seedlings. De novo transcriptome sequencing of same was done using high throughput Illumina HiSeq platform generating 44074 unigenes with average mean length of 1785 base pair. Around 66.6% of unigenes were annotated by using various public databases and 5324 unigenes showed significant match in the KEGG database involved in 133 different pathways of plant metabolism. Further KEGG analysis resulted in identification of 336 unigenes involved in cardenolide biosynthesis. Tissue specific expression analysis of 30 putative transcripts involved in terpenoid, steroid and cardenolide pathways showed a positive correlation between metabolite and transcript accumulation. Wound stress elevated CG levels as well the levels of the putative transcripts involved in its biosynthetic pathways. This result further validated the involvement of identified transcripts in CGs biosynthesis. The identified transcripts will lay a substantial foundation for further research on metabolic engineering and regulation of cardiac glycosides biosynthesis pathway genes.
Collapse
Affiliation(s)
- Akansha Pandey
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vishakha Swarnkar
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Tushar Pandey
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Piush Srivastava
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Dipak Kumar Mishra
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vineeta Tripathi
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
19
|
Tao T, Chen Q, Meng X, Yan J, Xu F, Chang J. Molecular cloning, characterization, and functional analysis of a gene encoding 3-hydroxy-3-methylglutaryl-coenzyme A synthase from Matricaria chamomilla. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0463-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Widana Gamage SMK, McGrath DJ, Persley DM, Dietzgen RG. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum. PLoS One 2016; 11:e0159085. [PMID: 27398596 PMCID: PMC4939944 DOI: 10.1371/journal.pone.0159085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. METHODOLOGY/PRINCIPAL FINDINGS We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. CONCLUSION/SIGNIFICANCE DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.
Collapse
Affiliation(s)
- Shirani M. K. Widana Gamage
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - Desmond J. McGrath
- Queensland Department of Agriculture and Fisheries, AgriScience Queensland, Gatton, Queensland, Australia
| | - Denis M. Persley
- Queensland Department of Agriculture and Fisheries, AgriScience Queensland, EcoSciences Precinct, Dutton Park, Queensland, Australia
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
21
|
Suza WP, Chappell J. Spatial and temporal regulation of sterol biosynthesis in Nicotiana benthamiana. PHYSIOLOGIA PLANTARUM 2016; 157:120-34. [PMID: 26671544 DOI: 10.1111/ppl.12413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 05/22/2023]
Abstract
Nicotiana benthamiana was used as a model to investigate the spatial and developmental relationship between sterol synthesis rates and sterol content in plants. Stigmasterol levels were approximately twice the level in roots as that found in aerial tissues, while its progenitor sterol sitosterol was the inverse. When incorporation of radiolabeled precursors into sterols was used as measure of in vivo synthesis rates, acetate incorporation was similar across all tissue types, but approximately twofold greater in roots than any other tissue. In contrast, mevalonate incorporation exhibited the greatest differential with the rate of incorporation in roots approximately one-tenth that in apical shoots. Similar to acetate, incorporation of farnesol was higher in roots but remained fairly constant in aerial tissues, suggesting less regulation of the downstream sterol biosynthetic steps. Consistent with the precursor incorporation data, analysis of gene transcript and measurements of putative rate-limiting enzyme activities for 3-hydroxy-3-methylglutaryl-coenzyme A synthase (EC 2.3.3.10) and reductase (EC 1.1.1.34) showed the greatest modulation of levels, while the activity levels for isopentenyl diphosphate isomerase (EC 5.3.3.2) and prenyltransferases (EC 2.5.1.10 and EC 2.5.1.1) also exhibited a strong but moderate correlation with the development age of the aerial tissues of the plants. Overall, the data suggest a multitude of means from transcriptional to posttranslational control affecting sterol biosynthesis and accumulation across an entire plant, and point to some particular control points that might be manipulated using molecular genetic approaches to better probe the role of sterols in plant growth and development.
Collapse
Affiliation(s)
- Walter P Suza
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA
| | - Joe Chappell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
22
|
Liao P, Hemmerlin A, Bach TJ, Chye ML. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv 2016; 34:697-713. [PMID: 26995109 DOI: 10.1016/j.biotechadv.2016.03.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 01/03/2023]
Abstract
The cytosol-localised mevalonic acid (MVA) pathway delivers the basic isoprene unit isopentenyl diphosphate (IPP). In higher plants, this central metabolic intermediate is also synthesised by the plastid-localised methylerythritol phosphate (MEP) pathway. Both MVA and MEP pathways conspire through exchange of intermediates and regulatory interactions. Products downstream of IPP such as phytosterols, carotenoids, vitamin E, artemisinin, tanshinone and paclitaxel demonstrate antioxidant, cholesterol-reducing, anti-ageing, anticancer, antimalarial, anti-inflammatory and antibacterial activities. Other isoprenoid precursors including isoprene, isoprenol, geraniol, farnesene and farnesol are economically valuable. An update on the MVA pathway and its interaction with the MEP pathway is presented, including the improvement in the production of phytosterols and other isoprenoid derivatives. Such attempts are for instance based on the bioengineering of microbes such as Escherichia coli and Saccharomyces cerevisiae, as well as plants. The function of relevant genes in the MVA pathway that can be utilised in metabolic engineering is reviewed and future perspectives are presented.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Andréa Hemmerlin
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67083 Strasbourg, France.
| | - Thomas J Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67083 Strasbourg, France.
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
23
|
Cheng S, Wang X, Xu F, Chen Q, Tao T, Lei J, Zhang W, Liao Y, Chang J, Li X. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile. Molecules 2016; 21:316. [PMID: 27005600 PMCID: PMC6274341 DOI: 10.3390/molecules21030316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 11/23/2022] Open
Abstract
Roman chamomile (Chamaemelum nobile L.) is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969) was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant.
Collapse
Affiliation(s)
- Shuiyuan Cheng
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiaohui Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Tingting Tao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Jing Lei
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Jie Chang
- Hubei Collaborative Innovation Center of Targeted Antitumor Drug, Jingchu University of Technology, Jingmen 448000, Hubei, China.
| | - Xingxiang Li
- Medical School, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
24
|
Paradas WC, Crespo TM, Salgado LT, de Andrade LR, Soares AR, Hellio C, Paranhos RR, Hill LJ, de Souza GM, Kelecom AGAC, Da Gama BAP, Pereira RC, Amado-Filho GM. Mevalonosomes: specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta). JOURNAL OF PHYCOLOGY 2015; 51:225-235. [PMID: 26986518 DOI: 10.1111/jpy.12270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 01/21/2015] [Indexed: 06/05/2023]
Abstract
This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway-an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F9,9 = 1.13). The HF (at 10 μg · mL(-1) ) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL(-1) ), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling.
Collapse
Affiliation(s)
- Wladimir Costa Paradas
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Niterói, Rio de Janeiro, Brazil
| | - Thalita Mendes Crespo
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| | - Leonardo Tavares Salgado
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| | - Leonardo Rodrigues de Andrade
- Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Departamento de Histologia e Embriologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, bloco: B, sala F2-27, Rio de Janeiro, Brazil
| | - Angélica Ribeiro Soares
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social de Macaé, Universidade Federal do Rio de Janeiro, Rua Rotary Club, s/no., São José do Barreto, Macaé, Rio de Janeiro, Brazil
| | - Claire Hellio
- Université de Bretagne Occidentale, LEMAR UMR 6539, IUEM - Technopole Brest-Iroise, Rue Dumont d'Urville, Plouzané, France
| | - Ricardo Rogers Paranhos
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Niterói, Rio de Janeiro, Brazil
| | - Lilian Jorge Hill
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| | - Geysa Marinho de Souza
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| | | | - Bernardo Antônio Perez Da Gama
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Niterói, Rio de Janeiro, Brazil
| | - Renato Crespo Pereira
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Niterói, Rio de Janeiro, Brazil
| | - Gilberto Menezes Amado-Filho
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Tholl D. Biosynthesis and biological functions of terpenoids in plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:63-106. [PMID: 25583224 DOI: 10.1007/10_2014_295] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, 409 Latham Hall, 24061, Blacksburg, VA, USA,
| |
Collapse
|
26
|
Liao P, Wang H, Hemmerlin A, Nagegowda DA, Bach TJ, Wang M, Chye ML. Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. PLANT CELL REPORTS 2014; 33:1005-22. [PMID: 24682521 DOI: 10.1007/s00299-014-1592-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 05/09/2023]
Abstract
HMGS functions in phytosterol biosynthesis, development and stress responses. F-244 could specifically-inhibit HMGS in tobacco BY-2 cells and Brassica seedlings. An update on HMGS from higher plants is presented. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) is the second enzyme in the mevalonate pathway of isoprenoid biosynthesis and catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce S-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Besides HMG-CoA reductase (HMGR), HMGS is another key enzyme in the regulation of cholesterol and ketone bodies in mammals. In plants, it plays an important role in phytosterol biosynthesis. Here, we summarize the past investigations on eukaryotic HMGS with particular focus on plant HMGS, its enzymatic properties, gene expression, protein structure, and its current status of research in China. An update of the findings on HMGS from animals (human, rat, avian) to plants (Brassica juncea, Hevea brasiliensis, Arabidopsis thaliana) will be discussed. Current studies on HMGS have been vastly promoted by developments in biochemistry and molecular biology. Nonetheless, several limitations have been encountered, thus some novel advances in HMGS-related research that have recently emerged will be touched on.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China,
| | | | | | | | | | | | | |
Collapse
|
27
|
Liao P, Wang H, Wang M, Hsiao AS, Bach TJ, Chye ML. Transgenic tobacco overexpressing Brassica juncea HMG-CoA synthase 1 shows increased plant growth, pod size and seed yield. PLoS One 2014; 9:e98264. [PMID: 24847714 PMCID: PMC4029903 DOI: 10.1371/journal.pone.0098264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022] Open
Abstract
Seeds are very important not only in the life cycle of the plant but they represent food sources for man and animals. We report herein a mutant of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS), the second enzyme in the mevalonate (MVA) pathway that can improve seed yield when overexpressed in a phylogenetically distant species. In Brassica juncea, the characterisation of four isogenes encoding HMGS has been previously reported. Enzyme kinetics on recombinant wild-type (wt) and mutant BjHMGS1 had revealed that S359A displayed a 10-fold higher enzyme activity. The overexpression of wt and mutant (S359A) BjHMGS1 in Arabidopsis had up-regulated several genes in sterol biosynthesis, increasing sterol content. To quickly assess the effects of BjHMGS1 overexpression in a phylogenetically more distant species beyond the Brassicaceae, wt and mutant (S359A) BjHMGS1 were expressed in tobacco (Nicotiana tabacum L. cv. Xanthi) of the family Solanaceae. New observations on tobacco OEs not previously reported for Arabidopsis OEs included: (i) phenotypic changes in enhanced plant growth, pod size and seed yield (more significant in OE-S359A than OE-wtBjHMGS1) in comparison to vector-transformed tobacco, (ii) higher NtSQS expression and sterol content in OE-S359A than OE-wtBjHMGS1 corresponding to greater increase in growth and seed yield, and (iii) induction of NtIPPI2 and NtGGPPS2 and downregulation of NtIPPI1, NtGGPPS1, NtGGPPS3 and NtGGPPS4. Resembling Arabidopsis HMGS-OEs, tobacco HMGS-OEs displayed an enhanced expression of NtHMGR1, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Overall, increased growth, pod size and seed yield in tobacco HMGS-OEs were attributed to the up-regulation of native NtHMGR1, NtIPPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Hence, S359A has potential in agriculture not only in improving phytosterol content but also seed yield, which may be desirable in food crops. This work further demonstrates HMGS function in plant reproduction that is reminiscent to reduced fertility of hmgs RNAi lines in let-7 mutants of Caenorhabditis elegans.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Hui Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Thomas J. Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Strasbourg, France
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Yang Z, Zheng J, Niu Y, Yang W, Liu J, Li H. Systems‐level analysis of the metabolic responses of the diatom
P
haeodactylum tricornutum
to phosphorus stress. Environ Microbiol 2014; 16:1793-807. [DOI: 10.1111/1462-2920.12411] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 01/20/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi‐Kai Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute College of Life Science Jinan University Guangzhou China
| | - Jian‐Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute College of Life Science Jinan University Guangzhou China
| | - Ying‐Fang Niu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute College of Life Science Jinan University Guangzhou China
| | - Wei‐Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute College of Life Science Jinan University Guangzhou China
| | - Jie‐Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute College of Life Science Jinan University Guangzhou China
| | - Hong‐Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute College of Life Science Jinan University Guangzhou China
| |
Collapse
|
29
|
Molecular characterization and expression analysis of GlHMGS, a gene encoding hydroxymethylglutaryl-CoA synthase from Ganoderma lucidum (Ling-zhi) in ganoderic acid biosynthesis pathway. World J Microbiol Biotechnol 2012; 29:523-31. [PMID: 23138457 DOI: 10.1007/s11274-012-1206-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
A hydroxymethylglutaryl-CoA synthase gene, designated as GlHMGS (GenBank accession No. JN391469) involved in ganoderic acid (GA) biosynthesis pathway was cloned from Ganoderma lucidum. The full-length cDNA of GlHMGS (GenBank accession No. JN391468) was found to contain an open reading frame of 1,413 bp encoding a polypeptide of 471 amino acid residues. The deduced amino acid sequence of GlHMGS shared high homology with other known hydroxymethylglutaryl-CoA synthase (HMGS) enzymes. In addition, functional complementation of GlHMGS in a mutant yeast strain YSC1021 lacking HMGS activity demonstrated that the cloned cDNA encodes a functional HMGS. A 1,561 bp promoter sequence was isolated and its putative regulatory elements and potential specific transcription factor binding sites were analyzed. GlHMGS expression profile analysis revealed that salicylic acid, abscisic acid and methyl jasmonate up-regulated GlHMGS transcript levels over the control. Further expression analysis revealed that the developmental stage and carbon source had significant effects on GlHMGS transcript levels. GlHMGS expression peaked on day 16 before decreasing with prolonged culture time. The highest mRNA level was observed when the carbon source was maltose. Overexpression of GlHMGS enhanced GA content in G. lucidum. This study provides useful information for further studying this gene and on its function in the ganoderic acid biosynthetic pathway in G. lucidum.
Collapse
|
30
|
Wang H, Nagegowda DA, Rawat R, Bouvier-Navé P, Guo D, Bach TJ, Chye ML. Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:31-42. [PMID: 21645203 DOI: 10.1111/j.1467-7652.2011.00631.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Brassica juncea 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) is encoded by four isogenes (BjHMGS1-BjHMGS4). In vitro enzyme assays had indicated that the recombinant BjHMGS1 H188N mutant lacked substrate inhibition by acetoacetyl-CoA (AcAc-CoA) and showed 8-fold decreased enzyme activity. The S359A mutant demonstrated 10-fold higher activity, while the H188N/S359A double mutant displayed a 10-fold increased enzyme activity and lacked inhibition by AcAc-CoA. Here, wild-type and mutant BjHMGS1 were overexpressed in Arabidopsis to examine their effects in planta. The expression of selected genes in isoprenoid biosynthesis, isoprenoid content, seed germination and stress tolerance was analysed in HMGS overexpressors (OEs). Those mRNAs encoding enzymes 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), sterol methyltransferase 2 (SMT2), delta-24 sterol reductase (DWF1), C-22 sterol desaturase (CYP710A1) and brassinosteroid-6-oxidase 2 (BR6OX2) were up-regulated in HMGS-OEs. The total sterol content in leaves and seedlings of OE-wtBjHMGS1, OE-S359A and OE-H188N/S359A was significantly higher than OE-H188N. HMGS-OE seeds germinated earlier than wild-type and vector-transformed controls. HMGS-OEs further displayed reduced hydrogen peroxide (H(2) O(2) )-induced cell death and constitutive expression of salicylic acid (SA)-dependent pathogenesis-related genes (PR1, PR2 and PR5), resulting in an increased resistance to Botrytis cinerea, with OE-S359A showing the highest and OE-H188N the lowest tolerance. These results suggest that overexpression of HMGS up-regulates HMGR, SMT2, DWF1, CYP710A1 and BR6OX2, leading to enhanced sterol content and stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Hui Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Hemmerlin A, Harwood JL, Bach TJ. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 2011; 51:95-148. [PMID: 22197147 DOI: 10.1016/j.plipres.2011.12.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
When compared to other organisms, plants are atypical with respect to isoprenoid biosynthesis: they utilize two distinct and separately compartmentalized pathways to build up isoprene units. The co-existence of these pathways in the cytosol and in plastids might permit the synthesis of many vital compounds, being essential for a sessile organism. While substrate exchange across membranes has been shown for a variety of plant species, lack of complementation of strong phenotypes, resulting from inactivation of either the cytosolic pathway (growth and development defects) or the plastidial pathway (pigment bleaching), seems to be surprising at first sight. Hundreds of isoprenoids have been analyzed to determine their biosynthetic origins. It can be concluded that in angiosperms, under standard growth conditions, C₂₀-phytyl moieties, C₃₀-triterpenes and C₄₀-carotenoids are made nearly exclusively within compartmentalized pathways, while mixed origins are widespread for other types of isoprenoid-derived molecules. It seems likely that this coexistence is essential for the interaction of plants with their environment. A major purpose of this review is to summarize such observations, especially within an ecological and functional context and with some emphasis on regulation. This latter aspect still requires more work and present conclusions are preliminary, although some general features seem to exist.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, IBMP-CNRS-UPR2357, Université de Strasbourg, 28 Rue Goethe, F-67083 Strasbourg Cedex, France.
| | | | | |
Collapse
|
32
|
Tholl D, Lee S. Terpene Specialized Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0143. [PMID: 22303268 PMCID: PMC3268506 DOI: 10.1199/tab.0143] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C(5)-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C(20)-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C(10)-, C(15)-, and C(20)-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sungbeom Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
33
|
Marsano F, Boatti L, Ranzato E, Cavaletto M, Magnelli V, Dondero F, Viarengo A. Effects of mercury on Dictyostelium discoideum: proteomics reveals the molecular mechanisms of physiological adaptation and toxicity. J Proteome Res 2010; 9:2839-54. [PMID: 20408569 DOI: 10.1021/pr900914t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dictyostelium discoideum amoebae were exposed to Hg 2 microM corresponding to a sublethal concentration and Hg 10 microM with the first effects on mortality and replication rate. A total of 900 spots were visualized by 2-DE electrophoresis. Two-hundred fifty single proteins were identified by mass spectrometry. Low Hg concentration (2 microM) treatment induced up-regulation of 13 spots, mainly involved in oxidative stress response/detoxification, oxidoreductase activity, and metabolic processes. High Hg concentration (10 microM) treatment showed a different PES with 12 proteins downregulated and only two up-regulated, mainly involved in cellular metabolic processes, metal ion binding, and transferase activity. The analyses for the carbonylation show no changes after 2 microM Hg(2+) treatment and 13 differentially carbonylated proteins after 10 microM Hg(2+) involved in a broad range of cellular processes. Our findings provide insight into the mechanisms of physiological adaptation and toxicity to a low and an high mercury concentration, respectively, of Dictyostelium amoebae.
Collapse
Affiliation(s)
- Francesco Marsano
- Università del Piemonte Orientale Amedeo Avogadro - Alessandria, Novara, Vercelli, Department of Environmental and Life Sciences (DISAV), Alessandria, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim SM, Kim YB, Kuzuyama T, Kim SU. Two copies of 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase (CMK) gene in Ginkgo biloba: molecular cloning and functional characterization. PLANTA 2008; 228:941-50. [PMID: 18668260 DOI: 10.1007/s00425-008-0794-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/16/2008] [Indexed: 05/23/2023]
Abstract
4-(Cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase (CMK or YchB), the fourth enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway, phosphorylates the 2-hydroxyl group of 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol in the presence of ATP. Two isogenes encoding CMK (GbCMK1 and GbCMK2) were cloned and characterized from Ginkgo biloba. The activities of both isozymes were confirmed by complementation assay using Escherichia coli NMW29, a ychB knock-out mutant. The transcript profiles of GbCMKs in the radicles and the cotyledons of the cultured Ginkgo biloba embryos demonstrated that the transcript levels of GbCMK1 were similar in both organs, whereas that of GbCMK2 was predominantly high in the ginkgolide-synthesizing radicles. Selective increases in the transcript abundance of GbCMK2 in the radicles, induced by light and methyl jasmonate treatments, were observed. These differential induction patterns of the transcripts imply GbCMK1 and GbCMK2 respectively have high correlations with the primary and the secondary metabolisms. The transit peptides of both isozymes delivered the fused green fluorescent protein (GFP) into the chloroplast in the Arabidopsis and the Nicotiana transient expression systems; interestingly, the transit peptide of GbCMK1 delivered the GFP protein into the cytosol and the nucleus in addition to the chloroplasts.
Collapse
Affiliation(s)
- Sang-Min Kim
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, South Korea
| | | | | | | |
Collapse
|
35
|
. ZHL, . MC, . YFG, . ZQM, . XFS, . KXT. Isoprenoid Biosynthesis in Plants: Pathways, Genes, Regulation and Metabolic Engineering. ACTA ACUST UNITED AC 2005. [DOI: 10.3923/jbs.2006.209.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Nagegowda DA, Ramalingam S, Hemmerlin A, Bach TJ, Chye ML. Brassica juncea HMG-CoA synthase: localization of mRNA and protein. PLANTA 2005; 221:844-56. [PMID: 15770484 DOI: 10.1007/s00425-005-1497-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 01/29/2005] [Indexed: 05/24/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme-A (HMG-CoA) synthase (HMGS; EC 2.3.3.10) synthesizes HMG-CoA, a substrate for mevalonate biosynthesis in the isoprenoid pathway. It catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA (AcAc-CoA) to yield S-HMG-CoA and HS-CoA. In Brassica juncea (Indian mustard), HMGS is encoded by four isogenes (BjHMGS1-BjHMGS4). We have already enzymatically characterized recombinant BjHMGS1 expressed in Escherichia coli, and have identified its residues that are significant in catalysis. To further study HMGS mRNA expression that is developmentally regulated in flowers and seedlings, we have examined its mRNA distribution by in situ hybridization and reverse transcriptase-polymerase chain reaction (RT-PCR). We observed predominant localization of HMGS mRNA in the stigmas and ovules of flower buds and in the piths of seedling hypocotyls. RT-PCR analysis revealed that BjHMGS1 and BjHMGS2 but not BjHMGS3 and BjHMGS4were expressed in floral buds. To investigate the subcellular localization of BjHMGS1, we fused BjHMGS1 translationally in-frame either to the N- or C-terminus of green fluorescent protein (GFP). BjHMGS1-GFP and GFP-BjHMGS1 fusions were used in particle gun bombardment of onion epidermal cells and tobacco BY-2 cells. The GFP-BjHMGS1 construct was also used in agroinfiltration of tobacco leaves. Both GFP-fusion proteins were observed transiently expressed in the cytosol on confocal microscopy of onion epidermal cells, tobacco BY-2 cells, and agroinfiltrated tobacco leaves. Further, subcellular fractionation of total proteins from transgenic plants expressing GFP-BjHMGS1 derived from Agrobacterium-mediated transformation confirmed that BjHMGS1 is a cytosolic enzyme. We suggest that the presence of BjHMGS isoforms is likely related to the specialization of each in different cellular and metabolic processes rather than to a different intracellular compartmentation of the enzyme.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
37
|
Sirinupong N, Suwanmanee P, Doolittle RF, Suvachitanont W. Molecular cloning of a new cDNA and expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene from Hevea brasiliensis. PLANTA 2005; 221:502-12. [PMID: 15744497 DOI: 10.1007/s00425-004-1463-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 11/15/2004] [Indexed: 05/09/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS), EC 4.1.3.5, is an essential enzyme in rubber biosynthesis in Hevea brasiliensis. We have isolated a new cDNA encoding HMGS in H. brasiliensis. The full-length hmgs2 consists of 1,916-bp and encodes a protein of 464 amino acids with a predicted molecular mass of 51.27 kDa and an isoelectric point of 6.02. In comparison, HMGS1 and HMGS2 show 92% and 94% nucleotide and amino acid sequence identities, respectively. Semiquantitative RT-PCR analysis indicates that the hmgs2 is more highly expressed in laticifer and petiole than in leaves. Sequence searching and alignment revealed that HMGS is a distant relative of the condensing enzyme; beta-ketoacyl acyl carrier protein synthase III (ACP synthase III), EC 2.3.1.41, identified three completely conserved residues; Cys(117), His(247), and Asn(326). The relationship was greatly strengthened by making a proper alignment of numerous sequences of both HMGS and ACP synthase III. The same Cys(117), His(247), and Asn(326) absolutely conserved in both groups play a catalytic role in ACP synthase III, while such a role of Cys and His has only been reported for HMGS. According to site-directed mutagenesis, the expressed wild-type enzyme shows comparable level with mutant proteins. The mutation of Cys(117) and Asn(326) affects the HMGS activity, indicating that Cys(117) and Asn(326) are important amino acids for the catalytic activity of HMGS. A phylogenetic tree constructed on the basis of proper multiple alignment indicates that HMGS1 and HMGS2 result from recent gene duplication. This is also the case for HMGS and ACP synthase III, which appear to have arisen from an ancient gene duplication event of an ancestral condensing enzyme. Therefore, a possible secondary structure of HMGS could be predicted based on the Protein Data Bank information of ACP synthase III.
Collapse
Affiliation(s)
- Nualpun Sirinupong
- Biochemistry Department, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | | | | | | |
Collapse
|
38
|
Nagegowda D, Bach T, Chye ML. Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. Biochem J 2005; 383:517-27. [PMID: 15233626 PMCID: PMC1133745 DOI: 10.1042/bj20040721] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
3-hydroxy-3-methylglutaryl (HMG)-CoA synthase (HMGS; EC 2.3.3.10) is the second enzyme in the cytoplasmic mevalonate pathway of isoprenoid biosynthesis, and catalyses the condensation of acetyl-CoA with acetoacetyl-CoA (AcAc-CoA) to yield S-HMG-CoA. In this study, we have first characterized in detail a plant HMGS, Brassica juncea HMGS1 (BjHMGS1), as a His6-tagged protein from Escherichia coli. Native gel electrophoresis analysis showed that the enzyme behaves as a homodimer with a calculated mass of 105.8 kDa. It is activated by 5 mM dithioerythreitol and is inhibited by F-244 which is specific for HMGS enzymes. It has a pH optimum of 8.5 and a temperature optimum of 35 degrees C, with an energy of activation of 62.5 J x mol(-1). Unlike cytosolic HMGS from chicken and cockroach, cations like Mg2+, Mn2+, Zn2+ and Co2+ did not stimulate His6-BjHMGS1 activity in vitro; instead all except Mg2+ were inhibitory. His6-BjHMGS1 has an apparent K(m-acetyl-CoA) of 43 microM and a V(max) of 0.47 micromol x mg(-1) x min(-1), and was inhibited by one of the substrates (AcAc-CoA) and by both products (HMG-CoA and HS-CoA). Site-directed mutagenesis of conserved amino acid residues in BjHMGS1 revealed that substitutions R157A, H188N and C212S resulted in a decreased V(max), indicating some involvement of these residues in catalytic capacity. Unlike His6-BjHMGS1 and its soluble purified mutant derivatives, the H188N mutant did not display substrate inhibition by AcAc-CoA. Substitution S359A resulted in a 10-fold increased specific activity. Based on these kinetic analyses, we generated a novel double mutation H188N/S359A, which resulted in a 10-fold increased specific activity, but still lacking inhibition by AcAc-CoA, strongly suggesting that His-188 is involved in conferring substrate inhibition on His6-BjHMGS1. Substitution of an aminoacyl residue resulting in loss of substrate inhibition has never been previously reported for any HMGS.
Collapse
Affiliation(s)
- Dinesh A. Nagegowda
- *Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Thomas J. Bach
- †Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie. Moléculaire des Plantes, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Mee-Len Chye
- *Department of Botany, The University of Hong Kong, Pokfulam, Hong Kong, China
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M. Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. PLANT PHYSIOLOGY 2005; 137:949-60. [PMID: 15728345 PMCID: PMC1065396 DOI: 10.1104/pp.104.050815] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/10/2004] [Accepted: 12/21/2004] [Indexed: 05/18/2023]
Abstract
Drought is a major abiotic stress affecting all levels of plant organization and, in particular, leaf elongation. Several experiments were designed to study the effect of water deficits on maize (Zea mays) leaves at the protein level by taking into account the reduction of leaf elongation. Proteomic analyses of growing maize leaves allowed us to show that two isoforms of caffeic acid/5-hydroxyferulic 3-O-methyltransferase (COMT) accumulated mostly at 10 to 20 cm from the leaf point of insertion and that drought resulted in a shift of this region of maximal accumulation toward basal regions. We showed that this shift was due to the combined effect of reductions in growth and in total amounts of COMT. Several other enzymes involved in lignin and/or flavonoid synthesis (caffeoyl-CoA 3-O-methyltransferase, phenylalanine ammonia lyase, methylenetetrahydrofolate reductase, and several isoforms of S-adenosyl-l-methionine synthase and methionine synthase) were highly correlated with COMT, reinforcing the hypothesis that the zone of maximal accumulation corresponds to a zone of lignification. According to the accumulation profiles of the enzymes, lignification increases in leaves of control plants when their growth decreases before reaching their final size. Lignin levels analyzed by thioacidolysis confirmed that lignin is synthesized in the region where we observed the maximal accumulation of these enzymes. Consistent with the levels of these enzymes, we found that the lignin level was lower in leaves of plants subjected to water deficit than in those of well-watered plants.
Collapse
Affiliation(s)
- Delphine Vincent
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Paris XI, Institut National Agronomique Paris-Grignon, la Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
40
|
Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:323-36. [PMID: 15596476 DOI: 10.1093/jxb/eri058] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
GC-MS-based metabolite profiling was used to analyse the response of Medicago truncatula cell cultures to elicitation with methyl jasmonate (MeJa), yeast elicitor (YE), or ultraviolet light (UV). Marked changes in the levels of primary metabolites, including several amino acids, organic acids, and carbohydrates, were observed following elicitation with MeJa. A similar, but attenuated response was observed following YE elicitation, whereas little response was observed following UV elicitation. MeJa induced the accumulation of the triterpene beta-amyrin, a precursor to the triterpene saponins, and LC-MS analysis confirmed the accumulation of triterpene saponins in MeJa-elicited samples. In addition, YE induced a slight, but significant accumulation of shikimic acid, an early precursor to the phenylpropanoid pathway, which was also demonstrated to be YE-inducible by LC-MS analyses. Correlation analyses of metabolite relationships revealed perturbation of the glycine, serine, and threonine biosynthetic pathway, and suggested the induction of threonine aldolase activity, an enzyme as yet uncharacterized from plants. Members of the branched chain amino acid pathway accumulated in a concerted fashion, with the strongest correlation being that between leucine and isoleucine (r2=0.941). While UV exposure itself had little effect on primary metabolites, the experimental procedure, as revealed by control treatments, induced changes in several metabolites which were similar to those following MeJa elicitation. Sucrose levels were lower in MJ- and YE-elicited samples compared with control samples, suggesting that a portion of the effects observed on the primary metabolic pool are a consequence of fundamental metabolic repartitioning of carbon resources rather than elicitor-specific induction. In addition, beta-alanine levels were elevated in all elicited samples, which, when viewed in the context of other elicitation responses, suggests the altered metabolism of coenzyme A and its esters, which are essential in secondary metabolism.
Collapse
Affiliation(s)
- Corey D Broeckling
- The Samuel Roberts Noble Foundation, Plant Biology, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Pierre Benveniste
- Institut de Biologie Moleculaire des Plantes, Departement Biogénèse et Fonctions des Isoprénoides, UPR-CNRS 2357, 28 rue Goethe, 67083-Strasbourg, France
| |
Collapse
|
42
|
França S, Roberto P, Marins M, Puga R, Rodrigues A, Pereira J. Biosynthesis of secondary metabolites in sugarcane. Genet Mol Biol 2001. [DOI: 10.1590/s1415-47572001000100032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A set of genes related to secondary metabolism was extracted from the sugarcane expressed sequence tag (SUCEST) database and was used to investigate both the gene expression pattern of key enzymes regulating the main biosynthetic secondary metabolism pathways and the major classes of metabolites involved in the response of sugarcane to environmental and developmental cues. The SUCEST database was constructed with tissues in different physiological conditions which had been collected under varied situation of environmental stress. This database allows researchers to identify and characterize the expressed genes of a wide range of putative enzymes able to catalyze steps in the phenylpropanoid, isoprenoid and other pathways of the special metabolic mechanisms involved in the response of sugarcane to environmental changes. Our results show that sugarcane cDNAs encoded putative ultra-violet induced sesquiterpene cyclases (SC); chalcone synthase (CHS), the first enzyme in the pathway branch for flavonoid biosynthesis; isoflavone synthase (IFS), involved in plant defense and root nodulation; isoflavone reductase (IFR), a key enzyme in phenylpropanoid phytoalexin biosynthesis; and caffeic acid-O-methyltransferase, a key enzyme in the biosynthesis of lignin cell wall precursors. High levels of CHS transcripts from plantlets infected with Herbaspirillum rubri or Gluconacetobacter diazotroficans suggests that agents of biotic stress can elicit flavonoid biosynthesis in sugarcane. From this data we have predicted the profile of isoprenoid and phenylpropanoid metabolism in sugarcane and pointed the branches of secondary metabolism activated during tissue-specific stages of development and the adaptive response of sugarcane to agents of biotic and abiotic stress, although our assignment of enzyme function should be confirmed by careful biochemical and genetic supporting evidence.
Collapse
Affiliation(s)
| | | | | | - R.D. Puga
- Universidade de Ribeirão Preto, Brazil
| | | | | |
Collapse
|
43
|
Chapter Nine Engineering isoprenoid metabolism and biochemistry in plants. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0079-9920(01)80010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|