1
|
Benaouda S, Stöcker T, Schoof H, Léon J, Ballvora A. Transcriptome profiling at the transition to the reproductive stage uncovers stage and tissue-specific genes in wheat. BMC PLANT BIOLOGY 2023; 23:25. [PMID: 36631761 PMCID: PMC9835304 DOI: 10.1186/s12870-022-03986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The transition from vegetative to floral phase is the result of complex crosstalk of exogenous and endogenous floral integrators. This critical physiological event is the response to environmental interaction, which causes biochemical cascades of reactions at different internal tissues, organs, and releases signals that make the plant moves from vegetative status to a reproductive phase. This network controlling flowering time is not deciphered largely in bread wheat. In this study, a comparative transcriptome analysis at a transition time in combination with genetic mapping was used to identify responsible genes in a stage and tissue-specific manner. For this reason, two winter cultivars that have been bred in Germany showing contrasting and stable heading time in different environments were selected for the analysis. RESULTS In total, 670 and 1075 differentially expressed genes in the shoot apical meristem and leaf tissue, respectively, could be identified in 23 QTL intervals for the heading date. In the transition apex, Histone methylation H3-K36 and regulation of circadian rhythm are both controlled by the same homoeolog genes mapped in QTL TaHd112, TaHd124, and TaHd137. TaAGL14 gene that identifies the floral meristem was mapped in TaHd054 in the double ridge. In the same stage, the homoeolog located on chromosome 7D of FLOWERING TIME LOCUS T mapped on chr 7B, which evolved an antagonist function and acts as a flowering repressor was uncovered. The wheat orthologue of transcription factor ASYMMETRIC LEAVES 1 (AS1) was identified in the late reproductive stage and was mapped in TaHd102, which is strongly associated with heading date. Deletion of eight nucleotides in the AS1 promoter could be identified in the binding site of the SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1) gene in the late flowering cultivar. Both proteins AS1 and SOC1 are inducing flowering time in response to gibberellin biosynthesis. CONCLUSION The global transcriptomic at the transition phase uncovered stage and tissue-specific genes mapped in QTL of heading date in winter wheat. In response to Gibberellin signaling, wheat orthologous transcription factor AS1 is expressed in the late reproductive phase of the floral transition. The locus harboring this gene is the strongest QTL associated with the heading date trait in the German cultivars. Consequently, we conclude that this is another indication of the Gibberellin biosynthesis as the mechanism behind the heading variation in wheat.
Collapse
Affiliation(s)
- Salma Benaouda
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Parida AP, Srivastava A, Mathur S, Sharma AK, Kumar R. Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:349-362. [PMID: 33730620 DOI: 10.1016/j.plaphy.2021.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/02/2021] [Indexed: 05/26/2023]
Abstract
F-box genes are an integral component of the Skp1-cullin-F-box (SCF) complex in eukaryotes. These genes are primarily involved in determining substrate specificities during cellular proteolysis. Here we report that 410 members constitute the F-box superfamily in tomato. Based on the incidence of C-terminal domains, these genes fell into ten subfamilies, leucine-rich repeat domain-containing F-box members constituting the largest subfamily. The F-box genes are present on all 12 chromosomes with varying gene densities. Both segmental and tandem duplication events contribute significantly to their expansion in the tomato genome. The syntenic analysis revealed close relationships among F-box homologs within Solanaceae species genomes. Transcript profiling of F-box members identified several ripening-associated genes with altered expression in the ripening mutants. RNA-sequencing data analysis showed that phosphate (Pi) deficiency affected 55 F-box transcripts in the Pi-deficient seedlings compared to their control seedlings. The persistent up-regulation of eight members, including two phloem protein 2B (PP2-B) genes, PP2-B15, and MATERNAL EFFECT EMBRYO ARREST 66 (MEE66) homologs, at multiple time-points in the roots, shoot, and seedling, point towards their pivotal roles in Pi starvation response in tomato. The attenuation of such upregulation in sucrose absence revealed the necessity of this metabolite for robust activation of these genes in the Pi-deficient seedlings. Altogether, this study identifies novel F-box genes with potential roles in fruit ripening and Pi starvation response and unlocks new avenues for functional characterization of candidate genes in tomato and other related species.
Collapse
Affiliation(s)
- Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Alok Srivastava
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon, India; Institute of Bioinformatics and Computational Biology, Visakhapatnam, Andhra Pradesh, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
3
|
Feke A, Vanderwall M, Liu W, Gendron JM. Functional domain studies uncover novel roles for the ZTL Kelch repeat domain in clock function. PLoS One 2021; 16:e0235938. [PMID: 33730063 PMCID: PMC7968664 DOI: 10.1371/journal.pone.0235938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023] Open
Abstract
The small LOV/F-box/Kelch family of E3 ubiquitin ligases plays an essential role in the regulation of plant circadian clocks and flowering time by sensing dusk. The family consists of three members, ZEITLUPE (ZTL), LOV KELCH PROTEIN 2 (LKP2), and FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1 (FKF1), which share a unique protein domain architecture allowing them to act as photoreceptors that transduce light signals via altering stability of target proteins. Despite intensive study of this protein family we still lack important knowledge about the biochemical and functional roles of the protein domains that comprise these unique photoreceptors. Here, we perform comparative analyses of transgenic lines constitutively expressing the photoreceptor LOV domain or the Kelch repeat protein-protein interaction domains of ZTL, FKF1, and LKP2. Expression of each domain alone is sufficient to disrupt circadian rhythms and flowering time, but each domain differs in the magnitude of effect. Immunoprecipitation followed by mass spectrometry with the ZTL Kelch repeat domain identified a suite of potential interacting partners. Furthermore, the ZTL Kelch repeat domain can interact with the ZTL homologs, LKP2 and FKF1, and the LOV domain of ZTL itself. This suggests a hypothesis that the Kelch repeat domain of ZTL may mediate inter- and intra-molecular interactions of the three LOV/F-box/Kelch proteins and provides added insight into the composition of the protein complexes and an additional role for the Kelch repeat domain.
Collapse
Affiliation(s)
- Ann Feke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| | - Morgan Vanderwall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
4
|
Saitoh A, Takase T, Abe H, Watahiki M, Hirakawa Y, Kiyosue T. ZEITLUPE enhances expression of PIF4 and YUC8 in the upper aerial parts of Arabidopsis seedlings to positively regulate hypocotyl elongation. PLANT CELL REPORTS 2021; 40:479-489. [PMID: 33386962 DOI: 10.1007/s00299-020-02643-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Microarray and genetic analyses reveal that ZTL induces the expression of genes related to auxin synthesis, thereby promoting hypocotyl elongation. ZTL is a blue-light receptor that possesses a light-oxygen-voltage-sensing (LOV) domain, an F-box motif, and a kelch repeat domain. ZTL promotes hypocotyl elongation under high temperature (28 °C) in Arabidopsis thaliana; however, the mechanism of this regulation is unknown. Here, we divided seedlings into hypocotyls and upper aerial parts, and performed microarray analyses. In hypocotyl, 1062 genes were down-regulated in ztl mutants (ztl-3 and ztl-105) compared with wild type; some of these genes encoded enzymes involved in cell wall modification, consistent with reduced hypocotyl elongation. In upper aerial parts, 1038 genes were down-regulated in the ztl mutants compared with wild type; these included genes involved in auxin synthesis and auxin response. Furthermore, the expression of the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) gene, which encodes a transcription factor known to positively regulate YUCCA genes (YUCs), was also decreased in the ztl mutants. Genetic analysis revealed that overexpression of PIF4 and YUC8 could restore the suppressed hypocotyl length in the ztl mutants. Our results suggest that ZTL induces expression of YUC8 via PIF4 in upper aerial parts and promotes hypocotyl elongation.
Collapse
Affiliation(s)
- Aya Saitoh
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan.
| | - Tomoyuki Takase
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Hiroshi Abe
- Experimental Plant Division, Department of Biological Systems, RIKEN, BioResource Center, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Masaaki Watahiki
- Faculty of Science, Division of Biological Sciences, Hokkaido University, Kitaku Kita 10 Nishi 8, Sapporo, 060-0810, Japan
| | - Yuki Hirakawa
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Tomohiro Kiyosue
- Graduate Course in Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| |
Collapse
|
5
|
Wu M, Liu H, Gao Y, Shi Y, Pan F, Xiang Y. The moso bamboo drought-induced 19 protein PheDi19-8 functions oppositely to its interacting partner, PheCDPK22, to modulate drought stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110605. [PMID: 32900443 DOI: 10.1016/j.plantsci.2020.110605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Drought-induced 19 (Di19) proteins play crucial roles in regulating stress responses, but the exact mechanisms underlying their involvement in moso bamboo are not fully understood. In this study, PheDi19-8 of moso bamboo (Phyllostachys edulis) was isolated and characterized. PheDi19-8 was a nuclear protein and has a high expression under various abiotic stresses, including drought and salt. As revealed by phenotypic and physiological analyses, ectopic overexpression of PheDi19-8 in Arabidopsis and rice enhanced drought tolerance. Under drought stress, the PheDi19-8-overexpressing lines showed smaller stomatal apertures and higher survival rate in comparison to the wild-type plants, as well as the PheDi19-8-overexpressing lines had higher biomass and souble sugar, but lower relative electrolyte leakage and malondialdehyde. Further investigation revealed that PheDi19-8 interacted with PheCDPK22, and their interaction decreased the DNA-binding activity of PheDi19-8. However, overexpression of PheCDPK22 enhanced Arabidopsis sensitivity to drought stress. Moreover, the expression of marker genes, including LEA, RD22, DREB2A and RD29A, was up-regulated in the PheDi19-8-overexpressing lines but down-regulated in the PheCDPK22-overexpressing. Further yeast one-hybrid and EMSA assays indicated that PheDi19-8 directly binds to the promoter of DREB2A. These results provided new insight into the interaction of PheCDPK22 and PheDi19-8 that functions oppositely to regulate drought stress in plants.
Collapse
Affiliation(s)
- Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Huanlong Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yameng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yanan Shi
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Xu J, Xing S, Sun Q, Zhan C, Liu X, Zhang S, Wang X. The expression of a tubby-like protein from Malus domestica (MdTLP7) enhances abiotic stress tolerance in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:60. [PMID: 30727953 PMCID: PMC6366083 DOI: 10.1186/s12870-019-1662-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/24/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Tubby-like proteins (TLPs), characterized by a signature tubby domain, are widespread in plants and animals. To date, only plant TLPs involved in multifarious stress responses and male gametophyte development have been identified. However, studies on the molecular functions of plant TLPs are largely unknown. RESULTS In this investigation, the roles of a TLP from Malus domestica (MdTLP7) in response to abiotic stresses were characterized by expressing it in Arabidopsis. The expression of wild-type full-length MdTLP7 (FL) significantly increased the stress tolerance of Arabidopsis seedlings to osmotic, salt, cold and heat stress, while the expression of truncated MdTLP7 containing only the tubby domain (Tub) also showed some function. Located on a central α helix surrounded by 12 anti-parallel β strands in the tubby domain, the K190/R192 site may be involved in fixation to the plasma membrane, as shown by 3D homology modelling with animal TLPs. This site might play a crucial role in anti-stress functions since site-directed mutagenesis of MdTLP7 reduced stress tolerance. Subcellular localization showed that MdTLP7 was mainly localized in the plasma membrane in plant cells, suggesting that it might participate in the transduction of stress signals. CONCLUSIONS The results of this study showed that MdTLP7 could improve abiotic stress tolerance not only in bacteria but also in plants. The K190/R192 residues in the tubby domain were not only the plasma membrane binding site of MdTLP7 but also played a key role in stress tolerance. These results may provide a basis for further exploring the mechanism of anti-stress functioning and downstream target genes of plant TLPs.
Collapse
Affiliation(s)
- Jianing Xu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Shanshan Xing
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Qinghua Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Chunyan Zhan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Xin Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Shizhong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018 People’s Republic of China
| |
Collapse
|
7
|
Miyazaki Y, Jikumaru Y, Takase T, Saitoh A, Sugitani A, Kamiya Y, Kiyosue T. Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana. PLANT CELL REPORTS 2016; 35:455-467. [PMID: 26601822 DOI: 10.1007/s00299-015-1896-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/12/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Auxin and two phytochrome-interacting factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, play crucial roles in the enhancement of hypocotyl elongation in transgenic Arabidopsis thaliana plants that overproduce LOV KELCH PROTEIN2 (LKP2). LOV KELCH PROTEIN2 (LKP2) is a positive regulator of hypocotyl elongation under white light in Arabidopsis thaliana. In this study, using microarray analysis, we compared the gene expression profiles of hypocotyls of wild-type Arabidopsis (Columbia accession), a transgenic line that produces green fluorescent protein (GFP), and two lines that produce GFP-tagged LKP2 (GFP-LKP2). We found that, in GFP-LKP2 hypocotyls, 775 genes were up-regulated, including 36 auxin-responsive genes, such as 27 SMALL AUXIN UP RNA (SAUR) and 6 AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, and 21 genes involved in responses to red or far-red light, including PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5; and 725 genes were down-regulated, including 15 flavonoid biosynthesis genes. Hypocotyls of GFP-LKP2 seedlings, but not cotyledons or roots, contained a higher level of indole-3-acetic acid (IAA) than those of control seedlings. Auxin inhibitors reduced the enhancement of hypocotyl elongation in GFP-LKP2 seedlings by inhibiting the increase in cortical cell number and elongation of the epidermal and cortical cells. The enhancement of hypocotyl elongation was completely suppressed in progeny of the crosses between GFP-LKP2 lines and dominant gain-of-function auxin-resistant mutants (axr2-1 and axr3-1) or loss-of-function mutants pif4, pif5, and pif4 pif5. Our results suggest that the enhancement of hypocotyl elongation in GFP-LKP2 seedlings is due to the elevated level of IAA and to the up-regulated expression of PIF4 and PIF5 in hypocotyls.
Collapse
Affiliation(s)
- Yuji Miyazaki
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Yusuke Jikumaru
- Growth Regulation Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomoyuki Takase
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Aya Saitoh
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Asuka Sugitani
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan
| | - Yuji Kamiya
- Growth Regulation Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomohiro Kiyosue
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-Ku, Tokyo, 171-8588, Japan.
| |
Collapse
|
8
|
Gumz F, Krausze J, Eisenschmidt D, Backenköhler A, Barleben L, Brandt W, Wittstock U. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown. PLANT MOLECULAR BIOLOGY 2015; 89:67-81. [PMID: 26260516 DOI: 10.1007/s11103-015-0351-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants.
Collapse
Affiliation(s)
- Frauke Gumz
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Joern Krausze
- Structure and Function of Proteins, Helmholtz Center for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Daniela Eisenschmidt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Anita Backenköhler
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Leif Barleben
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany.
| |
Collapse
|
9
|
Miyazaki Y, Abe H, Takase T, Kobayashi M, Kiyosue T. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana. PLANT CELL REPORTS 2015; 34:843-52. [PMID: 25627253 DOI: 10.1007/s00299-015-1746-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 05/23/2023]
Abstract
The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.
Collapse
Affiliation(s)
- Yuji Miyazaki
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | | | | | | | | |
Collapse
|
10
|
Feng ZJ, Cui XY, Cui XY, Chen M, Yang GX, Ma YZ, He GY, Xu ZS. The soybean GmDi19-5 interacts with GmLEA3.1 and increases sensitivity of transgenic plants to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:179. [PMID: 25852726 PMCID: PMC4371698 DOI: 10.3389/fpls.2015.00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 05/29/2023]
Abstract
Drought-induced (Di19) proteins played important roles in plant growth, development, and abiotic stress responses. In the present study, a total of seven Di19 genes were identified in soybean. Each soybean Di19 gene showed specific responses to salt, drought, oxidative, and ABA stresses based on expression profiles. With a relatively higher transcript level among Di19 members under four stress treatments, GmDi19-5 was selected for detailed analysis. Inhibitor assays revealed that ABA inhibitor (Fluridone) or H2O2 inhibitor (DMTU) was involved in the drought- or salt-induced transcription of GmDi19-5. The GUS activity driven by the GmDi19-5 promoter was induced by salt, PEG, ABA, and MV treatments and tended to be accumulated in the vascular bundles and young leaves. A subcellular localization assay showed that GmDi19-5 protein localized in the nucleus. Further investigation showed that GmDi19-5 protein was involved in the interaction with GmLEA3.1. Overexpression of GmDi19-5 increased sensitivity of transgenic Arabidopsis plants to salt, drought, oxidative, and ABA stresses and regulated expression of several ABA/stress-associated genes. This present investigation showed that GmDi19-5 functioned as a negative factor under abiotic stresses and was involved in ABA and SOS signaling pathway by altering transcription of stress-associated genes.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural UniversityChangchun, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Guang-Xiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Guang-Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| |
Collapse
|
11
|
Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome. Mol Genet Genomics 2015; 290:1435-46. [PMID: 25855485 DOI: 10.1007/s00438-015-1004-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
The F-box protein family is a large family that is characterized by conserved F-box domains of approximately 40-50 amino acids in the N-terminus. F-box proteins participate in diverse cellular processes, such as development of floral organs, signal transduction and response to stress, primarily as a component of the Skp1-cullin-F-box (SCF) complex. In this study, using a global search of the apple genome, 517 F-box protein-encoding genes (F-box genes for short) were identified and further subdivided into 12 groups according to the characterization of known functional domains, which suggests the different potential functions or processes that they were involved in. Among these domains, the galactose oxidase domain was analyzed for the first time in plants, and this domain was present with or without the Kelch domain. The F-box genes were distributed in all 17 apple chromosomes with various densities and tended to form gene clusters. Spatial expression profile analysis revealed that F-box genes have organ-specific expression and are widely expressed in all organs. Proteins that contained the galactose oxidase domain were highly expressed in leaves, flowers and seeds. From a fruit ripening expression profile, 166 F-box genes were identified. The expressions of most of these genes changed little during maturation, but five of them increased significantly. Using qRT-PCR to examine the expression of F-box genes encoding proteins with domains related to stress, the results revealed that F-box proteins were up- or down-regulated, which suggests that F-box genes were involved in abiotic stress. The results of this study helped to elucidate the functions of F-box proteins, especially in Rosaceae plants.
Collapse
|
12
|
Saitoh A, Takase T, Kitaki H, Miyazaki Y, Kiyosue T. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls. PLANT SIGNALING & BEHAVIOR 2015; 10:e1071752. [PMID: 26237185 PMCID: PMC4854359 DOI: 10.1080/15592324.2015.1071752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 05/26/2023]
Abstract
Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.
Collapse
Affiliation(s)
- Aya Saitoh
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
- These authors contributed equally to this work
| | - Tomoyuki Takase
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
- These authors contributed equally to this work
| | - Hiroyuki Kitaki
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
| | - Yuji Miyazaki
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
| | - Tomohiro Kiyosue
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
| |
Collapse
|
13
|
Miyazaki Y, Takase T, Kiyosue T. ZEITLUPE positively regulates hypocotyl elongation at warm temperature under light in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2015; 10:e998540. [PMID: 26039487 PMCID: PMC4623253 DOI: 10.1080/15592324.2014.998540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hypocotyl cell elongation has been studied as a model to understand how cellular expansion contributes to plant organ growth. Hypocotyl elongation is affected by multiple environmental factors, including light quantity and light quality. Red light inhibits hypocotyl growth via the phytochrome signaling pathways. Proteins of the flavin-binding KELCH repeat F-box 1 / LOV KELCH protein 2 / ZEITLUPE family are positive regulators of hypocotyl elongation under red light in Arabidopsis. These proteins were suggested to reduce phytochrome-mediated inhibition of hypocotyl elongation. Here, we show that ZEITLUPE also functions as a positive regulator in warmth-induced hypocotyl elongation under light in Arabidopsis.
Collapse
Affiliation(s)
- Yuji Miyazaki
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
| | - Tomoyuki Takase
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
| | | |
Collapse
|
14
|
Matsushika A, Murakami M, Ito S, Nakamichi N, Yamashino T, Mizuno T. Characterization of Circadian-Associated Pseudo-Response Regulators: I. Comparative Studies on a Series of Transgenic Lines Misexpressing Five Distinctive PRR Genes inArabidopsis thaliana. Biosci Biotechnol Biochem 2014; 71:527-34. [PMID: 17284849 DOI: 10.1271/bbb.60583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Every member of a small family of Pseudo-Response Regulator (PRR) genes, including Timing of Cab Expression 1 (TOC1 [or PRR1]), are believed to play roles close to the circadian clock in the model higher plant Arabidopsis thaliana. In this study we established a transgenic line that misexpresses (or overexpresses) the PRR7 gene. As compared with wild-type plants, the resulting PRR7-misexpressing plants (designated PRR7-ox) showed characteristic phenotypes as to hallmarked circadian-associated biological events: (i) early flowering in a manner independent of photoperiodicity, (ii) hypersensitive response to red light during early photomorphogenesis, and (iii) altered free-running rhythms with long period of clock-associated genes. Finally, a series of all transgenic lines (PRR1-ox, PRR3-ox, PRR5-ox, PRR7-ox, and PRR9-ox) were characterized comparatively with regard to their clock-associated roles. The results suggested that the five homologous PRR factors play coordinate roles, distinctively from one another, and closely to the circadian clock in higher plants.
Collapse
Affiliation(s)
- Akinori Matsushika
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Furocho, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The ZTL/FKF1/LKP2 group proteins are LOV-domain-based blue-light photoreceptors that control protein degradation by ubiquitination. These proteins were identified relatively recently and are known to be involved in the regulation of the circadian clock and photoperiodic flowering in Arabidopsis. In this review, we focus on two topics. First, we summarize the molecular mechanisms by which ZTL and FKF1 regulate these biological phenomena based on genetic and biochemical analyses. Next, we discuss the chemical properties of the ZTL family LOV domains obtained from structural, biophysical, and photochemical characterizations of the LOV domains. These two different levels of approach unveiled the molecular mechanisms by which plants utilize ZTL and FKF1 proteins to monitor light for daily and seasonal adaptation.
Collapse
Affiliation(s)
- Brian D Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA.
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
16
|
Suetsugu N, Wada M. Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, ZTL/FKF1/LKP2 and Aureochrome. ACTA ACUST UNITED AC 2012; 54:8-23. [DOI: 10.1093/pcp/pcs165] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin-proteasome system: central modifier of plant signalling. THE NEW PHYTOLOGIST 2012; 196:13-28. [PMID: 22897362 DOI: 10.1111/j.1469-8137.2012.04266.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/05/2012] [Indexed: 05/19/2023]
Abstract
Ubiquitin is well established as a major modifier of signalling in eukaryotes. However, the extent to which plants rely on ubiquitin for regulating their lifecycle is only recently becoming apparent. This is underlined by the over-representation of genes encoding ubiquitin-metabolizing enzymes in Arabidopsis when compared with other model eukaryotes. The main characteristic of ubiquitination is the conjugation of ubiquitin onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The ubiquitin-proteasome system is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental conditions. This review maps out the roles of the components of the ubiquitin-proteasome system with emphasis on areas where future research is urgently needed. We provide a flavour of the diverse aspects of plant lifecycle where the ubiquitin-proteasome system is implicated. We aim to highlight common themes using key examples that reiterate the importance of the ubiquitin-proteasome system to plants. The future challenge in plant biology is to define the targets for ubiquitination, their interactors and their molecular function within the regulatory context.
Collapse
Affiliation(s)
- Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| | - Mark Bailey
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| | - Richard Ewan
- The Scottish Institute for Cell Signalling (SCILLS), Sir James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | - Jack Lee
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| | - Stuart Nelis
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| |
Collapse
|
18
|
Ito S, Song YH, Imaizumi T. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. MOLECULAR PLANT 2012; 5:573-82. [PMID: 22402262 PMCID: PMC3355347 DOI: 10.1093/mp/sss013] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants constantly survey the surrounding environment using several sets of photoreceptors. They can sense changes in the quantity (=intensity) and quality (=wavelength) of light and use this information to adjust their physiological responses, growth, and developmental patterns. In addition to the classical photoreceptors, such as phytochromes, cryptochromes, and phototropins, ZEITLUPE (ZTL), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), and LOV KELCH PROTEIN 2 (LKP2) proteins have been recently identified as blue-light photoreceptors that are important for regulation of the circadian clock and photoperiodic flowering. The ZTL/FKF1/LKP2 protein family possesses a unique combination of domains: a blue-light-absorbing LOV (Light, Oxygen, or Voltage) domain along with domains involved in protein degradation. Here, we summarize recent advances in our understanding of the function of the Arabidopsis ZTL/FKF1/LKP2 proteins. We summarize the distinct photochemical properties of their LOV domains and discuss the molecular mechanisms by which the ZTL/FKF1/LKP2 proteins regulate the circadian clock and photoperiodic flowering by controlling blue-light-dependent protein degradation.
Collapse
|
19
|
Xue ZG, Zhang XM, Lei CF, Chen XJ, Fu YF. Molecular cloning and functional analysis of one ZEITLUPE homolog GmZTL3 in soybean. Mol Biol Rep 2012; 39:1411-8. [PMID: 21617948 DOI: 10.1007/s11033-011-0875-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/14/2011] [Indexed: 12/21/2022]
Abstract
ZEITLUPE (ZTL) plays an important role in the control of flowering time and photomorpogenesis in Arabidopsis and is highly conserved throughout the plant kingdom. Here, we report the characterization of a soybean ZTL homolog GmZTL3 (Glycine max ZTL 3). The absorption spectrum of the recombinant GmZTL3 proteins indicates that it may be a UV/blue photoreceptor. The GmZTL3 expression is independent of diurnal cycles and varies in different tissues along with developmental stages. Before the unifoliolates open fully, GmZTL3 transcripts concentrate in the roots and hypocotyls, while at flowering GmZTL3 accumulates at higher abundance in stems and petioles. Furthermore, the GmZTL3 mRNA accumulates in all kinds of leaves before flowering and concentrates in maturation seeds. In Arabidopsis, the ectopic expression of GmZTL3 delays flowering, implicating GmZTL3 is an inhibitor of flowering induction. Our data indicate that GmZTL3 probably functions as a photoreceptor and plays a role in multiple developmental processes, including the control of flowering time.
Collapse
Affiliation(s)
- Zheng-Gang Xue
- College of Agronomy, Henan Agricultural University, 63 Nongye Road, Jinshui District, Zhengzhou 450002, China
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Takase T, Nishiyama Y, Tanihigashi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:608-21. [PMID: 21518052 DOI: 10.1111/j.1365-313x.2011.04618.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
LOV KELCH PROTEIN2 (LKP2), ZEITLUPE (ZTL)/LOV KELCH PROTEIN1 (LKP1) and FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1) constitute a family of Arabidopsis F-box proteins that regulate the circadian clock. Over-expression of LKP2 or ZTL causes arrhythmicity of multiple clock outputs under constant light and in constant darkness. Here, we show the significance of LKP2 and ZTL in the photoperiodic control of flowering time in Arabidopsis. In plants over-expressing LKP2, CO and FT expression was down-regulated under long-day conditions. LKP2 and ZTL physically interacted with FKF1, which was recruited from the nucleus into cytosolic speckles. LKP2 and ZTL inhibited the interaction of FKF1 with CYCLING DOF FACTOR 1, a ubiquitination substrate for FKF1 that is localized in the nucleus. The Kelch repeat regions of LKP2 and ZTL were sufficient for their physical interaction with FKF1 and translocation of FKF1 to the cytoplasm. Over-expression of LKP2 Kelch repeats induced late flowering under long-day conditions. lkp2 ztl double mutant plants flowered earlier than wild-type plants under short-day (non-inductive) conditions, and both CO and FT expression levels were up-regulated in the double mutant plants. The early flowering of lkp2 ztl was dependent on FKF1. LKP2, ZTL or both affected the accumulation of FKF1 protein during the early light period. These results indicate that an important role of LKP2 and ZTL in the photoperiodic pathway is repression of flowering under non-inductive conditions, and this is dependent on FKF1.
Collapse
Affiliation(s)
- Tomoyuki Takase
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 2010; 29:1903-15. [PMID: 20407420 DOI: 10.1038/emboj.2010.76] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/30/2010] [Indexed: 12/15/2022] Open
Abstract
Many core oscillator components of the circadian clock are nuclear localized but how the phase and rate of their entry contribute to clock function is unknown. TOC1/PRR1, a pseudoresponse regulator (PRR) protein, is a central element in one of the feedback loops of the Arabidopsis clock, but how it functions is unknown. Both TOC1 and a closely related protein, PRR5, are nuclear localized, expressed in the same phase, and shorten period when deficient, but their molecular relationship is unclear. Here, we find that both proteins interact in vitro and in vivo through their conserved N-termini. TOC1-PRR5 oligomerization enhances TOC1 nuclear accumulation two-fold, most likely through enhanced nuclear import. In addition, PRR5 recruits TOC1 to large subnuclear foci and promotes phosphorylation of the TOC1 N-terminus. Our results show that nuclear TOC1 is essential for normal clock function and reveal a mechanism to enhance phase-specific TOC1 nuclear accumulation. Interestingly, this process of regulated nuclear import is reminiscent of similar oligomeric pairings in animal clock systems (e.g. timeless/period and clock/cycle), suggesting evolutionary convergence of a conserved mechanism across kingdoms.
Collapse
|
23
|
Inui H, Ogura Y, Kiyosue T. Overexpression of Arabidopsis thaliana LOV KELCH REPEAT PROTEIN 2 promotes tuberization in potato (Solanum tuberosum cv. May Queen). FEBS Lett 2010; 584:2393-6. [PMID: 20399775 DOI: 10.1016/j.febslet.2010.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/30/2010] [Accepted: 04/12/2010] [Indexed: 11/17/2022]
Abstract
Potato tuberization is induced under short-day conditions and repressed under long-day conditions. In this study, we produced transgenic potatoes overexpressing either Arabidopsis thaliana LOV KELCH PROTEIN 2 (35S:LKP2) or CONSTANS fused with a transcription repressor motif (35S:CO-Rep). In an in vitro tuberization assay, the average number of tubers per plant was greater in 35S:LKP2 plants than in vector-control plants, but lower in 35S:CO-Rep plants. Under long-day conditions in soil, all 35S:LKP2 plants tuberized, whereas most control plants and 35S:CO-Rep plants did not. These results suggest genes involved in flowering time regulation can be used to control potato tuber production.
Collapse
Affiliation(s)
- Hideyuki Inui
- Research Center for Environmental Genomics, Kobe University, Nada-ku, Kobe, Japan
| | | | | |
Collapse
|
24
|
Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua NH, Tobin EM, Kay SA, Imaizumi T. F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. THE PLANT CELL 2010; 22:606-22. [PMID: 20354196 PMCID: PMC2861467 DOI: 10.1105/tpc.109.072843] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/02/2010] [Accepted: 03/17/2010] [Indexed: 05/18/2023]
Abstract
Regulation of protein turnover mediated by ZEITLUPE (ZTL) constitutes an important mechanism of the circadian clock in Arabidopsis thaliana. Here, we report that FLAVIN BINDING, KELCH REPEAT, F-BOX1 (FKF1) and LOV KELCH PROTEIN2 (LKP2) play similar roles to ZTL in the circadian clock when ZTL is absent. In contrast with subtle circadian clock defects in fkf1, the clock in ztl fkf1 has a considerably longer period than in ztl. In ztl fkf1 lkp2, several clock parameters were even more severely affected than in ztl fkf1. Although LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) expression levels are lower in ztl than in the wild type, introducing both fkf1 and lkp2 mutations into the ztl mutant dramatically diminished LHY expression without further affecting CCA1 expression. This demonstrates different contributions of ZTL, FKF1, and LKP2 in the regulation of LHY and CCA1 expression. In addition, FKF1 and LKP2 also interacted with TIMING OF CAB EXPRESSION1 (TOC1) and PSEUDO-RESPONSE REGULATOR5 (PRR5), and both proteins were further stabilized in ztl fkf1 and ztl fkf1 lkp2 compared with in ztl. Our results indicate that ZTL, FKF1, and LKP2 together regulate TOC1 and PRR5 degradation and are major contributors to determining the period of circadian oscillation and enhancing robustness.
Collapse
Affiliation(s)
- Antoine Baudry
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| | - Shogo Ito
- Department of Biology, University of Washington, Seattle, Washington 98195
| | - Young Hun Song
- Department of Biology, University of Washington, Seattle, Washington 98195
| | | | - Takatoshi Kiba
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Sheen Lu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Rossana Henriques
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - José L. Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Elaine M. Tobin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Steve A. Kay
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
25
|
Ogura Y, Tokutomi S, Wada M, Kiyosue T. PAS/LOV proteins: A proposed new class of plant blue light receptor. PLANT SIGNALING & BEHAVIOR 2008; 3:966-8. [PMID: 19704421 PMCID: PMC2633744 DOI: 10.4161/psb.6150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 05/23/2023]
Abstract
The light, oxygen or voltage (LOV) domain belongs to the Per-ARNT-Sim (PAS) superfamily of domains, and functions with the flavin chromophore as a module for sensing blue light in plants and fungi. The Arabidopsis thaliana PAS/LOV proteins (PLPs), of unknown function, possess an N-terminal PAS domain and a C-terminal LOV domain. Our recent analysis using yeast two-hybrid and Escherichia coli protein production systems reveals that the interactions of Arabidopsis PLPs with several proteins diminish under blue light illumination and that the PLP LOV domain may bind to a flavin chromophore. These results suggest that PLP functions as a blue light receptor. Homologs of PLP exist in rice, tomato and moss. The LOV domains of these PLP homologs form a distinct group in phylogenetic analysis. These facts suggest that PLP belongs to a new class of plant blue light receptor.
Collapse
Affiliation(s)
- Yasunobu Ogura
- Division of Genome Analysis and Genetic Research; Life Science Research Center; Institute of Research Promotion; Kagawa University; Kagawa Japan
| | - Satoru Tokutomi
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University; Osaka, Japan
| | - Masamitsu Wada
- Department of Biology; Faculty of Science; Kyushu Univeristy; Fukuoka Japan
| | - Tomohiro Kiyosue
- Division of Genome Analysis and Genetic Research; Life Science Research Center; Institute of Research Promotion; Kagawa University; Kagawa Japan
| |
Collapse
|
26
|
Phylogenetic, structural and functional relationships between WD- and Kelch-repeat proteins. Subcell Biochem 2008; 48:6-19. [PMID: 18925367 DOI: 10.1007/978-0-387-09595-0_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The beta-propeller domain is a widespread protein organizational motif. Typically, beta-propeller proteins are encoded by repeated sequences where each repeat unit corresponds to a twisted beta-sheet structural motif; these beta-sheets are arranged in a circle around a central axis to generate the beta-propeller structure. Two superfamilies of beta-propeller proteins, the WD-repeat and Kelch-repeat families, exhibit similarities not only in structure, but, remarkably, also in the types of molecular functions they perform. While it is unlikely that WD and Kelch repeats evolved from a common ancestor, their evolution into diverse families of similar function may reflect the evolutionary advantages of the stable core beta-propeller fold. In this chapter, we examine the relationships between these two widespread protein families, emphasizing recently published work relating to the structure and function of both Kelch and WD-repeat proteins.
Collapse
|
27
|
Facella P, Lopez L, Carbone F, Galbraith DW, Giuliano G, Perrotta G. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors. PLoS One 2008; 3:e2798. [PMID: 18665253 PMCID: PMC2474677 DOI: 10.1371/journal.pone.0002798] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 07/07/2008] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Circadian clocks are internal molecular time-keeping mechanisms that provide living organisms with the ability to adjust their growth and physiology and to anticipate diurnal environmental changes. Circadian clocks, without exception, respond to light and, in plants, light is the most potent and best characterized entraining stimulus. The capacity of plants to respond to light is achieved through a number of photo-perceptive proteins including cryptochromes and phytochromes. There is considerable experimental evidence demonstrating the roles of photoreceptors in providing light input to the clock. METHODOLOGY In order to identify genes regulated by diurnal and circadian rhythms, and to establish possible functional relations between photoreceptors and the circadian clock in tomato, we monitored the temporal transcription pattern in plants entrained to long-day conditions, either by large scale comparative profiling, or using a focused approach over a number of photosensory and clock-related genes by QRT-PCR. In parallel, focused transcription analyses were performed in cry1a- and in CRY2-OX tomato genotypes. CONCLUSIONS We report a large series of transcript oscillations that shed light on the complex network of interactions among tomato photoreceptors and clock-related genes. Alteration of cryptochrome gene expression induced major changes in the rhythmic oscillations of several other gene transcripts. In particular, over-expression of CRY2 had an impact not only on day/night fluctuations but also on rhythmicity under constant light conditions. Evidence was found for widespread diurnal oscillations of transcripts encoding specific enzyme classes (e.g. carotenoid biosynthesis enzymes) as well as for post-transcriptional diurnal and circadian regulation of the CRY2 transcript.
Collapse
Affiliation(s)
- Paolo Facella
- ENEA, Trisaia Research Center, Rotondella (MT), Italy
| | | | | | - David W. Galbraith
- BIO5 Institute for Collaborative Bioresearch and Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | | | | |
Collapse
|
28
|
Ogura Y, Komatsu A, Zikihara K, Nanjo T, Tokutomi S, Wada M, Kiyosue T. Blue light diminishes interaction of PAS/LOV proteins, putative blue light receptors in Arabidopsis thaliana, with their interacting partners. JOURNAL OF PLANT RESEARCH 2008; 121:97-105. [PMID: 17982713 DOI: 10.1007/s10265-007-0118-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 09/13/2007] [Indexed: 05/23/2023]
Abstract
The light, oxygen, or voltage (LOV) domain that belongs to the Per-ARNT-Sim (PAS) domain superfamily is a blue light sensory module. The Arabidopsis thaliana PAS/LOV PROTEIN (PLP) gene encodes three putative blue light receptor proteins, PLPA, PLPB, and PLPC, because of its mRNA splicing variation. PLPA and PLPB each contain one PAS domain at the N-terminal region and one LOV domain at the C-terminal region, while the LOV domain is truncated in PLPC. RNA gel blot analysis showed that PLP mRNA was markedly expressed after exposure to salt or dehydration stress. Yeast two-hybrid screening led to the isolation of VITAMIN C DEFECTIVE 2 (VTC2), VTC2-LIKE (VTC2L), and BEL1-LIKE HOMEODOMAIN 10 proteins (BLH10A and BLH10B) as PLP-interacting proteins. The molecular interaction of PLPA with VTC2L, BLH10A or BLH10B, and that of PLPB with VTC2L were diminished when yeasts were grown under blue light illumination. Furthermore, the possible binding of flavin chromophore to PLPA and PLPB was demonstrated. These results imply that the LOV domain of PLPA and PLPB functions as a blue light sensor, and suggest the applicability of these interactions to blue light-dependent switching in transcriptional regulation in yeast or other organisms.
Collapse
Affiliation(s)
- Yasunobu Ogura
- Division of Genome Analysis and Genetic Research, Life Science Research Center, Institute of Research Promotion, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Para A, Farré EM, Imaizumi T, Pruneda-Paz JL, Harmon FG, Kay SA. PRR3 Is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. THE PLANT CELL 2007; 19:3462-73. [PMID: 18055606 PMCID: PMC2174887 DOI: 10.1105/tpc.107.054775] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/13/2007] [Accepted: 11/02/2007] [Indexed: 05/17/2023]
Abstract
The pseudoresponse regulators (PRRs) participate in the progression of the circadian clock in Arabidopsis thaliana. The founding member of the family, TIMING OF CAB EXPRESSION1 (TOC1), is an essential component of the transcriptional network that constitutes the core mechanism of the circadian oscillator. Recent data suggest a role in circadian regulation for all five members of the PRR family; however, the molecular function of TOC1 or any other PRRs remains unknown. In this work, we present evidence for the involvement of PRR3 in the regulation of TOC1 protein stability. PRR3 was temporally coexpressed with TOC1 under different photoperiods, yet its tissue expression was only partially overlapping with that of TOC1, as PRR3 appeared restricted to the vasculature. Decreased expression of PRR3 resulted in reduced levels of TOC1 protein, while overexpression of PRR3 caused an increase in the levels of TOC1, all without affecting the amount of TOC1 transcript. PRR3 was able to bind to TOC1 in yeast and in plants and to perturb TOC1 interaction with ZEITLUPE (ZTL), which targets TOC1 for proteasome-dependent degradation. Together, our results indicate that PRR3 might function to modulate TOC1 stability by hindering ZTL-dependent TOC1 degradation, suggesting the existence of local regulators of clock activity and adding to the growing importance of posttranslational regulation in the design of circadian timing mechanisms in plants.
Collapse
Affiliation(s)
- Alessia Para
- Department of Biochemistry, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
30
|
Murakami M, Tago Y, Yamashino T, Mizuno T. Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. PLANT & CELL PHYSIOLOGY 2007; 48:110-21. [PMID: 17132630 DOI: 10.1093/pcp/pcl043] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In higher plants, circadian rhythms are highly relevant to a wide range of biological processes. To such circadian rhythms, the clock (oscillator) is central, and recent intensive studies on the model higher plant Arabidopsis thaliana have begun to shed light on the molecular mechanisms underlying the functions of the central clock. Such representative clock-associated genes of A. thaliana are the homologous CCA1 and LHY genes, and five PRR genes that belong to a small family of pseudo-response regulators including TOC1. Others are GI, ZTL, ELF3, ELF4, LUX/PCL1, etc. In this context, a simple question arose as to whether or not the molecular picture of the model Arabidopsis clock is conserved in other higher plants. Here we made an effort to answer the question with special reference to Oryza sativa, providing experimental evidence that this model monocot also has a set of highly conserved clock-associated genes, such as those designated as OsCCA1, OsPRR-series including OsTOC1/OsPRR1, OsZTLs, OsPCL1 as well as OsGI. These results will provide us with insight into the general roles of plant circadian clocks, such as those for the photoperiodic control of flowering time that has a strong impact on the reproduction and yield in many higher plants.
Collapse
Affiliation(s)
- Masaya Murakami
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
31
|
Abstract
Phototropins are blue-light receptors controlling a range of responses that serve to optimize the photosynthetic efficiency of plants. These include phototropism, light-induced stomatal opening, and chloroplast movements in response to changes in light intensity. Since the isolation of the Arabidopsis PHOT1 gene in 1997, phototropins have been identified in ferns and mosses where their physiological functions appear to be conserved. Arabidopsis contains two phototropins, phot1 and phot2, that exhibit overlapping functions in addition to having unique physiological roles. Phototropins are light-activated serine/threonine protein kinases. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Photoexcitation of the LOV domain results in receptor autophosphorylation and an initiation of phototropin signaling. Here we summarize the photochemical and biochemical events underlying phototropin activation in addition to the current knowledge of the molecular mechanisms associated with photoreceptor signaling.
Collapse
Affiliation(s)
- John M Christie
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
32
|
Abstract
Life occurs in an ever-changing environment. Some of the most striking and predictable changes are the daily rhythms of light and temperature. To cope with these rhythmic changes, plants use an endogenous circadian clock to adjust their growth and physiology to anticipate daily environmental changes. Most studies of circadian functions in plants have been performed under continuous conditions. However, in the natural environment, diurnal outputs result from complex interactions of endogenous circadian rhythms and external cues. Accumulated studies using the hypocotyl as a model for plant growth have shown that both light signalling and circadian clock mutants have growth defects, suggesting strong interactions between hypocotyl elongation, light signalling and the circadian clock. Here, we review evidence suggesting that light, plant hormones and the circadian clock all interact to control diurnal patterns of plant growth.
Collapse
Affiliation(s)
- Kazunari Nozue
- Section of Plant Biology, College of Biological Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
33
|
Kevei E, Gyula P, Hall A, Kozma-Bognár L, Kim WY, Eriksson ME, Tóth R, Hanano S, Fehér B, Southern MM, Bastow RM, Viczián A, Hibberd V, Davis SJ, Somers DE, Nagy F, Millar AJ. Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. PLANT PHYSIOLOGY 2006; 140:933-45. [PMID: 16428597 PMCID: PMC1400575 DOI: 10.1104/pp.105.074864] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 11/29/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
The circadian system of Arabidopsis (Arabidopsis thaliana) includes feedback loops of gene regulation that generate 24-h oscillations. Components of these loops remain to be identified; none of the known components is completely understood, including ZEITLUPE (ZTL), a gene implicated in regulated protein degradation. ztl mutations affect both circadian and developmental responses to red light, possibly through ZTL interaction with PHYTOCHROME B (PHYB). We conducted a large-scale genetic screen that identified additional clock-affecting loci. Other mutants recovered include 11 new ztl alleles encompassing mutations in each of the ZTL protein domains. Each mutation lengthened the circadian period, even in dark-grown seedlings entrained to temperature cycles. A mutation of the LIGHT, OXYGEN, VOLTAGE (LOV)/Period-ARNT-Sim (PAS) domain was unique in retaining wild-type responses to red light both for the circadian period and for control of hypocotyl elongation. This uncoupling of ztl phenotypes indicates that interactions of ZTL protein with multiple factors must be disrupted to generate the full ztl mutant phenotype. Protein interaction assays showed that the ztl mutant phenotypes were not fully explained by impaired interactions with previously described partner proteins Arabidopsis S-phase kinase-related protein 1, TIMING OF CAB EXPRESSION 1, and PHYB. Interaction with PHYB was unaffected by mutation of any ZTL domain. Mutation of the kelch repeat domain affected protein binding at both the LOV/PAS and the F-box domains, indicating that interaction among ZTL domains leads to the strong phenotypes of kelch mutations. Forward genetics continues to provide insight regarding both known and newly discovered components of the circadian system, although current approaches have saturated mutations at some loci.
Collapse
Affiliation(s)
- Eva Kevei
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mizoguchi T, Putterill J, Ohkoshi Y. Kinase and Phosphatase: The Cog and Spring of the Circadian Clock. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:47-72. [PMID: 16861063 DOI: 10.1016/s0074-7696(06)50002-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reversible phosphorylation is an important regulatory mechanism for many biological processes in eukaryotic organisms. The phosphorylation state of a protein is controlled dynamically by both protein kinases and phosphatases. Phosphorylation of circadian clock proteins is an essential posttranscriptional mechanism in the regulation of circadian clocks, and several protein kinases and phosphatases have been shown to regulate key clock components in eukaryotic systems, including Arabidopsis, Neurospora, Drosophila, and mice. In this review, recent progress in the characterization of protein kinases and phosphatases involved in circadian rhythms is summarized. The protein kinase CK2 has been proposed as an evolutionary link between the divergent circadian systems of plants, animals, and fungi. The roles of CK2 in this process are discussed here in detail.
Collapse
Affiliation(s)
- Tsuyoshi Mizoguchi
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
35
|
Fukamatsu Y, Mitsui S, Yasuhara M, Tokioka Y, Ihara N, Fujita S, Kiyosue T. Identification of LOV KELCH PROTEIN2 (LKP2)-interacting factors that can recruit LKP2 to nuclear bodies. PLANT & CELL PHYSIOLOGY 2005; 46:1340-9. [PMID: 15937324 DOI: 10.1093/pcp/pci144] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
LOV KELCH PROTEIN2 (LKP2) is an F-box protein that has been postulated to function centrally, or near to the circadian clock oscillator. As a first step to determine which proteins act as substrates of LKP2, yeast two-hybrid screening was performed using LKP2 as bait, and two interaction factors, Di19 and COL1, were isolated. The transiently expressed Di19-GUS fusion protein was localized in the nucleus of Arabidopsis petiole cells. COL1 and other CO/COL family proteins could also interact with LKP1/ZTL, LKP2 or FKF1. The LKP2-binding site in CO or COL1 was near the center of each protein. The CCT motif in CO or COL1 was not sufficient for interaction with LKP2. LKP2 recognized CO with F-box and kelch repeat-containing regions, while it recognized COL1 with an LOV domain. When LKP2 was fused with cyan fluorescent proein (CFP) and transiently expressed in onion epidermal cells, CFP-LKP2 signals were localized in the nucleus and cytosol. Both yellow fluorescent protein (YFP)-CO and YFP-COL1 were located in the nucleus, forming nuclear bodies when they were transiently expressed. However, co-expression of CFP-LKP2 with YFP fused to either CO or COL1 resulted in the recruitment of CFP-LKP2 in nuclear bodies. Furthermore, the CFP-LKP2 and YFP-CO signals co-localized with signals for pU2B''-mRFP, which is a marker for Cajal bodies. These results suggest the possibility that LKP2 functions with CO/COL family proteins in the nuclear bodies.
Collapse
Affiliation(s)
- Yosuke Fukamatsu
- Division of Gene Research, Life Science Research Center, Kagawa University, 2393 Ikenobe, Miki-cho Kita-gun, Kagawa, 761-0795 Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Song HR, Carré IA. DET1 regulates the proteasomal degradation of LHY, a component of the Arabidopsis circadian clock. PLANT MOLECULAR BIOLOGY 2005; 57:761-71. [PMID: 15988568 DOI: 10.1007/s11103-005-3096-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 03/02/2005] [Indexed: 05/03/2023]
Abstract
Multiple photoreceptors contribute to the entrainment of the Arabidopsis circadian clock to daily cycles of light and darkness but little is known of the mechanisms by which these pathways affect the central oscillator. Here we investigate the epistatic interaction between DE-ETIOLATED 1 (DET1), a negative regulator of light-regulated gene expression, and LATE ELONGATED HYPOCOTYL (LHY), one of the core components of the circadian oscillator. The daily onset of LHY gene expression was advanced by approximately 4 h in det1-1 mutant plants, suggesting that the wild-type DET1 protein might function to repress its transcription during the subjective night. lhy-1 det1-1 double mutants exhibited arrhythmic expression of the CAB gene in constant light, similar to the lhy-1 mutant parent. However, additive effects of the lhy-1 and det1-1 mutations on CAB2 expression patterns were revealed under diurnal light-dark cycles. Since the lhy-1 mutation causes aberrant, constitutive transcription of LHY from a constitutive viral promoter, this observation indicated that effects of DET1 were not mediated through the regulation of LHY transcription. Furthermore, the light-driven, rhythmic accumulation of the LHY protein in the lhy-1 mutant was altered by the det1-1 mutation, suggesting that DET1 might regulate LHY expression at the post-transcriptional level. In vitro protein degradation assays demonstrated that the LHY protein is turned over rapidly through the proteasome pathway. Similar degradation was observed whether plant tissue was harvested during the light or dark portion of the diurnal cycle, but the process was significantly accelerated in det1-1 mutant extracts. These results indicate that the wild-type DET1 protein acts to inhibit the proteolytic turnover of the LHY protein, and suggest a mechanism for the period-shortening effect of the det1-1 mutation. These findings add to recent evidence suggesting a role for DET1 in a ubiquitination pathway and identify a substrate for DET1-regulated protein turn-over.
Collapse
|
37
|
Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A. Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:515-22. [PMID: 15114474 DOI: 10.1007/s00122-004-1667-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 03/20/2004] [Indexed: 05/03/2023]
Abstract
Norin-PL8 is a cold-tolerant variety of rice (Oryza sativa L.) that was developed by introgressing chromosomal segments from a cold-tolerant tropical japonica variety, Silewah, into a template japonica variety, Hokkai241. We previously identified two closely linked quantitative trait loci, Ctb1 and Ctb2, for cold tolerance at the booting stage of Norin-PL8 in the long arm of chromosome 4. We report here the physical mapping of Ctb1 and the identification of the candidate genes. A total of 2,008 segregating individuals were screened for recombination in the Ctb1 region by a PCR-based screening, and a series of near-isogenic lines (NILs) were developed from progenies of recombinants. A comparison of the degrees of cold tolerance of the NILs indicated that Ctb1 is located in the 56-kb region covered by a bacterial artificial chromosome clone, OSJNBa0058 K23, that had been sequenced by the International Rice Genome Sequence Project. We found seven open reading frames (ORFs) in the 56-kb region. Two ORFs encoded receptor-like protein kinases that are possibly involved in signal transduction pathways. Proteins that may be associated with a ubiquitin-proteasome pathway were encoded by three ORFs, two of which encoded F-box proteins and one of which encoded a protein with a BAG domain. The other two ORFs encoded a protein with an OTU domain and an unknown protein. We were also able to show that Ctb1 is likely to be associated with anther length, which is one of major factors in cold tolerance at the booting stage.
Collapse
Affiliation(s)
- K Saito
- National Agricultural Research Center for Hokkaido Region, Hitsujigaoka 1, Toyohira, Sapporo, Hokkaido, Japan.
| | | | | | | | | |
Collapse
|
38
|
Somers DE, Kim WY, Geng R. The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. THE PLANT CELL 2004; 16:769-82. [PMID: 14973171 PMCID: PMC385287 DOI: 10.1105/tpc.016808] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 01/08/2004] [Indexed: 05/18/2023]
Abstract
As an F-box protein, ZEITLUPE (ZTL) is involved in targeting one or more substrates for ubiquitination and degradation via the proteasome. The initial characterization of ZTL suggested a function limited largely to the regulation of the circadian clock. Here, we show a considerably broader role for ZTL in the control of circadian period and photomorphogenesis. Using a ZTL-specific antibody, we quantitated and characterized a ZTL dosage series that ranges from a null mutation to a strong ZTL overexpressor. In the dark, ztl null mutations lengthen circadian period, and overexpression causes arrhythmicity, suggesting a more comprehensive role for this protein in the clock than previously suspected. In the light, circadian period becomes increasingly shorter at higher levels of ZTL, to the point of arrhythmicity. By contrast, hypocotyl length increases and flowering time is delayed in direct proportion to the level of ZTL. We propose a novel testable mechanism by which circadian period and amplitude may act together to gate phytochrome B-mediated suppression of hypocotyl. We also demonstrate that ZTL-dependent delay of flowering is mediated through decreases in CONSTANS and FLOWERING LOCUS T message levels, thus directly linking proteasome-dependent proteolysis to flowering.
Collapse
Affiliation(s)
- David E Somers
- Department of Plant Biology/Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
39
|
Más P, Kim WY, Somers DE, Kay SA. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 2003; 426:567-70. [PMID: 14654842 DOI: 10.1038/nature02163] [Citation(s) in RCA: 363] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 10/17/2003] [Indexed: 11/08/2022]
Abstract
The underlying mechanism of circadian rhythmicity appears to be conserved among organisms, and is based on negative transcriptional feedback loops forming a cellular oscillator (or 'clock'). Circadian changes in protein stability, phosphorylation and subcellular localization also contribute to the generation and maintenance of this clock. In plants, several genes have been shown to be closely associated with the circadian system. However, the molecular mechanisms proposed to regulate the plant clock are mostly based on regulation at the transcriptional level. Here we provide genetic and molecular evidence for a role of ZEITLUPE (ZTL) in the targeted degradation of TIMING OF CAB EXPRESSION 1 (TOC1) in Arabidopsis thaliana (thale cress). The physical interaction of TOC1 with ZTL is abolished by the ztl-1 mutation, resulting in constitutive levels of TOC1 protein expression. The dark-dependent degradation of TOC1 protein requires functional ZTL, and is prevented by inhibiting the proteosome pathway. Our results show that the TOC1-ZTL interaction is important in the control of TOC1 protein stability, and is probably responsible for the regulation of circadian period by the clock.
Collapse
Affiliation(s)
- Paloma Más
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
40
|
Kim WY, Geng R, Somers DE. Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc Natl Acad Sci U S A 2003; 100:4933-8. [PMID: 12665620 PMCID: PMC404699 DOI: 10.1073/pnas.0736949100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Critical to the maintenance of circadian rhythmicity is the cyclic expression of at least some components of the central oscillator. High-amplitude cycling of mRNA and protein abundance, protein phosphorylation and nuclear/cytoplasmic shuttling have all been implicated in the maintenance of circadian period. Here we use a newly characterized Arabidopsis suspension cell culture to establish that the rhythmic changes in the levels of the clock-associated F-box protein, ZTL, are posttranscriptionally controlled through different circadian phase-specific degradation rates. This proteolysis is proteasome dependent, implicating ZTL itself as substrate for ubiquitination. This demonstration of circadian phase-regulated degradation of an F-box protein, which itself controls circadian period, suggests a novel regulatory feedback mechanism among known circadian systems.
Collapse
Affiliation(s)
- Woe-Yeon Kim
- Department of Plant Biology/Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
41
|
Abstract
Reproductive processes in plants and animals are usually synchronized with favourable seasons of the year. It has been known for 80 years that organisms anticipate seasonal changes by adjusting developmental programmes in response to daylength. Recent studies indicate that plants perceive daylength through the degree of coincidence of light with the expression of CONSTANS, which encodes a clock-regulated transcription factor that controls the expression of floral-inductive genes in a light-dependent manner.
Collapse
Affiliation(s)
- Marcelo J Yanovsky
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 USA
| | | |
Collapse
|
42
|
Abstract
Cryptochromes are photosensory receptors mediating light regulation of growth and development in plants. Since the isolation of the Arabidopsis CRY1 gene in 1993, cryptochromes have been found in every multicellular eukaryote examined. Most plant cryptochromes have a chromophore-binding domain that shares similar structure with DNA photolyase, and a carboxyl terminal extension that contains a DQXVP-acidic-STAES (DAS) domain conserved from moss, to fern, to angiosperm. In Arabidopsis, cryptochromes are nuclear proteins that mediate light control of stem elongation, leaf expansion, photoperiodic flowering, and the circadian clock. Cryptochromes may act by interacting with proteins such as phytochromes, COP1, and clock proteins, or/and chromatin and DNA. Recent studies suggest that cryptochromes undergo a blue light-dependent phosphorylation that affects the conformation, intermolecular interactions, physiological activities, and protein abundance of the photoreceptors.
Collapse
Affiliation(s)
- Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
43
|
Christie JM, Swartz TE, Bogomolni RA, Briggs WR. Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:205-19. [PMID: 12383086 DOI: 10.1046/j.1365-313x.2002.01415.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phototropins (phot1 and phot2) are autophosphorylating serine/threonine kinases that function as photoreceptors for phototropism, light-induced chloroplast movement, and stomatal opening in Arabidopsis. The N-terminal region of phot1 and phot2 contains two specialized PAS domains, designated LOV1 and LOV2, which function as binding sites for the chromophore flavin mononucleotide (FMN). Both LOV1 and LOV2 undergo a self-contained photocycle, which involves the formation of a covalent adduct between the FMN chromophore and a conserved active-site cysteine residue (Cys39). Replacement of Cys39 with alanine abolishes the light-induced photochemical reaction of LOV1 and LOV2. Here we have used the Cys39Ala mutation to investigate the role of LOV1 and LOV2 in regulating phototropin function. Photochemical analysis of a bacterially expressed LOV1 + LOV2 fusion protein indicates that LOV2 functions as the predominant light-sensing domain for phot1. LOV2 also plays a major role in mediating light-dependent autophosphorylation of full-length phot1 expressed in insect cells and transgenic Arabidopsis. Moreover, photochemically active LOV2 alone in full-length phot1 is sufficient to elicit hypocotyl phototropism in transgenic Arabidopsis, whereas photochemically active LOV1 alone is not. Further photochemical and biochemical analyses also indicate that the LOV1 and LOV2 domains of phot2 exhibit distinct roles. The significance for the different roles of the phototropin LOV domains is discussed.
Collapse
Affiliation(s)
- John M Christie
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
44
|
Salomé PA, Michael TP, Kearns EV, Fett-Neto AG, Sharrock RA, McClung CR. The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. PLANT PHYSIOLOGY 2002; 129:1674-85. [PMID: 12177480 PMCID: PMC166755 DOI: 10.1104/pp.003418] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 03/18/2002] [Accepted: 05/05/2002] [Indexed: 05/18/2023]
Abstract
Arabidopsis displays circadian rhythms in stomatal aperture, stomatal conductance, and CO(2) assimilation, each of which peaks around the middle of the day. The rhythmic opening and closing of stomata confers a rhythm in sensitivity and resistance, respectively, to the toxic gas sulfur dioxide. Using this physiological assay as a basis for a mutant screen, we isolated mutants with defects in circadian timing. Here, we characterize one mutant, out of phase 1 (oop1), with the circadian phenotype of altered phase. That is, the timing of the peak (acrophase) of multiple circadian rhythms (leaf movement, CO(2) assimilation, and LIGHT-HARVESTING CHLOROPHYLL a/b-BINDING PROTEIN transcription) is early with respect to wild type, although all circadian rhythms retain normal period length. This is the first such mutant to be characterized in Arabidopsis. oop1 also displays a strong photoperception defect in red light characteristic of phytochrome B (phyB) mutants. The oop1 mutation is a nonsense mutation of PHYB that results in a truncated protein of 904 amino acids. The defect in circadian phasing is seen in seedlings entrained by a light-dark cycle but not in seedlings entrained by a temperature cycle. Thus, PHYB contributes light information critical for proper determination of circadian phase.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, New Hampshire 03755-3576, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cryptochromes are a family of flavoproteins found in organisms ranging from Arabidopsis to man. Across phylogeny, these proteins have been used for pleiotropic functions ranging from blue-light-dependent development in plants and blue-light-mediated phase shifting of the circadian clock in insects to a core circadian clock component in mammals. Review of the roles of cryptochromes in model organisms reveals several common themes: Multiple cryptochrome family members within individual organisms have redundant functions; cryptochromes used in photic entrainment pathways of the circadian clock are partially redundant with other photopigments; and cryptochromes may function in circadian phototransduction and core clock mechanisms in the same organism, with different functions in different tissues. The present review summarizes recent research on the functions of cryptochrome in the circadian timekeeping and photic entrainment pathways.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
46
|
McClung CR, Salomé PA, Michael TP. The Arabidopsis circadian system. THE ARABIDOPSIS BOOK 2002; 1:e0044. [PMID: 22303209 PMCID: PMC3243369 DOI: 10.1199/tab.0044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus.DedicationThis review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research.
Collapse
Affiliation(s)
- C. Robertson McClung
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, New Hampshire 03755-3576
- Corresponding Author: telephone: 603-646-3940; fax: 603-646-1347;
| | - Patrice A. Salomé
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, New Hampshire 03755-3576
| | - Todd P. Michael
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, New Hampshire 03755-3576
| |
Collapse
|
47
|
Abstract
The identification of components of the plant circadian clock has been advanced recently with the success of two forward genetics approaches. The ZEITLUPE and TOC1 loci were cloned and each was found to be part of two separate, larger gene families with intriguing domain structures. The ZTL family of proteins contains a subclass of the PAS domain coupled to an F box and kelch motifs, suggesting that they play a role in a novel light-regulated ubiquitination mechanism. TOC1 shares similarity to the receiver domain of the well-known two-component phosphorelay signalling systems, combined with a strong similarity to a region of the CONSTANS transcription factor, which is involved in controlling flowering time. When added to the repertoire of previously identified clock-associated genes, it is clear that both similarities and differences with other circadian systems will emerge in the coming years.
Collapse
Affiliation(s)
- D E Somers
- Department of Plant Biology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
48
|
Yanovsky MJ, Kay SA. Signaling networks in the plant circadian system. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:429-435. [PMID: 11597501 DOI: 10.1016/s1369-5266(00)00196-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Significant advances have been made during the past year in the genetic and molecular dissection of the plant circadian system. Several proteins involved in circadian clock regulation have been identified and the way that their interactions contribute to temporal organization is starting to emerge. In addition, genomic approaches have identified hundreds of genes under clock control, providing a molecular basis to our understanding of how the clock coordinates plant physiology and development with daily and seasonal environmental cycles.
Collapse
Affiliation(s)
- M J Yanovsky
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
49
|
Abstract
While a number of physiological and biochemical processes in plants have been found to be regulated in a circadian manner, the mechanism underlying the circadian oscillator remains to be elucidated. Advances in the identification and characterization of components of the plant circadian system have been made largely through the use of genetics in Arabidopsis thaliana. Results so far indicate that the generation of rhythmicity by the Arabidopsis clock relies on molecular mechanisms that are similar to those described for other organisms, but that a totally different set of molecular components has been recruited to perform these functions.
Collapse
Affiliation(s)
- L C Roden
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
50
|
McClung CR. CIRCADIAN RHYTHMS IN PLANTS. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:139-162. [PMID: 11337395 DOI: 10.1146/annurev.arplant.52.1.139] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Circadian rhythms, endogenous rhythms with periods of approximately 24 h, are widespread in nature. Although plants have provided many examples of rhythmic outputs and our understanding of photoreceptors of circadian input pathways is well advanced, studies with plants have lagged in the identification of components of the central circadian oscillator. Nonetheless, genetic and molecular biological studies, primarily in Arabidopsis, have begun to identify the components of plant circadian systems at an accelerating pace. There also is accumulating evidence that plants and other organisms house multiple circadian clocks both in different tissues and, quite probably, within individual cells, providing unanticipated complexity in circadian systems.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755-3576; e-mail:
| |
Collapse
|