1
|
Chen Y, Liu X, Zhou Y, Zheng Y, Xiao Y, Yuan X, Yan Q, Chen X. Functional characterization of four soybean C2H2 zinc-finger genes in Phytophthora resistance. PLANT SIGNALING & BEHAVIOR 2025; 20:2481185. [PMID: 40110654 PMCID: PMC11926910 DOI: 10.1080/15592324.2025.2481185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Soybean (Glycine max) is one of the most important industrial and oilseed crops; however, the yield is threatened by the invasion of various pathogens. Soybean stem and root rot, caused by Phytophthora sojae, is a destructive disease that significantly damages soybean production worldwide. C2H2 zinc finger protein (C2H2-ZFP) is a large transcription factor family in plants that plays crucial roles in stress response and hormone signal transduction. Given its importance, we analyzed the expression patterns of C2H2-ZFP family genes in response to P. sojae infection and selected four candidate genes to explore their molecular characteristics and functions related to P. sojae resistance. Subcellular localization analysis indicated that three ZFPs (GmZFP2, GmZFP3, and GmZFP4) were localized in the nucleus, while GmZFP1 was found in both the nucleus and plasma membrane. Dual-luciferase transient expression analysis revealed that all four ZFPs possessed transcriptional repression activation. Further transient expression in N. benthamiana leaves demonstrated that GmZFP2 induced significant cell death and reactive oxygen species (ROS) accumulation. GmZFP2 significantly enhanced the resistance to Phytophthora pathogens in N. benthamiana leaves and soybean hairy roots. This study provides insights in to the functional characterization of soybean ZFPs in Phytophthora resistance and demonstrates that GmZFP2 plays a positive role in P. sojae resistance in soybeans.
Collapse
Affiliation(s)
- Yuting Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinyue Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanyan Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Zheng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yating Xiao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Yang Y, Xu Y, Feng B, Li P, Li C, Zhu CY, Ren SN, Wang HL. Regulatory networks of bZIPs in drought, salt and cold stress response and signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112399. [PMID: 39874989 DOI: 10.1016/j.plantsci.2025.112399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Abiotic stresses adversely impact plants survival and growth, which in turn affect plants especially crop yields worldwide. To cope with these stresses, plant responses depend on the activation of molecular networks cascades, including stress perception, signal transduction, and the expression of specific stress-related genes. Plant bZIP (basic leucine zipper) transcription factors are important regulators that respond to diverse abiotic stresses.By binding to specific cis-elements, bZIPs can control the transcription of target genes, giving plants stress resistance. This review describes the structural characteristics of bZIPs and summarizes recent progress in analyzing the molecular mechanisms regulating plant responses to salinity, drought, and cold in different plant species. The main goal is to deepen the understanding of bZIPs and explore their value in genetic improvement of plants.
Collapse
Affiliation(s)
- Yanli Yang
- Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, PR China
| | - Yi Xu
- Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, PR China
| | - Baozhen Feng
- Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, PR China
| | - Peiqian Li
- Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, PR China
| | - Chengqi Li
- Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, PR China
| | - Chen-Yu Zhu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shu-Ning Ren
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
3
|
Ye S, Tang Y. TaZFP 23, a new Cys2/His2-type zinc-finger protein, is a regulator of wheat ( Triticum aestivum L.) growth and abiotic stresses. PeerJ 2025; 13:e18956. [PMID: 39981045 PMCID: PMC11841591 DOI: 10.7717/peerj.18956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Wheat (Triticum aestivum L.) is an important food crop and one of the most important grains in the world. With the global climate change, wheat production is increasingly affected by abiotic stress, among which drought, salinity, and other factors have become the main abiotic stress factors restricting the efficient production of wheat. The C2H2-type zinc finger proteins are a common class of transcription factors in plants that play crucial roles in regulating plant growth and development as well as responses to stresses. In this study, the wheat C2H2-type zinc finger protein transcription factor TaZFP23 was cloned. Its full-length coding sequence was 720 bp encoding 239 amino acids. TaZFP23 is a typical C2H2-type zinc finger protein. It contains two C2H2 zinc finger domains and an EAR motif, without a transmembrane domain. Promoter cis-acting element analysis suggested that TaZFP23 might function in abiotic stress responses and plant hormone signal transduction. Subcellular localization and transcriptional activity assays indicated that TaZFP23 encoded a nuclear protein without self-activation activity. Overexpressing TaZFP23 in Arabidopsis thaliana showed that it negatively regulate d seed germination and plant growth under NaCl, mannitol, and ABA treatments. Additionally, TaZFP23 overexpression under NaCl and drought stress in Arabidopsis resulted in lower expression levels of several stress-related marker genes compared to those in wild-type plants. This research provides a foundation for further elucidating the functions of C2H2-type zinc finger protein genes and offers promising candidate genes for the development of stress-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Shunxing Ye
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yuzhou Tang
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Xu Y, Liu F, Wu F, Zou R, Zhao M, Wu J, Cheng B, Li X. Zinc finger protein LjRSDL regulates arbuscule degeneration of arbuscular mycorrhizal fungi in Lotus japonicus. PLANT PHYSIOLOGY 2024; 196:2905-2917. [PMID: 39268874 DOI: 10.1093/plphys/kiae487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
In arbuscular mycorrhizal (AM) symbiosis, appropriate regulation of the formation, maintenance, and degeneration of the arbuscule is essential for plants and fungi. In this study, we identified a Cysteine-2/Histidine-2 zinc finger protein (C2H2-ZFP)-encoding gene in Lotus japonicus named Regulator of Symbiosome Differentiation-Like (LjRSDL) that is required for arbuscule degeneration. Evolutionary analysis showed that homologs of LjRSDL exist in mycorrhizal flowering plants. We obtained ProLjRSDL::GUS transgenic hairy roots and showed that LjRSDL was strongly upregulated upon AM colonization, particularly at 18 days post-AM fungi inoculation and specifically expressed in arbuscule-containing cells. The mycorrhization rate increased in the ljrsdl mutant but decreased in LjRSDL-overexpressed L. japonicus. Interestingly, we observed higher proportions of large arbuscule in the ljrsdl mutant but lower proportions of larger arbuscule in LjRSDL-overexpressing plants. Transcriptome analyses indicated that genes involved in arbuscule degeneration were significantly changed upon the dysregulation of LjRSDL and that LjRSDL-dependent regulation in AM symbiosis is mainly via the hormone signal transduction pathway. LjRSDL, therefore, represents a C2H2-ZFP that negatively regulates AM symbiosis. Our study provides insight into understanding plant-AM fungal communication and AM symbiosis development.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Fulang Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Ruifan Zou
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Manli Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Key Laboratory of Soil Ecology and Health, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Zhao JJ, Xiang X, Yang P, Li J, Li H, Wei SY, Wang RQ, Wang T, Huang J, Chen LH, Wan XQ, He F. Genome-wide analysis of C2H2.2 gene family in Populus Trichocarpa and the function exploration of PtrC2H2.2-6 in osmotic stress. Int J Biol Macromol 2024; 283:137937. [PMID: 39579826 DOI: 10.1016/j.ijbiomac.2024.137937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
C2H2 transcription factors are essential for increasing a plant's ability to withstand extreme conditions. However, research on the functions of C2H2 transcription factors in woody plants, particularly their responses to osmotic stress, is limited. This research identified 109 C2H2 genes, and the PtrC2H2.2 subfamily, which contains 28 genes, captured our keen interest, prompting an extensive molecular characterization. Evolutionarily, PtrC2H2.2 s have undergone 30 fragment duplications and 2 tandem duplications. PtrC2H2.2-6 acts as a core transcription factor, whose expression was decreased after both ABA and drought treatments, implying it may play a negative regulatory role in the osmotic stress response by regulating the expression of targets. Specifically, the PtrC2H2.2-6-RNAi poplar showed improved osmotic stress tolerance compared to the overexpressing line, which was more sensitive, and transcriptome data analyses flanked the molecular mechanisms of their possible regulation. In this research, we dissected the molecular features of the PtrC2H2.2 subfamily genes and elucidated the role of a specific member, the PtrC2H2.2-6 gene, in the ability of poplar to respond to osmotic stress. This discovery not only establishes a foundation for further exploration of its biological functions but also presents precious genetic assets for the development of drought-tolerant forest tree varieties through genetic engineering.
Collapse
Affiliation(s)
- Jiu-Jiu Zhao
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Xiang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Ying Wei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui-Quan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinliang Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang-Hua Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Qin Wan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fang He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Li M, Fan D, Wen Z, Meng J, Li P, Cheng T, Zhang Q, Sun L. Genome-wide identification of the Dof gene family: How it plays a part in mediating cold stress response in Prunus mume. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109215. [PMID: 39515001 DOI: 10.1016/j.plaphy.2024.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
DNA binding with a finger transcription factor (Dof) takes part in several plant physiological activities such as seed germination, flowering time, cold and drought resistance. Although the function, molecular phylogeny and expression pattern of Dof genes in Prunus mume was not clear yet. Here, the gene structure, motif, chromosome location and phylogenetic relationship of the Dof gene family in Prunus species was explored. We identified 24 members of the Dof gene family from P. mume, which were divided into 3 different subgroups. All these PmDof genes can be mapped to the pseudochromosome. Only one pair of tandem duplication genes are located in Chr3, whereas 8 pairs of segmentally duplicated PmDof genes located in Chr1, Chr2, Chr4, Chr5, and Chr7. Motif and gene structure analysis showed that each group had a similar conservative motif and similar exon/intron composition. Cis-acting elements analysis indicate that PmDofs may be involved in regulating abiotic stress response. Gene expression patterns showed that most PmDofs genes were specifically expressed in different tissues and at different stages. We next found that PmDofs genes display an obvious expression preference or specificity in cold stress response according to qRT-PCR analysis. We further observe a great cold resistance in PmDof10/11/20 OE lines, they showed lower electrolyte leakage rate, MDA content and higher soluble sugar/protein, POD/SOD/proline content than WT after -5 °C 6h freezing treatment. This research offers fresh perspectives on the development of PmDofs, enhancing our comprehension of the structure and role of plant Dof gene families.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Dongqing Fan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhenying Wen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Juan Meng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lidan Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Chaiprom U, Miraeiz E, Lee TG, Drnevich J, Hudson M. Impact of Rhg1 copy number variation on a soybean cyst nematode resistance transcriptional network. G3 (BETHESDA, MD.) 2024; 14:jkae226. [PMID: 39295536 PMCID: PMC11631408 DOI: 10.1093/g3journal/jkae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/17/2024] [Indexed: 09/21/2024]
Abstract
Soybean yield loss due to soybean cyst nematode (SCN) infestation has a negative impact on the U.S. economy. Most SCN-resistant soybeans carry a common resistance locus (Rhg1), conferred by copy number variation of a 31.2-kb segment at the Rhg1 locus. To identify the effects of Rhg1 copy number on the plant prior to SCN infection, we investigated genome-wide expression profiles in isogenic Fayette plants carrying different copy numbers at the Rhg1 locus (9-11 copies), that confer different levels of resistance to SCN. We found that even small differences in copy number lead to large changes in expression of downstream defense genes. The co-expression network constructed from differentially expressed genes (DEGs) outside the Rhg1 locus revealed complex effects of Rhg1 copy number on transcriptional regulation involving signal transduction and ethylene-mediated signaling pathways. Moreover, we report a variation in expression levels of phytoalexin biosynthesis-related genes that is correlated with copy number, and the activation of different NBS-LRR gene sets, indicating a broad effect of copy number on defense responses. Using qRT-PCR time series during SCN infection, we validated the SCN responses of DEGs detected in the copy number comparison and showed a stable upregulation of genes related to phytoalexin biosynthesis in resistant Fayette lines during the early stages of the incompatible interaction between soybeans and SCN, before syncytium formation. These results suggest additional genes that could enhance Rhg1-mediated SCN resistance.
Collapse
Affiliation(s)
- Usawadee Chaiprom
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Esmaeil Miraeiz
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tong Geon Lee
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
9
|
Traverse KKF, Breselge S, Trautman JG, Dee A, Wang J, Childs KL, Lee-Parsons CWT. Characterization of the ZCTs, a subgroup of Cys2-His2 zinc finger transcription factors regulating alkaloid biosynthesis in Catharanthus roseus. PLANT CELL REPORTS 2024; 43:209. [PMID: 39115578 PMCID: PMC11310244 DOI: 10.1007/s00299-024-03295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 08/11/2024]
Abstract
KEY MESSAGE The C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the terpenoid indole alkaloid pathway when highly expressed. Catharanthus roseus is the sole known producer of the anti-cancer terpenoid indole alkaloids (TIAs), vinblastine and vincristine. While the enzymatic steps of the pathway have been elucidated, an understanding of its regulation is still emerging. The present study characterizes an important subgroup of Cys2-His2 zinc finger transcription factors known as Zinc finger Catharanthus Transcription factors (ZCTs). We identified three new ZCT members (named ZCT4, ZCT5, and ZCT6) that clustered with the putative repressors of the TIA pathway, ZCT1, ZCT2, and ZCT3. We characterized the role of these six ZCTs as potential redundant regulators of the TIA pathway, and their tissue-specific and jasmonate-responsive expression. These ZCTs share high sequence conservation in their two Cys2-His2 zinc finger domains but differ in the spacer length and sequence between these zinc fingers. The transient overexpression of ZCTs in seedlings significantly repressed the promoters of the terpenoid (pLAMT) and condensation branch (pSTR1) of the TIA pathway, consistent with that previously reported for ZCT1, ZCT2, and ZCT3. In addition, ZCTs significantly repressed and indirectly activated several promoters of the vindoline pathway (not previously studied). The ZCTs differed in their tissue-specific expression but similarly increased with jasmonate in a dosage-dependent manner (except for ZCT5). We showed significant activation of the pZCT1 and pZCT3 promoters by the de-repressed CrMYC2a, suggesting that the jasmonate-responsive expression of the ZCTs can be mediated by CrMYC2a. In summary, the C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the TIA pathway when highly expressed.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Juliet G Trautman
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Amanda Dee
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Carolyn W T Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
10
|
Wang D, Qiu Z, Xu T, Yao S, Chen M, Li Q, Agassin RH, Ji K. Transcriptomic Identification of Potential C2H2 Zinc Finger Protein Transcription Factors in Pinus massoniana in Response to Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:8361. [PMID: 39125930 PMCID: PMC11312842 DOI: 10.3390/ijms25158361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Biotic and abiotic stresses have already seriously restricted the growth and development of Pinus massoniana, thereby influencing the quality and yield of its wood and turpentine. Recent studies have shown that C2H2 zinc finger protein transcription factors play an important role in biotic and abiotic stress response. However, the members and expression patterns of C2H2 TFs in response to stresses in P. massoniana have not been performed. In this paper, 57 C2H2 zinc finger proteins of P. massoniana were identified and divided into five subgroups according to a phylogenetic analysis. In addition, six Q-type PmC2H2-ZFPs containing the plant-specific motif 'QALGGH' were selected for further study under different stresses. The findings demonstrated that PmC2H2-ZFPs exhibit responsiveness towards various abiotic stresses, including drought, NaCl, ABA, PEG, H2O2, etc., as well as biotic stress caused by the pine wood nematode. In addition, PmC2H2-4 and PmC2H2-20 were nuclear localization proteins, and PmC2H2-20 was a transcriptional activator. PmC2H2-20 was selected as a potential transcriptional regulator in response to various stresses in P. massoniana. These findings laid a foundation for further study on the role of PmC2H2-ZFPs in stress tolerance.
Collapse
Affiliation(s)
- Dengbao Wang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zimo Qiu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Xu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Meijing Chen
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qianzi Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Romaric Hippolyte Agassin
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.C.); (Q.L.); (R.H.A.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland Administration, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Zhang Y, Xiao W, Wang M, Khan M, Liu JH. A C2H2-type zinc finger protein ZAT12 of Poncirus trifoliata acts downstream of CBF1 to regulate cold tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1317-1329. [PMID: 38017362 DOI: 10.1111/tpj.16562] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The Cys2/His2 (C2H2)-type zinc finger family has been reported to regulate multiple aspects of plant development and abiotic stress response. However, the role of C2H2-type zinc finger proteins in cold tolerance remains largely unclear. Through RNA-sequence analysis, a cold-responsive zinc finger protein, named as PtrZAT12, was identified and isolated from trifoliate orange (Poncirus trifoliata L. Raf.), a cold-hardy plant closely related to citrus. Furthermore, we found that PtrZAT12 was markedly induced by various abiotic stresses, especially cold stress. PtrZAT12 is a nuclear protein, and physiological analysis suggests that overexpression of PtrZAT12 conferred enhanced cold tolerance in transgenic tobacco (Nicotiana tabacum) plants, while knockdown of PtrZAT12 by virus-induced gene silencing (VIGS) increased the cold sensitivity of trifoliate orange and repressed expression of genes involved in stress tolerance. The promoter of PtrZAT12 harbors a DRE/CRT cis-acting element, which was verified to be specifically bound by PtrCBF1 (Poncirus trifoliata C-repeat BINDING FACTOR1). VIGS-mediated silencing of PtrCBF1 reduced the relative expression levels of PtrZAT12 and decreased the cold resistance of trifoliate orange. Based on these results, we propose that PtrZAT12 is a direct target of CBF1 and plays a positive role in modulation of cold stress tolerance. The knowledge gains new insight into a regulatory module composed of CBF1-ZAT12 in response to cold stress and advances our understanding of cold stress response in plants.
Collapse
Affiliation(s)
- Yang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
12
|
Zhao K, Luo X, Shen M, Lei W, Lin S, Lin Y, Sun H, Ahmad S, Wang G, Liu ZJ. The bZIP Transcription Factors in Current Jasmine Genomes: Identification, Characterization, Evolution and Expressions. Int J Mol Sci 2023; 25:488. [PMID: 38203660 PMCID: PMC10779407 DOI: 10.3390/ijms25010488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Jasmine, a recently domesticated shrub, is renowned for its use as a key ingredient in floral tea and its captivating fragrance, showcasing significant ornamental and economic value. When cultivated to subtropical zone, a significant abiotic stress adaptability occurs among different jasmine varieties, leading to huge flower production changes and plantlet survival. The bZIP transcription factors (TFs) are reported to play indispensable roles in abiotic stress tolerance. Here, we performed a genome-level comparison of bZIPs using three-type jasmine genomes. Based on their physicochemical properties, conserved motif analysis and phylogenetic analysis, about 63 bZIP genes were identified and clustered in jasmine genomes, noting a difference of one member compared to the other two types of jasmines. The HTbZIP genes were categorized into 12 subfamilies compared with A. thaliana. In cis-acting element analysis, all genes contained light-responsive elements. The abscisic acid response element (ABRE) was the most abundant in HTbZIP62 promoter, followed by HTbZIP33. Tissue-specific genes of the bZIPs may play a crucial role in regulating the development of jasmine organs and tissues, with HTbZIP36 showing the most significant expressions in roots. Combined with complicated protein interactions, HTbZIP62 and HTbZIP33 might play a crucial role in the ABA signaling pathway and stress tolerance. Combined with RT-qPCR analysis, SJbZIP37/57/62 were more sensitive to ABA response genes compared with other bZIPs in DJ amd HT genomes. Our findings provide a useful resource for further research on the regulation of key genes to improve abiotic stress tolerance in jasmine.
Collapse
Affiliation(s)
- Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Xianmei Luo
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Wen Lei
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Siqing Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Yingxuan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Hongyan Sun
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Guohong Wang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
13
|
Chu M, Wang T, Li W, Liu Y, Bian Z, Mao J, Chen B. Genome-Wide Identification and Analysis of the Genes Encoding Q-Type C2H2 Zinc Finger Proteins in Grapevine. Int J Mol Sci 2023; 24:15180. [PMID: 37894862 PMCID: PMC10607507 DOI: 10.3390/ijms242015180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Q-type C2H2 zinc finger proteins (ZFPs), the largest family of transcription factors, have been extensively studied in plant genomes. However, the genes encoding this transcription factor family have not been explored in grapevine genomes. Therefore, in this study, we conducted a genome-wide identification of ZFP genes in three species of grapevine, namely Vitis vinifera, Vitis riparia, and Vitis amurensis, based on the sequence databases and phylogenetic and their conserved domains. We identified 52, 54, and 55 members of Q-type C2H2 ZFPs in V. vinifera, V. riparia, and V. amurensis, respectively. The physical and chemical properties of VvZFPs, VrZFPs, and VaZFPs were examined. The results showed that these proteins exhibited differences in the physical and chemical properties and that they all were hydrophobic proteins; the instability index showed that the four proteins were stable. The subcellular location of the ZFPs in the grapevine was predicted mainly in the nucleus. The phylogenetic tree analysis of the amino acid sequences of VvZFP, VaZFP, VrZFP, and AtZFP proteins showed that they were closely related and were divided into six subgroups. Chromosome mapping analysis showed that VvZFPs, VrZFPs, and VaZFPs were unevenly distributed on different chromosomes. The clustered gene analysis showed that the motif distribution was similar and the sequence of genes was highly conserved. Exon and intron structure analysis showed that 118 genes of ZFPs were intron deletion types, and the remaining genes had variable numbers of introns, ranging from 2 to 15. Cis-element analysis showed that the promoter of VvZFPs contained multiple cis-elements related to plant hormone response, stress resistance, and growth, among which the stress resistance elements were the predominant elements. Finally, the expression of VvZFP genes was determined using real-time quantitative PCR, which confirmed that the identified genes were involved in response to methyl jasmonate (MeJA), abscisic acid (ABA), salicylic acid (SA), and low-temperature (4 °C) stress. VvZFP10-GFP and VvZFP46-GFP fusion proteins were localized in the nucleus of tobacco cells, and VvZFP10 is the most responsive gene among all VvZFPs with the highest relative expression level to MeJA, ABA, SA and low-temperature (4 °C) stress. The present study provides a theoretical basis for exploring the mechanism of response to exogenous hormones and low-temperature tolerance in grapes and its molecular breeding in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (M.C.)
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (M.C.)
| |
Collapse
|
14
|
Bairwa A, Sood S, Bhardwaj V, Rawat S, Tamanna T, Siddappa S, Venkatasalam EP, Dipta B, Sharma AK, Kumar A, Singh B, Mhatre PH, Sharma S, Kumar V. Identification of genes governing resistance to PCN (Globodera rostochiensis) through transcriptome analysis in Solanum tuberosum. Funct Integr Genomics 2023; 23:242. [PMID: 37453957 DOI: 10.1007/s10142-023-01164-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Potato cyst nematodes (PCNs) are major pests worldwide that affect potato production. The molecular changes happening in the roots upon PCN infection are still unknown. Identification of transcripts and genes governing PCN resistance will help in the development of resistant varieties. Hence, differential gene expression of compatible (Kufri Jyoti) and incompatible (JEX/A-267) potato genotypes was studied before (0 DAI) and after (10 DAI) inoculation of Globodera rostochiensis J2s through RNA sequencing (RNA-Seq). Total sequencing reads generated ranged between 33 and 37 million per sample, with a read mapping of 48-84% to the potato reference genome. In the infected roots of the resistant genotype JEX/A-267, 516 genes were downregulated, and 566 were upregulated. In comparison, in the susceptible genotype Kufri Jyoti, 316 and 554 genes were downregulated and upregulated, respectively. Genes encoding cell wall proteins, zinc finger protein, WRKY transcription factors, MYB transcription factors, disease resistance proteins, and pathogenesis-related proteins were found to be majorly involved in the incompatible reaction after PCN infection in the resistant genotype, JEX/A-267. Furthermore, RNA-Seq results were validated through quantitative real-time PCR (qRT-PCR), and it was observed that ATP, FLAVO, CYTO, and GP genes were upregulated at 5 DAI, which was subsequently downregulated at 10 DAI. The genes encoding ATP, FLAVO, LBR, and GP were present in > 1.5 fold before infection in JEX-A/267 and upregulated 7.9- to 27.6-fold after 5 DAI; subsequently, most of these genes were downregulated to 0.9- to 2.8-fold, except LBR, which was again upregulated to 44.4-fold at 10 DAI.
Collapse
Affiliation(s)
- Aarti Bairwa
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India.
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India.
| | - Shashi Rawat
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Tamanna Tamanna
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - E P Venkatasalam
- ICAR-Central Potato Research Station, Muthorai, 643004, The Nilgiris, Udhagamandalam, Tamil Nadu, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Ashwani K Sharma
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Ashwani Kumar
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Baljeet Singh
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Priyank H Mhatre
- ICAR-Central Potato Research Station, Muthorai, 643004, The Nilgiris, Udhagamandalam, Tamil Nadu, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| |
Collapse
|
15
|
He RY, Zheng JJ, Chen Y, Pan ZY, Yang T, Zhou Y, Li XF, Nan X, Li YZ, Cheng MJ, Li Y, Li Y, Yan X, Iqbal MZ, He JM, Rong TZ, Tang QL. QTL-seq and transcriptomic integrative analyses reveal two positively regulated genes that control the low-temperature germination ability of MTP-maize introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:116. [PMID: 37093290 DOI: 10.1007/s00122-023-04362-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Two candidate genes (ZmbZIP113 and ZmTSAH1) controlling low-temperature germination ability were identified by QTL-seq and integrative transcriptomic analyses. The functional verification results showed that two candidate genes positively regulated the low-temperature germination ability of IB030. Low-temperature conditions cause slow maize (Zea mays L.) seed metabolism, resulting in slow seedling emergence and irregular seedling emergence, which can cause serious yield loss. Thus, improving a maize cultivar's low-temperature germination ability (LTGA) is vital for increasing yield production. Wild relatives of maize, such as Z. perennis and Tripsacum dactyloides, are strongly tolerant of cold stress and can thus be used to improve the LTGA of maize. In a previous study, the genetic bridge MTP was constructed (from maize, T. dactyloides, and Z. perennis) and used to obtain a highly LTGA maize introgression line (IB030) by backcross breeding. In this study, IB030 (Strong-LTGA) and Mo17 (Weak-LTGA) were selected as parents to construct an F2 offspring. Additionally, two major QTLs (qCS1-1 and qCS10-1) were mapped. Then, RNA-seq was performed using seeds of IB030 and the recurrent parent B73 treated at 10 °C for 27 days and 25 °C for 7 days, respectively, and two candidate genes (ZmbZIP113 and ZmTSAH1) controlling LTGA were located using QTL-seq and integrative transcriptomic analyses. The functional verification results showed that the two candidate genes positively regulated LTGA of IB030. Notably, homologous cloning showed that the source of variation in both candidate genes was the stable inheritance of introgressed alleles from Z. perennis. This study was thus able to analyze the LTGA mechanism of IB030 and identify resistance genes for genetic improvement in maize, and it proved that using MTP genetic bridge confers desirable traits or phenotypes of Z. perennis and tripsacum essential to maize breeding systems.
Collapse
Affiliation(s)
- Ru-Yu He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun-Jun Zheng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Chen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ze-Yang Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Feng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinyi Nan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying-Zheng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Jun Cheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Yang Li
- Mianyang Teacher's College, Mianyang, 621000, Sichuan, China
| | - Xu Yan
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Muhammad-Zafar Iqbal
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian-Mei He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting-Zhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi-Lin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Tsegaw M, Zegeye WA, Jiang B, Sun S, Yuan S, Han T, Wu T. Progress and Prospects of the Molecular Basis of Soybean Cold Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:459. [PMID: 36771543 PMCID: PMC9919458 DOI: 10.3390/plants12030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Cold stress is a major factor influencing the geographical distribution of soybean growth and causes immense losses in productivity. Understanding the molecular mechanisms that the soybean has undergone to survive cold temperatures will have immense value in improving soybean cold tolerance. This review focuses on the molecular mechanisms involved in soybean response to cold. We summarized the recent studies on soybean cold-tolerant quantitative trait loci (QTLs), transcription factors, associated cold-regulated (COR) genes, and the regulatory pathways in response to cold stress. Cold-tolerant QTLs were found to be overlapped with the genomic region of maturity loci of E1, E3, E4, pubescence color locus of T, stem growth habit gene locus of Dt1, and leaf shape locus of Ln, indicating that pleiotropic loci may control multiple traits, including cold tolerance. The C-repeat responsive element binding factors (CBFs) are evolutionarily conserved across species. The expression of most GmDREB1s was upregulated by cold stress and overexpression of GmDREB1B;1 in soybean protoplast, and transgenic Arabidopsis plants can increase the expression of genes with the DRE core motif in their promoter regions under cold stress. Other soybean cold-responsive regulators, such as GmMYBJ1, GmNEK1, GmZF1, GmbZIP, GmTCF1a, SCOF-1 and so on, enhance cold tolerance by regulating the expression of COR genes in transgenic Arabidopsis. CBF-dependent and CBF-independent pathways are cross-talking and work together to activate cold stress gene expression. Even though it requires further dissection for precise understanding, the function of soybean cold-responsive transcription factors and associated COR genes studied in Arabidopsis shed light on the molecular mechanism of cold responses in soybeans and other crops. Furthermore, the findings may also provide practical applications for breeding cold-tolerant soybean varieties in high-latitude and high-altitude regions.
Collapse
Affiliation(s)
- Mesfin Tsegaw
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Agricultural Biotechnology, Institute of Biotechnology, University of Gondar, Gondar P.O. Box 194, Ethiopia
| | - Workie Anley Zegeye
- Department of Agricultural Biotechnology, Institute of Biotechnology, University of Gondar, Gondar P.O. Box 194, Ethiopia
- John Innes Centre, Norwich Bioscience Institutes, Norwich NR2 3LA, UK
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
18
|
Yue L, Pei X, Kong F, Zhao L, Lin X. Divergence of functions and expression patterns of soybean bZIP transcription factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1150363. [PMID: 37123868 PMCID: PMC10146240 DOI: 10.3389/fpls.2023.1150363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is a major protein and oil crop. Soybean basic region/leucine zipper (bZIP) transcription factors are involved in many regulatory pathways, including yield, stress responses, environmental signaling, and carbon-nitrogen balance. Here, we discuss the members of the soybean bZIP family and their classification: 161 members have been identified and clustered into 13 groups. Our review of the transcriptional regulation and functions of soybean bZIP members provides important information for future study of bZIP transcription factors and genetic resources for soybean breeding.
Collapse
Affiliation(s)
- Lin Yue
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinxin Pei
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| |
Collapse
|
19
|
Aslam MM, Deng L, Meng J, Wang Y, Pan L, Niu L, Lu Z, Cui G, Zeng W, Wang Z. Characterization and expression analysis of basic leucine zipper (bZIP) transcription factors responsive to chilling injury in peach fruit. Mol Biol Rep 2023; 50:361-376. [PMID: 36334232 DOI: 10.1007/s11033-022-08035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Peach (Prunus persica L.) is prone to chilling injury as exhibited by inhibition of the ethylene production, failure in softening, and the manifestation of internal browning. The basic leucine zipper (bZIP) transcription factors play an essential role in regulatory networks that control many processes associated with physiological, abiotic and biotic stress responses in fruits. Formerly, the underlying molecular and regulatory mechanism of (bZIP) transcription factors responsive to chilling injury in peach fruit is still elusive. METHODS AND RESULTS In the current experiment, the solute peach 'Zhongyou Peach No. 13' was used as the test material and cold storage at low temperature (4 °C). It was found that long-term low-temperature storage induced the production of ethylene, the hardness of the pulp decreased, and the low temperature also induced ABA accumulation. The changes of ABA and ethylene in peach fruits during low-temperature storage were clarified. Since the bZIP transcription factor is involved in the regulation of downstream pathways of ABA signals, 47 peach bZIP transcription factor family genes were identified through bioinformatics analysis. Further based on RT-qPCR analysis, 18 PpbZIP genes were discovered to be expressed in refrigerated peach fruits. Among them, the expression of PpbZIP23 and PpbZIP25 was significantly reduced during the refrigeration process, the promoter analysis of these genes found that this region contains the MYC/MYB/ABRES binding element, but not the DRES/CBFS element, indicating that the expression may be regulated by the ABA-dependent cold induction pathway, thereby responding to chilling injury in peach fruit. CONCLUSIONS Over investigation will provide new insights for further postharvest protocols related to molecular changes during cold storage and will prove a better cope for chilling injury.
Collapse
Affiliation(s)
- Muhammad Muzammal Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Li Deng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Junren Meng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Yan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Lei Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liang Niu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Guochao Cui
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| |
Collapse
|
20
|
Genome-Wide Identification of C2H2 ZFPs and Functional Analysis of BRZAT12 under Low-Temperature Stress in Winter Rapeseed (Brassica rapa). Int J Mol Sci 2022; 23:ijms232012218. [PMID: 36293086 PMCID: PMC9603636 DOI: 10.3390/ijms232012218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc-finger protein (ZFP) transcription factors are among the largest families of transcription factors in plants. They participate in various biological processes such as apoptosis, autophagy, and stemness maintenance and play important roles in regulating plant growth and development and the response to stress. To elucidate the functions of ZFP genes in the low-temperature response of winter (Brassica rapa L.) B. rapa, this study identified 141 members of the C2H2 ZFP gene family from B. rapa, which are heterogeneously distributed on 10 chromosomes and have multiple cis-acting elements related to hormone regulation and abiotic stress of adversity. Most of the genes in this family contain only one CDS, and genes distributed in the same evolutionary branch share mostly the same motifs and are highly conserved in the evolution of cruciferous species. The genes were significantly upregulated in the roots and growth cones of ‘Longyou-7’, indicating that they play a role in the stress-response process of winter B. rapa. The expression level of the Bra002528 gene was higher in the strongly cold-resistant varieties than in the weakly cold-resistant varieties after low-temperature stress. The survival rate and BrZAT12 gene expression of trans-BrZAT12 Arabidopsis thaliana (Arabidopsis) were significantly higher than those of the wild-type plants at low temperature, and the enzyme activities in vivo were higher than those of the wild-type plants, indicating that the BrZAT12 gene could improve the cold resistance of winter B. rapa. BrZAT12 expression and superoxide dismutase and ascorbate peroxidase enzyme activities were upregulated in winter B. rapa after exogenous ABA treatment. BrZAT12 expression and enzyme activities decreased after the PD98059 treatment, and BrZAT12 expression and enzyme activities were higher than in the PD98059 treatment but lower than in the control after both treatments together. It is speculated that BrZAT12 plays a role in the ABA signaling process in which MAPKK is involved. This study provides a theoretical basis for the resolution of cold-resistance mechanisms in strong winter B. rapa.
Collapse
|
21
|
Miao M, Tan H, Liang L, Huang H, Chang W, Zhang J, Li J, Tang Y, Li Z, Lai Y, Yang L, Li H. Comparative transcriptome analysis of cold-tolerant and -sensitive asparagus bean under chilling stress and recovery. PeerJ 2022; 10:e13167. [PMID: 35341039 PMCID: PMC8953502 DOI: 10.7717/peerj.13167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 01/12/2023] Open
Abstract
Background Low temperature is a type of abiotic stress that threatens the growth and yield of asparagus bean. However, the key genes and regulatory pathways involved in low temperature response in this legume are still poorly understood. Methodology. The present study analyzed the transcriptome of seedlings from two asparagus bean cultivars-Dubai bean and Ningjiang 3-using Illumina RNA sequencing (RNA-seq). Correlations between samples were determined by calculating Pearson correlation coefficients (PCC) and principal component analysis (PCA). Differentially expressed genes (DEGs) between two samples were identified using the DESeq package. Transcription factors (TF) prediction, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs were also performed. Results Phenotypes and physiological indices indicated that Ningjiang 3 seedlings tolerated cold better than Dubai bean seedlings, in contrast to adult stage. The transcriptome dynamics of the two cultivars were closely compared using Illumina RNA-seq following 0, 3, 12, and 24 h of cold stress at 5 °C and recovery for 3 h at 25 °C room temperature. Global gene expression patterns displayed relatively high correlation between the two cultivars (>0.88), decreasing to 0.79 and 0.81, respectively, at 12 and 24 h of recovery, consistent with the results of principal component analysis. The major transcription factor families identified from differentially expressed genes between the two cultivars included bHLH, NAC, C2H2, MYB, WRKY, and AP2/ERF. The representative GO enrichment terms were protein phosphorylation, photosynthesis, oxidation-reduction process, and cellular glucan metabolic process. Moreover, KEGG analysis of DEGs within each cultivar revealed 36 transcription factors enriched in Dubai bean and Ningjiang 3 seedlings under cold stress. Conclusions These results reveal new information that will improve our understanding of the molecular mechanisms underlying the cold stress response of asparagus bean and provide genetic resources for breeding cold-tolerant asparagus bean cultivars.
Collapse
Affiliation(s)
- Mingjun Miao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China,Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Huaqiang Tan
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haitao Huang
- Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China
| | - Wei Chang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ju Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhi Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Rui P, Yang X, Xu S, Wang Z, Zhou X, Jiang L, Jiang T. FvZFP1 confers transgenic Nicotiana benthamiana resistance against plant pathogens and improves tolerance to abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111176. [PMID: 35151459 DOI: 10.1016/j.plantsci.2021.111176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/22/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Zinc finger proteins can induce plant resistance and activate the expression of molecules involved in the resistance pathway in response to harsh environmental conditions. Previously, we found that a novel Fragaria vesca zinc finger protein interacts with the P6 protein encoded by a strawberry vein banding virus. However, the molecular mechanism of the zinc finger protein in plant stress resistance is still unknown. In this study, we reported the identification and functional characterization of the RING finger and CHY zinc finger domain-containing protein 1 (FvZFP1). The overexpression of FvZFP1 in Nicotiana benthamiana enhanced resistance to tobacco mosaic virus (TMV) and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) infection by increasing ROS content. Additionally, FvZFP1 overexpression upregulated salicylic acid (SA) response-related gene expression as well as SA accumulation following TMV and Pst DC3000 infection. Furthermore, FvZFP1 overexpression resulted in increased salinity and drought stress tolerance by increasing SOD activity and decreasing MDA content. Overexpression of FvZFP1 also activated the ABA pathway under salinity or drought conditions. To our knowledge, this is the first study on the involvement of F. vesca zinc finger protein in crosstalk between biotic and abiotic stress signaling pathways, suggesting that FvZFP1 is a candidate gene for the improvement of resistance in response to multiple stresses.
Collapse
Affiliation(s)
- Penghuan Rui
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xianchu Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Shiqiang Xu
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
23
|
Liu Y, Khan AR, Gan Y. C2H2 Zinc Finger Proteins Response to Abiotic Stress in Plants. Int J Mol Sci 2022; 23:ijms23052730. [PMID: 35269875 PMCID: PMC8911255 DOI: 10.3390/ijms23052730] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Abiotic stresses have already exhibited the negative effects on crop growth and development, thereby influencing crop quality and yield. Therefore, plants have developed regulatory mechanisms to adopt against such harsh changing environmental conditions. Recent studies have shown that zinc finger protein transcription factors play a crucial role in plant growth and development as well as in stress response. C2H2 zinc finger proteins are one of the best-studied types and have been shown to play diverse roles in the plant abiotic stress responses. However, the C2H2 zinc finger network in plants is complex and needs to be further studied in abiotic stress responses. Here in this review, we mainly focus on recent findings on the regulatory mechanisms, summarize the structural and functional characterization of C2H2 zinc finger proteins, and discuss the C2H2 zinc finger proteins involved in the different signal pathways in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Y.L.); (Y.G.)
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (Y.L.); (Y.G.)
| |
Collapse
|
24
|
Ding Q, Zhao H, Zhu P, Jiang X, Nie F, Li G. Genome-wide identification and expression analyses of C2H2 zinc finger transcription factors in Pleurotus ostreatus. PeerJ 2022; 10:e12654. [PMID: 35036086 PMCID: PMC8742544 DOI: 10.7717/peerj.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
The C2H2-type zinc finger proteins (C2H2-ZFPs) regulate various developmental processes and abiotic stress responses in eukaryotes. Yet, a comprehensive analysis of these transcription factors which could be used to find candidate genes related to the control the development and abiotic stress tolerance has not been performed in Pleurotus ostreatus. To fill this knowledge gap, 18 C2H2-ZFs were identified in the P. ostreatus genome. Phylogenetic analysis indicated that these proteins have dissimilar amino acid sequences. In addition, these proteins had variable protein characteristics, gene intron-exon structures, and motif compositions. The expression patterns of PoC2H2-ZFs in mycelia, primordia, and young and mature fruiting bodies were investigated using qRT-PCR. The expression of some PoC2H2-ZFs is regulated by auxin and cytokinin. Moreover, members of PoC2H2-ZFs expression levels are changed dramatically under heat and cold stress, suggesting that these genes may participate in abiotic stress responses. These findings could be used to study the role of P. ostreatus-derived C2H2-ZFs in development and stress tolerance.
Collapse
Affiliation(s)
- Qiangqiang Ding
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Heifei, Anhui Province, China,Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Heifei, Anhui Province, China
| | - Hongyuan Zhao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Heifei, Anhui Province, China
| | - Peilei Zhu
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Heifei, Anhui Province, China,Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Heifei, Anhui Province, China
| | - Xiangting Jiang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Heifei, Anhui Province, China
| | - Fan Nie
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Heifei, Anhui Province, China,Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Heifei, Anhui Province, China
| | - Guoqing Li
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Heifei, Anhui Province, China,Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Heifei, Anhui Province, China
| |
Collapse
|
25
|
Wang F, Chen S, Cai K, Lu Z, Yang Y, Tigabu M, Zhao X. Transcriptome sequencing and gene expression profiling of Pinus sibirica under different cold stresses. BREEDING SCIENCE 2021; 71:550-563. [PMID: 35087319 PMCID: PMC8784350 DOI: 10.1270/jsbbs.21009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/05/2021] [Indexed: 05/11/2023]
Abstract
Cold stress is a major abiotic factor that affects plant growth and geographical distribution. Pinus sibirica is extremely frigostable tree species. To understand the molecular mechanisms of cold tolerance by P. sibirica, physiological responses were analyzed and transcriptome profiling was conducted to the plants treated by cold stress. The physiological data showed that membrane permeability relative conductivity (REC), reactive oxygen species (ROS), malonaldehyde (MDA) content, peroxidase (POD) and catalase (CAT) activity, soluble sugar, soluble protein and proline contents were increased significantly (p < 0.05) in response to cold stress. Transcriptome analysis identified a total of 871, 1397 and 872 differentially expressed genes (DEGs) after cold treatment for 6 h, 24 h and 48 h at -20°C, respectively. The signaling pathway mediated by Ca2+ as a signaling molecule and abscisic acid pathways were the main cold signal transduction pathways in P. sibirica. The APETALA2/Ethylene-Responsive Factor (AP2/ERF) and MYB transcription factor families also play an important role in the transcriptional regulation of P. sibirica. In addition, many genes related to photosynthesis were differentially expressed under cold stress. We also validated the reliability of transcriptome data with quantitative real-time PCR. This study lays the foundation for understanding the molecular mechanisms related to cold responses in P. sibirica.
Collapse
Affiliation(s)
- Fang Wang
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- Jinlin Provincial Academy of Forestry Sciences, Changchun, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhimin Lu
- Jinlin Provincial Academy of Forestry Sciences, Changchun, China
| | - Yuchun Yang
- Jinlin Provincial Academy of Forestry Sciences, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Corresponding author (e-mail: )
| |
Collapse
|
26
|
A C2H2-Type Zinc-Finger Protein from Millettia pinnata, MpZFP1, Enhances Salt Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms221910832. [PMID: 34639173 PMCID: PMC8509772 DOI: 10.3390/ijms221910832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023] Open
Abstract
C2H2 zinc finger proteins (ZFPs) play important roles in plant development and response to abiotic stresses, and have been studied extensively. However, there are few studies on ZFPs in mangroves and mangrove associates, which represent a unique plant community with robust stress tolerance. MpZFP1, which is highly induced by salt stress in the mangrove associate Millettia pinnata, was cloned and functionally characterized in this study. MpZFP1 protein contains two zinc finger domains with conserved QALGGH motifs and targets to the nucleus. The heterologous expression of MpZFP1 in Arabidopsis increased the seeds' germination rate, seedling survival rate, and biomass accumulation under salt stress. The transgenic plants also increased the expression of stress-responsive genes, including RD22 and RD29A, and reduced the accumulation of reactive oxygen species (ROS). These results indicate that MpZFP1 is a positive regulator of plant responses to salt stress due to its activation of gene expression and efficient scavenging of ROS.
Collapse
|
27
|
Yang K, Li CY, An JP, Wang DR, Wang X, Wang CK, You CX. The C2H2-type zinc finger transcription factor MdZAT10 negatively regulates drought tolerance in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:390-399. [PMID: 34404010 DOI: 10.1016/j.plaphy.2021.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Various abiotic stressors, particularly drought stress, affect plant growth and yield. Zinc finger proteins play an important role in plant abiotic stress tolerance. Here, we isolated the apple MdZAT10 gene, a C2H2-type zinc finger protein, which is a homolog of Arabidopsis STZ/ZAT10. MdZAT10 was localized to the nucleus and highly expressed in leaves and fruit. Promoter analysis showed that MdZAT10 contained several response elements and the transcription level of MdZAT10 was induced by abiotic stress and hormone treatments. MdZAT10 was responsive to drought treatment both at the transcriptional and post-translational levels. MdZAT10-overexpressing apple calli decreased the expression level of MdAPX2 and increased sensitivity to PEG 6000 treatment. Moreover, ectopically expressed MdZAT10 in Arabidopsis reduced the tolerance to drought stress, and exhibited higher water loss, higher malondialdehyde (MDA) content and higher reactive oxygen species (ROS) accumulation under drought stress. In addition, MdZAT10 reduced the sensitivity to abscisic acid in apple. Ectopically expressed MdZAT10 in Arabidopsis promoted seed germination and seedling growth. These results indicate that MdZAT10 plays a negative regulator in the drought resistance, which can provide theoretical basis for further molecular mechanism research.
Collapse
Affiliation(s)
- Kuo Yang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chong-Yang Li
- National Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Da-Ru Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xun Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
28
|
Fan Y, Li W, Li Z, Dang S, Han S, Zhang L, Qi L. Examination of the Transcriptional Response to LaMIR166a Overexpression in Larix kaempferi (Lamb.) Carr. BIOLOGY 2021; 10:biology10070576. [PMID: 34201796 PMCID: PMC8301127 DOI: 10.3390/biology10070576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 02/02/2023]
Abstract
Simple Summary The study of somatic embryogenesis can provide insights into early plant development. To elucidate the molecular mechanisms associated with miR166 in Larix kaempferi (Lamb.) Carr, the transcriptional profiles of wild-type (WT) and LaMIR166a-overexpressing embryonic cells were subjected to RNA sequencing. In total, 2467 differentially expressed genes were obtained. The cleaved degree of LaHDZ31–34 was higher in transgenic lines than in WT. The genes related to LaHDZ31–34 were screened by transcriptome analysis, and a yeast one-hybrid and dual-luciferase report assay revealed that LaHDZ31–34 could bind to the promoters of LaPAP, LaPP1, LaZFP5, and LaPHO1. This study provides insights into the regulatory mechanisms of miR166. Abstract The study of somatic embryogenesis can provide insight into early plant development. We previously obtained LaMIR166a-overexpressing embryonic cell lines of Larix kaempferi (Lamb.) Carr. To further elucidate the molecular mechanisms associated with miR166 in this species, the transcriptional profiles of wild-type (WT) and three LaMIR166a-overexpressing transgenic cell lines were subjected to RNA sequencing using the Illumina NovaSeq 6000 system. In total, 203,256 unigenes were generated using Trinity de novo assembly, and 2467 differentially expressed genes were obtained by comparing transgenic and WT lines. In addition, we analyzed the cleaved degree of LaMIR166a target genes LaHDZ31–34 in different transgenic cell lines by detecting the expression pattern of LaHdZ31–34, and their cleaved degree in transgenic cell lines was higher than that in WT. The downstream genes of LaHDZ31–34 were identified using Pearson correlation coefficients. Yeast one-hybrid and dual-luciferase report assays revealed that the transcription factors LaHDZ31–34 could bind to the promoters of LaPAP, LaPP1, LaZFP5, and LaPHO1. This is the first report of gene expression changes caused by LaMIR166a overexpression in Japanese larch. These findings lay a foundation for future studies on the regulatory mechanism of miR166.
Collapse
Affiliation(s)
- Yanru Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.F.); (W.L.); (S.D.)
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wanfeng Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.F.); (W.L.); (S.D.)
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhexin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| | - Shaofei Dang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.F.); (W.L.); (S.D.)
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Suying Han
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China;
| | - Lifeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.F.); (W.L.); (S.D.)
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (L.Z.); (L.Q.); Tel.: +86-10-62888881 (L.Z.); +86-10-62888445 (L.Q.)
| | - Liwang Qi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.F.); (W.L.); (S.D.)
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (L.Z.); (L.Q.); Tel.: +86-10-62888881 (L.Z.); +86-10-62888445 (L.Q.)
| |
Collapse
|
29
|
Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: Story of Na +/K + balance and beyond. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:239-256. [PMID: 33524921 DOI: 10.1016/j.plaphy.2021.01.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 05/07/2023]
Abstract
High salt concentrations in the growing medium can severely affect the growth and development of plants. It is imperative to understand the different components of salt-tolerant network in plants in order to produce the salt-tolerant cultivars. High-affinity potassium transporter- and myelocytomatosis proteins have been shown to play a critical role for salinity tolerance through exclusion of sodium (Na+) ions from sensitive shoot tissues in plants. Numerous genes, that limit the uptake of salts from soil and their transport throughout the plant body, adjust the ionic and osmotic balance of cells in roots and shoots. In the present review, we have tried to provide a comprehensive report of major research advances on different mechanisms regulating plant tolerance to salinity stress at proteomics, metabolomics, genomics and transcriptomics levels. Along with the role of ionic homeostasis, a major focus was given on other salinity tolerance mechanisms in plants including osmoregulation and osmo-protection, cell wall remodeling and integrity, and plant antioxidative defense. Major proteins and genes expressed under salt-stressed conditions and their role in enhancing salinity tolerance in plants are discussed as well. Moreover, this manuscript identifies and highlights the key questions on plant salinity tolerance that remain to be discussed in the future.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan; Shanghai Center for Plant Stress Biology, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianqian Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naeem Ahmad
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Yin J, Wang L, Zhao J, Li Y, Huang R, Jiang X, Zhou X, Zhu X, He Y, He Y, Liu Y, Zhu Y. Genome-wide characterization of the C2H2 zinc-finger genes in Cucumis sativus and functional analyses of four CsZFPs in response to stresses. BMC PLANT BIOLOGY 2020; 20:359. [PMID: 32727369 PMCID: PMC7392682 DOI: 10.1186/s12870-020-02575-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/23/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUNDS C2H2-type zinc finger protein (ZFPs) form a relatively large family of transcriptional regulators in plants, and play many roles in plant growth, development, and stress response. However, the comprehensive analysis of C2H2 ZFPs in cucumber (CsZFPs) and their regulation function in cucumber are still lacking. RESULTS In the current study, the whole genome identification and characterization of CsZFPs, including the gene structure, genome localization, phylogenetic relationship, and gene expression were performed. Functional analysis of 4 selected genes by transient transformation were also conducted. A total of 129 full-length CsZFPs were identified, which could be classified into four groups according to the phylogenetic analysis. The 129 CsZFPs unequally distributed on 7 chromosomes. Promoter cis-element analysis showed that the CsZFPs might involve in the regulation of phytohormone and/or abiotic stress response, and 93 CsZFPs were predicted to be targeted by one to 20 miRNAs. Moreover, the subcellular localization analysis indicated that 10 tested CsZFPs located in the nucleus and the transcriptome profiling analysis of CsZFPs demonstrated that these genes are involved in root and floral development, pollination and fruit spine. Furthermore, the transient overexpression of Csa1G085390 and Csa7G071440 into Nicotiana benthamiana plants revealed that they could decrease and induce leave necrosis in response to pathogen attack, respectively, and they could enhance salt and drought stresses through the initial induction of H2O2. In addition, Csa4G642460 and Csa6G303740 could induce cell death after 5 days transformation. CONCLUSIONS The identification and function analysis of CsZFPs demonstrated that some key individual CsZFPs might play essential roles in response to biotic and abiotic stresses. These results could lay the foundation for understanding the role of CsZFPs in cucumber development for future genetic engineering studies.
Collapse
Affiliation(s)
- Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Jiao Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Yiting Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Rong Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Xinchen Jiang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Xiaokang Zhou
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Xiongmeng Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yang He
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yiqin He
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yiqing Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| |
Collapse
|
31
|
Maitra Majee S, Sharma E, Singh B, Khurana JP. Drought-induced protein (Di19-3) plays a role in auxin signaling by interacting with IAA14 in Arabidopsis. PLANT DIRECT 2020; 4:e00234. [PMID: 32582877 PMCID: PMC7306619 DOI: 10.1002/pld3.234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 05/08/2023]
Abstract
The members of early auxin response gene family, Aux/IAA, encode negative regulators of auxin signaling but play a central role in auxin-mediated plant development. Here we report the interaction of an Aux/IAA protein, AtIAA14, with Drought-induced-19 (Di19-3) protein and its possible role in auxin signaling. The Atdi19-3 mutant seedlings develop short hypocotyl, both in light and dark, and are compromised in temperature-induced hypocotyl elongation. The mutant plants accumulate more IAA and also show altered expression of NIT2, ILL5, and YUCCA genes involved in auxin biosynthesis and homeostasis, along with many auxin responsive genes like AUX1 and MYB77. Atdi19-3 seedlings show enhanced root growth inhibition when grown in the medium supplemented with auxin. Nevertheless, number of lateral roots is low in Atdi19-3 seedlings grown on the basal medium. We have shown that AtIAA14 physically interacts with AtDi19-3 in yeast two-hybrid (Y2H), bimolecular fluorescence complementation, and in vitro pull-down assays. However, the auxin-induced degradation of AtIAA14 in the Atdi19-3 seedlings was delayed. By expressing pIAA14::mIAA14-GFP in Atdi19-3 mutant background, it became apparent that both Di19-3 and AtIAA14 work in the same pathway and influence lateral root development in Arabidopsis. Gain-of-function slr-1/iaa14 (slr) mutant, like Atdi19-3, showed tolerance to abiotic stress in seed germination and cotyledon greening assays. The Atdi19-3 seedlings showed enhanced sensitivity to ethylene in triple response assay and AgNO3, an ethylene inhibitor, caused profuse lateral root formation in the mutant seedlings. These observations suggest that AtDi19-3 interacting with AtIAA14, in all probability, serves as a positive regulator of auxin signaling and also plays a role in some ethylene-mediated responses in Arabidopsis. SIGNIFICANCE STATEMENT This study has demonstrated interaction of auxin responsive Aux/IAA with Drought-induced 19 (Di19) protein and its possible implication in abiotic stress response.
Collapse
Affiliation(s)
- Susmita Maitra Majee
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Brinderjit Singh
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Jitendra P. Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| |
Collapse
|
32
|
Li X, Jia J, Zhao P, Guo X, Chen S, Qi D, Cheng L, Liu G. LcMYB4, an unknown function transcription factor gene from sheepgrass, as a positive regulator of chilling and freezing tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2020; 20:238. [PMID: 32460695 PMCID: PMC7333390 DOI: 10.1186/s12870-020-02427-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/30/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Sheepgrass (Leymus chinensis (Trin.) Tzvel) is a perennial forage grass that can survive extreme freezing winters (- 47.5 °C) in China. In this study, we isolated an unknown function MYB transcription factor gene, LcMYB4, from sheepgrass. However, the function of LcMYB4 and its homologous genes has not been studied in other plants. RESULTS The expression of the LcMYB4 gene was upregulated in response to cold induction, and the LcMYB4 fusion protein was localized in the nucleus, with transcriptional activation activity. Biological function analysis showed that compared with WT plants, LcMYB4-overexpressing Arabidopsis presented significantly increased chilling and freezing tolerance as evidenced by increased germination rate, survival rate, and seed setting rate under conditions of low temperature stress. Furthermore, LcMYB4-overexpressing plants showed increased soluble sugar content, leaf chlorophyll content and superoxide dismutase activity but decreased malondialdehyde (MDA) under chilling stress. Moreover, the expression of the CBF1, KIN1, KIN2 and RCI2A genes were significantly upregulated in transgenic plants with chilling treatment. These results suggest that LcMYB4 overexpression increased the soluble sugar content and cold-inducible gene expression and alleviated oxidative damage and membrane damage, resulting in enhanced cold resistance in transgenic plants. Interestingly, our results showed that the LcMYB4 protein interacts with fructose-1,6-bisphosphate aldolase protein1 (LcFBA1) and that the expression of the LcFBA1 gene was also upregulated during cold induction in sheepgrass, similar to LcMYB4. CONCLUSION Our findings suggest that LcMYB4 encodes MYB transcription factor that plays a positive regulatory role in cold stress.
Collapse
Affiliation(s)
- Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Junting Jia
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Pincang Zhao
- College of management science and engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Xiufang Guo
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:115. [PMID: 32153617 PMCID: PMC7044346 DOI: 10.3389/fpls.2020.00115] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 05/04/2023]
Abstract
Abiotic stresses such as drought and salinity are major environmental factors that limit crop yields. Unraveling the molecular mechanisms underlying abiotic stress resistance is crucial for improving crop performance and increasing productivity under adverse environmental conditions. Zinc finger proteins, comprising one of the largest transcription factor families, are known for their finger-like structure and their ability to bind Zn2+. Zinc finger proteins are categorized into nine subfamilies based on their conserved Cys and His motifs, including the Cys2/His2-type (C2H2), C3H, C3HC4, C2HC5, C4HC3, C2HC, C4, C6, and C8 subfamilies. Over the past two decades, much progress has been made in understanding the roles of C2H2 zinc finger proteins in plant growth, development, and stress signal transduction. In this review, we focus on recent progress in elucidating the structures, functions, and classifications of plant C2H2 zinc finger proteins and their roles in abiotic stress responses.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nianwei Qiu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
34
|
He F, Li H, Wang J, Su Y, Wang H, Feng C, Yang Y, Niu M, Liu C, Yin W, Xia X. PeSTZ1, a C2H2-type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating PeAPX2. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2169-2183. [PMID: 30977939 PMCID: PMC6790368 DOI: 10.1111/pbi.13130] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/07/2019] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
In the present study, PeSTZ1, a cysteine-2/histidine-2-type zinc finger transcription factor, was isolated from the desert poplar, Populus euphratica, which serves as a model stress adaptation system for trees. PeSTZ1 was preferentially expressed in the young stems and was significantly up-regulated during chilling and freezing treatments. PeSTZ1 was localized to the nucleus and bound specifically to the PeAPX2 promoter. To examine the potential functions of PeSTZ1, we overexpressed it in poplar 84K hybrids (Populus alba × Populus glandulosa), which are known to be stress-sensitive. Upon exposure to freezing stress, transgenic poplars maintained higher photosynthetic activity and dissipated more excess light energy (in the form of heat) than wild-type poplars. Thus, PeSTZ1 functions as a transcription activator to enhance freezing tolerance without sacrificing growth. Under freezing stress, PeSTZ1 acts upstream of ASCORBATE PEROXIDASE2 (PeAPX2) and directly regulates its expression by binding to its promoter. Activated PeAPX2 promotes cytosolic APX that scavenges reactive oxygen species (ROS) under cold stress. PeSTZ1 may operate in parallel with C-REPEAT-BINDING FACTORS to regulate COLD-REGULATED gene expression. Moreover, PeSTZ1 up-regulation reduces malondialdehyde and ROS accumulation by activating the antioxidant system. Taken together, these results suggested that overexpressing PeSTZ1 in 84K poplar enhances freezing tolerance through the modulation of ROS scavenging via the direct regulation of PeAPX2 expression.
Collapse
Affiliation(s)
- Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hui‐Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jing‐Jing Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Cong‐Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Meng‐Xue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
35
|
Zhu M, Xie H, Wei X, Dossa K, Yu Y, Hui S, Tang G, Zeng X, Yu Y, Hu P, Wang J. WGCNA Analysis of Salt-Responsive Core Transcriptome Identifies Novel Hub Genes in Rice. Genes (Basel) 2019; 10:E719. [PMID: 31533315 PMCID: PMC6771013 DOI: 10.3390/genes10090719] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Rice, being a major staple food crop and sensitive to salinity conditions, bears heavy yield losses due to saline soil. Although some salt responsive genes have been identified in rice, their applications in developing salt tolerant cultivars have resulted in limited achievements. Herein, we used bioinformatic approaches to perform a meta-analysis of three transcriptome datasets from salinity and control conditions in order to reveal novel genes and the molecular pathways underlying rice response to salt. From a total of 28,432 expressed genes, we identify 457 core differentially expressed genes (DEGs) constitutively responding to salt, regardless of the stress duration, genotype, or the tissue. Gene co-expression analysis divided the core DEGs into three different modules, each of them contributing to salt response in a unique metabolic pathway. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted key biological processes and metabolic pathways involved in the salt response. We identified important novel hub genes encoding proteins of different families including CAM, DUF630/632, DUF581, CHL27, PP2-13, LEA4-5, and transcription factors, which could be functionally characterized using reverse genetic experiments. This novel repertoire of candidate genes related to salt response in rice will be useful for engineering salt tolerant varieties.
Collapse
Affiliation(s)
- Mingdong Zhu
- Hunan Agricultural University, Changsha 410128, China.
- Hunan Rice Research Institute, Changsha 410125, China.
| | - Hongjun Xie
- Hunan Rice Research Institute, Changsha 410125, China.
| | - Xiangjin Wei
- China National Rice Research Institute, Hangzhou 311401, China.
| | - Komivi Dossa
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China.
| | - Yaying Yu
- Hunan Agricultural University, Changsha 410128, China.
| | - Suozhen Hui
- Hunan Agricultural University, Changsha 410128, China.
| | - Guohua Tang
- Hunan Rice Research Institute, Changsha 410125, China.
| | - Xiaoshan Zeng
- Hunan Rice Research Institute, Changsha 410125, China.
| | - Yinghong Yu
- Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Peisong Hu
- China National Rice Research Institute, Hangzhou 311401, China.
| | - Jianlong Wang
- Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
36
|
Das P, Lakra N, Nutan KK, Singla-Pareek SL, Pareek A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. RICE (NEW YORK, N.Y.) 2019; 12:58. [PMID: 31375941 PMCID: PMC6890918 DOI: 10.1186/s12284-019-0316-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice productivity is adversely affected by environmental stresses. Transcription factors (TFs), as the regulators of gene expression, are the key players contributing to stress tolerance and crop yield. Histone gene binding protein-1b (OsHBP1b) is a TF localized within the Saltol QTL in rice. Recently, we have reported the characterization of OsHBP1b in relation to salinity and drought tolerance in a model system tobacco. In the present study, we over-express the full-length gene encoding OsHBP1b in the homologous system (rice) to assess its contribution towards multiple stress tolerance and grain yield. RESULTS We provide evidence to show that transgenic rice plants over-expressing OsHBP1b exhibit better survival and favourable osmotic parameters under salinity stress than the wild type counterparts. These transgenic plants restricted reactive oxygen species accumulation by exhibiting high antioxidant enzyme activity (ascorbate peroxidase and superoxide dismutase), under salinity conditions. Additionally, these transgenic plants maintained the chlorophyll concentration, organellar structure, photosynthesis and expression of photosynthesis and stress-related genes even when subjected to salinity stress. Experiments conducted for other abiotic stresses such as drought and high temperature revealed improved tolerance in these transgenic plants with better root and shoot growth, better photosynthetic parameters, and enhanced antioxidant enzyme activity, in comparison with WT. Further, the roots of transgenic lines showed large cortical cells and accumulated a good amount of callose, unlike the WT roots, thus enabling them to penetrate hard soil and prevent the entry of harmful ions in the cell. CONCLUSION Collectively, our results show that rice HBP1b gene contributes to multiple abiotic stress tolerance through several molecular and physiological pathways and hence, may serve as an important gene for providing multiple stress tolerance and improving crop yield in rice.
Collapse
Affiliation(s)
- Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nita Lakra
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kamlesh Kant Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
37
|
Comprehensive genomic survey, structural classification and expression analysis of C2H2 zinc finger protein gene family in Brassica rapa L. PLoS One 2019; 14:e0216071. [PMID: 31059545 PMCID: PMC6502316 DOI: 10.1371/journal.pone.0216071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
C2H2 zinc finger protein (ZFP) genes have been extensively studied in many organisms and can function as transcription factors and be involved in many biological processes including plant growth and development and stress responses. In the current study, a comprehensive genomics analysis of the C2H2-ZFP genes in B. rapa was performed. A total of 301 B. rapa putative C2H2-ZFP (BrC2H2-ZFP) genes were identified from the available Brassica genome databases, and further characterized through analysis of conserved amino acid residues in C2H2-ZF domains and their organization, subcellular localization, phylogeny, additional domain, chromosomal location, synteny relationship, Ka/Ks ratio, and expression pattern. We also analyzed the expression patterns of eight B. rapa C2H2-ZFP genes under salt and drought stress conditions by using qRT-PCR technique. Our results showed that about one-third of these B. rapa C2H2-ZFP genes were originated from segmental duplication caused by the WGT around 13 to 17 MYA, one-third of them were highly and consecutively expressed in all tested tissues, and 92% of them were located in nucleus by prediction supporting then their functional roles as transcription factors, of which some may play important roles in plant growth and development. The Ka/Ks ratios of 264 orthologous C2H2-ZFP gene pairs between A. thaliana and B. rapa were all, except two, inferior to 1 (varied from 0.0116 to 1.4919, with an average value of 0.3082), implying that these genes had mainly experienced purifying selection during species evolution. The estimated divergence times of the same set of gene pairs ranged from 6.23 to 38.60 MY, with an average value of 18.29 MY, indicating that these gene members have undergone different selective pressures resulting in different evolutionary rates during species evolution. In addition, a few of these B. rapa C2H2-ZFPs were shown to be involved in stress responses in a similar way as their orthologs in A. thaliana. Comparison between A. thaliana and B. rapa orthologous C2H2-ZFP genes showed that the majority of these C2H2-ZFP gene members encodes proteins with conserved subcellular localization and functional domains between the two species but differed in their expression patterns in five tissues or organs. Thus, our study provides valuable information for further functional determination of each C2H2-ZFP gene across the Brassica species, and may help to select the appropriate gene targets for further in-depth studies, and genetic engineering and improvement of Brassica crops.
Collapse
|
38
|
Han YC, Fu CC. Cold-inducible MaC2H2s are associated with cold stress response of banana fruit via regulating MaICE1. PLANT CELL REPORTS 2019; 38:673-680. [PMID: 30826844 DOI: 10.1007/s00299-019-02399-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/23/2019] [Indexed: 05/21/2023]
Abstract
MaC2H2s are involved in cold stress response of banana fruit via repressing the transcription of MaICE1. Although C2H2 zinc finger proteins have been found to be involved in banana fruit ripening through transcriptional controlling of ethylene biosynthetic genes, their involvement in cold stress of banana remains elusive. In this study, another C2H2-ZFP gene from banana fruit was identified, which was named as MaC2H2-3. Gene expression analysis revealed that MaC2H2-1, MaC2H2-2 and MaC2H2-3 were cold inducible in the peel of banana during low temperature storage. MaC2H2-3 functions as a transcriptional repressor and localizes predominantly in nucleus. Particularly, promoters of MaC2H2-2 and MaC2H2-3 were noticeably activated by cold as well, further indicating the potential roles of C2H2 in cold stress of banana. Moreover, MaC2H2-2 and MaC2H2-3 significantly repressed the transcription of MaICE1, a key component in cold signaling pathway. Overall, these findings suggest that MaC2H2s may take part in controlling cold stress of banana through suppressing the transcription of MaICE1, providing new insight of the regulatory basis of C2H2 in cold stress.
Collapse
Affiliation(s)
- Yan-Chao Han
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of China Light Industry, Hangzhou, 310021, People's Republic of China
| | - Chang-Chun Fu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, People's Republic of China.
| |
Collapse
|
39
|
Noman A, Aqeel M, Khalid N, Islam W, Sanaullah T, Anwar M, Khan S, Ye W, Lou Y. Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microb Pathog 2019; 132:141-149. [PMID: 31051192 DOI: 10.1016/j.micpath.2019.04.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 11/17/2022]
Abstract
The plants resist/tolerate unfavorable conditions in their natural habitats by using different but aligned and integrated defense mechanisms. Such defense responses include not only morphological and physiological adaptations but also the genomic and transcriptomic reconfiguration. Microbial attack on plants activates multiple pro-survival pathways such as transcriptional reprogramming, hypersensitive response (HR), antioxidant defense system and metabolic remodeling. Up-regulation of these processes during biotic stress conditions directly relates with plant survival. Over the years, hundreds of plant transcription factors (TFs) belonging to diverse families have been identified. Zinc finger protein (ZFP) TFs have crucial role in phytohormone response, plant growth and development, stress tolerance, transcriptional regulation, RNA binding and protein-protein interactions. Recent research progress has revealed regulatory and biological functions of ZFPs in incrementing plant resistance to pathogens. Integration of transcriptional activity with metabolic modulations has miniaturized plant innate immunity. However, the precise roles of different zinc finger TFs in plant immunity to pathogens have not been thoroughly analyzed. This review consolidates the pivotal functioning of zinc finger TFs and proposes the integrative understanding as foundation for the plant growth and development including the stress responses.
Collapse
Affiliation(s)
- Ali Noman
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China; Department of Botany, Government College University, Faisalabad, Pakistan; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
| | - Tayyaba Sanaullah
- Institute of Pure and Applied Biology, Bahaud Din Zakria University, Multan, Pakistan
| | - Muhammad Anwar
- College of Life Science and Oceanology, Shenzhen University, Shenzhen, PR China
| | - Shahbaz Khan
- College of Agriculture, Shangxi Agricultural University, Jinzhong, PR China
| | - Wenfeng Ye
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Yonggen Lou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
40
|
Wang K, Ding Y, Cai C, Chen Z, Zhu C. The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. PHYSIOLOGIA PLANTARUM 2019; 165:690-700. [PMID: 29572849 DOI: 10.1111/ppl.12728] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 05/20/2023]
Abstract
Abiotic stresses are important factors affecting plant growth and development and limiting agricultural production worldwide. Plants have evolved complex regulatory mechanisms to respond and adapt to constantly changing environmental conditions. C2H2 zinc finger proteins form a relatively large family of transcriptional regulators in plants. Recent studies have revealed that C2H2 zinc finger proteins function as key transcriptional regulators in plant responses to a wide spectrum of stress conditions, including extreme temperatures, salinity, drought, oxidative stress, excessive light and silique shattering. Here, we summarize recent functional analysis on C2H2 zinc finger proteins in plant responses to abiotic stresses and discuss their roles as part of a large regulatory network in the perception and responses by plants to different environmental stimuli.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanfei Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chong Cai
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
41
|
Nowicka B, Ciura J, Szymańska R, Kruk J. Improving photosynthesis, plant productivity and abiotic stress tolerance - current trends and future perspectives. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:415-433. [PMID: 30412849 DOI: 10.1016/j.jplph.2018.10.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 05/02/2023]
Abstract
With unfavourable climate changes and an increasing global population, there is a great need for more productive and stress-tolerant crops. As traditional methods of crop improvement have probably reached their limits, a further increase in the productivity of crops is expected to be possible using genetic engineering. The number of potential genes and metabolic pathways, which when genetically modified could result in improved photosynthesis and biomass production, is multiple. Photosynthesis, as the only source of carbon required for the growth and development of plants, attracts much attention is this respect, especially the question concerning how to improve CO2 fixation and limit photorespiration. The most promising direction for increasing CO2 assimilation is implementating carbon concentrating mechanisms found in cyanobacteria and algae into crop plants, while hitherto performed experiments on improving the CO2 fixation versus oxygenation reaction catalyzed by Rubisco are less encouraging. On the other hand, introducing the C4 pathway into C3 plants is a very difficult challenge. Among other points of interest for increased biomass production is engineering of metabolic regulation, certain proteins, nucleic acids or phytohormones. In this respect, enhanced sucrose synthesis, assimilate translocation to sink organs and starch synthesis is crucial, as is genetic engineering of the phytohormone metabolism. As abiotic stress tolerance is one of the key factors determining crop productivity, extensive studies are being undertaken to develop transgenic plants characterized by elevated stress resistance. This can be accomplished due to elevated synthesis of antioxidants, osmoprotectants and protective proteins. Among other promising targets for the genetic engineering of plants with elevated stress resistance are transcription factors that play a key role in abiotic stress responses of plants. In this review, most of the approaches to improving the productivity of plants that are potentially promising and have already been undertaken are described. In addition to this, the limitations faced, potential challenges and possibilities regarding future research are discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Joanna Ciura
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
42
|
Chapman KM, Marchi-Werle L, Hunt TE, Heng-Moss TM, Louis J. Abscisic and Jasmonic Acids Contribute to Soybean Tolerance to the Soybean Aphid (Aphis glycines Matsumura). Sci Rep 2018; 8:15148. [PMID: 30310120 PMCID: PMC6181993 DOI: 10.1038/s41598-018-33477-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022] Open
Abstract
Plant resistance can provide effective, economical, and sustainable pest control. Tolerance to the soybean aphid has been identified and confirmed in the soybean KS4202. Although its resistance mechanisms are not fully understood, evidence suggests that enhanced detoxification of reactive oxygen species (ROS) is an active system under high aphid infestation. We further explored tolerance by evaluating the differences in constitutive and aphid-induced defenses in KS4202 through the expression of selected defense-related transcripts and the levels of the phytohormones abscisic acid (ABA), jasmonic acid (JA), JA-isoleucine (JA-Ile), cis-(+)-12-oxo-phytodienoic acid (OPDA), and salicylic acid (SA) over several time points. Higher constitutive levels of ABA and JA, and basal expression of ABA- and JA-related transcripts were found in the tolerant genotype. Conversely, aphid-induced defenses in KS4202 were expressed as an upregulation of peroxidases under prolonged aphid infestation (>7 days). Our results point at the importance of phytohormones in constitutive defense in KS4202 tolerance to the soybean aphid. Understanding the underlying mechanisms of tolerance will assist breeding for soybean with these traits, and perhaps help extend the durability of Rag (Resistance to Aphis glycines)-mediated resistance genes.
Collapse
Affiliation(s)
- Kaitlin M Chapman
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lia Marchi-Werle
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Thomas E Hunt
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Tiffany M Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
43
|
Overexpression of a New Zinc Finger Protein Transcription Factor OsCTZFP8 Improves Cold Tolerance in Rice. Int J Genomics 2018; 2018:5480617. [PMID: 29951522 PMCID: PMC5989172 DOI: 10.1155/2018/5480617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022] Open
Abstract
Cold stress is one of the most important abiotic stresses in rice. C2H2 zinc finger proteins play important roles in response to abiotic stresses in plants. In the present study, we isolated and functionally characterized a new C2H2 zinc finger protein transcription factor OsCTZFP8 in rice. OsCTZFP8 encodes a C2H2 zinc finger protein, which contains a typical zinc finger motif, as well as a potential nuclear localization signal (NLS) and a leucine-rich region (L-box). Expression of OsCTZFP8 was differentially induced by several abiotic stresses and was strongly induced by cold stress. Subcellular localization assay and yeast one-hybrid analysis revealed that OsCTZFP8 was a nuclear protein and has transactivation activity. To characterize the function of OsCTZFP8 in rice, the full-length cDNA of OsCTZFP8 was isolated and transgenic rice with overexpression of OsCTZFP8 driven by the maize ubiquitin promoter was generated using Agrobacterium-mediated transformation. Among 46 independent transgenic lines, 6 single-copy homozygous overexpressing lines were selected by Southern blot analysis and Basta resistance segregation assay in both T1 and T2 generations. Transgenic rice overexpressing OsCTZFP8 exhibited cold tolerant phenotypes with significantly higher pollen fertilities and seed setting rates than nontransgenic control plants. In addition, yield per plant of OsCTZFP8-expressing lines was significantly (p < 0.01) higher than that of nontransgenic control plants under cold treatments. These results demonstrate that OsCTZFP8 was a C2H2 zinc finger transcription factor that plays an important role in cold tolerance in rice.
Collapse
|
44
|
Noman A, Liu Z, Yang S, Shen L, Hussain A, Ashraf MF, Khan MI, He S. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb Pathog 2018; 118:336-346. [PMID: 29614367 DOI: 10.1016/j.micpath.2018.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 11/24/2022]
Abstract
Extensive transcriptional reprogramming after pathogen attack determines immunity to these invaders and plant development. Zinc finger (ZNF) transcription factors regulate important processes in plants such as development, vegetative activities and plant immunity. Despite their immense significance, majority of ZNF transcription factors (TF) involved in pepper immunity and resistance to heat stress have not been focused much. Herein, we identified and functionally characterized CaZNF830 in pepper defense against Ralstonia solanacearum inoculation (RSI) and tolerance to high temperature and high humidity (HTHH). Transient expression analysis of CaZNF830-GFP fusion protein in tobacco leaves revealed its localization to the nucleus. Transcription of CaZNF830 is induced in pepper plants upon RSI or HTHH. Consistent with this, fluorometric GUS enzymatic assay driven by pCaZNF830 presented significantly enhanced activity under RSI and HTHH in comparison with the control plants. The silencing of CaZNF830 by virus induced gene silencing (VIGS) significantly compromised pepper immunity against RSI with enhanced growth of Ralstonia solanacearum in pepper plants. Silencing of CaZNF830 also impaired tolerance to HTHH coupled with decreased expression levels of immunity and thermo-tolerance associated marker genes including CaHIR1, CaNPR1, CaPR1, CaABR1 and CaHSP24. By contrast, the transient over-expression of CaZNF830 in pepper leaves by infiltration of GV3101 cells containing 35S::CaZNF830-HA induced HR mimic cell death, H2O2 accumulation and activated the transcriptions of the tested defense-relative or thermo-tolerance associated marker genes. RT-PCR and immune-blotting assay confirmed the stable expression of HA-tagged CaZNF830 mRNA and protein in pepper. All these results suggest that CaZNF830 acts as a positive regulator of plant immunity against RSI or tolerance to HTHH, it is induced by RSI or HTHH and consequently activate pepper immunity against RSI or tolerance to HTHH by directly or indirectly transcriptional modulation of many defense-linked genes.
Collapse
Affiliation(s)
- Ali Noman
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Furqan Ashraf
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Ifnan Khan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
45
|
Liu D, Yang L, Luo M, Wu Q, Liu S, Liu Y. Molecular cloning and characterization of PtrZPT2-1, a ZPT2 family gene encoding a Cys2/His2-type zinc finger protein from trifoliate orange (Poncirus trifoliata (L.) Raf.) that enhances plant tolerance to multiple abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:66-78. [PMID: 28818385 DOI: 10.1016/j.plantsci.2017.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
In plants, most Cys2/His2 (C2H2) zinc finger proteins with two zinc finger domains (ZPT2) are involved in abiotic stress responses. In this study, a ZPT2 family gene PtrZPT2-1 was cloned from trifoliate orange (Poncirus trifoliata (L.) Raf.). PtrZPT2-1 is composed of 245 amino acids, has a putative molecular weight of 25.99kDa and an isoelectric point of 8.41. PtrZPT2-1 contained two C2H2 zinc finger domains, one nuclear localization signal (B-box), one transcription repression domain (DLN-box), and one protein-protein interaction domain (L-box). PtrZPT2-1 was localized to the nucleus. The PtrZPT2-1 expression was strongly induced by cold, drought, salt and ABA stresses. Overexpression of PtrZPT2-1 increased the survival rates, and the ABA, soluble sugar and proline levels but decreased the ion leakage, the malondialdehyde (MDA) content and reduced the H2O2 accumulation in the transgenic tobacco after cold, drought or salt treatments. Furthermore, the expression levels of 15 abiotic stress-related genes were significantly increased in the transgenic tobacco overexpressing PtrZPT2-1 after cold, drought or salt stress treatments. Our results indicated that overexpression of PtrZPT2-1 in the transgenic tobacco could improve the cold, drought and salt resistance of the plants by increasing the levels of osmotic regulatory solutes and decreasing the accumulation of H2O2.
Collapse
Affiliation(s)
- Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Man Luo
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi Wu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shanbei Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
46
|
Wani SH, Dutta T, Neelapu NRR, Surekha C. Transgenic approaches to enhance salt and drought tolerance in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Wang L, Cao H, Qian W, Yao L, Hao X, Li N, Yang Y, Wang X. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. ANNALS OF BOTANY 2017; 119:1195-1209. [PMID: 28334275 PMCID: PMC5604549 DOI: 10.1093/aob/mcx011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/20/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Basic region/leucine zipper (bZIP) transcription factors play vital roles in the abiotic stress response of plants. However, little is known about the function of bZIP genes in Camellia sinensis . METHODS CsbZIP6 was overexpressed in Arabidopsis thaliana . Effects of CsbZIP6 overexpression on abscisic acid (ABA) sensitivity, freezing tolerance and the expression of cold-responsive genes in arabidopsis were studied. KEY RESULTS CsbZIP6 was induced during cold acclimation in tea plant. Constitutive overexpression of CsbZIP6 in arabidopsis lowered the plants' tolerance to freezing stress and ABA exposure during seedling growth. Compared with wild-type (WT) plants, CsbZIP6 overexpression (OE) lines exhibited increased levels of electrolyte leakage (EL) and malondialdehyde (MDA) contents, and reduced levels of total soluble sugars (TSS) under cold stress conditions. Microarray analysis of transgenic arabidopsis revealed that many differentially expressed genes (DEGs) between OE lines and WT plants could be mapped to 'response to cold' and 'response to water deprivation' terms based on Gene Ontology analysis. Interestingly, CsbZIP6 overexpression repressed most of the cold- and drought-responsive genes as well as starch metabolism under cold stress conditions. CONCLUSIONS The data suggest that CsbZIP6 functions as a negative regulator of the cold stress response in A. thaliana , potentially by down-regulating cold-responsive genes.
Collapse
Affiliation(s)
- Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
- These authors contributed equally to this work
| | - Hongli Cao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- These authors contributed equally to this work
| | - Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Lina Yao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
- For correspondence. E-mail or
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
- For correspondence. E-mail or
| |
Collapse
|
48
|
Lim YH, Han C, Bae S, Hong YC. Modulation of blood pressure in response to low ambient temperature: The role of DNA methylation of zinc finger genes. ENVIRONMENTAL RESEARCH 2017; 153:106-111. [PMID: 27918981 DOI: 10.1016/j.envres.2016.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/24/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Blood pressure rises with a drop in external temperature, but the role of DNA methylation in such blood pressure modulation has not been studied in detail. We evaluated blood pressure and DNA methylation of vascular disease-related genes in association with low temperature. METHODS To examine changes in blood pressure and DNA methylation associated with low temperature, we conducted repeated measures analysis among 50 participants over 3 repeated visits, and validated the association among another 52 participants. In addition, the mean of methylation changes in the identified CpG sites was evaluated with changes in blood pressure. Mediation analyses were also conducted to model the indirect association between low ambient temperature and blood pressure through changes in DNA methylation. RESULTS With a 1°C decrease in temperature, increases of 0.6mmHg (standard error (SE), 0.2) in SBP and 0.3mmHg (SE, 0.1) in DBP occurred (P<0.05). Of 24,490 CpG sites in vascular genes, 2 CpG sites of zinc finger (ZNF) genes were significantly associated with temperature after Bonferroni's correction in discovery and replication data. A 10% increase in methylation expression in 2 CpG sites in ZNF genes was associated with a 4-mmHg elevation in DBP (SE, 1.8; P=0.0236). The hypermethylation was attributable to the association of ambient temperature with DBP (proportion of mediation=11.8-20.4%). CONCLUSIONS Methylation changes in ZNF genes might be involved in the elevation of blood pressure when the body is exposed to cold temperature.
Collapse
Affiliation(s)
- Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Changwoo Han
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Wang J, Zhang Q, Cui F, Hou L, Zhao S, Xia H, Qiu J, Li T, Zhang Y, Wang X, Zhao C. Genome-Wide Analysis of Gene Expression Provides New Insights into Cold Responses in Thellungiella salsuginea. FRONTIERS IN PLANT SCIENCE 2017; 8:713. [PMID: 28533787 PMCID: PMC5420556 DOI: 10.3389/fpls.2017.00713] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/18/2017] [Indexed: 05/21/2023]
Abstract
Low temperature is one of the major environmental stresses that affects plant growth and development, and leads to decrease in crop yield and quality. Thellungiella salsuginea (salt cress) exhibits high tolerance to chilling, is an appropriate model to investigate the molecular mechanisms of cold tolerance. Here, we compared transcription changes in the roots and leaves of T. salsuginea under cold stress using RNA-seq. We identified 2,782 and 1,430 differentially expressed genes (DEGs) in leaves and roots upon cold treatment, respectively. The expression levels of some genes were validated by quantitative real-time-PCR (qRT-PCR). Among these DEGs, 159 (11.1%) genes in roots and 232 (8.3%) genes in leaves were annotated as various types of transcription factors. We found that five aquaporin genes (three TIPs, one PIPs, and one NIPs) responded to cold treatment. In addition, the expression of COR47, ICE1, and CBF1 genes of DREB1/CBF-dependent cold signaling pathway genes altered in response to low temperature. KEGG pathway analysis indicated that these cold regulated genes were enriched in metabolism, photosynthesis, circadian rhythm, and transcriptional regulation. Our findings provided a complete picture of the regulatory network of cold stress response in T. salsuginea. These cold-responsive genes could be targeted for detail functional study and utilization in crop cold tolerance improvement.
Collapse
Affiliation(s)
- Jiangshan Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- Yantai Institute of China Agricultural UniversityYantai, China
| | - Quan Zhang
- College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Feng Cui
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Jingjing Qiu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Tingting Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- College of Life Sciences, Shandong Normal UniversityJinan, China
- *Correspondence: Chuanzhi Zhao,
| |
Collapse
|
50
|
Noman A, Kanwal H, Khalid N, Sanaullah T, Tufail A, Masood A, Sabir SUR, Aqeel M, He S. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris. FRONTIERS IN PLANT SCIENCE 2017; 8:1388. [PMID: 28855910 PMCID: PMC5557727 DOI: 10.3389/fpls.2017.01388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 05/14/2023]
Abstract
Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Hina Kanwal
- Department of Botany, Government College Women UniversityFaisalabad, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women UniversitySialkot, Pakistan
| | - Tayyaba Sanaullah
- Institute of Pure and Applied Biology, Bahauddin Zakariya UniversityMultan, Pakistan
| | - Aasma Tufail
- Division of Science & Technology, Department of Botany, University of EducationLahore, Pakistan
| | - Atifa Masood
- Department of Botany, University of LahoreSargodha, Pakistan
| | - Sabeeh-ur-Rasool Sabir
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
- *Correspondence: Muhammad Aqeel
| | - Shuilin He
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- Shuilin He
| |
Collapse
|