1
|
Catherall E, Musial S, Atkinson N, Walker CE, Mackinder LCM, McCormick AJ. From algae to plants: understanding pyrenoid-based CO 2-concentrating mechanisms. Trends Biochem Sci 2025; 50:33-45. [PMID: 39592300 DOI: 10.1016/j.tibs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Pyrenoids are the key component of one of the most abundant biological CO2 concentration mechanisms found in nature. Pyrenoid-based CO2-concentrating mechanisms (pCCMs) are estimated to account for one third of global photosynthetic CO2 capture. Our molecular understanding of how pyrenoids work is based largely on work in the green algae Chlamydomonas reinhardtii. Here, we review recent advances in our fundamental knowledge of the biogenesis, architecture, and function of pyrenoids in Chlamydomonas and ongoing engineering biology efforts to introduce a functional pCCM into chloroplasts of vascular plants, which, if successful, has the potential to enhance crop productivity and resilience to climate change.
Collapse
Affiliation(s)
- Ella Catherall
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sabina Musial
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
2
|
Fakhimi N, Grossman AR. Photosynthetic Electron Flows and Networks of Metabolite Trafficking to Sustain Metabolism in Photosynthetic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:3015. [PMID: 39519934 PMCID: PMC11548211 DOI: 10.3390/plants13213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Photosynthetic eukaryotes have metabolic pathways that occur in distinct subcellular compartments. However, because metabolites synthesized in one compartment, including fixed carbon compounds and reductant generated by photosynthetic electron flows, may be integral to processes in other compartments, the cells must efficiently move metabolites among the different compartments. This review examines the various photosynthetic electron flows used to generate ATP and fixed carbon and the trafficking of metabolites in the green alga Chlamydomomas reinhardtii; information on other algae and plants is provided to add depth and nuance to the discussion. We emphasized the trafficking of metabolites across the envelope membranes of the two energy powerhouse organelles of the cell, the chloroplast and mitochondrion, the nature and roles of the major mobile metabolites that move among these compartments, and the specific or presumed transporters involved in that trafficking. These transporters include sugar-phosphate (sugar-P)/inorganic phosphate (Pi) transporters and dicarboxylate transporters, although, in many cases, we know little about the substrate specificities of these transporters, how their activities are regulated/coordinated, compensatory responses among transporters when specific transporters are compromised, associations between transporters and other cellular proteins, and the possibilities for forming specific 'megacomplexes' involving interactions between enzymes of central metabolism with specific transport proteins. Finally, we discuss metabolite trafficking associated with specific biological processes that occur under various environmental conditions to help to maintain the cell's fitness. These processes include C4 metabolism in plants and the carbon concentrating mechanism, photorespiration, and fermentation metabolism in algae.
Collapse
Affiliation(s)
- Neda Fakhimi
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
| | - Arthur R. Grossman
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
- Courtesy Appointment, Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Nanes Sarfati D, Xue Y, Song ES, Byrne A, Le D, Darmanis S, Quake SR, Burlacot A, Sikes J, Wang B. Coordinated wound responses in a regenerative animal-algal holobiont. Nat Commun 2024; 15:4032. [PMID: 38740753 DOI: 10.1038/s41467-024-48366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Animal regeneration involves coordinated responses across cell types throughout the animal body. In endosymbiotic animals, whether and how symbionts react to host injury and how cellular responses are integrated across species remain unexplored. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis sp. green algae and can regenerate entire bodies from tissue fragments. We show that animal injury causes a decline in the photosynthetic efficiency of the symbiotic algae, alongside two distinct, sequential waves of transcriptional responses in acoel and algal cells. The initial algal response is characterized by the upregulation of a cohort of photosynthesis-related genes, though photosynthesis is not necessary for regeneration. A conserved animal transcription factor, runt, is induced after injury and required for acoel regeneration. Knockdown of Cl-runt dampens transcriptional responses in both species and further reduces algal photosynthetic efficiency post-injury. Our results suggest that the holobiont functions as an integrated unit of biological organization by coordinating molecular networks across species through the runt-dependent animal regeneration program.
Collapse
Affiliation(s)
| | - Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eun Sun Song
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | | | - Daniel Le
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Adrien Burlacot
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - James Sikes
- Department of Biology, University of San Francisco, San Francisco, CA, USA.
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Wang Y, Yang S, Liu J, Wang J, Xiao M, Liang Q, Ren X, Wang Y, Mou H, Sun H. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165546. [PMID: 37454852 DOI: 10.1016/j.scitotenv.2023.165546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Increasing carbon dioxide (CO2) emission has already become a dire threat to the human race and Earth's ecology. Microalgae are recommended to be engineered as CO2 fixers in biorefinery, which play crucial roles in responding climate change and accelerating the transition to a sustainable future. This review sorted through each segment of microalgal biorefinery to explore the potential for its practical implementation and commercialization, offering valuable insights into research trends and identifies challenges that needed to be addressed in the development process. Firstly, the known mechanisms of microalgal photosynthetic CO2 fixation and the approaches for strain improvement were summarized. The significance of process regulation for strengthening fixation efficiency and augmenting competitiveness was emphasized, with a specific focus on CO2 and light optimization strategies. Thereafter, the massive potential of microalgal refineries for various bioresource production was discussed in detail, and the integration with contaminant reclamation was mentioned for economic and ecological benefits. Subsequently, economic and environmental impacts of microalgal biorefinery were evaluated via life cycle assessment (LCA) and techno-economic analysis (TEA) to lit up commercial feasibility. Finally, the current obstacles and future perspectives were discussed objectively to offer an impartial reference for future researchers and investors.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Burlacot A, Peltier G. Energy crosstalk between photosynthesis and the algal CO 2-concentrating mechanisms. TRENDS IN PLANT SCIENCE 2023; 28:795-807. [PMID: 37087359 DOI: 10.1016/j.tplants.2023.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth's ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms - called CO2-concentrating mechanisms (CCMs) - for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
6
|
Steensma AK, Shachar-Hill Y, Walker BJ. The carbon-concentrating mechanism of the extremophilic red microalga Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2023; 156:247-264. [PMID: 36780115 PMCID: PMC10154280 DOI: 10.1007/s11120-023-01000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
Cyanidioschyzon merolae is an extremophilic red microalga which grows in low-pH, high-temperature environments. The basis of C. merolae's environmental resilience is not fully characterized, including whether this alga uses a carbon-concentrating mechanism (CCM). To determine if C. merolae uses a CCM, we measured CO2 uptake parameters using an open-path infra-red gas analyzer and compared them to values expected in the absence of a CCM. These measurements and analysis indicated that C. merolae had the gas-exchange characteristics of a CCM-operating organism: low CO2 compensation point, high affinity for external CO2, and minimized rubisco oxygenation. The biomass δ13C of C. merolae was also consistent with a CCM. The apparent presence of a CCM in C. merolae suggests the use of an unusual mechanism for carbon concentration, as C. merolae is thought to lack a pyrenoid and gas-exchange measurements indicated that C. merolae primarily takes up inorganic carbon as carbon dioxide, rather than bicarbonate. We use homology to known CCM components to propose a model of a pH-gradient-based CCM, and we discuss how this CCM can be further investigated.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
8
|
Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. PLANT PHYSIOLOGY 2022; 190:1609-1627. [PMID: 35961043 PMCID: PMC9614477 DOI: 10.1093/plphys/kiac373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 05/06/2023]
Abstract
Many photosynthetic species have evolved CO2-concentrating mechanisms (CCMs) to improve the efficiency of CO2 assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency of photosynthesis now appears clearer with new challenges and opportunities.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yuwei Mao
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krzysztof Robin Pukacz
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
9
|
Knockout of Cia5 gene using CRISPR/Cas9 technique in Chlamydomonas reinhardtii and evaluating CO2 sequestration in control and mutant isolates. J Genet 2022. [DOI: 10.1007/s12041-021-01350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Santhanagopalan I, Wong R, Mathur T, Griffiths H. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4604-4624. [PMID: 33893473 PMCID: PMC8320531 DOI: 10.1093/jxb/erab169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 05/19/2023]
Abstract
The inducible carbon concentration mechanism (CCM) in Chlamydomonas reinhardtii has been well defined from a molecular and ultrastructural perspective. Inorganic carbon transport proteins, and strategically located carbonic anhydrases deliver CO2 within the chloroplast pyrenoid matrix where Rubisco is packaged. However, there is little understanding of the fundamental signalling and sensing processes leading to CCM induction. While external CO2 limitation has been believed to be the primary cue, the coupling between energetic supply and inorganic carbon demand through regulatory feedback from light harvesting and photorespiration signals could provide the original CCM trigger. Key questions regarding the integration of these processes are addressed in this review. We consider how the chloroplast functions as a crucible for photosynthesis, importing and integrating nuclear-encoded components from the cytoplasm, and sending retrograde signals to the nucleus to regulate CCM induction. We hypothesize that induction of the CCM is associated with retrograde signals associated with photorespiration and/or light stress. We have also examined the significance of common evolutionary pressures for origins of two co-regulated processes, namely the CCM and photorespiration, in addition to identifying genes of interest involved in transcription, protein folding, and regulatory processes which are needed to fully understand the processes leading to CCM induction.
Collapse
Affiliation(s)
- Indu Santhanagopalan
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Rachel Wong
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Tanya Mathur
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
11
|
Mani M, Rasangam L, Selvam P, Shekhawat MS. Micro-morpho-anatomical mechanisms involve in epiphytic adaptation of micropropagated plants of Vanda tessellata (Roxb.) Hook. ex G. Don. Microsc Res Tech 2020; 84:712-722. [PMID: 33089940 DOI: 10.1002/jemt.23630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Vanda tessellata (Roxb.) Hook. ex G. Don. (grey orchid, family Orchidaceae) is an epiphytic orchid of horticultural importance and currently under threat due to overharvesting and habitat destruction. Micropropagation protocols were developed for the production of grey orchid but the survival success of in vitro regenerated plantlets is uncertain due to lack of understanding about the adaptation mechanism during hardening. The present study describes the structural adaptation mechanism of V. tessellata when the in vitro regenerated plantlets were acclimatized under the greenhouse conditions. Light microscopy has been implicated to identify the adaptational alterations during in vitro to ex vitro transition of micropropagated plantlets. The in vitro induced morpho-anatomical anomalies were more prominently observed in the density of stomata, veins (architecture) and raphides, leaf, and root structural parameters such as water cells and velamen tissues. The results indicated that remarkable reconciliation occurred in structural developments of mechanical and vascular tissues upon epiphytic adaptations of V. tessellata. The study could help in understanding the adaptation mechanism of in vitro regenerated plantlets (especially velamen tissues of epiphytic roots) when transferred to the greenhouse for acclimatization. RESEARCH HIGHLIGHTS: Vanda tessellata is an epiphytic orchid of horticultural importance. Comparative micro-morpho-anatomical analysis at subsequent stages of in vitro regeneration was conducted. Foliar structural and developmental mechanisms towards epiphytic adaptation were studied. In vitro induced structural abnormalities were repaired and epiphytic adaptation was visualized. Stomata, leaf, and root architectures and velamen tissues were well developed in acclimatized plantlets. The report could be useful in the conservation and sustainable utilization of Vanda tessellata.
Collapse
Affiliation(s)
- Manokari Mani
- Siddha Clinical Research Unit, Central Council for Research in Siddha (M/o AYUSH), Palayamkottai, Tamil Nadu, India.,Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, Puducherry, India
| | - Latha Rasangam
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, Puducherry, India
| | - Priyadharshini Selvam
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, Puducherry, India
| | - Mahipal Singh Shekhawat
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, Puducherry, India
| |
Collapse
|
12
|
Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008944. [PMID: 32730252 PMCID: PMC7419008 DOI: 10.1371/journal.pgen.1008944] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression. Although many genetic tools and basic transformation strategies exist for the model microalga Chlamydomonas reinhardtii, high-level genetic engineering with this organism is hindered by its inherent recalcitrance to foreign gene expression and limited knowledge of responsible expression regulators. In this work, we characterized the dynamics of 33 endogenous and 13 non-native introns and their effect on gene expression as artificial insertions into codon optimized transgenes. We found that introns from different origins have the capacity to increase gene expression rates. Intron-mediated enhancement was observed exclusively when these elements were placed in transcripts but not outside of transcribed mRNA regions. Insertion of different endogenous introns into coding sequences was found to positively affect expression rates through a synergy of additive transcription enhancement and exon length reduction, similar to those natively found in the C. reinhardtii genome. Our results indicate that intensive mRNA processing plays an underestimated role in the regulation of native gene expression in C. reinhardtii. In addition to internal sequence motifs, the location of artificially introduced introns greatly affected transgene expression levels. This work is highly valuable to the greater microalgal and synthetic biology research communities and contributes to broadening our understanding of eukaryotic intron-mediated enhancement.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Nick Jacobebbinghaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
13
|
|
14
|
Penen F, Isaure MP, Dobritzsch D, Castillo-Michel H, Gontier E, Le Coustumer P, Malherbe J, Schaumlöffel D. Pyrenoidal sequestration of cadmium impairs carbon dioxide fixation in a microalga. PLANT, CELL & ENVIRONMENT 2020; 43:479-495. [PMID: 31688962 DOI: 10.1111/pce.13674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/20/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Mixotrophic microorganisms are able to use organic carbon as well as inorganic carbon sources and thus, play an essential role in the biogeochemical carbon cycle. In aquatic ecosystems, the alteration of carbon dioxide (CO2 ) fixation by toxic metals such as cadmium - classified as a priority pollutant - could contribute to the unbalance of the carbon cycle. In consequence, the investigation of cadmium impact on carbon assimilation in mixotrophic microorganisms is of high interest. We exposed the mixotrophic microalga Chlamydomonas reinhardtii to cadmium in a growth medium containing both CO2 and labelled 13 C-[1,2] acetate as carbon sources. We showed that the accumulation of cadmium in the pyrenoid, where it was predominantly bound to sulphur ligands, impaired CO2 fixation to the benefit of acetate assimilation. Transmission electron microscopy (TEM)/X-ray energy dispersive spectroscopy (X-EDS) and micro X-ray fluorescence (μXRF)/micro X-ray absorption near-edge structure (μXANES) at Cd LIII- edge indicated the localization and the speciation of cadmium in the cellular structure. In addition, nanoscale secondary ion mass spectrometry (NanoSIMS) analysis of the 13 C/12 C ratio in pyrenoid and starch granules revealed the origin of carbon sources. The fraction of carbon in starch originating from CO2 decreased from 73 to 39% during cadmium stress. For the first time, the complementary use of high-resolution elemental and isotopic imaging techniques allowed relating the impact of cadmium at the subcellular level with carbon assimilation in a mixotrophic microalga.
Collapse
Affiliation(s)
- Florent Penen
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Pau, France
| | - Marie-Pierre Isaure
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Pau, France
| | - Dirk Dobritzsch
- Martin-Luther-Universität Halle-Wittenberg, Core Facility Proteomic Mass Spectrometry, Proteinzentrum Charles Tanford, Halle (Saale), Germany
| | | | - Etienne Gontier
- Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Pôle d'imagerie électronique, Université de Bordeaux, Bordeaux, France
| | - Philippe Le Coustumer
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Pau, France
- Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Pôle d'imagerie électronique, Université de Bordeaux, Bordeaux, France
- UF Sciences de la Terre et Environnement, Université de Bordeaux, Pessac, France
| | - Julien Malherbe
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Pau, France
| | - Dirk Schaumlöffel
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, Pau, France
| |
Collapse
|
15
|
Hollis L, Ivanov AG, Hüner NPA. Chlorella vulgaris integrates photoperiod and chloroplast redox signals in response to growth at high light. PLANTA 2019; 249:1189-1205. [PMID: 30603788 DOI: 10.1007/s00425-018-03070-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 05/28/2023]
Abstract
Photoacclimation to variable light and photoperiod regimes in C. vulgaris represents a complex interplay between "biogenic" phytochrome-mediated sensing and "operational" redox sensing signaling pathways. Chlorella vulgaris Beijerinck UTEX 265 exhibits a yellow-green phenotype when grown under high light (HL) in contrast to a dark green phenotype when grown at low light (LL). The redox state of the photosynthetic electron transport chain (PETC) as estimated by excitation pressure has been proposed to govern this phenotypic response. We hypothesized that if the redox state of the PETC was the sole regulator of the HL phenotype, C. vulgaris should photoacclimate in response to the steady-state excitation pressure during the light period regardless of the length of the photoperiod. As expected, LL-grown cells exhibited a dark green phenotype, low excitation pressure (1 - qP = 0.22 ± 0.02), high chlorophyll (Chl) content (375 ± 77 fg Chl/cell), low Chl a/b ratio (2.97 ± 0.18) as well as high photosynthetic efficiency and photosynthetic capacity regardless of the photoperiod. In contrast, C. vulgaris grown under continuous HL developed a yellow-green phenotype characterized by high excitation pressure (1 - qP = 0.68 ± 0.01), a relatively low Chl content (180 ± 53 fg Chl/cell), high Chl a/b ratio (6.36 ± 0.54) with concomitantly reduced light-harvesting polypeptide abundance, as well as low photosynthetic capacity and efficiency measured on a per cell basis. Although cells grown under HL and an 18 h photoperiod developed a typical yellow-green phenotype, cells grown at HL but a 12 h photoperiod exhibited a dark green phenotype comparable to LL-grown cells despite exhibiting growth under high excitation pressure (1 - qP = 0.80 ± 0.04). The apparent uncoupling of excitation pressure and phenotype in HL-grown cells and a 12 h photoperiod indicates that chloroplast redox status cannot be the sole regulator of photoacclimation in C. vulgaris. We conclude that photoacclimation in C. vulgaris to HL is dependent upon growth history and reflects a complex interaction of endogenous systems that sense changes in photoperiod as well as photosynthetic redox balance.
Collapse
Affiliation(s)
- Lauren Hollis
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada
| | - Alexander G Ivanov
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Norman P A Hüner
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| |
Collapse
|
16
|
Tirumani S, Gothandam KM, J Rao B. Coordination between photorespiration and carbon concentrating mechanism in Chlamydomonas reinhardtii: transcript and protein changes during light-dark diurnal cycles and mixotrophy conditions. PROTOPLASMA 2019; 256:117-130. [PMID: 29987443 DOI: 10.1007/s00709-018-1283-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Carbon concentrating mechanism (CCM) and photorespiration (PR) are interlinked and co-regulated in Chlamydomonas reinhardtii, but conditions where co-regulation alters are not sufficiently explored. Here, we uncover that PR gene transcripts, like CCM transcripts, are induced even in the dark when both processes are not active. Such diurnal cycles show that transcript levels peak in the middle of 12 h day, decline by early part of 12-h dark followed by their onset again at mid-dark. Interestingly, the onset in the mid-dark phase is sensitive to high CO2, implying that the active carbon sensing mechanism operates even in the dark. The rhythmic alterations of both CCM and PR transcript levels are unlinked to circadian clock: the "free-running state" reveals no discernible rhythmicity in transcript changes. Only continuous light leads to high transcript levels but no detectable transcripts were observed in continuous dark. Asynchronous continuous light cultures, upon shifting to low from high CO2 exhibit only transient induction of PR transcripts/proteins while CCM transcript induction is stable, indicating the loss of co-regulation between PR and CCM gene transcription. Lastly, we also describe that both CCM and PR transcripts/proteins are induced in low CO2 even in mixotrophic cultures, but only in high light, the same being attenuated in high CO2, implying that high light is a mandatory "trigger" for CCM and PR induction in low CO2 mixotrophy. Our study provides comprehensive analyses of conditions where CCM and PR were differently regulated, setting a paradigm for a detailed mechanistic probing of these responses.
Collapse
Affiliation(s)
- S Tirumani
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - K M Gothandam
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Basuthkar J Rao
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
- Indian Institute of Science Education and Research, Karkambadi Road, Mangalam (B.O.), Tirupati, AP, 517507, India.
| |
Collapse
|
17
|
Yamano T, Toyokawa C, Fukuzawa H. High-resolution suborganellar localization of Ca 2+-binding protein CAS, a novel regulator of CO 2-concentrating mechanism. PROTOPLASMA 2018; 255:1015-1022. [PMID: 29372336 DOI: 10.1007/s00709-018-1208-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/10/2018] [Indexed: 05/19/2023]
Abstract
Many aquatic algae induce a CO2-concentrating mechanism (CCM) associated with active inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic carbon even in low-CO2 (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca2+-binding protein CAS was identified as a novel factor regulating the expression of CCM-related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO2 and light availability, its detailed localization in the chloroplast has not been examined in vivo. In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and an image deconvolution method. In high-CO2 (5% v/v) conditions, the fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO2 and gather inside the pyrenoid during the operation of the CCM.
Collapse
Affiliation(s)
- Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
18
|
Rea G, Antonacci A, Lambreva MD, Mattoo AK. Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:193-206. [PMID: 29807591 DOI: 10.1016/j.plantsci.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Retrograde signaling is an intracellular communication process defined by cues generated in chloroplast and mitochondria which traverse membranes to their destination in the nucleus in order to regulate nuclear gene expression and protein synthesis. The coding and decoding of such organellar message(s) involve gene medleys and metabolic components about which more is known in higher plants than the unicellular organisms such as algae. Chlamydomonas reinhardtii is an oxygenic microalgal model for genetic and physiological studies. It harbors a single chloroplast and is amenable for generating mutants. The focus of this review is on studies that delineate retrograde signaling in Chlamydomonas vis a vis higher plants. Thus, communication networks between chloroplast and nucleus involving photosynthesis- and ROS-generated signals, functional tetrapyrrole biosynthesis intermediates, and Ca2+-signaling that modulate nuclear gene expression in this alga are discussed. Conceptually, different signaling components converge to regulate either the same or functionally-overlapping gene products.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Autar K Mattoo
- The Henry A Wallace Agricultural Research Centre, U.S. Department of Agriculture, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
19
|
Traewachiwiphak S, Yokthongwattana C, Ves-Urai P, Charoensawan V, Yokthongwattana K. Gene expression and promoter characterization of heat-shock protein 90B gene (HSP90B) in the model unicellular green alga Chlamydomonas reinhardtii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:107-116. [PMID: 29807581 DOI: 10.1016/j.plantsci.2018.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Molecular chaperones or heat shock proteins are a large protein family with important functions in every cellular organism. Among all types of the heat shock proteins, information on the ER-localized HSP90 protein (HSP90B) and its encoding gene is relatively scarce in the literature, especially in photosynthetic organisms. In this study, expression profiles as well as promoter sequence of the HSP90B gene were investigated in the model green alga Chlamydomonas reinhardtii. We have found that HSP90B is strongly induced by heat and ER stresses, while other short-term exposure to abiotic stresses, such as salinity, dark-to-light transition or light stress does not appear to affect the expression. Promoter truncation analysis as well as chromatin immunoprecipitation using the antibodies recognizing histone H3 and acetylated histone H3, revealed a putative core constitutive promoter sequence between -1 to -253 bp from the transcription start site. Our results also suggested that the nucleotides upstream of the core promoter may contain repressive elements such as putative repressor binding site(s).
Collapse
Affiliation(s)
- Somchoke Traewachiwiphak
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok 10900, Thailand
| | - Parthompong Ves-Urai
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kittisak Yokthongwattana
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand.
| |
Collapse
|
20
|
Hwangbo K, Lim JM, Jeong SW, Vikramathithan J, Park YI, Jeong WJ. Elevated Inorganic Carbon Concentrating Mechanism Confers Tolerance to High Light in an Arctic Chlorella sp. ArM0029B. FRONTIERS IN PLANT SCIENCE 2018; 9:590. [PMID: 29868055 PMCID: PMC5949578 DOI: 10.3389/fpls.2018.00590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 05/29/2023]
Abstract
Microalgae and higher plants employ an inorganic carbon (Ci) concentrating mechanism (CCM) to increase CO2 availability to Rubisco. Operation of the CCM should enhance the activity of the Calvin cycle, which could act as an electron sink for electrons generated by photosynthesis, and lower the redox status of photosynthetic electron transport chains. In this study, a hypothesis that microalgal cells with fully operating CCM are less likely to be photodamaged was tested by comparing a Chlorella mutant with its wild type (WT). The mutant acquired by screening gamma-ray-induced mutant libraries of Chlorella sp. ArM0029B exhibited constitutively active CCM (CAC) even in the presence of additional Ci sources under mixotrophic growth conditions. In comparison to the WT alga, the mutant named to constitutively active CCM1 (CAC1) showed more transcript levels for genes coding proteins related to CCM such as Ci transporters and carbonic anhydrases (CA), and greater levels of intracellular Ci content and CA activity regardless of whether growth is limited by light or not. Under photoinhibitory conditions, CAC1 mutant showed faster growth than WT cells with more PSII reaction center core component D1 protein (encoded by psbA), higher photochemical efficiency as estimated by the chlorophyll fluorescence parameter (Fv/Fm), and fewer reactive oxygen species (ROS). Interestingly, high light (HL)-induced increase in ROS contents in WT cells was significantly inhibited by bicarbonate supplementation. It is concluded that constitutive operation of CCM endows Chlorella cells with resistance to HL partly by reducing the endogenous generation of ROS. These results will provide useful information on the interaction between CCM expression, ROS production, and photodamage in Chlorella and related microalgae.
Collapse
Affiliation(s)
- Kwon Hwangbo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Jong-Min Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seok-Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Jayaraman Vikramathithan
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
21
|
Machingura MC, Bajsa-Hirschel J, Laborde SM, Schwartzenburg JB, Mukherjee B, Mukherjee A, Pollock SV, Förster B, Price GD, Moroney JV. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3879-3890. [PMID: 28633328 PMCID: PMC5853530 DOI: 10.1093/jxb/erx189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 05/22/2023]
Abstract
The supply of inorganic carbon (Ci) at the site of fixation by Rubisco is a key parameter for efficient CO2 fixation in aquatic organisms including the green alga, Chlamydomonas reinhardtii. Chlamydomonas reinhardtii cells, when grown on limiting CO2, have a CO2-concentrating mechanism (CCM) that functions to concentrate CO2 at the site of Rubisco. Proteins thought to be involved in inorganic carbon uptake have been identified and localized to the plasma membrane or chloroplast envelope. However, current CCM models suggest that additional molecular components are involved in Ci uptake. In this study, the gene Cia8 was identified in an insertional mutagenesis screen and characterized. The protein encoded by Cia8 belongs to the sodium bile acid symporter subfamily. Transcript levels for this gene were significantly up-regulated when the cells were grown on low CO2. The cia8 mutant exhibited reduced growth and reduced affinity for Ci when grown in limiting CO2 conditions. Prediction programs localize this protein to the chloroplast. Ci uptake and the photosynthetic rate, particularly at high external pH, were reduced in the mutant. The results are consistent with the model that CIA8 is involved in Ci uptake in C. reinhardtii.
Collapse
Affiliation(s)
- Marylou C Machingura
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Susan M Laborde
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Bratati Mukherjee
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - Ananya Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Steve V Pollock
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Britta Förster
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Correspondence:
| |
Collapse
|
22
|
Mitchell MC, Metodieva G, Metodiev MV, Griffiths H, Meyer MT. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3891-3902. [PMID: 28520898 PMCID: PMC5853466 DOI: 10.1093/jxb/erx121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/22/2017] [Indexed: 05/25/2023]
Abstract
Carbon-concentrating mechanisms (CCMs) enable efficient photosynthesis and growth in CO2-limiting environments, and in eukaryotic microalgae localisation of Rubisco to a microcompartment called the pyrenoid is key. In the model green alga Chlamydomonas reinhardtii, Rubisco preferentially relocalises to the pyrenoid during CCM induction and pyrenoid-less mutants lack a functioning CCM and grow very poorly at low CO2. The aim of this study was to investigate the CO2 response of pyrenoid-positive (pyr+) and pyrenoid-negative (pyr-) mutant strains to determine the effect of pyrenoid absence on CCM induction and gene expression. Shotgun proteomic analysis of low-CO2-adapted strains showed reduced accumulation of some CCM-related proteins, suggesting that pyr- has limited capacity to respond to low-CO2 conditions. Comparisons between gene transcription and protein expression revealed potential regulatory interactions, since Rubisco protein linker (EPYC1) protein did not accumulate in pyr- despite increased transcription, while elements of the LCIB/LCIC complex were also differentially expressed. Furthermore, pyr- showed altered abundance of a number of proteins involved in primary metabolism, perhaps due to the failure to adapt to low CO2. This work highlights two-way regulation between CCM induction and pyrenoid formation, and provides novel candidates for future studies of pyrenoid assembly and CCM function.
Collapse
Affiliation(s)
| | | | | | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3717-3737. [PMID: 28444330 DOI: 10.1093/jxb/erx133] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.
Collapse
Affiliation(s)
- Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Benedict M Long
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Britta Förster
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Wei Yih Hee
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Bratati Mukherjee
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
24
|
Wang F, Qi Y, Malnoë A, Choquet Y, Wollman FA, de Vitry C. The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii. MOLECULAR PLANT 2017; 10:99-114. [PMID: 27702692 DOI: 10.1016/j.molp.2016.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 05/23/2023]
Abstract
In Chlamydomonas reinhardtii, the major protease involved in the maintenance of photosynthetic machinery in thylakoid membranes, the FtsH protease, mostly forms large hetero-oligomers (∼1 MDa) comprising FtsH1 and FtsH2 subunits, whatever the light intensity for growth. Upon high light exposure, the FtsH subunits display a shorter half-life, which is counterbalanced by an increase in FTSH1/2 mRNA levels, resulting in the modest upregulation of FtsH1/2 proteins. Furthermore, we found that high light increases the protease activity through a hitherto unnoticed redox-controlled reduction of intermolecular disulfide bridges. We isolated a Chlamydomonas FTSH1 promoter-deficient mutant, ftsh1-3, resulting from the insertion of a TOC1 transposon, in which the high light-induced upregulation of FTSH1 gene expression is largely lost. In ftsh1-3, the abundance of FtsH1 and FtsH2 proteins are loosely coupled (decreased by 70% and 30%, respectively) with no formation of large and stable homo-oligomers. Using strains exhibiting different accumulation levels of the FtsH1 subunit after complementation of ftsh1-3, we demonstrate that high light tolerance is tightly correlated with the abundance of the FtsH protease. Thus, the response of Chlamydomonas to light stress involves higher levels of FtsH1/2 subunits associated into large complexes with increased proteolytic activity.
Collapse
Affiliation(s)
- Fei Wang
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yafei Qi
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Alizée Malnoë
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yves Choquet
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France.
| |
Collapse
|
25
|
Wang L, Yamano T, Takane S, Niikawa Y, Toyokawa C, Ozawa SI, Tokutsu R, Takahashi Y, Minagawa J, Kanesaki Y, Yoshikawa H, Fukuzawa H. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2016; 113:12586-12591. [PMID: 27791081 PMCID: PMC5098658 DOI: 10.1073/pnas.1606519113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic activity in CO2-limiting conditions by sensing environmental CO2 and light availability. Previously, a novel high-CO2-requiring mutant, H82, defective in the induction of the CCM, was isolated. A homolog of calcium (Ca2+)-binding protein CAS, originally found in Arabidopsis thaliana, was disrupted in H82 cells. Although Arabidopsis CAS is reported to be associated with stomatal closure or immune responses via a chloroplast-mediated retrograde signal, the relationship between a Ca2+ signal and the CCM associated with the function of CAS in an aquatic environment is still unclear. In this study, the introduction of an intact CAS gene into H82 cells restored photosynthetic affinity for inorganic carbon, and RNA-seq analyses revealed that CAS could function in maintaining the expression levels of nuclear-encoded CO2-limiting-inducible genes, including the HCO3- transporters high-light activated 3 (HLA3) and low-CO2-inducible gene A (LCIA). CAS changed its localization from dispersed across the thylakoid membrane in high-CO2 conditions or in the dark to being associated with tubule-like structures in the pyrenoid in CO2-limiting conditions, along with a significant increase of the fluorescent signals of the Ca2+ indicator in the pyrenoid. Chlamydomonas CAS had Ca2+-binding activity, and the perturbation of intracellular Ca2+ homeostasis by a Ca2+-chelator or calmodulin antagonist impaired the accumulation of HLA3 and LCIA. These results suggest that Chlamydomonas CAS is a Ca2+-mediated regulator of CCM-related genes via a retrograde signal from the pyrenoid in the chloroplast to the nucleus.
Collapse
Affiliation(s)
- Lianyong Wang
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shunsuke Takane
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Niikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan;
| |
Collapse
|
26
|
Meyer MT, McCormick AJ, Griffiths H. Will an algal CO2-concentrating mechanism work in higher plants? CURRENT OPINION IN PLANT BIOLOGY 2016; 31:181-8. [PMID: 27194106 DOI: 10.1016/j.pbi.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 05/19/2023]
Abstract
Many algae use a biophysical carbon concentrating mechanism for active accumulation and retention of inorganic carbon within chloroplasts, with CO2 fixation by RuBisCO within a micro-compartment, the pyrenoid. Engineering such mechanisms into higher plant chloroplasts is a possible route to augment RuBisCO operating efficiency and photosynthetic rates. Significant progress has been made recently in characterising key algal transporters and identifying factors responsible for the aggregation of RuBisCO into the pyrenoid. Several transporters have now also been successfully incorporated into higher plant chloroplasts. Consistent with the predictions from modelling, regulation of higher plant plastidic carbonic anhydrases and some form of RuBisCO aggregation will be needed before the mechanism delivers potential benefits. Key research priorities include a better understanding of the regulation of the algal carbon concentrating mechanism, advancing the fundamental characterisation of known components, evaluating whether higher plant chloroplasts can accommodate a pyrenoid, and, ultimately, testing transgenic lines under realistic growth conditions.
Collapse
Affiliation(s)
- Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK.
| |
Collapse
|
27
|
Transcriptome profiling of the microalga Chlorella pyrenoidosa in response to different carbon dioxide concentrations. Mar Genomics 2016; 29:81-87. [PMID: 27209568 DOI: 10.1016/j.margen.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/21/2022]
Abstract
To enrich our knowledge of carbon dioxide (CO2)-concentrating mechanism (CCM) in eukaryotic algae, we used high-throughput sequencing to investigate the transcriptome profiling of the microalga Chlorella pyrenoidosa (Chlorophyta) response to different CO2 levels. Altogether, 53.86 million (M) and 62.10M clean short reads of 100 nucleotides (nt) were generated from this microalga cultured at 4-fold air CO2 (control) and air CO2 concentrations by Illumina sequencing. A total of 32,662 unigenes were assembled from the two pooled samples. With an E-value cut-off of 1e-5, 9590, 6782, 5954, and 9092 unigenes were annotated in NR, Gene Ontology (GO), Eukaryotic Cluster of Orthologous Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. After screening, 51 differentially expressed unigenes were up-regulated and 8 were down-regulated in the air CO2 group, relative to the control. The transcript levels of eight differentially expressed unigenes were validated by real-time quantitative PCR, which manifested that thioredoxin-like protein, laminin subunit beta-1, and chlorophyll a/b binding protein might be associated with the utilization of inorganic carbon at low CO2 levels.
Collapse
|
28
|
Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2015; 112:7315-20. [PMID: 26015566 PMCID: PMC4466737 DOI: 10.1073/pnas.1501659112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The supply of inorganic carbon (Ci; CO2 and HCO3 (-)) is an environmental rate-limiting factor in aquatic photosynthetic organisms. To overcome the difficulty in acquiring Ci in limiting-CO2 conditions, an active Ci uptake system called the CO2-concentrating mechanism (CCM) is induced to increase CO2 concentrations in the chloroplast stroma. An ATP-binding cassette transporter, HLA3, and a formate/nitrite transporter homolog, LCIA, are reported to be associated with HCO3 (-) uptake [Wang and Spalding (2014) Plant Physiol 166(4):2040-2050]. However, direct evidence of the route of HCO3 (-) uptake from the outside of cells to the chloroplast stroma remains elusive owing to a lack of information on HLA3 localization and comparative analyses of the contribution of HLA3 and LCIA to the CCM. In this study, we revealed that HLA3 and LCIA are localized to the plasma membrane and chloroplast envelope, respectively. Insertion mutants of HLA3 and/or LCIA showed decreased Ci affinities/accumulation, especially in alkaline conditions where HCO3 (-) is the predominant form of Ci. HLA3 and LCIA formed protein complexes independently, and the absence of LCIA decreased HLA3 mRNA accumulation, suggesting the presence of unidentified retrograde signals from the chloroplast to the nucleus to maintain HLA3 mRNA expression. Furthermore, although single overexpression of HLA3 or LCIA in high CO2 conditions did not affect Ci affinity, simultaneous overexpression of HLA3 with LCIA significantly increased Ci affinity/accumulation. These results highlight the HLA3/LCIA-driven cooperative uptake of HCO3 (-) and a key role of LCIA in the maintenance of HLA3 stability as well as Ci affinity/accumulation in the CCM.
Collapse
|
29
|
Interaction of Temperature and Photoperiod Increases Growth and Oil Content in the Marine Microalgae Dunaliella viridis. PLoS One 2015; 10:e0127562. [PMID: 25992838 PMCID: PMC4437649 DOI: 10.1371/journal.pone.0127562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/15/2015] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic marine microalgae like Dunaliella spp. have great potential as a feedstock for liquid transportation fuels because they grow fast and can accumulate high levels of triacylgycerides with little need for fresh water or land. Their growth rates vary between species and are dependent on environmental conditions. The cell cycle, starch and triacylglycerol accumulation are controlled by the diurnal light:dark cycle. Storage compounds like starch and triacylglycerol accumulate in the light when CO2 fixation rates exceed the need of assimilated carbon and energy for cell maintenance and division during the dark phase. To delineate environmental effects, we analyzed cell division rates, metabolism and transcriptional regulation in Dunaliella viridis in response to changes in light duration and growth temperatures. Its rate of cell division was increased under continuous light conditions, while a shift in temperature from 25°C to 35°C did not significantly affect the cell division rate, but increased the triacylglycerol content per cell several-fold under continuous light. The amount of saturated fatty acids in triacylglycerol fraction was more responsive to an increase in temperature than to a change in the light regime. Detailed fatty acid profiles showed that Dunaliella viridis incorporated lauric acid (C12:0) into triacylglycerol after 24 hours under continuous light. Transcriptome analysis identified potential regulators involved in the light and temperature-induced lipid accumulation in Dunaliella viridis.
Collapse
|
30
|
Wang Y, Stessman DJ, Spalding MH. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:429-448. [PMID: 25765072 DOI: 10.1111/tpj.12829] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 05/04/2023]
Abstract
The CO2 concentrating mechanism (CCM) represents an effective strategy for carbon acquisition that enables microalgae to survive and proliferate when the CO2 concentration limits photosynthesis. The CCM improves photosynthetic performance by raising the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), simultaneously enhancing carbon fixation and suppressing photorespiration. Active inorganic carbon (Ci) uptake, Rubisco sequestration and interconversion between different Ci species catalyzed by carbonic anhydrases (CAs) are key components in the CCM, and an array of molecular regulatory elements is present to facilitate the sensing of CO2 availability, to regulate the expression of the CCM and to coordinate interplay between photosynthetic carbon metabolism and other metabolic processes in response to limiting CO2 conditions. This review intends to integrate our current understanding of the eukaryotic algal CCM and its interaction with carbon assimilation, based largely on Chlamydomonas as a model, and to illustrate how Chlamydomonas acclimates to limiting CO2 conditions and how its CCM is regulated.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Dan J Stessman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
31
|
Gao H, Wang Y, Fei X, Wright DA, Spalding MH. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:1-11. [PMID: 25660294 DOI: 10.1111/tpj.12788] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 05/11/2023]
Abstract
The CO2 concentrating mechanism (CCM) is a key component of the carbon assimilation strategy of aquatic microalgae. Induced by limiting CO2 and tightly regulated, the CCM enables these microalgae to respond rapidly to varying environmental CO2 supplies and to perform photosynthetic CO2 assimilation in a cost-effective way. A functional CCM in eukaryotic algae requires Rubisco sequestration, rapid interconversion between CO2 and HCO3(-) catalyzed by carbonic anhydrases (CAs), and active inorganic carbon (Ci) uptake. In the model microalga Chlamydomonas reinhardtii, a membrane protein HLA3 is proposed to be involved in active Ci uptake across the plasma membrane. In this study, we use an artificially designed transcription activator-like effector (dTALE) to activate the expression of HLA3. The successful activation of HLA3 expression demonstrates dTALE as a promising tool for gene-specific activation and investigation of gene function in Chlamydomonas. Activation of HLA3 expression in high CO2 acclimated cells, where HLA3 is not expressed, resulted in increased Ci accumulation and Ci-dependent photosynthetic O2 evolution specifically in very low CO2 concentrations, which confirms that HLA3 is indeed involved in Ci uptake, and suggests it is mainly associated with HCO3(-) transport in very low CO2 concentrations, conditions in which active CO2 uptake is highly limited.
Collapse
Affiliation(s)
- Han Gao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
32
|
Yin Y, Yu C, Yu L, Zhao J, Sun C, Ma Y, Zhou G. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production. BIORESOURCE TECHNOLOGY 2015; 187:84-90. [PMID: 25841186 DOI: 10.1016/j.biortech.2015.03.097] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 05/13/2023]
Abstract
Duckweed has been considered as a valuable feedstock for bioethanol production due to its high biomass and starch production. To investigate the effects of light conditions on duckweed biomass and starch production, Lemna aequinoctialis 6000 was cultivated at different photoperiods (12:12, 16:8 and 24:0h) and light intensities (20, 50, 80, 110, 200 and 400μmolm(-2)s(-1)). The results showed that the duckweed biomass and starch production was increased with increasing light intensity and photoperiod except at 200 and 400μmolm(-2)s(-1). Considering the light cost, 110μmolm(-2)s(-1) was optimum light condition for starch accumulation with the highest maximum growth rate, biomass and starch production of 8.90gm(-2)day(-1), 233.25gm(-2) and 98.70gm(-2), respectively. Moreover, the results suggested that high light induction was a promising method for duckweed starch accumulation. This study provides optimized light conditions for future industrial large-scale duckweed cultivation.
Collapse
Affiliation(s)
- Yehu Yin
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changjiang Yu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Li Yu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Jinshan Zhao
- Qingdao Institute of Animal Sciences, Qingdao 266100, PR China
| | - Changjiang Sun
- Beijing Risun Chemical Industry Technology Research Institute Co. Ltd, Beijing 100070, PR China
| | - Yubin Ma
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Gongke Zhou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
33
|
Subramanian V, Dubini A, Astling DP, Laurens LML, Old WM, Grossman AR, Posewitz MC, Seibert M. Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach. J Proteome Res 2014; 13:5431-51. [PMID: 25333711 DOI: 10.1021/pr500342j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chlamydomonas reinhardtii is well adapted to survive under different environmental conditions due to the unique flexibility of its metabolism. Here we report metabolic pathways that are active during acclimation to anoxia, but were previously not thoroughly studied under dark, anoxic H2-producing conditions in this model green alga. Proteomic analyses, using 2D-differential in-gel electrophoresis in combination with shotgun mass fingerprinting, revealed increased levels of proteins involved in the glycolytic pathway downstream of 3-phosphoglycerate, the glyoxylate pathway, and steps of the tricarboxylic acid (TCA) reactions. Upregulation of the enzyme, isocitrate lyase (ICL), was observed, which was accompanied by increased intracellular succinate levels, suggesting the functioning of glyoxylate pathway reactions. The ICL-inhibitor study revealed presence of reverse TCA reactions under these conditions. Contributions of the serine-isocitrate lyase pathway, glycine cleavage system, and c1-THF/serine hydroxymethyltransferase pathway in the acclimation to dark anoxia were found. We also observed increased levels of amino acids (AAs) suggesting nitrogen reorganization in the form of de novo AA biosynthesis during anoxia. Overall, novel routes for reductant utilization, in combination with redistribution of carbon and nitrogen, are used by this alga during acclimation to O2 deprivation in the dark.
Collapse
|
34
|
Mitchell MC, Meyer MT, Griffiths H. Dynamics of carbon-concentrating mechanism induction and protein relocalization during the dark-to-light transition in synchronized Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2014; 166:1073-82. [PMID: 25106822 PMCID: PMC4213077 DOI: 10.1104/pp.114.246918] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 05/19/2023]
Abstract
In the model green alga Chlamydomonas reinhardtii, a carbon-concentrating mechanism (CCM) is induced under low CO2 in the light and comprises active inorganic carbon transport components, carbonic anhydrases, and aggregation of Rubisco in the chloroplast pyrenoid. Previous studies have focused predominantly on asynchronous cultures of cells grown under low versus high CO2. Here, we have investigated the dynamics of CCM activation in synchronized cells grown in dark/light cycles compared with induction under low CO2. The specific focus was to undertake detailed time course experiments comparing physiology and gene expression during the dark-to-light transition. First, the CCM could be fully induced 1 h before dawn, as measured by the photosynthetic affinity for inorganic carbon. This occurred in advance of maximum gene transcription and protein accumulation and contrasted with the coordinated induction observed under low CO2. Between 2 and 1 h before dawn, the proportion of Rubisco and the thylakoid lumen carbonic anhydrase in the pyrenoid rose substantially, coincident with increased CCM activity. Thus, other mechanisms are likely to activate the CCM before dawn, independent of gene transcription of known CCM components. Furthermore, this study highlights the value of using synchronized cells during the dark-to-light transition as an alternative means of investigating CCM induction.
Collapse
Affiliation(s)
- Madeline C Mitchell
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
35
|
Jungnick N, Ma Y, Mukherjee B, Cronan JC, Speed DJ, Laborde SM, Longstreth DJ, Moroney JV. The carbon concentrating mechanism in Chlamydomonas reinhardtii: finding the missing pieces. PHOTOSYNTHESIS RESEARCH 2014; 121:159-73. [PMID: 24752527 DOI: 10.1007/s11120-014-0004-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/08/2014] [Indexed: 05/14/2023]
Abstract
The photosynthetic, unicellular green alga, Chlamydomonas reinhardtii, lives in environments that often contain low concentrations of CO2 and HCO3 (-), the utilizable forms of inorganic carbon (Ci). C. reinhardtii possesses a carbon concentrating mechanism (CCM) which can provide suitable amounts of Ci for growth and development. This CCM is induced when the CO2 concentration is at air levels or lower and is comprised of a set of proteins that allow the efficient uptake of Ci into the cell as well as its directed transport to the site where Rubisco fixes CO2 into biomolecules. While several components of the CCM have been identified in recent years, the picture is still far from complete. To further improve our knowledge of the CCM, we undertook a mutagenesis project where an antibiotic resistance cassette was randomly inserted into the C. reinhardtii genome resulting in the generation of 22,000 mutants. The mutant collection was screened using both a published PCR-based approach (Gonzalez-Ballester et al. 2011) and a phenotypic growth screen. The PCR-based screen did not rely on a colony having an altered growth phenotype and was used to identify colonies with disruptions in genes previously identified as being associated with the CCM-related gene. Eleven independent insertional mutations were identified in eight different genes showing the usefulness of this approach in generating mutations in CCM-related genes of interest as well as identifying new CCM components. Further improvements of this method are also discussed.
Collapse
Affiliation(s)
- Nadine Jungnick
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang L, Yamano T, Kajikawa M, Hirono M, Fukuzawa H. Isolation and characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2014; 121:175-84. [PMID: 24549931 DOI: 10.1007/s11120-014-9983-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/05/2014] [Indexed: 05/11/2023]
Abstract
Aquatic microalgae induce a carbon-concentrating mechanism (CCM) to maintain photosynthetic activity in low-CO2 (LC) conditions. Although the molecular mechanism of the CCM has been investigated using the single-cell green alga Chlamydomonas reinhardtii, and several CCM-related genes have been identified by analyzing high-CO2 (HC)-requiring mutants, many aspects of the CO2-signal transduction pathways remain to be elucidated. In this study, we report the isolation of novel HC-requiring mutants defective in the induction of CCM by DNA tagging. Growth rates of 20,000 transformants grown under HC and LC conditions were compared, and three HC-requiring mutants (H24, H82, and P103) were isolated. The photosynthetic CO2-exchange activities of these mutants were significantly decreased compared with that of wild-type cells, and accumulation of HLA3 and both LCIA and HLA3 were absent in mutants H24 and H82, respectively. Although the insertion of the marker gene and the HC-requiring phenotype were linked in the tetrad progeny of H82, and a calcium-sensing receptor CAS was disrupted by the insertion, exogenous expression of CAS alone could not complement the HC-requiring phenotype.
Collapse
Affiliation(s)
- Lianyong Wang
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
37
|
Zhang S, Shen G, Li Z, Golbeck JH, Bryant DA. Vipp1 is essential for the biogenesis of Photosystem I but not thylakoid membranes in Synechococcus sp. PCC 7002. J Biol Chem 2014; 289:15904-14. [PMID: 24764304 DOI: 10.1074/jbc.m114.555631] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biogenesis of thylakoid membranes in cyanobacteria is presently not well understood, but the vipp1 gene product has been suggested to play an important role in this process. Previous studies in Synechocystis sp. PCC 6803 reported that vipp1 (sll0617) was essential. By constructing a fully segregated null mutant in vipp1 (SynPCC7002_A0294) in Synechococcus sp. PCC 7002, we show that Vipp1 is not essential. Spectroscopic studies revealed that Photosystem I (PS I) was below detection limits in the vipp1 mutant, but Photosystem II (PS II) was still assembled and was active. Thylakoid membranes were still observed in vipp1 mutant cells and resembled those in a psaAB mutant that completely lacks PS I. When the vipp1 mutation was complemented with the orthologous vipp1 gene from Synechocystis sp. PCC 6803 that was expressed from the strong P(cpcBA) promoter, PS I content and activities were restored to normal levels, and cells again produced thylakoids that were indistinguishable from those of wild type. Transcription profiling showed that psaAB transcripts were lower in abundance in the vipp1 mutant. However, when the yfp gene was expressed from the P(psaAB) promoter in the presence and the absence of Vipp1, no difference in YFP expression was observed, which shows that Vipp1 is not a transcription factor for the psaAB genes. This study shows that thylakoids are still produced in the absence of Vipp1 and that normal thylakoid biogenesis in Synechococcus sp. PCC 7002 requires expression and biogenesis of PS I, which in turn requires Vipp1.
Collapse
Affiliation(s)
- Shuyi Zhang
- From the Department of Biochemistry and Molecular Biology and
| | - Gaozhong Shen
- From the Department of Biochemistry and Molecular Biology and
| | - Zhongkui Li
- From the Department of Biochemistry and Molecular Biology and
| | - John H Golbeck
- From the Department of Biochemistry and Molecular Biology and the Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Donald A Bryant
- From the Department of Biochemistry and Molecular Biology and the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
38
|
|
39
|
Winck FV, Páez Melo DO, González Barrios AF. Carbon acquisition and accumulation in microalgae Chlamydomonas: Insights from "omics" approaches. J Proteomics 2013; 94:207-18. [PMID: 24120529 DOI: 10.1016/j.jprot.2013.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Understanding the processes and mechanisms of carbon acquisition and accumulation in microalgae is fundamental to enhance the cellular capabilities aimed to environmental and industrial applications. The "omics" approaches have greatly contributed to expanding the knowledge on these carbon-related cellular responses, reporting large data sets on microalgae transcriptome, proteome and metabolome. This review emphasizes the advances made on Chlamydomonas exploration; however, some knowledge acquired from studying this model organism, may be extrapolated to close algae species. The large data sets available for this organism revealed the identity of a vast range of genes and proteins which are integrating carbon-related mechanisms. Nevertheless, these data sets have also highlighted the need for integrative analysis in order to fully explore the information enclosed. Here, some of the main results from "omics" approaches which may contribute to the understanding of carbon acquisition and accumulation in Chlamydomonas were reviewed and possible applications were discussed. BIOLOGICAL SIGNIFICANCE A number of important publications in the field of "omics" technologies have been published reporting studies of the model green microalga Chlamydomonas reinhardtii and related to microalgal biomass production. However, there are only few attempts to integrate these data. Publications showing the results from "omics" approaches, such as transcriptome, metabolome and proteome, focused in the study of mechanisms of carbon acquisition and accumulation in microalgae were reviewed. This review contributes to highlight the knowledge recently generated on such "omics" studies and it discusses how these results may be important for the advance of applied sciences, such as microalgae biotechnology.
Collapse
Affiliation(s)
- Flavia Vischi Winck
- Department of Chemical Engineering, Universidad de los Andes, Grupo de Diseño de Productos y Procesos, Bogotá 111711, Colombia.
| | | | | |
Collapse
|
40
|
Nilo-Poyanco R, Olivares D, Orellana A, Hinrichsen P, Pinto M. Proteomic analysis of grapevine (Vitis vinifera L.) leaf changes induced by transition to autotrophy and exposure to high light irradiance. J Proteomics 2013; 91:309-30. [PMID: 23933133 DOI: 10.1016/j.jprot.2013.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED Using a proteomics approach, we evaluated the response of heterotrophic and autotrophic leaves of grapevine when exposed to high light irradiation. From a total of 572 protein spots detected on two-dimensional gels, 143 spots showed significant variation caused by changes in the trophic state. High light treatment caused variation in 90 spots, and 51 spots showed variation caused by the interaction between both factors. Regarding the trophic state of the leaf, most of the proteins detected in the heterotrophic stage decreased in abundance when the leaf reached the autotrophic stage. Major differences induced by high light were detected in autotrophic leaves. In the high-light-treated autotrophic leaves several proteins involved in the oxidative stress response were up-regulated. This pattern was not observed in the high-light-treated heterotrophic leaves. This indicates that in these types of leaves other mechanisms different to the protein antioxidant system are acting to protect young leaves against the excess of light. This also suggests that these protective mechanisms rely on other sets of proteins or non-enzymatic molecules, or that differences in protein dynamics between the heterotrophic and autotrophic stages makes the autotrophic leaves more prone to the accumulation of oxidative stress response proteins. BIOLOGICAL SIGNIFICANCE Transition from a heterotrophic to an autotrophic state is a key period during which the anatomical, physiological and molecular characteristics of a leaf are defined. In many aspects the right functioning of a leaf at its mature stage depends on the conditions under what this transition occurs. This because apart of the genetic control, environmental factors like mineral nutrition, temperature, water supply, light etc. are also important in its control. Many anatomical and physiological changes have been described in several plant species, however in grapevine molecular data regarding changes triggered by this transition or by light stress are still scarce. In this study, we identify that the transition from heterotrophic to autotrophic state in grapevine triggers major changes in the leaf proteome, which are mainly related to processes such as protein synthesis, protein folding and degradation, photosynthesis and chloroplast development. With the exception of proteins involved in carbon fixation, that increased in abundance, most of the proteins detected during the heterotrophic stage decreased in abundance when the leaf reached its autotrophic stage. This is most likely because leaves have reached their full size and from now they have to work as a carbon source for sink organs located in other parts of the plant. Despite the potential control of this transition by light, to date, no studies using a proteomics approach have been conducted to gain a broader view of the effects of short-term high light stress. Our results indicate that short-term high light exposure has a major impact on the proteome of the autotrophic leaves, and trigger a differential accumulation of several proteins involved in the oxidative stress response. Surprisingly, heterotrophic leaves do not display this pattern which can be attributed to a lower sensitivity of these leaves to high light stimulus. In fact we discovered that heterotrophic leaves are more tolerant to light stress than autotrophic leaves. This finding is of high biological significance because it helps to understand how young leaves are able to evolve to autotrophy in areas where high light intensities are predominant. This also reveals in this type of leaves the existence of alternative mechanisms to address this stressful condition. These observations provide new insights into the molecular changes occurring during transition of leaves to autotrophy particularly when this transition occurs under high light intensities. This for example occurs during the springtime when the grapevine buds burst and the young leaves are suddenly exposed to high light intensities.
Collapse
Affiliation(s)
- R Nilo-Poyanco
- FONDAP Centre for Genome Regulation, Núcleo Milenio en Biotecnología Celular Vegetal, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
41
|
Davis MC, Fiehn O, Durnford DG. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2013; 36:1391-405. [PMID: 23346954 DOI: 10.1111/pce.12071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/10/2013] [Indexed: 05/08/2023]
Abstract
There are several well-described acclimation responses to excess light in green algae but the effect on metabolism has not been thoroughly investigated. This study examines the metabolic changes during photoacclimation to high-light (HL) stress in Chlamydomonas reinhardtii using nuclear magnetic resonance and mass spectrometry. Using principal component analysis, a clear metabolic response to HL intensity was observed on global metabolite pools, with major changes in the levels of amino acids and related nitrogen metabolites. Amino acid pools increased during short-term photoacclimation, but were especially prominent in HL-acclimated cultures. Unexpectedly, we observed an increase in mitochondrial metabolism through downstream photorespiratory pathways. The expression of two genes encoding key enzymes in the photorespiratory pathway, glycolate dehydrogenase and malate synthase, were highly responsive to the HL stress. We propose that this pathway contributes to metabolite pools involved in nitrogen assimilation and may play a direct role in photoacclimation. Our results suggest that primary and secondary metabolism is highly pliable and plays a critical role in coping with the energetic imbalance during HL exposure and a necessary adjustment to support an increased growth rate that is an effective energy sink for the excess reducing power generated during HL stress.
Collapse
Affiliation(s)
- Maria C Davis
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Oliver Fiehn
- Genome Center, University of California Davis, Davis, CA, 95616, USA
| | - Dion G Durnford
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada, E3B 5A3
| |
Collapse
|
42
|
Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 2012; 8:e1003064. [PMID: 23166516 PMCID: PMC3499364 DOI: 10.1371/journal.pgen.1003064] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus.
Collapse
|
43
|
Vothknecht UC, Otters S, Hennig R, Schneider D. Vipp1: a very important protein in plastids?! JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1699-712. [PMID: 22131161 DOI: 10.1093/jxb/err357] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As a key feature in oxygenic photosynthesis, thylakoid membranes play an essential role in the physiology of plants, algae, and cyanobacteria. Despite their importance in the process of oxygenic photosynthesis, their biogenesis has remained a mystery to the present day. A decade ago, vesicle-inducing protein in plastids 1 (Vipp1) was described to be involved in thylakoid membrane formation in chloroplasts and cyanobacteria. Most follow-up studies clearly linked Vipp1 to membranes and Vipp1 interactions as well as the defects observed after Vipp1 depletion in chloroplasts and cyanobacteria indicate that Vipp1 directly binds to membranes, locally stabilizes bilayer structures, and thereby retains membrane integrity. Here current knowledge about the structure and function of Vipp1 is summarized with a special focus on its relationship to the bacterial phage shock protein A (PspA), as both proteins share a common origin and appear to have retained many similarities in structure and function.
Collapse
Affiliation(s)
- Ute C Vothknecht
- Department of Biology I, LMU Munich, D-82152 Planegg-Martinsried, Germany.
| | | | | | | |
Collapse
|
44
|
Fukuzawa H, Ogawa T, Kaplan A. The Uptake of CO2 by Cyanobacteria and Microalgae. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Walliwalagedara C, Keulen H, Willard B, Wei R. Differential Proteome Analysis of <i>Chlamydomonas reinhardtii</i> Response to Arsenic Exposure. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajps.2012.36092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Yamano T, Fujita A, Fukuzawa H. Photosynthetic characteristics of a multicellular green alga Volvox carteri in response to external CO2 levels possibly regulated by CCM1/CIA5 ortholog. PHOTOSYNTHESIS RESEARCH 2011; 109:151-159. [PMID: 21253860 DOI: 10.1007/s11120-010-9614-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
When CO(2) supply is limited, aquatic photosynthetic organisms induce a CO(2)-concentrating mechanism (CCM) and acclimate to the CO(2)-limiting environment. Although the CCM is well studied in unicellular green algae such as Chlamydomonas reinhardtii, physiological aspects of the CCM and its associated genes in multicellular algae are poorly understood. In this study, by measuring photosynthetic affinity for CO(2), we present physiological data in support of a CCM in a multicellular green alga, Volvox carteri. The low-CO(2)-grown Volvox cells showed much higher affinity for inorganic carbon compared with high-CO(2)-grown cells. Addition of ethoxyzolamide, a membrane-permeable carbonic anhydrase inhibitor, to the culture remarkably reduced the photosynthetic affinity of low-CO(2) grown Volvox cells, indicating that an intracellular carbonic anhydrase contributed to the Volvox CCM. We also isolated a gene encoding a protein orthologous to CCM1/CIA5, a master regulator of the CCM in Chlamydomonas, from Volvox carteri. Volvox CCM1 encoded a protein with 701 amino acid residues showing 51.1% sequence identity with Chlamydomonas CCM1. Comparison of Volvox and Chlamydomonas CCM1 revealed a highly conserved N-terminal region containing zinc-binding amino acid residues, putative nuclear localization and export signals, and a C-terminal region containing a putative LXXLL protein-protein interaction motif. Based on these results, we discuss the physiological and genetic aspects of the CCM in Chlamydomonas and Volvox.
Collapse
Affiliation(s)
- Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
47
|
Wang Y, Duanmu D, Spalding MH. Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. PHOTOSYNTHESIS RESEARCH 2011; 109:115-22. [PMID: 21409558 DOI: 10.1007/s11120-011-9643-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/28/2011] [Indexed: 05/04/2023]
Abstract
Many microalgae are capable of acclimating to CO(2) limited environments by operating a CO(2) concentrating mechanism (CCM), which is driven by various energy-coupled inorganic carbon (Ci; CO(2) and HCO(3)(-)) uptake systems. Chlamydomonas reinhardtii (hereafter, Chlamydomonas), a versatile genetic model organism, has been used for several decades to exemplify the active Ci transport in eukaryotic algae, but only recently have many molecular details behind these Ci uptake systems emerged. Recent advances in genetic and molecular approaches, combined with the genome sequencing of Chlamydomonas and several other eukaryotic algae have unraveled some unique characteristics associated with the Ci uptake mechanism and the Ci-recapture system in eukaryotic microalgae. Several good candidate genes for Ci transporters in Chlamydomonas have been identified, and a few specific gene products have been linked with the Ci uptake systems associated with the different acclimation states. This review will focus on the latest studies on characterization of functional components involved in the Ci uptake and the Ci-recapture in Chlamydomonas.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
48
|
Couso I, Vila M, Rodriguez H, Vargas MA, León R. Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol Prog 2011; 27:54-60. [DOI: 10.1002/btpr.527] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/06/2010] [Indexed: 11/06/2022]
|
49
|
Yamano T, Tsujikawa T, Hatano K, Ozawa SI, Takahashi Y, Fukuzawa H. Light and Low-CO2-Dependent LCIB–LCIC Complex Localization in the Chloroplast Supports the Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2010; 51:1453-68. [DOI: 10.1093/pcp/pcq105] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH. Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3- transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2009; 106:5990-5. [PMID: 19321421 PMCID: PMC2667020 DOI: 10.1073/pnas.0812885106] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Indexed: 11/18/2022] Open
Abstract
The CO(2)-concentrating mechanism (CCM) of Chlamydomonas reinhardtii and other microalgal species is essential for photosynthetic growth in most natural settings. A great deal has been learned regarding the CCM in cyanobacteria, including identification of inorganic carbon (Ci; CO(2) and HCO(3)(-)) transporters; however, specific knowledge of analogous transporters has remained elusive in eukaryotic microalgae such as C. reinhardtii. Here we investigated whether the limiting-CO(2)-inducible, putative ABC-type transporter HLA3 might function as a HCO(3)(-) transporter by evaluating the effect of pH on growth, photosynthetic Ci affinity, and [(14)C]-Ci uptake in very low CO(2) conditions following RNA interference (RNAi) knockdown of HLA3 mRNA levels in wild-type and mutant cells. Although knockdown of HLA3 mRNA alone resulted in only modest but high-pH-dependent decreases in photosynthetic Ci affinity and Ci uptake, the combination of nearly complete knockdown of HLA3 mRNA with mutations in LCIB (which encodes limiting-Ci-inducible plastid-localized protein required for normal Ci uptake or accumulation in low-CO(2) conditions) and/or simultaneous, apparently off-target knockdown of LCIA mRNA (which encodes limiting-Ci-inducible plastid envelope protein reported to transport HCO(3)(-)) resulted in dramatic decreases in growth, Ci uptake, and photosynthetic Ci affinity, especially at pH 9, at which HCO(3)(-) is the predominant form of available Ci. Collectively, the data presented here provide compelling evidence that HLA3 is directly or indirectly involved in HCO(3)(-) transport, along with additional evidence supporting a role for LCIA in chloroplast envelope HCO(3)(-) transport and a role for LCIB in chloroplast Ci accumulation.
Collapse
Affiliation(s)
- Deqiang Duanmu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011 and
| | - Amy R. Miller
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - Kempton M. Horken
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - Donald P. Weeks
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588
| | - Martin H. Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011 and
| |
Collapse
|