1
|
Cai J, Qiu Z, Chi‐Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C, Qiu M. Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm (Beijing) 2024; 5:e720. [PMID: 39525953 PMCID: PMC11550093 DOI: 10.1002/mco2.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
Small molecule drugs are increasingly emerging as innovative and effective treatments for various diseases, with mRNA therapeutics being a notable representative. The success of COVID-19 vaccines has underscored the transformative potential of mRNA in RNA therapeutics. Within the RNA family, there is another unique type known as circRNA. This single-stranded closed-loop RNA molecule offers notable advantages over mRNA, including enhanced stability and prolonged protein expression, which may significantly impact therapeutic strategies. Furthermore, circRNA plays a pivotal role in the pathogenesis of various diseases, such as cancers, autoimmune disorders, and cardiovascular diseases, making it a promising clinical intervention target. Despite these benefits, the application of circRNA in clinical settings remains underexplored. This review provides a comprehensive overview of the current state of synthetic circRNA therapeutics, focusing on its synthesis, optimization, delivery, and diverse applications. It also addresses the challenges impeding the advancement of circRNA therapeutics from bench to bedside. By summarizing these aspects, the review aims to equip researchers with insights into the ongoing developments and future directions in circRNA therapeutics. Highlighting both the progress and the existing gaps in circRNA research, this review offers valuable perspectives for advancing the field and guiding future investigations.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Zonghao Qiu
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | | | - Zheng Liu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Shaoyi Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Haoran Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Kezhong Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Yun Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | - Mantang Qiu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| |
Collapse
|
2
|
Litvinova VR, Rudometov AP, Rudometova NB, Kisakov DN, Borgoyakova MB, Kisakova LA, Starostina EV, Fando AA, Yakovlev VA, Tigeeva EV, Ivanova KI, Gudymo AS, Ilyicheva TN, Marchenko VY, Sergeev AA, Ilyichev AA, Karpenko LI. DNA Vaccine Encoding a Modified Hemagglutinin Trimer of Avian Influenza A Virus H5N8 Protects Mice from Viral Challenge. Vaccines (Basel) 2024; 12:538. [PMID: 38793789 PMCID: PMC11126123 DOI: 10.3390/vaccines12050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The development of a safe and effective vaccine against avian influenza A virus (AIV) H5N8 is relevant due to the widespread distribution of this virus in the bird population and the existing potential risk of human infection, which can lead to significant public health concerns. Here, we developed an experimental pVAX-H5 DNA vaccine encoding a modified trimer of AIV H5N8 hemagglutinin. Immunization of BALB/c mice with pVAX-H5 using jet injection elicited high titer antibody response (the average titer in ELISA was 1 × 105), and generated a high level of neutralizing antibodies against H5N8 and T-cell response, as determined by ELISpot analysis. Both liquid and lyophilized forms of pVAX-H5 DNA vaccine provided 100% protection of immunized mice against lethal challenge with influenza A virus A/turkey/Stavropol/320-01/2020 (H5N8). The results obtained indicate that pVAX-H5 has good opportunities as a vaccine candidate against the influenza A virus (H5N8).
Collapse
Affiliation(s)
| | - Andrey P. Rudometov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia; (V.R.L.); (N.B.R.); (D.N.K.); (M.B.B.); (L.A.K.); (E.V.S.); (A.A.F.); (E.V.T.); (K.I.I.); (A.S.G.); (T.N.I.); (V.Y.M.); (A.A.S.); (A.A.I.); (L.I.K.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
4
|
Challenges and strategies for the delivery of biologics to the cornea. J Control Release 2021; 333:560-578. [PMID: 33857565 DOI: 10.1016/j.jconrel.2021.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023]
Abstract
Biologics, like peptides, proteins and nucleic acids, have proven to be promising drugs for the treatment of numerous diseases. However, besides the off label use of the monoclonal antibody bevacizumab for the treatment of corneal neovascularization, to date no other biologics for corneal diseases have reached the market. Indeed, delivering biologics in the eye remains a challenge, especially at the level of the cornea. While it appears to be a rather accessible tissue for the administration of drugs, the cornea in fact presents several anatomical barriers to delivery. In addition, also intracellular delivery barriers need to be overcome to achieve a promising therapeutic outcome with biologics. This review outlines efforts that have been reported to successfully deliver biologics into the cornea. Biochemical and physical methods for achieving delivery of biologics in the cornea are discussed, with a critical view on their efficacy in overcoming corneal barriers.
Collapse
|
5
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Sarkar T, Sarkar S, Gangopadhyay DN. Gene Therapy and its Application in Dermatology. Indian J Dermatol 2020; 65:341-350. [PMID: 33165431 PMCID: PMC7640808 DOI: 10.4103/ijd.ijd_323_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gene therapy is an experimental technique to treat genetic diseases. It is based on the introduction of nucleic acid with the help of a vector, into a diseased cell or tissue, to correct the gene expression and thus prevent, halt, or reverse a pathological process. It is a promising treatment approach for genetic diseases, inherited diseases, vaccination, cancer, immunomodulation, as well as healing of some refractory ulcers. Both viral and nonviral vectors can be used to deliver the correct gene. An ideal vector should have the ability for sustained gene expression, acceptable coding capacity, high transduction efficiency, and devoid of mutagenicity. There are different techniques of vector delivery, but these techniques are still under research for assessment of their safety and effectiveness. The major challenges of gene therapy are immunogenicity, mutagenicity, and lack of sustainable therapeutic benefit. Despite these constraints, therapeutic success was obtained in a few genetic and inherited skin diseases. Skin being the largest, superficial, easily accessible and assessable organ of the body, may be a promising target for gene therapy research in the recent future.
Collapse
Affiliation(s)
- Tanusree Sarkar
- From Department of Dermatology, Burdwan Medical College, West Bengal, India
| | - Somenath Sarkar
- Department of Dermatology, B. S Medical College, West Bengal, India
| | | |
Collapse
|
7
|
Chaix A, Cueto-Diaz E, Delalande A, Knezevic N, Midoux P, Durand JO, Pichon C, Cunin F. Amino-acid functionalized porous silicon nanoparticles for the delivery of pDNA. RSC Adv 2019; 9:31895-31899. [PMID: 35530795 PMCID: PMC9072902 DOI: 10.1039/c9ra05461h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Porous silicon nanoparticles as a novel platform in gene therapy, have shown to be an efficient vehicle for the delivery of nucleic acids in cells. For the first time, a family of porous silicon nanoparticles has been produced featuring an amino-acid functionalized cationic external surface aiming at pDNA complexation. The amino acid-based pDNA nanocarriers, displaying an average diameter of 295 nm, succeeded in transfection of HEK293 cells with an efficiency 300 times superior to "bare" porous silicon nanoparticles.
Collapse
Affiliation(s)
- Arnaud Chaix
- Institut Charles Gerhardt Montpellier, Charles Gerhardt Montpellier, Université de Montpellier UMR 5253 CNRS-ENSCM-UM2-UM1, 2 Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Eduardo Cueto-Diaz
- Institut Charles Gerhardt Montpellier, Charles Gerhardt Montpellier, Université de Montpellier UMR 5253 CNRS-ENSCM-UM2-UM1, 2 Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | | | - Nikola Knezevic
- Biosense Institute, University of Novi Sad Dr Zorana Djindjica 1 21000 Novi Sad Serbia
| | - Patrick Midoux
- Centre de Biophysique Moléculaire in Orleans (CBM) UPR4301 France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier, Charles Gerhardt Montpellier, Université de Montpellier UMR 5253 CNRS-ENSCM-UM2-UM1, 2 Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire in Orleans (CBM) UPR4301 France
| | - Frederique Cunin
- Institut Charles Gerhardt Montpellier, Charles Gerhardt Montpellier, Université de Montpellier UMR 5253 CNRS-ENSCM-UM2-UM1, 2 Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| |
Collapse
|
8
|
Zhao Y, Sun H, Sha X, Gu L, Zhan Z, Li WJ. A Review of Automated Microinjection of Zebrafish Embryos. MICROMACHINES 2018; 10:E7. [PMID: 30586877 PMCID: PMC6357019 DOI: 10.3390/mi10010007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/02/2022]
Abstract
Cell microinjection is a technique of precise delivery of substances into cells and is widely used for studying cell transfection, signaling pathways, and organelle functions. Microinjection of the embryos of zebrafish, the third most important animal model, has become a very useful technique in bioscience. However, factors such as the small cell size, high cell deformation tendency, and transparent zebrafish embryo membrane make the microinjection process difficult. Furthermore, this process has strict, specific requirements, such as chorion softening, avoiding contacting the first polar body, and high-precision detection. Therefore, highly accurate control and detection platforms are critical for achieving the automated microinjection of zebrafish embryos. This article reviews the latest technologies and methods used in the automated microinjection of zebrafish embryos and provides a detailed description of the current developments and applications of robotic microinjection systems. The review covers key areas related to automated embryo injection, including cell searching and location, cell position and posture adjustment, microscopic visual servoing control, sensors, actuators, puncturing mechanisms, and microinjection.
Collapse
Affiliation(s)
- Yuliang Zhao
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China.
| | - Hui Sun
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China.
| | - Xiaopeng Sha
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China.
| | - Lijia Gu
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China.
| | - Zhikun Zhan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Wen J Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
- Shenzhen Academy of Robotics, Shenzhen 518000, China.
| |
Collapse
|
9
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
10
|
Physical Methods for Drug and Gene Delivery Through the Cell Plasma Membrane. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2017; 227:73-92. [PMID: 28980041 DOI: 10.1007/978-3-319-56895-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines. J Control Release 2016; 238:22-30. [DOI: 10.1016/j.jconrel.2016.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/13/2016] [Accepted: 07/10/2016] [Indexed: 01/18/2023]
|
12
|
Pirmoradi FN, Pattekar AV, Linn F, Recht MI, Volkel AR, Wang Q, Anderson GB, Veiseh M, Kjono S, Peeters E, Uhland SA, Chow EM. A microarray MEMS device for biolistic delivery of vaccine and drug powders. Hum Vaccin Immunother 2016; 11:1936-44. [PMID: 26090875 PMCID: PMC4635881 DOI: 10.1080/21645515.2015.1029211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report a biolistic technology platform for physical delivery of particle formulations of drugs or vaccines using parallel arrays of microchannels, which generate highly collimated jets of particles with high spatial resolution. Our approach allows for effective delivery of therapeutics sequentially or concurrently (in mixture) at a specified target location or treatment area. We show this new platform enables the delivery of a broad range of particles with various densities and sizes into both in vitro and ex vivo skin models. Penetration depths of ∼1 mm have been achieved following a single ejection of 200 µg high-density gold particles, as well as 13.6 µg low-density polystyrene-based particles into gelatin-based skin simulants at 70 psi inlet gas pressure. Ejection of multiple shots at one treatment site enabled deeper penetration of ∼3 mm in vitro, and delivery of a higher dose of 1 mg gold particles at similar inlet gas pressure. We demonstrate that particle penetration depths can be optimized in vitro by adjusting the inlet pressure of the carrier gas, and dosing is controlled by drug reservoirs that hold precise quantities of the payload, which can be ejected continuously or in pulses. Future investigations include comparison between continuous versus pulsatile payload deliveries. We have successfully delivered plasmid DNA (pDNA)-coated gold particles (1.15 µm diameter) into ex vivo murine and porcine skin at low inlet pressures of ∼30 psi. Integrity analysis of these pDNA-coated gold particles confirmed the preservation of full-length pDNA after each particle preparation and jetting procedures. This technology platform provides distinct capabilities to effectively deliver a broad range of particle formulations into skin with specially designed high-speed microarray ejector nozzles.
Collapse
|
13
|
|
14
|
Cole G, McCaffrey J, Ali AA, McCarthy HO. DNA vaccination for prostate cancer: key concepts and considerations. Cancer Nanotechnol 2015; 6:2. [PMID: 26161151 PMCID: PMC4488504 DOI: 10.1186/s12645-015-0010-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/16/2015] [Indexed: 11/10/2022] Open
Abstract
While locally confined prostate cancer is associated with a low five year mortality rate, advanced or metastatic disease remains a major challenge for healthcare professionals to treat and is usually terminal. As such, there is a need for the development of new, efficacious therapies for prostate cancer. Immunotherapy represents a promising approach where the host's immune system is harnessed to mount an anti-tumour effect, and the licensing of the first prostate cancer specific immunotherapy in 2010 has opened the door for other immunotherapies to gain regulatory approval. Among these strategies DNA vaccines are an attractive option in terms of their ability to elicit a highly specific, potent and wide-sweeping immune response. Several DNA vaccines have been tested for prostate cancer and while they have demonstrated a good safety profile they have faced problems with low efficacy and immunogenicity compared to other immunotherapeutic approaches. This review focuses on the positive aspects of DNA vaccines for prostate cancer that have been assessed in preclinical and clinical trials thus far and examines the key considerations that must be employed to improve the efficacy and immunogenicity of these vaccines.
Collapse
Affiliation(s)
- Grace Cole
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL Northern Ireland UK
| | - Joanne McCaffrey
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL Northern Ireland UK
| | - Ahlam A Ali
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL Northern Ireland UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL Northern Ireland UK
| |
Collapse
|
15
|
Microneedle assisted micro-particle delivery by gene guns: Mathematical model formulation and experimental verification. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Skin cancer and new treatment perspectives: A review. Cancer Lett 2015; 357:8-42. [DOI: 10.1016/j.canlet.2014.11.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022]
|
17
|
Abstract
The key impediment to the successful application of gene therapy in clinics is not the paucity of therapeutic genes. It is rather the lack of nontoxic and efficient strategies to transfer therapeutic genes into target cells. Over the past few decades, considerable progress has been made in gene transfer technologies, and thus far, three different delivery systems have been developed with merits and demerits characterizing each system. Viral and chemical methods of gene transfer utilize specialized carrier to overcome membrane barrier and facilitate gene transfer into cells. Physical methods, on the other hand, utilize various forms of mechanical forces to enforce gene entry into cells. Starting in 1980s, physical methods have been introduced as alternatives to viral and chemical methods to overcome various extra- and intracellular barriers that limit the amount of DNA reaching the intended cells. Accumulating evidence suggests that it is quite feasible to directly translocate genes into cytoplasm or even nuclei of target cells by means of mechanical force, bypassing endocytosis, a common pathway for viral and nonviral vectors. Indeed, several methods have been developed, and the majority of them share the same underlying mechanism of gene transfer, i.e., physically created transient pores in cell membrane through which genes get into cells. Here, we provide an overview of the current status and future research directions in the field of physical methods of gene transfer.
Collapse
|
18
|
Gene therapy and DNA delivery systems. Int J Pharm 2013; 459:70-83. [PMID: 24286924 DOI: 10.1016/j.ijpharm.2013.11.041] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Gene therapy is a promising new technique for treating many serious incurable diseases, such as cancer and genetic disorders. The main problem limiting the application of this strategy in vivo is the difficulty of transporting large, fragile and negatively charged molecules like DNA into the nucleus of the cell without degradation. The key to success of gene therapy is to create safe and efficient gene delivery vehicles. Ideally, the vehicle must be able to remain in the bloodstream for a long time and avoid uptake by the mononuclear phagocyte system, in order to ensure its arrival at the desired targets. Moreover, this carrier must also be able to transport the DNA efficiently into the cell cytoplasm, avoiding lysosomal degradation. Viral vehicles are the most commonly used carriers for delivering DNA and have long been used for their high efficiency. However, these vehicles can trigger dangerous immunological responses. Scientists need to find safer and cheaper alternatives. Consequently, the non-viral carriers are being prepared and developed until techniques for encapsulating DNA can be found. This review highlights gene therapy as a new promising technique used to treat many incurable diseases and the different strategies used to transfer DNA, taking into account that introducing DNA into the cell nucleus without degradation is essential for the success of this therapeutic technique.
Collapse
|
19
|
Meacham JM, Durvasula K, Degertekin FL, Fedorov AG. Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing. ACTA ACUST UNITED AC 2013; 19:1-18. [PMID: 23813915 DOI: 10.1177/2211068213494388] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effective intracellular delivery is a significant impediment to research and therapeutic applications at all processing scales. Physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus, and the mechanisms underlying the most common approaches (microinjection, electroporation, and sonoporation) have been extensively investigated. In this review, we discuss established approaches, as well as emerging techniques (magnetofection, optoinjection, and combined modalities). In addition to operating principles and implementation strategies, we address applicability and limitations of various in vitro, ex vivo, and in vivo platforms. Importantly, we perform critical assessments regarding (1) treatment efficacy with diverse cell types and delivered cargo molecules, (2) suitability to different processing scales (from single cell to large populations), (3) suitability for automation/integration with existing workflows, and (4) multiplexing potential and flexibility/adaptability to enable rapid changeover between treatments of varied cell types. Existing techniques typically fall short in one or more of these criteria; however, introduction of micro-/nanotechnology concepts, as well as synergistic coupling of complementary method(s), can improve performance and applicability of a particular approach, overcoming barriers to practical implementation. For this reason, we emphasize these strategies in examining recent advances in development of delivery systems.
Collapse
|
20
|
Seefeld A, Kokil GR, Tupally KR, Parekh HS, Herten DP. Fluorescent Nucleic Acid Probes in Living Cells. RNA TECHNOLOGIES 2013:291-328. [DOI: 10.1007/978-3-642-36853-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Yang Y, Burkhard P. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles. J Nanobiotechnology 2012; 10:42. [PMID: 23114058 PMCID: PMC3502577 DOI: 10.1186/1477-3155-10-42] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/23/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs) to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. RESULTS We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. CONCLUSIONS The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold nanoparticles into SAPNs can provide a useful platform to generate a multifunctional biodevices.
Collapse
Affiliation(s)
- Yongkun Yang
- Institute of Materials Science, University of Connecticut, 97 N, Eagleville Road, Storrs, Mansfield, CT 06269, USA
| | | |
Collapse
|
22
|
Nguyen-Hoai T, Hohn O, Vu MD, Baldenhofer G, Sayed Ahmed MS, Dörken B, Norley S, Lipp M, Pezzutto A, Westermann J. CCL19 as an adjuvant for intradermal gene gun immunization in a Her2/neu mouse tumor model: improved vaccine efficacy and a role for B cells as APC. Cancer Gene Ther 2012; 19:880-7. [DOI: 10.1038/cgt.2012.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Mine T, Ishii H, Nakajima S, Yoshikawa N, Miyamoto H, Nakashima M, Nakamura J, Fumoto S, Nishida K. Rubbing gastric serosal surface enhances naked plasmid DNA transfer in rats and mice. Biol Pharm Bull 2011; 34:1514-7. [PMID: 21881243 DOI: 10.1248/bpb.34.1514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed in vivo gene transfer to mesothelial cells on the peritoneal organs, including the stomach. Simple instillation of naked plasmid DNA onto the gastric serosal surface in mice resulted in effective but transient transgene expression. Here, we developed a simple method to improve not only the transfection efficiency but also the duration of transgene expression. Rubbing the gastric serosal surface using a medical spoon immediately after instillation of naked plasmid DNA onto the gastric serosal surface resulted in 59-fold higher transgene expression 24 h after administration in rats. Without rubbing, transgene expression decreased under the detection limit 7 d after administration. On the other hand, rubbing the gastric serosal surface with a medical spoon after instillation of plasmid DNA prolonged transgene expression for one month. Mechanistic study in mice revealed that improved transfection should not be due to stimulation of cell function such as macropinocytosis by rubbing because rubbing before instillation of plasmid DNA did not improve transfection. Plasmid DNA should enter effectively into cells during rubbing. These findings are valuable to develop an effective method of in vivo gene transfer into peritoneal organs.
Collapse
Affiliation(s)
- Toyoharu Mine
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gene delivery in salivary glands: from the bench to the clinic. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1515-21. [PMID: 21763423 DOI: 10.1016/j.bbadis.2011.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 12/11/2022]
Abstract
In vivo gene delivery has long been seen as providing opportunities for the development of novel treatments for disorders refractory to existing therapies. Over the last two decades, salivary glands have proven to be a useful, if somewhat unconventional, target tissue for studying several potential clinical applications of therapeutic gene delivery. Herein, we follow the progress, address some problems and assess the outlook for clinical applications of salivary gland gene delivery. Our experience with these tissues provides a roadmap for the process of moving an idea from the laboratory bench to patients.
Collapse
|
25
|
Lian B, Cheng A, Wang M, Zhu D, Luo Q, Jia R, Liu F, Han X, Chen X. Induction of immune responses in ducks with a DNA vaccine encoding duck plague virus glycoprotein C. Virol J 2011; 8:214. [PMID: 21569289 PMCID: PMC3115884 DOI: 10.1186/1743-422x-8-214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 05/10/2011] [Indexed: 02/07/2023] Open
Abstract
Background A DNA vaccine expressing glycoprotein C (gC) of duck plague virus (DPV) was evaluated for inducing immunity in ducks. The plasmid encoding gC of DPV was administered via intramuscular (IM) injection and gene gun bombardment. Results After immunization by both routes virus-specific serum antibody and T-cell responses developed. Vaccination of ducks by IM injection induced a stronger humoral, but weaker cell-mediated immune response. In contrast, a better cell-mediated immune response was achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis with as little as 6 μg of DNA. Conclusions This demonstrated that both routes of DNA inoculation can be used for eliciting virus-specific immune responses. Although DNA vaccine containing DPV gC is effective in both intramuscular injection and gene gun bombardment, the latter could induce significantly higher cell-mediated responses against DPV.
Collapse
Affiliation(s)
- Bei Lian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jinturkar KA, Rathi MN, Misra A. Gene Delivery Using Physical Methods. CHALLENGES IN DELIVERY OF THERAPEUTIC GENOMICS AND PROTEOMICS 2011:83-126. [DOI: 10.1016/b978-0-12-384964-9.00003-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Kim I, Wu XL. Tunneling of micron-sized droplets through soap films. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:026313. [PMID: 20866911 DOI: 10.1103/physreve.82.026313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/08/2010] [Indexed: 05/29/2023]
Abstract
When a micron-sized water droplet impacts on a freely suspended soap film with speed v(i), there exists a critical impact velocity of penetration v(C). Droplets with v(i)<v(C) merge and flow with the film after impacts, whereas droplets with v(i)>v(C) tunnel through it. In all cases, the film remains intact despite the fact that the droplet radius (R_{0}=26 μm) is much greater than the film thickness (0<h≲10 μm) . The critical velocity v(C) is measured as a function of h , and interestingly v(C) approaches an asymptotic value v(C0)≃520 cm/s in the limit h→0 . This indicates that in addition to an inertial effect, a deformation or stretching energy of the film is required for penetration. Quantitatively, we found that this deformation energy corresponds to the creation of ∼14 times of the cross-sectional area of the droplet (14πR(0)(2)) or a critical Weber number We(C)}(≡2ρ(w) v(C0)(2) R(0)/σ)≃44 , where ρ(w) and σ are, respectively, the density and the surface tension of water.
Collapse
Affiliation(s)
- Ildoo Kim
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
28
|
Abstract
IMPORTANCE OF THE FIELD The use of ultrasound with microbubbles raises the possibility of an efficient and safe gene delivery. AREAS COVERED IN THIS REVIEW This review summarizes the current state of the art of gene delivery by sonoporation under the following topics. First, the basic ultrasound parameters and the characteristics of microbubble in biological systems are discussed. Second, the extensions of sonoporation to other fields of gene delivery such as viral and non-viral vector are briefly reviewed. Finally, recent applications in an animal model for various diseases are introduced. WHAT THE READER WILL GAIN Information and comments on gene delivery by sonoporation or enhanced cell membrane permeability by means of ultrasound. TAKE HOME MESSAGE Ultrasound-mediated gene delivery combined with microbubble agents provides significant safety advantages over other methods of local gene delivery.
Collapse
Affiliation(s)
- Chang S Yoon
- Paik Memorial Institute for Clinical Research, Department of Internal Medicine, College of Medicine, Inje University, Busan, South Korea
| | | |
Collapse
|
29
|
Abstract
Improving the transfection efficiencies of nonviral gene delivery requires properly engineered nanoscaled delivery carriers that can overcome the multiple barriers associated with the delivery of oligonucleotides from the site of administration to the nucleus or cytoplasm of the target cell. This article reviews the current advantages and limitation of polyplex nonviral delivery systems, including the apparent barriers that limit gene expression efficiency compared to physical methods such as hydrodynamic dosing and electroporation. An emphasis is placed on engineered nanoscaled polyplexes (NSPs) of modular design that both self-assemble and systematically disassemble at the desired stage of delivery. It is suggested that NSPs of increasingly sophisticated designs are necessary to improve the efficiency of the rate limiting steps in gene delivery.
Collapse
Affiliation(s)
- Christian A Fernandez
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
30
|
Development of CRTEIL and CETRIZ, Cre-loxP-based systems, which allow change of expression of red to green or green to red fluorescence upon transfection with a cre-expression vector. J Biomed Biotechnol 2009; 2009:985140. [PMID: 19360101 PMCID: PMC2664460 DOI: 10.1155/2009/985140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 01/13/2009] [Indexed: 11/18/2022] Open
Abstract
We developed Cre-loxP-based systems, termed CRTEIL and CETRIZ, which allow gene switching in a noninvasive manner. Single transfection with pCRTEIL resulted in predominant expression of red fluorescence. Cotransfection with pCRTEIL and Cre-expression plasmid (pCAG/NCre) caused switching from red to green fluorescence. Similarly, cotransfection with pCETRIZ and pCAG/NCre resulted in change of green to red fluorescence. These noninvasive systems will be useful in cell lineage analysis, since descendants of cells exhibiting newly activated gene expression can be continuously monitored in noninvasive fashion.
Collapse
|
31
|
Nishi J, Fumoto S, Ishii H, Kodama Y, Nakashima M, Sasaki H, Nakamura J, Nishida K. Highly stomach-selective gene transfer following gastric serosal surface instillation of naked plasmid DNA in rats. J Gastroenterol 2009; 43:912-9. [PMID: 19107334 DOI: 10.1007/s00535-008-2301-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/13/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND The purpose of this study was to achieve stomach-selective gene transfer in rats by our simple and novel administration method, which is gastric serosal surface instillation of naked plasmid DNA (pDNA). METHODS Naked pDNA encoding firefly luciferase as a reporter gene was instilled onto the gastric serosal surface in male Wistar rats. As controls, we performed intraperitoneal, intragastric and intravenous administration of naked pDNA. At appropriate time intervals, we measured luciferase activities in the stomach and other tissues. RESULTS Gene expression in the stomach 6 h after gastric serosal surface instillation of naked pDNA (5 microg) was significantly higher than that after using other administration methods. The present study is the first report on stomach-selective gene transfer following instillation of naked pDNA onto the gastric serosal surface in rats. Also, the gene expression level in the stomach 6 h after gastric serosal surface instillation of naked pDNA was markedly higher than that in other tissues. In a dose-dependent study, the gene expression level was saturated over 5 microg. Gene expression in the stomach was detected 3 h after gastric serosal surface instillation of naked pDNA. The gene expression level peaked 12-24 h after instillation of naked pDNA, then decreased to a level similar to 3 h at 48 h. CONCLUSIONS Gastric serosal surface in stillation of naked pDNA can be a highly stomach-selective gene transfer method in rats.
Collapse
Affiliation(s)
- Junya Nishi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Nishi J, Fumoto S, Ishii H, Kodama Y, Nakashima M, Sasaki H, Nakamura J, Nishida K. Improved stomach selectivity of gene expression following microinstillation of plasmid DNA onto the gastric serosal surface in mice. Eur J Pharm Biopharm 2008; 69:633-9. [DOI: 10.1016/j.ejpb.2007.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 09/01/2007] [Accepted: 12/19/2007] [Indexed: 12/11/2022]
|
34
|
Kawakami S, Higuchi Y, Hashida M. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 2008; 97:726-45. [PMID: 17823947 DOI: 10.1002/jps.21024] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Successful gene therapy depends on the development of efficient delivery systems. Although pDNA and ODN are novel candidates for nonviral gene therapy, their clinical applications are generally limited owing to their rapid degradation by nucleases in serum and rapid clearance. A great deal of effort had been devoted to developing gene delivery systems, including physical methods and carrier-mediated methods. Both methods could improve transfection efficacy and achieve high gene expression in vitro and in vivo. As for carrier-mediated delivery in vivo, since gene expression depends on the particle size, charge ratio, and interaction with blood components, these factors must be optimized. Furthermore, a lack of cell-selectivity limits the wide application to gene therapy; therefore, the use of ligand-modified carriers is a promising strategy to achieve well-controlled gene expression in target cells. In this review, we will focus on the in vivo targeted delivery of pDNA and ODN using nonviral carriers.
Collapse
Affiliation(s)
- Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
35
|
Hsu MH, Josephrajan T, Yeh CS, Shieh DB, Su WC, Hwu JR. Novel arylhydrazone-conjugated gold nanoparticles with DNA-cleaving ability: the first DNA-nicking nanomaterial. Bioconjug Chem 2007; 18:1709-12. [PMID: 17953439 DOI: 10.1021/bc700222n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arylhydrazones were linked onto gold nanoparticles through the poly(ethylene glycol) spacer to produce a new type of photoinduced DNA-cleaving nanomaterials with great potency.
Collapse
Affiliation(s)
- Ming-Hua Hsu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
36
|
Lisziewicz J, Calarota SA, Lori F. The potential of topical DNA vaccines adjuvanted by cytokines. Expert Opin Biol Ther 2007; 7:1563-74. [PMID: 17916048 DOI: 10.1517/14712598.7.10.1563] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To improve the efficacy of DNA immunization epidermal Langerhans cells are attractive targets to deliver antigen-encoding plasmid DNA. Topical vaccination with naked plasmid DNA has been shown to induce immune responses, and their potency might be improved by chemical and physical methods aimed to enhance the efficiency of plasmid DNA delivery into the skin. Cytokines have also been evaluated as adjuvants for DNA vaccines because they influence the host immune response. This review focuses on the action of several cytokines tested as molecular adjuvants for DNA vaccines and the combination of them with the DermaVir Patch vaccine. DermaVir vaccine, topically administered under a patch, consists of a plasmid DNA that is chemically formulated into a nanoparticle to support vaccine delivery into epidermal Langerhans cells and to induce antigen-specific memory T cells.
Collapse
|
37
|
Abstract
Biolistic transfection is a technique in which subcellular-sized particles coated with DNA are accelerated to high velocity to propel them into cells. This method is applicable to tissues, cells and organelles, and can be used for both in vitro and in vivo transformations; with the right equipment, it is simple, rapid and efficient. Here we provide a detailed protocol for biolistic transfection of plasmids into cultured human embryonic kidney (HEK) 293 cells and organotypic brain slices using a hand-held gene gun. There are three major steps: (i) coating microcarriers with DNA, (ii) transferring the microcarriers into a cartridge to make a 'bullet', and (iii) firing the DNA-coated microcarriers into cells using a pulse of helium gas. The method can be readily adapted to other cell types and tissues. The protocol can be completed in 1-2 h.
Collapse
Affiliation(s)
- John A O'Brien
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
38
|
Stoecklinger A, Grieshuber I, Scheiblhofer S, Weiss R, Ritter U, Kissenpfennig A, Malissen B, Romani N, Koch F, Ferreira F, Thalhamer J, Hammerl P. Epidermal langerhans cells are dispensable for humoral and cell-mediated immunity elicited by gene gun immunization. THE JOURNAL OF IMMUNOLOGY 2007; 179:886-93. [PMID: 17617579 DOI: 10.4049/jimmunol.179.2.886] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity. Together, our data show that gene gun immunization is capable of inducing humoral and cell-mediated immune reactions independently of LC.
Collapse
Affiliation(s)
- Angelika Stoecklinger
- Christian Doppler Laboratory of Allergy Diagnostics and Therapy, Department of Molecular Biology, University Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang W, Liu X, Gelinas D, Ciruna B, Sun Y. A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2007; 2:e862. [PMID: 17848993 PMCID: PMC1959247 DOI: 10.1371/journal.pone.0000862] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 08/18/2007] [Indexed: 11/18/2022] Open
Abstract
As an important embodiment of biomanipulation, injection of foreign materials (e.g., DNA, RNAi, sperm, protein, and drug compounds) into individual cells has significant implications in genetics, transgenics, assisted reproduction, and drug discovery. This paper presents a microrobotic system for fully automated zebrafish embryo injection, which overcomes the problems inherent in manual operation, such as human fatigue and large variations in success rates due to poor reproducibility. Based on computer vision and motion control, the microrobotic system performs injection at a speed of 15 zebrafish embryos (chorion unremoved) per minute, with a survival rate of 98% (n = 350 embryos), a success rate of 99% (n = 350 embryos), and a phenotypic rate of 98.5% (n = 210 embryos). The sample immobilization technique and microrobotic control method are applicable to other biological injection applications such as the injection of mouse oocytes/embryos and Drosophila embryos to enable high-throughput biological and pharmaceutical research.
Collapse
Affiliation(s)
- Wenhui Wang
- Advanced Micro and Nanosystems Laboratory, University of Toronto, Toronto, Canada
| | - Xinyu Liu
- Advanced Micro and Nanosystems Laboratory, University of Toronto, Toronto, Canada
| | - Danielle Gelinas
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Brian Ciruna
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- * To whom correspondence should be addressed. E-mail: (BC); (YS)
| | - Yu Sun
- Advanced Micro and Nanosystems Laboratory, University of Toronto, Toronto, Canada
- * To whom correspondence should be addressed. E-mail: (BC); (YS)
| |
Collapse
|
40
|
Liu Y, Truong NK, Kendall MAF, Bellhouse BJ. Characteristics of a micro-biolistic system for murine immunological studies. Biomed Microdevices 2007; 9:465-74. [PMID: 17484054 DOI: 10.1007/s10544-007-9053-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With an advanced computational fluid dynamics (CFD) technique, we have numerically developed and examined a micro-biolistic system for delivering particles to murine target sites. The micro-particles are accelerated by a high speed flow initiated by a traveling shock wave, so that they can attain a sufficient momentum to penetrate in to the cells of interest within murine skin (or mucosa). In immunization application, powdered vaccines are directly delivered into the antigen presenting cells (APCs) within the epidermis/dermis of the murine skin with a narrow and highly controllable velocity range (e.g., 699+/-5.6 m/s for 1.8 microm modeled gold particles) and a uniform spatial distribution over a diameter of approximately 4 mm target area. Key features of gas dynamics and gas-particle interaction are presented. Importantly, the particle impact velocity conditions are quantified as a function of: stand-off distance (2-15 mm), driver gas species (air/helium mixtures), particle density (1,050 kg/m3 and 19,320 kg/m3) and particle size (1-5 microm for gold particles and 10-50 microm for less dense particles, respectively). The influential parameters--representative of immunotherapeutic (e.g., DNA vaccination) and protein (e.g., lidocaine) biolistic applications--are studied in detail.
Collapse
Affiliation(s)
- Y Liu
- Oxford Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX2 6PE, UK.
| | | | | | | |
Collapse
|
41
|
Menon GK, Brandsma JL, Schwartz PM. Particle-Mediated Gene Delivery and Human Skin: Ultrastructural Observations on Stratum Corneum Barrier Structures. Skin Pharmacol Physiol 2006; 20:141-7. [PMID: 17525512 DOI: 10.1159/000098165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 10/05/2006] [Indexed: 11/19/2022]
Abstract
The particle-mediated delivery systems are becoming a clinically relevant tool in dermatology and immunology. We investigated the qualitative ultrastructural morphology of skin following pressure-driven delivery of gold particles to ex vivo human breast skin, at different pressures ranging from 350 to 1,000 psi. Pressures of 800 and 1,000 psi appear to be more effective, as indicated by distribution of particles in the viable epidermis and dermis. Particle bombardment of the skin with gold beads caused microwounds that spanned the stratum corneum (SC). The SC lipids did not reseal these wounds in the SC after 24 h in organ culture. The implications of particle-mediated delivery to permeability barrier functions of the SC are discussed.
Collapse
Affiliation(s)
- G K Menon
- Global Research and Development, Avon Products Inc., Suffern, NY 10901, USA.
| | | | | |
Collapse
|
42
|
Abstract
The most intensively studied autoimmune disorder, type 1 diabetes mellitus (DM1), has attracted perhaps the greatest interest for gene-based therapeutic and prophylactic interventions. The final clinical manifestation of this immunologically and genetically complex disease, the absence of insulin, is the major starting point for almost all the gene therapy modalities attempted to date. Insulin replacement by transplantation of islets of Langerhans or surrogate beta cells is the obvious choice, but the allogeneic nature of the transplants activates potent antidonor immunoreactivity necessitating gene and cell-based immunosuppressive strategies as an alternative to the toxic pharmacologic immunosuppressives indicated for classic solid organ transplants. Accumulating knowledge of the cellular mechanisms involved in onset, however, have yielded promising tolerance induction prophylactic approaches using genes and cells. Despite the early successes in a number of animal models, the true test of efficacy in humans remains to be demonstrated.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Diabetes Institute, Pediatric Research Section, Children's Hospital of Pittsburgh and University of Pittsburgh, Rangos Research Center, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
43
|
Nakamura J, Fumoto S, Shoji K, Kodama Y, Nishi J, Nakashima M, Sasaki H, Nishida K. Stomach-Selective Gene Transfer Following the Administration of Naked Plasmid DNA onto the Gastric Serosal Surface in Mice. Biol Pharm Bull 2006; 29:2082-6. [PMID: 17015955 DOI: 10.1248/bpb.29.2082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to achieve a stomach-selective gene transfer following the administration of naked plasmid DNA (pDNA) onto the gastric serosal surface in mice. Gene expression in the stomach and other tissues was evaluated by firefly luciferase activity. Six hours after gastric serosal surface instillation of naked pDNA, high gene expression in the stomach was observed. On the contrary, intravenous and intraperitoneal injection of naked pDNA exhibited no detectable gene expression. Following instillation of naked pDNA onto the gastric serosal surface, gene expression in the stomach was significantly higher than in other tissues. Gene expression in the stomach was highest 12 h after the instillation and thereafter decreased gradually. Utilizing a glass-made diffusion cell that is able to limit the contact dimension between the gastric serosal surface and the naked pDNA solution administered, site-specific gene expression in the stomach was achieved. This novel gene transfer method is expected to be a safe and effective treatment against serious stomach diseases.
Collapse
Affiliation(s)
- Junzo Nakamura
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Walther W, Stein U, Fichtner I, Kobelt D, Aumann J, Arlt F, Schlag PM. Nonviral Jet-Injection Gene Transfer for Efficient in Vivo Cytosine Deaminase Suicide Gene Therapy of Colon Carcinoma. Mol Ther 2005; 12:1176-84. [PMID: 16202659 DOI: 10.1016/j.ymthe.2005.07.700] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 07/19/2005] [Accepted: 07/22/2005] [Indexed: 11/19/2022] Open
Abstract
Jet-injection technology has developed into an efficient gene delivery system for nonviral in vivo gene transfer. In this study the jet-injector system was used for the intratumoral gene transfer of small volumes of naked DNA encoding the Escherichia coli cytosine deaminase (CD) suicide gene. In our in vivo studies human colon carcinoma (patient-derived tumor model Colo5734 and SW480 colon carcinoma)-bearing NMRI-nu/nu male mice received four jet injections (10 microl per injection) of the CD-gene-carrying plasmid, representing 40 microg plasmid DNA per animal. Forty-eight hours after jet-injection, treatment of tumors with 5-fluorocytosine (5-FC; 500 mg/kg ip) was started and during treatment tumor volumes were measured. Starting from day 5 of 5-FC treatment inhibition of tumor growth was seen in the CD-gene-transduced tumors compared to the respective control groups, which lasted for the entire observation time. Expression analysis at the mRNA and protein levels revealed efficient expression of the CD gene in the jet-injected tumors. Therefore, in this in vivo study jet-injection gene transfer of 40 microg CD-expressing naked plasmid DNA leads to a significant tumor growth inhibition. This study demonstrates the applicability of the jet-injection technology for in vivo gene transfer into tumors to achieve efficient tumor gene therapy.
Collapse
Affiliation(s)
- Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Hirayama R, Fumoto S, Nishida K, Nakashima M, Sasaki H, Nakamura J. Effect of solution composition of plasmid DNA on gene transfection following liver surface administration in mice. Biol Pharm Bull 2005; 28:2166-9. [PMID: 16272713 DOI: 10.1248/bpb.28.2166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of plasmid DNA (pDNA) solution composition on gene transfection following liver surface administration in mice. Gene transfection experiments in situ and in vivo were performed using the following pDNA solutions: dextrose solution, NaCl solution, phosphate buffer, phosphate-buffered saline, Tris/HCl buffer with EDTA, Tris/HCl buffer with EDTA and Triton X-100, and water. In in situ experiments, we used a glass cylindrical diffusion cell that limited the contact area between the liver surface and the naked pDNA solution. The gene transfection at the site of diffusion cell attachment increased in hypotonic solution, and decreased in hypertonic solution, compared with isotonic solution. In in vivo experiments, instillation of naked pDNA solution onto the liver surface using a micropipette caused no significant differences in gene transfection in the applied lobe. These results suggest that it is important to select the optimal pDNA solution composition to control the gene transfection.
Collapse
Affiliation(s)
- Ryu Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Qiu-Jie Jiang
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
47
|
Yoon K. Montagna symposium on epidermal stem cells oligonucleotide-directed gene correction in epidermis. J Investig Dermatol Symp Proc 2005; 9:276-83. [PMID: 15369224 DOI: 10.1111/j.1087-0024.2004.09303.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligonucleotide-directed gene alteration produces a targeted DNA sequence change in the genome of mammalian cells. The advantage of this approach is that expression of the corrected gene is regulated in the same way as a normal gene. Reliable, sensitive, and standardized assays played a critical role in the measurement of gene correction frequency among different cell types and in evaluating the structure-activity relationship of oligonucleotides. Mechanistic studies using these assays have become critical for understanding the gene repair process and setting realistic expectations on the capability of this technology. The epidermis is an ideal tissue where oligonucleotides can be administered locally and the treated sites can be monitored easily. But given the low frequency of gene correction, general selection procedures and amplification of corrected cells via epidermal stem cells are ultimately needed to make the gene repair technology practical. Recent data suggest that the in vivo application of oligonucleotides may be capable of gene correction in epidermal stem cells and the subsequent expansion of the corrected cells may result in an apparent high-level and long-lasting gene repair. Advances in oligonucleotide delivery and targeting of epidermal stem cells will be required for potential application of oligonucleotides toward treatment of genodermatoses.
Collapse
Affiliation(s)
- Kyonggeun Yoon
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
48
|
Hirayama R, Nishida K, Fumoto S, Nakashima M, Sasaki H, Nakamura J. Unilateral Kidney-Selective Gene Transfer Following the Administration of Naked Plasmid DNA to the Kidney Surface in Mice. Biol Pharm Bull 2005; 28:181-4. [PMID: 15635189 DOI: 10.1248/bpb.28.181] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed a gene transfer following the administration of naked plasmid DNA (pDNA) to the kidney surface in mice, and found that the luciferase levels produced in the applied kidney were significantly higher than those produced in another kidney. In contrast, stable renal gene expression was not observed in the case of intraperitoneal or intravenous administration of pDNA. The level of gene expression after instillation of pDNA to the kidney surface reached maximum at 12 h and gradually diminished thereafter. The production of luciferase was saturated at 5 microg of pDNA, and was not affected by instillation volume. Furthermore, pDNA uptake from the kidney surface was proved by in situ experiments using a glass-made diffusion cell. We demonstrated a novel unilateral kidney-selective gene transfer following the administration of naked pDNA to the kidney surface in mice.
Collapse
Affiliation(s)
- Ryu Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Izsvák Z, Ivics Z. Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 2004; 9:147-56. [PMID: 14759798 DOI: 10.1016/j.ymthe.2003.11.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 11/20/2003] [Indexed: 11/24/2022] Open
Abstract
Transposable elements can be considered as natural, nonviral gene-delivery vehicles and are valuable and widely used tools for germ-line transgenesis and insertional mutagenesis in invertebrate systems such as flies and worms. Such tools were not available for genome manipulations in vertebrates until recently, when an active element was resurrected from transposon fossils found in fish genomes. This element, the Sleeping Beauty transposon, shows efficient transposition in cells of a wide range of vertebrates, including humans. Sleeping Beauty transposition is a cut-and-paste process, during which the element "jumps" from one DNA molecule to another. Transposon integration into chromosomes provides the basis for long-term, or possibly permanent, transgene expression in transgenic cells and organisms. Thus, the reconstruction of the Sleeping Beauty element generated considerable interest in developing efficient and safe vectors for vertebrate transgenesis as well as for human gene therapy. In this review we summarize our current knowledge of Sleeping Beauty biology and describe the strengths and current limitations of transposon technology for gene therapeutic applications.
Collapse
Affiliation(s)
- Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany
| | | |
Collapse
|
50
|
Yang CH, Shen SC, Lee JC, Wu PC, Hsueh SF, Lu CY, Meng CT, Hong HS, Yang LC. Seeing the gene therapy: application of gene gun technique to transfect and decolour pigmented rat skin with human agouti signalling protein cDNA. Gene Ther 2004; 11:1033-9. [PMID: 15164092 DOI: 10.1038/sj.gt.3302264] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We developed a gene gun method for the transfer of human agouti signalling protein (ASP) cDNA to alter rat skin colour in vivo. Human ASP cDNA was cloned into a modified cytomegalovirus plasmid and delivered to the skin of Long-Evans rats by gene gun bombardment. Skin pigmentation, body weight and blood sugar of ASP cDNA-transfected rats were recorded against the control group, which were injected with plasmids encoding for green fluorescent protein. The treated skin showed lighter skin colour after 3 days of ASP gene transfection. This depigmentation effect was most prominent on day 14 and the skin gradually returned to its original pigmentation by day 28. Successful transfection of ASP gene in skin and hair follicles, as well as downregulation of melanocortin-1 receptor (MC1R) and tyrosinase expression upon treatment, was confirmed using immunohistochemistry and Western blot analysis. Body weight and blood sugar in the treated rats did not show statistically significant differences as compared to control groups. These observations demonstrate that gene transfer using the gene gun method can induce high cutaneous ASP production and facilitate a switch from dark to fair colour without systemic pleiotropic effects. Such a colour switch may be that ASP is acting in a paracrine fashion. In addition, this study verifies that ASP exerts its functions by acting as an independent ligand that downregulates the melanocyte MC1R and tyrosinase protein in an in vivo system. Our result offers new, interesting insights about the effect of ASP on pigmentation, providing a novel approach to study the molecular mechanisms underlying skin melanogenesis.
Collapse
Affiliation(s)
- C-H Yang
- Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|