1
|
Van Dingenen I, Vergauwen L, Haigis AC, Blackwell BR, Stacy E, Villeneuve DL, Knapen D. Deiodinase inhibition impairs the formation of the three posterior swim bladder tissue layers during early embryonic development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106632. [PMID: 37451188 PMCID: PMC10949247 DOI: 10.1016/j.aquatox.2023.106632] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Thyroid hormone system disruption (THSD) negatively affects multiple developmental processes and organs. In fish, inhibition of deiodinases, which are enzymes crucial for (in)activating thyroid hormones (THs), leads to impaired swim bladder inflation. Until now, the underlying mechanism has remained largely unknown. Therefore, the objective of this study was to identify the process during swim bladder development that is impacted by deiodinase inhibition. Zebrafish embryos were exposed to 6 mg/L iopanoic acid (IOP), a model deiodinase inhibitor, during 8 different exposure windows (0-60, 60-120, 24-48, 48-72, 72-96, 96-120, 72-120 and 0-120 h post fertilization (hpf)). Exposure windows were chosen based on the three stages of swim bladder development: budding (24-48 hpf), pre-inflation, i.e., the formation of the swim bladder tissue layers (48-72 hpf), and inflation phase (72-120 hpf). Exposures prior to 72 hpf, during either the budding or pre-inflation phase (or both), impaired swim bladder inflation, while exposure during the inflation phase did not. Based on our results, we hypothesize that DIO inhibition before 72 hpf leads to a local decrease in T3 levels in the developing swim bladder. Gene transcript analysis showed that these TH level alterations disturb both Wnt and hedgehog signaling, known to be essential for swim bladder formation, eventually resulting in impaired development of the swim bladder tissue layers. Improper development of the swim bladder impairs swim bladder inflation, leading to reduced swimming performance. This study demonstrates that deiodinase inhibition impacts processes underlying the formation of the swim bladder and not the inflation process, suggesting that these processes primarily rely on maternal rather than endogenously synthetized THs since TH measurements showed that THs were not endogenously synthetized during the sensitive period.
Collapse
Affiliation(s)
- Imke Van Dingenen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Brett R Blackwell
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Emma Stacy
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
2
|
Tanizaki Y, Shibata Y, Na W, Shi YB. Cell cycle activation in thyroid hormone-induced apoptosis and stem cell development during Xenopus intestinal metamorphosis. Front Endocrinol (Lausanne) 2023; 14:1184013. [PMID: 37265708 PMCID: PMC10230048 DOI: 10.3389/fendo.2023.1184013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Amphibian metamorphosis resembles mammalian postembryonic development, a period around birth when many organs mature into their adult forms and when plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for amphibian metamorphosis. This and its independence from maternal influence make metamorphosis of amphibians, particularly anurans such as pseudo-tetraploid Xenopus laevis and its highly related diploid species Xenopus tropicalis, an excellent model to investigate how T3 regulates adult organ development. Studies on intestinal remodeling, a process that involves degeneration of larval epithelium via apoptosis and de novo formation of adult stem cells followed by their proliferation and differentiation to form the adult epithelium, have revealed important molecular insights on T3 regulation of cell fate during development. Here, we review some evidence suggesting that T3-induced activation of cell cycle program is important for T3-induced larval epithelial cell death and de novo formation of adult intestinal stem cells.
Collapse
|
3
|
Shi YB, Shibata Y, Tanizaki Y, Fu L. The development of adult intestinal stem cells: Insights from studies on thyroid hormone-dependent anuran metamorphosis. VITAMINS AND HORMONES 2021; 116:269-293. [PMID: 33752821 DOI: 10.1016/bs.vh.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertebrates organ development often takes place in two phases: initial formation and subsequent maturation into the adult form. This is exemplified by the intestine. In mouse, the intestine at birth has villus, where most differentiated epithelial cells are located, but lacks any crypts, where adult intestinal stem cells reside. The crypt is formed during the first 3 weeks after birth when plasma thyroid hormone (T3) levels are high. Similarly, in anurans, the intestine undergoes drastic remodeling into the adult form during metamorphosis in a process completely dependent on T3. Studies on Xenopus metamorphosis have revealed important clues on the formation of the adult intestine during metamorphosis. Here we will review our current understanding on how T3 induces the degeneration of larval epithelium and de novo formation of adult intestinal stem cells. We will also discuss the mechanistic conservations in intestinal development between anurans and mammals.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
4
|
Abstract
The endoderm is the innermost germ layer that forms the linings of the respiratory and gastrointestinal tracts, and their associated organs, during embryonic development. Xenopus embryology experiments have provided fundamental insights into how the endoderm develops in vertebrates, including the critical role of TGFβ-signaling in endoderm induction,elucidating the gene regulatory networks controlling germ layer development and the key molecular mechanisms regulating endoderm patterning and morphogenesis. With new genetic, genomic, and imaging approaches, Xenopus is now routinely used to model human disease, discover mechanisms underlying endoderm organogenesis, and inform differentiation protocols for pluripotent stem cell differentiation and regenerative medicine applications. In this chapter, we review historical and current discoveries of endoderm development in Xenopus, then provide examples of modeling human disease and congenital defects of endoderm-derived organs using Xenopus.
Collapse
Affiliation(s)
- Nicole A Edwards
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Aaron M Zorn
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
5
|
Tanizaki Y, Shibata Y, Zhang H, Shi YB. Analysis of Thyroid Hormone Receptor α-Knockout Tadpoles Reveals That the Activation of Cell Cycle Program Is Involved in Thyroid Hormone-Induced Larval Epithelial Cell Death and Adult Intestinal Stem Cell Development During Xenopus tropicalis Metamorphosis. Thyroid 2021; 31:128-142. [PMID: 32515287 PMCID: PMC7840310 DOI: 10.1089/thy.2020.0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: There are two highly conserved thyroid hormone (triiodothyronine [T3]) receptor (TR) genes, TRα and TRβ, in all vertebrates, and the expression of TRα but not TRβ is activated earlier than T3 synthesis during development. In human, high levels of T3 are present during the several months around birth, and T3 deficiency during this period causes severe developmental abnormalities including skeletal and intestinal defects. It is, however, difficult to study this period in mammals as the embryos and neonates depend on maternal supply of nutrients for survival. However, Xenopus tropicalis undergoes a T3-dependent metamorphosis, which drastically changes essentially every organ in a tadpole. Of interest is intestinal remodeling, which involves near complete degeneration of the larval epithelium through apoptosis. Concurrently, adult intestinal stem cells are formed de novo and subsequently give rise to the self-renewing adult epithelial system, resembling intestinal maturation around birth in mammals. We have previously demonstrated that T3 signaling is essential for the formation of adult intestinal stem cells during metamorphosis. Methods: We studied the function of endogenous TRα in the tadpole intestine by using knockout animals and RNA-seq analysis. Results: We observed that removing endogenous TRα caused defects in intestinal remodeling, including drastically reduced larval epithelial cell death and adult intestinal stem cell proliferation. Using RNA-seq on intestinal RNA from premetamorphic wild-type and TRα-knockout tadpoles treated with or without T3 for one day, before any detectable T3-induced cell death and stem cell formation in the tadpole intestine, we identified more than 1500 genes, which were regulated by T3 treatment of the wild-type but not TRα-knockout tadpoles. Gene Ontology and biological pathway analyses revealed that surprisingly, these TRα-regulated genes were highly enriched with cell cycle-related genes, in addition to genes related to stem cells and apoptosis. Conclusions: Our findings suggest that TRα-mediated T3 activation of the cell cycle program is involved in larval epithelial cell death and adult epithelial stem cell development during intestinal remodeling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 49 Room 6A82, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
7
|
Na W, Fu L, Luu N, Shi YB. Thyroid hormone directly activates mitochondrial fission process 1 (Mtfp1) gene transcription during adult intestinal stem cell development and proliferation in Xenopus tropicalis. Gen Comp Endocrinol 2020; 299:113590. [PMID: 32827515 DOI: 10.1016/j.ygcen.2020.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (T3) regulates vertebrate development via T3 receptors (TRs). T3 level peaks during postembryonic development, a period around birth in mammals or metamorphosis in anurans. Anuran metamorphosis offers many advantages for studying T3 and TR function in vivo largely because of its total dependent on T3 and the dramatic changes affecting essentially all organs/tissues that can be easily manipulated. Earlier studies have shown that TRs are both necessary and sufficient for mediating the metamorphic effects of T3. Many candidate TR target genes have been identified during Xenopus tropicalis intestinal metamorphosis, a process that involves apoptotic degeneration of most of the larval epithelial cells and de novo development of adult epithelial stem cells. Among these putative TR target genes is mitochondrial fission process 1 (Mtfp1), a nuclear-encoded mitochondrial gene. Here, we report that Mtfp1gene expression peaks in the intestine during both natural and T3-induced metamorphosis when adult epithelial stem cell development and proliferation take place. Furthermore, we show that Mtfp1 contains a T3-response element within the first intron that is bound by TR to mediate T3-induced local histone H3K79 methylation and RNA polymerase recruitment in the intestine during metamorphosis. Additionally, we demonstrate that the Mtfp1 promoter can be activated by T3 in a reconstituted frog oocyte system in vivo and that this activation is dependent on the intronic TRE. These findings suggest that T3 activates Mtfp1 gene directly via the intronic TRE and that Mtfp1 in turn facilitate adult intestinal stem cell development/proliferation by affecting mitochondrial fission process.
Collapse
Affiliation(s)
- Wonho Na
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Hasebe T, Fujimoto K, Ishizuya-Oka A. Thyroid hormone-induced expression of Foxl1 in subepithelial fibroblasts correlates with adult stem cell development during Xenopus intestinal remodeling. Sci Rep 2020; 10:20715. [PMID: 33244068 PMCID: PMC7693326 DOI: 10.1038/s41598-020-77817-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023] Open
Abstract
In the Xenopus laevis intestine during metamorphosis, stem cells appear and generate the adult epithelium analogous to the mammalian one. We have previously shown that connective tissue cells surrounding the epithelium are essential for the stem cell development. To clarify whether such cells correspond to mammalian Foxl1-expressing mesenchymal cells, which have recently been shown to be a critical component of intestinal stem cell niche, we here examined the expression profile of Foxl1 in the X. laevis intestine by using RT-PCR and immunohistochemistry. Foxl1 expression was transiently upregulated only in connective tissue cells during the early period of metamorphic climax and was the highest just beneath the proliferating stem/progenitor cells. In addition, electron microscopic analysis showed that these subepithelial cells are ultrastructurally identified as telocytes like the mammalian Foxl1-expressing cells. Furthermore, we experimentally showed that Foxl1 expression is indirectly upregulated by thyroid hormone (TH) through Shh signaling and that TH organ-autonomously induces the Foxl1-expressing cells concomitantly with appearance of the stem cells in the tadpole intestine in vitro. The present results suggest that intestinal niche cells expressing Foxl1 are evolutionally conserved among terrestrial vertebrates and can be induced by TH/Shh signaling during amphibian metamorphosis for stem cell development.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| |
Collapse
|
9
|
Direct activation of tRNA methyltransferase-like 1 (Mettl1) gene by thyroid hormone receptor implicates a role in adult intestinal stem cell development and proliferation during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:60. [PMID: 32391142 PMCID: PMC7197180 DOI: 10.1186/s13578-020-00423-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Thyroid hormone (T3) plays an important role in vertebrate development. Compared to the postembryonic development of uterus-enclosed mammalian embryos, T3-dependent amphibian metamorphosis is advantageous for studying the function of T3 and T3 receptors (TRs) during vertebrate development. The effects of T3 on the metamorphosis of anurans such as Xenopus tropicalis is known to be mediated by TRs. Many putative TR target genes have been identified previously. Among them is the tRNA methyltransferase Mettl1. Results We studied the regulation of Mettl1 gene by T3 during intestinal metamorphosis, a process involves near complete degeneration of the larval epithelial cells via apoptosis and de novo formation of adult epithelial stem cells and their subsequent proliferation and differentiation. We observed that Mettl1 was activated by T3 in the intestine during both natural and T3-induced metamorphosis and that its mRNA level peaks at the climax of intestinal remodeling. We further showed that Mettl1 promoter could be activated by liganded TR via a T3 response element upstream of the transcription start site in vivo. More importantly, we found that TR binding to the TRE region correlated with the increase in the level of H3K79 methylation, a transcription activation histone mark, and the recruitment of RNA polymerase II by T3 during metamorphosis. Conclusions Our findings suggest that Mettl1 is activated by liganded TR directly at the transcriptional level via the TRE in the promoter region in the intestine during metamorphosis. Mettl1 in turn regulate target tRNAs to affect translation, thus facilitating stem cell formation and/or proliferation during intestinal remodeling.
Collapse
|
10
|
Shibata Y, Tanizaki Y, Shi YB. Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:46. [PMID: 32231780 PMCID: PMC7099810 DOI: 10.1186/s13578-020-00411-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid hormone (T3) is critical for development in all vertebrates. The mechanism underlying T3 effect has been difficult to study due to the uterus-enclosed nature of mammalian embryos. Anuran metamorphosis, which is dependent on T3 but independent of maternal influence, is an excellent model to study the roles of T3 and its receptors (TRs) during vertebrate development. We and others have reported various effects of TR knockout (TRα and TRβ) during Xenopus tropicalis development. However, these studies were largely focused on external morphology. Results We have generated TRβ knockout animals containing an out-frame-mutation of 5 base deletion by using the CRISPR/Cas9 system and observed that TRβ knockout does not affect premetamorphic tadpole development. We have found that the basal expression of direct T3-inducible genes is increased but their upregulation by T3 is reduced in the intestine of premetamorphic homozygous TRβ knockout animals, accompanied by reduced target binding by TR. More importantly, we have observed reduced adult stem cell proliferation and larval epithelial apoptosis in the intestine during T3-induced metamorphosis. Conclusions Our data suggest that TRβ plays a critical role in intestinal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
11
|
Fu L, Yin J, Shi YB. Involvement of epigenetic modifications in thyroid hormone-dependent formation of adult intestinal stem cells during amphibian metamorphosis. Gen Comp Endocrinol 2019; 271:91-96. [PMID: 30472386 PMCID: PMC6322911 DOI: 10.1016/j.ygcen.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022]
Abstract
Amphibian metamorphosis has long been used as model to study postembryonic development in vertebrates, a period around birth in mammals when many organs/tissues mature into their adult forms and is characterized by peak levels of plasma thyroid hormone (T3). Of particular interest is the remodeling of the intestine during metamorphosis. In the highly-related anurans Xenopus laevis and Xenopus tropicalis, this remodeling process involves larval epithelial cell death and de novo formation of adult stem cells via dedifferentiation of some larval cells under the induction of T3, making it a valuable system to investigate how adult organ-specific stem cells are formed during vertebrate development. Here, we will review some studies by us and others on how T3 regulates the formation of the intestinal stem cells during metamorphosis. We will highlight the involvement of nucleosome removal and a positive feedback mechanism involving the histone methyltransferases in gene regulation by T3 receptor (TR) during this process.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Jessica Yin
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States.
| |
Collapse
|
12
|
Zhang W, Lu Y, Huang L, Cheng C, Di S, Chen L, Zhou Z, Diao J. Comparison of triadimefon and its metabolite on acute toxicity and chronic effects during the early development of Rana nigromaculata tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:247-254. [PMID: 29554609 DOI: 10.1016/j.ecoenv.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Pesticides are one of major causes for amphibian population declines and the behavior of pesticide metabolite products to amphibians has become a rising concern. In this study, the acute toxicity and the chronic effects of triadimefon and triadimenol (the metabolite of triadimefon) on Rana. nigromaculata were investigated. In the acute assay, significant differences were observed in antioxidant enzyme activities and malondialdehyde levels between the triadimefon and triadimenol. The 96 h-acute toxicity of triadimefon (25.97 mg/L) and triadimenol (34.55 mg/L) to tadpoles was low. In 28d-chronic exposure, we studied the relative expression of tadpoles genes related to thyroid hormone-dependent metamorphic development, histological examination of liver and some biological index, including wet weight, snout-to-vent length (SVL) and development stages. The results revealed that the effects of triadimefon and triadimenol on tadpole development are driven by a disruption of the hormonal pathways involved in metamorphosis. Interestingly, triadimefon was more harmful on R. nigromaculata than triadimenol at high dose, whereas the reverse result was observed at low doses. According to the relative expression of thyroid hormone-dependent genes, we also found that the two compounds may have different mechanisms of toxic action on R. nigromaculata. Our study developed a pragmatic approach for use in the risk assessment of pesticide and its metabolite,and increased the information and understanding of the impacts of fungicides and other potential endocrine disrupting environmental contaminants on amphibians.
Collapse
Affiliation(s)
- Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuele Lu
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Ledan Huang
- Beijing Institute of Fashion Technology, Yinghua Road 2, Chaoyang District, Beijing 100029, China
| | - Cheng Cheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Shanshan Di
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
13
|
Sun G, Roediger J, Shi YB. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis. Rev Endocr Metab Disord 2016; 17:559-569. [PMID: 27554108 DOI: 10.1007/s11154-016-9380-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Julia Roediger
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Gomes AS, Alves RN, Rønnestad I, Power DM. Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis. Gen Comp Endocrinol 2015; 220:2-12. [PMID: 24975541 DOI: 10.1016/j.ygcen.2014.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Metamorphosis in flatfish (Pleuronectiformes) is a late post-embryonic developmental event that prepares the organism for the larval-to-juvenile transition. Thyroid hormones (THs) play a central role in flatfish metamorphosis and the basic elements that constitute the thyroid axis in vertebrates are all present at this stage. The advantage of using flatfish to study the larval-to-juvenile transition is the profound change in external morphology that accompanies metamorphosis making it easy to track progression to climax. This important lifecycle transition is underpinned by molecular, cellular, structural and functional modifications of organs and tissues that prepare larvae for a successful transition to the adult habitat and lifestyle. Understanding the role of THs in the maturation of organs and tissues with diverse functions during metamorphosis is a major challenge. The change in diet that accompanies the transition from a pelagic larvae to a benthic juvenile in flatfish is associated with structural and functional modifications in the gastrointestinal tract (GI-tract). The present review will focus on the maturation of the GI-tract during metamorphosis giving particular attention to organogenesis of the stomach a TH triggered event. Gene transcripts and biological processes that are associated with GI-tract maturation during Atlantic halibut metamorphosis are identified. Gene ontology analysis reveals core biological functions and putative TH-responsive genes that underpin TH-driven metamorphosis of the GI-tract in Atlantic halibut. Deciphering the specific role remains a challenge. Recent advances in characterizing the molecular, structural and functional modifications that accompany the appearance of a functional stomach in Atlantic halibut are considered and future research challenges identified.
Collapse
Affiliation(s)
- A S Gomes
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - R N Alves
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - I Rønnestad
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - D M Power
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
15
|
Wen L, Hasebe T, Miller TC, Ishizuya-Oka A, Shi YB. A requirement for hedgehog signaling in thyroid hormone-induced postembryonic intestinal remodeling. Cell Biosci 2015; 5:13. [PMID: 25859319 PMCID: PMC4391142 DOI: 10.1186/s13578-015-0004-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/13/2015] [Indexed: 12/25/2022] Open
Abstract
Background Intestinal remodeling during amphibian metamorphosis has long been studied as a model for the formation of the adult organs in vertebrates, especially the formation of adult organ-specific stem cells. Like all other processes during metamorphosis, this process is controlled by thyroid hormone (T3), which affects cell fate and behavior through transcriptional regulation of target genes by binding to T3 receptors (TRs). Earlier studies have shown that Sonic hedgehog (Shh) is induced by T3 in the developing adult stem cells and that the Shh receptor and other downstream components are present in the connective tissue and at lower levels in the muscles at the climax of intestinal remodeling. However, no in vivo studies have carried out to investigate whether Shh produced in the adult cells can regulate the connective tissue to promote intestinal maturation. Results We have addressed this issue by treating tadpoles with Shh inhibitor cyclopamine. We showed that cyclopamine but not the structurally related chemical tomatidine inhibited the expression of Shh response genes BMP4, Snai2, and Twist1. More importantly, we showed that cyclopamine reduced the cell proliferation of both the developing adult stem cells as well as cells in the other intestinal tissues at the climax of metamorphosis, leading to delayed/incomplete remodeling of the intestine at the end of metamorphosis. We further revealed that both Snai2 and Twist1 were strongly upregulated during metamorphosis in the intestine and their expression was restricted to the connective tissue. Conclusions Our results suggest that Shh indeed signals the connective tissue whereby it can increase adult stem cell proliferation and promote formation of the adult intestine.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18 T, Rm. 106, Bethesda, MD 20892 USA
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 Japan
| | - Thomas C Miller
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18 T, Rm. 106, Bethesda, MD 20892 USA
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18 T, Rm. 106, Bethesda, MD 20892 USA
| |
Collapse
|
16
|
Darras VM, Houbrechts AM, Van Herck SL. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:130-41. [DOI: 10.1016/j.bbagrm.2014.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
|
17
|
Sun G, Fu L, Wen L, Shi YB. Activation of Sox3 gene by thyroid hormone in the developing adult intestinal stem cell during Xenopus metamorphosis. Endocrinology 2014; 155:5024-32. [PMID: 25211587 PMCID: PMC4239430 DOI: 10.1210/en.2014-1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences (G.S.), Wuhan University, Wuhan 430072, People's Republic of China; and Section on Molecular Morphogenesis (L.F., L.W., Y.-B.S.), Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
18
|
Sun G, Fu L, Shi YB. Epigenetic regulation of thyroid hormone-induced adult intestinal stem cell development during anuran metamorphosis. Cell Biosci 2014; 4:73. [PMID: 25937894 PMCID: PMC4417507 DOI: 10.1186/2045-3701-4-73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022] Open
Abstract
Epigenetic modifications of histones are emerging as key factors in gene regulation by diverse transcription factors. Their roles during vertebrate development and pathogenesis are less clear. The causative effect of thyroid hormone (T3) on amphibian metamorphosis and the ability to manipulate this process for molecular and genetic studies have led to the demonstration that T3 receptor (TR) is necessary and sufficient for Xenopus metamorphosis, a process that resembles the postembryonic development (around birth) in mammals. Importantly, analyses during metamorphosis have provided some of the first in vivo evidence for the involvement of histone modifications in gene regulation by TR during vertebrate development. Furthermore, expression and functional studies suggest that various histone modifying epigenetic enzymes likely participate in multiple steps during the formation of adult intestinal stem cells during metamorphosis. The similarity between intestinal remodeling and the maturation of the mammalian intestine around birth when T3 levels are high suggests conserved roles for the epigenetic enzymes in mammalian adult intestinal stem cell development and/or proliferation.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 P.R. China
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, Maryland 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, Maryland 20892 USA
| |
Collapse
|
19
|
Gomes AS, Kamisaka Y, Harboe T, Power DM, Rønnestad I. Functional modifications associated with gastrointestinal tract organogenesis during metamorphosis in Atlantic halibut (Hippoglossus hippoglossus). BMC DEVELOPMENTAL BIOLOGY 2014; 14:11. [PMID: 24552353 PMCID: PMC3940299 DOI: 10.1186/1471-213x-14-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Flatfish metamorphosis is a hormone regulated post-embryonic developmental event that transforms a symmetric larva into an asymmetric juvenile. In altricial-gastric teleost fish, differentiation of the stomach takes place after the onset of first feeding, and during metamorphosis dramatic molecular and morphological modifications of the gastrointestinal (GI-) tract occur. Here we present the functional ontogeny of the developing GI-tract from an integrative perspective in the pleuronectiforme Atlantic halibut, and test the hypothesis that the multiple functions of the teleost stomach develop synchronously during metamorphosis. RESULTS Onset of gastric function was determined with several approaches (anatomical, biochemical, molecular and in vivo observations). In vivo pH analysis in the GI-tract lumen combined with quantitative PCR (qPCR) of α and β subunits of the gastric proton pump (H+/K+-ATPase) and pepsinogen A2 indicated that gastric proteolytic capacity is established during the climax of metamorphosis. Transcript abundance of ghrelin, a putative orexigenic signalling molecule produced in the developing stomach, correlated (p < 0.05) with the emergence of gastric proteolytic activity, suggesting that the stomach's role in appetite regulation occurs simultaneously with the establishment of proteolytic function. A 3D models series of the GI-tract development indicated a functional pyloric sphincter prior to first feeding. Observations of fed larvae in vivo confirmed that stomach reservoir function was established before metamorphosis, and was thus independent of this event. Mechanical breakdown of food and transportation of chyme through the GI-tract was observed in vivo and resulted from phasic and propagating contractions established well before metamorphosis. The number of contractions in the midgut decreased at metamorphic climax synchronously with establishment of the stomach's proteolytic capacity and its increased peristaltic activity. Putative osmoregulatory competence of the GI-tract, inferred by abundance of Na+/K+-ATPase α transcripts, was already established at the onset of exogenous feeding and was unmodified by metamorphosis. CONCLUSIONS The functional specialization of the GI-tract was not exclusive to metamorphosis, and its osmoregulatory capacity and reservoir function were established before first feeding. Nonetheless, acid production and the proteolytic capacity of the stomach coincided with metamorphic climax, and also marked the onset of the stomach's involvement in appetite regulation via ghrelin.
Collapse
Affiliation(s)
- Ana S Gomes
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| | - Yuko Kamisaka
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| | - Torstein Harboe
- Institute of Marine Research, Austevoll Aquaculture Research Station, NO-5392 Storebø, Norway
| | - Deborah M Power
- Comparative and Molecular Endocrinology Group, Centre for Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| |
Collapse
|
20
|
Inokuchi T, Ikuzawa M, Yamazaki S, Watanabe Y, Shiota K, Katoh T, Kobayashi KI. Molecular cloning of pepsinogens A and C from adult newt (Cynops pyrrhogaster) stomach. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:226-35. [PMID: 23701991 DOI: 10.1016/j.cbpb.2013.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/30/2013] [Accepted: 05/13/2013] [Indexed: 11/24/2022]
Abstract
The full-length cDNAs of three pepsinogens (Pgs) were cloned from the stomach of newt, Cynops pyrrhogaster, and nucleotide sequences of the full-length cDNAs were determined. Molecular phylogenetic analysis showed that two Pgs, named PgC1 and PgC2, belong to the pepsinogen C group, and one Pg, named PgA, belongs to the pepsinogen A group. The sequences contain an open reading frame (ORF) encoding 385 amino acid residues for PgC1, 383 amino acid residues for PgC2 and 377 amino acid residues for PgA. In addition, all of the three amino acid sequences conserve some unique characteristics such as six cysteine residues and putative active site two aspartic acid residues. All of the pepsinogen mRNAs were detected in the stomach by RT-PCR but not in other organs. Although a slight difference at the time of the start of expression was seen among the three pepsinogen genes, all of them were expressed in the larval stage after hatching. This is the first report on cloning of pepsinogens from urodele stomach.
Collapse
Affiliation(s)
- Tomofumi Inokuchi
- Department of Biology, Faculty of Education, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi, 321-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bloom S, Ledon-Rettig C, Infante C, Everly A, Hanken J, Nascone-Yoder N. Developmental origins of a novel gut morphology in frogs. Evol Dev 2013; 15:213-23. [PMID: 23607305 PMCID: PMC3870478 DOI: 10.1111/ede.12035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phenotypic variation is a prerequisite for evolution by natural selection, yet the processes that give rise to the novel morphologies upon which selection acts are poorly understood. We employed a chemical genetic screen to identify developmental changes capable of generating ecologically relevant morphological variation as observed among extant species. Specifically, we assayed for exogenously applied small molecules capable of transforming the ancestral larval foregut of the herbivorous Xenopus laevis to resemble the derived larval foregut of the carnivorous Lepidobatrachus laevis. Appropriately, the small molecules that demonstrate this capacity modulate conserved morphogenetic pathways involved in gut development, including downregulation of retinoic acid (RA) signaling. Identical manipulation of RA signaling in a species that is more closely related to Lepidobatrachus, Ceratophrys cranwelli, yielded even more similar transformations, corroborating the relevance of RA signaling variation in interspecific morphological change. Finally, we were able to recover the ancestral gut phenotype in Lepidobatrachus by performing a reverse chemical manipulation to upregulate RA signaling, providing strong evidence that modifications to this specific pathway promoted the emergence of a lineage-specific phenotypic novelty. Interestingly, our screen also revealed pathways that have not yet been implicated in early gut morphogenesis, such as thyroid hormone signaling. In general, the chemical genetic screen may be a valuable tool for identifying developmental mechanisms that underlie ecologically and evolutionarily relevant phenotypic variation.
Collapse
Affiliation(s)
- Stephanie Bloom
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606 USA
| | - Cris Ledon-Rettig
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606 USA
| | - Carlos Infante
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - Anne Everly
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606 USA
| |
Collapse
|
22
|
Hasebe T, Fu L, Miller TC, Zhang Y, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells. Cell Biosci 2013; 3:18. [PMID: 23547658 PMCID: PMC3621685 DOI: 10.1186/2045-3701-3-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
The mammalian intestine has long been used as a model to study organ-specific adult stem cells, which are essential for organ repair and tissue regeneration throughout adult life. The establishment of the intestinal epithelial cell self-renewing system takes place during perinatal development when the villus-crypt axis is established with the adult stem cells localized in the crypt. This developmental period is characterized by high levels of plasma thyroid hormone (T3) and T3 deficiency is known to impair intestinal development. Determining how T3 regulates adult stem cell development in the mammalian intestine can be difficult due to maternal influences. Intestinal remodeling during amphibian metamorphosis resembles perinatal intestinal maturation in mammals and its dependence on T3 is well established. A major advantage of the amphibian model is that it can easily be controlled by altering the availability of T3. The ability to manipulate and examine this relatively rapid and localized formation of adult stem cells has greatly assisted in the elucidation of molecular mechanisms regulating their formation and further revealed evidence that supports conservation in the underlying mechanisms of adult stem cell development in vertebrates. Furthermore, genetic studies in Xenopus laevis indicate that T3 actions in both the epithelium and the rest of the intestine, most likely the underlying connective tissue, are required for the formation of adult stem cells. Molecular analyses suggest that cell-cell interactions involving hedgehog and BMP pathways are critical for the establishment of the stem cell niche that is essential for the formation of the adult intestinal stem cells.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Nakahara-ku, Kosugi-cho, Kawasaki, Kanagawa, 211-0063, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Miller TC, Sun G, Hasebe T, Fu L, Heimeier RA, Das B, Ishizuya-Oka A, Shi YB. Tissue-specific upregulation of MDS/EVI gene transcripts in the intestine by thyroid hormone during Xenopus metamorphosis. PLoS One 2013; 8:e55585. [PMID: 23383234 PMCID: PMC3561350 DOI: 10.1371/journal.pone.0055585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/27/2012] [Indexed: 12/19/2022] Open
Abstract
Background Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult stem cells. Methodology/Principal Findings The T3-dependence of the formation of adult intestinal stem cell during Xenopus laevis metamorphosis offers a unique opportunity to identify genes likely important for adult organ-specific stem cell development. We have cloned and characterized the ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI generated via transcription from the upstream MDS promoter and alternative splicing. EVI and MDS/EVI have been implicated in a number of cancers including breast, leukemia, ovarian, and intestinal cancers. We show that EVI and MDS/EVI transcripts are upregulated by T3 in the epithelium but not the rest of the intestine in Xenopus laevis when adult stem cells are forming in the epithelium. Conclusions/Significance Our results suggest that EVI and MDS/EVI are likely involved in the development and/or proliferation of newly forming adult intestinal epithelial cells.
Collapse
Affiliation(s)
- Thomas C. Miller
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Guihong Sun
- Key Laboratory of Allergy and Immune-related Diseases and Centre for Medical Research, School of Medicine, Wuhan University, Wuhan, People's Republic of China
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kosugi-cho, Kawasaki, Kanagawa, Japan
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Rachel A. Heimeier
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Biswajit Das
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kosugi-cho, Kawasaki, Kanagawa, Japan
- * E-mail: (AI-O); (Y-BS)
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: (AI-O); (Y-BS)
| |
Collapse
|
24
|
Ishizuya-Oka A, Hasebe T. Establishment of intestinal stem cell niche during amphibian metamorphosis. Curr Top Dev Biol 2013; 103:305-27. [PMID: 23347524 DOI: 10.1016/b978-0-12-385979-2.00011-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the amphibian intestine during metamorphosis, most of the larval epithelial cells undergo apoptosis, whereas a small number of them survive. These cells dedifferentiate into stem cells through interactions with the microenvironment referred to as "stem cell niche" and generate the adult epithelium analogous to the mammalian counterpart. Since all processes of the larval-to-adult intestinal remodeling can be experimentally induced by thyroid hormone (TH) both in vivo and in vitro, the amphibian intestine provides us a valuable opportunity to study how adult stem cells and their niche are formed during postembryonic development. To address this issue, a number of expression and functional analyses of TH response genes have been intensely performed in the Xenopus laevis over the past two decades, by using organ culture and transgenic techniques. We here review recent progress in this field, focusing on key signaling pathways involved in establishment of the stem cell niche and discuss their evolutionarily conserved roles in the vertebrate intestine.
Collapse
|
25
|
Fu L, Hasebe T, Ishizuya-Oka A, Shi YB. Roles of Matrix Metalloproteinases and ECM Remodeling during Thyroid Hormone-Dependent Intestinal Metamorphosis in Xenopus laevis. Organogenesis 2012; 3:14-9. [PMID: 19279695 DOI: 10.4161/org.3.1.3239] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intestinal metamorphosis in anurans is an excellent model system for studying post-embryonic tissue remodeling and organ development in vertebrates. This process involves degeneration of the larval or tadpole form of its primary functional tissue, the simple tubular epithelium through apoptosis or programmed cell death. Concurrently, adult epithelial stem cells, whose origin remains to be determined, proliferate and differentiate to form a multiply folded, complex adult epithelium. The connective tissue and muscles also develop extensively during this period. Like all other changes during amphibian metamorphosis, intestinal remodeling is controlled by thyroid hormone (TH). Isolation and characterization of genes that are regulated by TH has implicated the involvement of matrix metalloproteinases (MMPs) in the remodeling of the extracellular matrix (ECM) during intestinal metamorphosis. Here we will review some studies, almost exclusively in Xenopus laevis, that support a role of MMPs, particularly stromelysin 3, and ECM remodeling in regulating cell fate and tissue morphogenesis.
Collapse
Affiliation(s)
- Liezhen Fu
- Laboratory of Gene Regulation and Development; National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, Maryland USA
| | | | | | | |
Collapse
|
26
|
Hasebe T, Kajita M, Fu L, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced sonic hedgehog signal up-regulates its own pathway in a paracrine manner in the Xenopus laevis intestine during metamorphosis. Dev Dyn 2011; 241:403-14. [PMID: 22190352 DOI: 10.1002/dvdy.23723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND During Xenopus laevis metamorphosis, Sonic hedgehog (Shh) is directly induced by thyroid hormone (TH) at the transcription level as one of the earliest events in intestinal remodeling. However, the regulation of other components of this signaling pathway remains to be analyzed. Here, we analyzed the spatiotemporal expression of Patched (Ptc)-1, Smoothened (Smo), Gli1, Gli2, and Gli3 during natural and TH-induced intestinal remodeling. RESULTS We show that all of the genes examined are transiently up-regulated in the mesenchymal tissues during intestinal metamorphosis. CONCLUSIONS Interestingly, in the presence of protein synthesis inhibitors, Gli2 but not the others was induced by TH, suggesting that Gli2 is a direct TH response gene, while the others are likely indirect ones. Furthermore, we demonstrate by the organ culture experiment that overexpression of Shh enhances the expression of Ptc-1, Smo, and Glis even in the absence of TH, indicating that Shh regulates its own pathway components during intestinal remodeling.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Nakahara-ku, Kawasaki, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
27
|
Hasebe T, Kajita M, Iwabuchi M, Ohsumi K, Ishizuya-Oka A. Thyroid hormone-regulated expression of nuclear lamins correlates with dedifferentiation of intestinal epithelial cells during Xenopus laevis metamorphosis. Dev Genes Evol 2011; 221:199-208. [PMID: 21866414 DOI: 10.1007/s00427-011-0371-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/04/2011] [Indexed: 11/26/2022]
Abstract
In the Xenopus laevis intestine during metamorphosis, which is triggered by thyroid hormone (TH), the adult epithelium develops and replaces the larval one undergoing apoptosis. We have previously shown that progenitor/stem cells of the adult epithelium originate from some differentiated larval epithelial cells. To investigate molecular mechanisms underlying larval epithelial dedifferentiation into the adult progenitor/stem cells, we here focused on nuclear lamin A (LA) and lamin LIII (LIII), whose expression is generally known to be correlated with the state of cell differentiation. We analyzed the spatiotemporal expression of LA and LIII during X. laevis intestinal remodeling by reverse transcription PCR, Western blotting, and immunohistochemistry. At the onset of natural metamorphosis, when the adult epithelial progenitor cells appear as small islets, the expression of LA is down-regulated, but that of LIII is up-regulated only in the islets. Then, as the adult progenitor cells differentiate, the expression of LA is up-regulated, whereas that of LIII is down-regulated in the adult cells. As multiple intestinal folds form, adult epithelial cells positive for LIII become restricted only to the troughs of the folds. In addition, we have shown that TH up- or down-regulates the expression of these lamins in the premetamorphic intestine as during natural metamorphosis. These results indicate that TH-regulated expression of LA and LIII closely correlates with dedifferentiation of the epithelial cells in the X. laevis intestine, suggesting the involvement of the lamins in the process of dedifferentiation during amphibian metamorphosis.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan
| | | | | | | | | |
Collapse
|
28
|
Shi YB, Hasebe T, Fu L, Fujimoto K, Ishizuya-Oka A. The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis. Cell Biosci 2011; 1:30. [PMID: 21896185 PMCID: PMC3177767 DOI: 10.1186/2045-3701-1-30] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/06/2011] [Indexed: 01/05/2023] Open
Abstract
Adult organ-specific stem cells are essential for organ homeostasis and repair in adult vertebrates. The intestine is one of the best-studied organs in this regard. The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established late during development, around birth, in mammals when endogenous thyroid hormone (T3) levels are high. Amphibian metamorphosis resembles mammalian postembryonic development around birth and is totally dependent upon the presence of high levels of T3. During this process, the tadpole intestine, predominantly a monolayer of larval epithelial cells, undergoes drastic transformation. The larval epithelial cells undergo apoptosis and concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. We and others have studied the T3-dependent remodeling of the intestine in Xenopus laevis. Here we will highlight some of the recent findings on the origin of the adult intestinal stem cells. We will discuss observations suggesting that liganded T3 receptor (TR) regulates cell autonomous formation of adult intestinal progenitor cells and that T3 action in the connective tissue is important for the establishment of the stem cell niche. We will further review evidence suggesting similar T3-dependent formation of adult intestinal stem cells in other vertebrates.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA.
| | | | | | | | | |
Collapse
|
29
|
Sirakov M, Plateroti M. The thyroid hormones and their nuclear receptors in the gut: From developmental biology to cancer. Biochim Biophys Acta Mol Basis Dis 2011; 1812:938-46. [DOI: 10.1016/j.bbadis.2010.12.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 02/09/2023]
|
30
|
Yamane H, Ihara S, Kuroda M, Nishikawa A. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro. In Vitro Cell Dev Biol Anim 2011; 47:470-83. [PMID: 21614652 DOI: 10.1007/s11626-011-9423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/05/2011] [Indexed: 11/29/2022]
Abstract
Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.
Collapse
Affiliation(s)
- Hitomi Yamane
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Japan
| | | | | | | |
Collapse
|
31
|
Motoi N, Hasebe T, Suzuki KIT, Ishizuya-Oka A. Spatiotemporal expression profile of no29/nucleophosmin3 in the intestine of Xenopus laevis during metamorphosis. Cell Tissue Res 2011; 344:445-53. [PMID: 21519897 DOI: 10.1007/s00441-011-1163-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/04/2011] [Indexed: 01/30/2023]
Abstract
A Xenopus laevis homolog of nucleophosmin/nucleoplasmin3 (NPM3), no29, has been previously identified as a thyroid hormone (TH)-response gene during TH-induced metamorphosis. X. laevis has another NPM3 homolog (npm3) in the pseudo-tetraploid genome, whereas X. tropicalis possesses one ortholog in the diploid genome. To assess the possible roles of these NPM3 homologs in amphibian metamorphosis, we have analyzed their expression profiles in X. laevis tadpoles. Levels of no29 and npm3 mRNA are rapidly up-regulated by exogenous TH in various organs of the premetamorphic tadpoles. Notably, in the small intestine, no29 and npm3 mRNA levels are transiently up-regulated during metamorphic climax, when progenitor/stem cells of the adult epithelium appear and actively proliferate. In situ hybridization analysis has revealed that the no29 transcript is specifically localized in adult epithelial progenitor/stem cells of the intestine during natural and TH-induced metamorphosis. Double-staining for in situ hybridization and immunohistochemistry has shown co-expression of no29 mRNA and no38 protein (an ortholog of NPM1), which is known to interact with NPM3 and to regulate cell proliferation in mammals. Thus, no29/npm3 might serve as a stem cell marker in the intestine during metamorphosis.
Collapse
Affiliation(s)
- Natsuki Motoi
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 939-8526, Japan
| | | | | | | |
Collapse
|
32
|
Dentice M. Hedgehog-mediated regulation of thyroid hormone action through iodothyronine deiodinases. Expert Opin Ther Targets 2011; 15:493-504. [DOI: 10.1517/14728222.2011.553607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Singamsetty S, Elinson RP. Novel regulation of yolk utilization by thyroid hormone in embryos of the direct developing frog Eleutherodactylus coqui. Evol Dev 2011; 12:437-48. [PMID: 20883213 DOI: 10.1111/j.1525-142x.2010.00430.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thyroid hormone (TH) is required for metamorphosis of the long, coiled tadpole gut into the short frog gut. Eleutherodactylus coqui, a direct developing frog, lacks a tadpole. Its embryonic gut is a miniature adult form with a mass of yolky cells, called nutritional endoderm, attached to the small intestine. We tested the TH requirement for gut development in E. coqui. Inhibition of TH synthesis with methimazole arrested gut development in its embryonic form. Embryos treated with methimazole failed to utilize the yolk in their nutritional endoderm, and survived for weeks without further development. Conversely, methimazole and 3,3',5-tri-iodo-l-thyronine, the active form of TH, stimulated gut development and utilization and disappearance of the nutritional endoderm. In Xenopus laevis, the receptor for TH, TRβ, is upregulated in response to TH. Similarly, EcTRβ, the E. coqui ortholog, was upregulated by TH in the gut. EcTRβ expression was high in the nutritional endoderm, suggesting a direct role for TH in yolk utilization by these cells. An initial step in the breakdown of yolk in X. laevis is acidification of the yolk platelet. E. coqui embryos in methimazole failed to acidify their yolk platelets, but acidification was stimulated by TH indicating its role in an early step of yolk utilization. In addition to a conserved TH role in gut development, a novel regulatory role for TH in yolk utilization has evolved in these direct developers.
Collapse
Affiliation(s)
- Srikanth Singamsetty
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | |
Collapse
|
34
|
Hasebe T, Buchholz DR, Shi YB, Ishizuya-Oka A. Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine. Stem Cells 2011; 29:154-61. [PMID: 21280164 PMCID: PMC3414533 DOI: 10.1002/stem.560] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the amphibian intestine during metamorphosis, stem cells appear and generate the adult absorptive epithelium, analogous to the mammalian one, under the control of thyroid hormone (TH). We have previously shown that the adult stem cells originate from differentiated larval epithelial cells in the Xenopus laevis intestine. To clarify whether TH signaling in the epithelium alone is sufficient for inducing the stem cells, we have now performed tissue recombinant culture experiments using transgenic X. laevis tadpoles that express a dominant-positive TH receptor (dpTR) under a control of heat shock promoter. Wild-type (Wt) or dpTR transgenic (Tg) larval epithelium (Ep) was isolated from the tadpole intestine, recombined with homologous or heterologous nonepithelial tissues (non-Ep), and then cultivated in the absence of TH with daily heat shocks to induce transgenic dpTR expression. Adult epithelial progenitor cells expressing sonic hedgehog became detectable on day 5 in both the recombinant intestine of Tg Ep and Tg non-Ep (Tg/Tg) and that of Tg Ep and Wt non-Ep (Tg/Wt). However, in Tg/Wt intestine, they did not express other stem cell markers such as Musashi-1 and never generated the adult epithelium expressing a marker for absorptive epithelial cells. Our results indicate that, while it is unclear why some larval epithelial cells dedifferentiate into adult progenitor/stem cells, TR-mediated gene expression in the surrounding tissues other than the epithelium is required for them to develop into adult stem cells, suggesting the importance of TH-inducible epithelial-connective tissue interactions in establishment of the stem cell niche in the amphibian intestine.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Daniel R. Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yun-Bo Shi
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
35
|
Yuksel O, Tatlicioglu E, Poyraz A, Sahin T, Pasaoglu H, Ekinci O, Salman B, Yilmaz U. Effects of thyroid hormone on the adaptation in short bowel syndrome. J Surg Res 2009; 155:116-124. [PMID: 19111325 DOI: 10.1016/j.jss.2008.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND Thyroid hormone acts on structural and functional maturation of the mammalian small intestine, mitochondrial pathways, and several protein-gene interactions. Therefore, it is one of the most important regulators of intestinal epithelial differentiation. The aim of the study was to evaluate the effects of thyroid hormone on the adaptation in an experimental model of short bowel syndrome. METHODS Rats were divided into three groups: sham (bowel transection and anastomosis), short bowel syndrome-saline (75% bowel resection and anastomosis), and short bowel syndrome-thyroid hormone (75% bowel resection and anastomosis, and was administered triiodothyronine). The evaluation of adaptation parameters, histopathological and biochemical analysis were performed in all groups. RESULTS Triiodothyronine treatment resulted in a significant increase in adaptation parameters, villus height-crypt depth, and enterocyte proliferation, whereas significant decrease was seen in apoptotic index in jejunum. Enterocyte proliferation and most of the adaptation parameters changed significantly in ileum following the treatment with triiodothyronine as in jejunum. The changes in ileal villus height-crypt depth and apoptotic index were not statistically significant. Serum levels of free triiodothyronine were lower in the short bowel syndrome-saline group. CONCLUSIONS Our results suggest that thyroid hormone treatment in the hypothyroid phase of SBS enhances intestinal adaptive response.
Collapse
Affiliation(s)
- Osman Yuksel
- Department of Surgery, Gazi University Medical School, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Schreiber AM, Mukhi S, Brown DD. Cell-cell interactions during remodeling of the intestine at metamorphosis in Xenopus laevis. Dev Biol 2009; 331:89-98. [PMID: 19409886 PMCID: PMC2712884 DOI: 10.1016/j.ydbio.2009.04.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/09/2009] [Accepted: 04/25/2009] [Indexed: 10/20/2022]
Abstract
Amphibian metamorphosis is accompanied by extensive intestinal remodeling. This process, mediated by thyroid hormone (TH) and its nuclear receptors, affects every cell type. Gut remodeling in Xenopus laevis involves epithelial and mesenchymal proliferation, smooth muscle thickening, neuronal aggregation, formation of intestinal folds, and shortening of its length by 75%. Transgenic tadpoles expressing a dominant negative TH receptor (TRDN) controlled by epithelial-, fibroblast-, and muscle-specific gene promoters were studied. TRDN expression in the epithelium caused abnormal development of virtually all cell types, with froglet guts displaying reduced intestinal folds, thin muscle and mesenchyme, absence of neurons, and reduced cell proliferation. TRDN expression in fibroblasts caused abnormal epithelia and mesenchyme development, and expression in muscle produced fewer enteric neurons and a reduced inter-muscular space. Gut shortening was inhibited only when TRDN was expressed in fibroblasts. Gut remodeling results from both cell-autonomous and cell-cell interactions.
Collapse
|
37
|
Ishizuya-Oka A, Hasebe T, Buchholz DR, Kajita M, Fu L, Shi YB. Origin of the adult intestinal stem cells induced by thyroid hormone in Xenopus laevis. FASEB J 2009; 23:2568-75. [PMID: 19299481 DOI: 10.1096/fj.08-128124] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the amphibian intestine during metamorphosis, de novo stem cells generate the adult epithelium analogous to the mammalian counterpart. Interestingly, to date the exact origin of these stem cells remains to be determined, making intestinal metamorphosis a unique model to study development of adult organ-specific stem cells. Here, to determine their origin, we made use of transgenic Xenopus tadpoles expressing green fluorescent protein (GFP) for recombinant organ cultures. The larval epithelium separated from the wild-type (Wt) or GFP transgenic (Tg) intestine before metamorphic climax was recombined with homologous and heterologous nonepithelial tissues and was cultivated in the presence of thyroid hormone, the causative agent of metamorphosis. In all kinds of recombinant intestine, adult progenitor cells expressing markers for intestinal stem cells such as sonic hedgehog became detectable and then differentiated into the adult epithelium expressing intestinal fatty acid binding-protein, a marker for absorptive cells. Notably, whenever the epithelium was derived from Tg intestine, both the adult progenitor/stem cells and their differentiated cells expressed GFP, whereas neither of them expressed GFP in the Wt-derived epithelium. Our results provide direct evidence that stem cells that generate the adult intestinal epithelium originate from the larval epithelium, through thyroid hormone-induced dedifferentiation.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Hasebe T, Kajita M, Shi YB, Ishizuya-Oka A. Thyroid hormone-up-regulated hedgehog interacting protein is involved in larval-to-adult intestinal remodeling by regulating sonic hedgehog signaling pathway in Xenopus laevis. Dev Dyn 2008; 237:3006-15. [PMID: 18816855 PMCID: PMC2615680 DOI: 10.1002/dvdy.21698] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sonic hedgehog (Shh) was previously shown to be involved in the larval-to-adult remodeling of the Xenopus laevis intestine. While Shh is transcriptionally regulated by thyroid hormone (TH), the posttranscriptional regulation of Shh signaling during intestinal remodeling is largely unknown. In the present study, we focused on a role of the pan-hedgehog inhibitor, hedgehog interacting protein (Hip), in the spatiotemporal regulation of Shh signaling. Using real-time reverse transcriptase-polymerase chain reaction and in situ hybridization, we show that Hip expression is transiently up-regulated during both natural and TH-induced metamorphosis and that Hip mRNA is localized in the connective tissue adjacent to the adult epithelial primordia expressing Shh. Interestingly, the expression of bone morphogenetic protein-4, a Shh target gene, is hardly detectable where Hip is strongly expressed. Finally, we demonstrate that Hip binds to the N-terminal fragment of processed Shh in vivo, suggesting that Hip suppresses Shh signaling through sequestering Shh.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Nakahara-ku, Kawasaki, Kanagawa, Japan.
| | | | | | | |
Collapse
|
39
|
Ishizuya-Oka A, Shi YB. Thyroid hormone regulation of stem cell development during intestinal remodeling. Mol Cell Endocrinol 2008; 288:71-8. [PMID: 18400374 DOI: 10.1016/j.mce.2008.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/28/2008] [Accepted: 02/26/2008] [Indexed: 11/26/2022]
Abstract
During amphibian metamorphosis the small intestine is remodeled from larval to adult form, analogous to the mammalian intestine. The larval epithelium mostly undergoes apoptosis, while a small number of stem cells appear, actively proliferate, and differentiate into the adult epithelium possessing a cell-renewal system. Because amphibian intestinal remodeling is completely controlled by thyroid hormone (T3) through T3 receptors (TRs), it serves as an excellent model for studying the molecular mechanism of the mammalian intestinal development. TRs bind T3 response elements in target genes and have dual functions by interacting with coactivators or corepressors in a T3-dependent manner. A number of T3 response genes have been isolated from the Xenopus laevis intestine. They include signaling molecules, matrix metalloproteinases, and transcription factors. Functional studies have been carried out on many such genes in vitro and in vivo by using transgenic and culture technologies. Here we will review recent findings from such studies with a special emphasis on the adult intestinal stem cells, and discuss the evolutionarily conserved roles of T3 in the epithelial cell-renewal in the vertebrate intestine.
Collapse
|
40
|
Abstract
We have engaged in a number of studies in our laboratory that have focused on the molecular mechanisms underlying gut formation, with particular attention being paid to the establishment of regional differences found in the entire gut and within each digestive organ. We have found from our analyses that the presumptive fate of the endoderm in the embryos of vertebrates is determined quite early during development, but the realization of this fate often requires molecular cues from the neighboring tissues such as the lateral plate mesoderm and the mesenchyme derived from it. The mesenchyme seems often to exert instructive or supportive induction effects and, in some cases, a completely inhibitory role during the differentiation of the endodermal epithelium. In addition, many reports on the formation of the stomach, intestine, liver and salivary gland in vertebrates, and of Drosophila gut, all indicate that the morphogenesis and cytodifferentiation of these organs are regulated by the regulated expression of genes encoding growth factors and transcription factors. We have further shown that the epithelium can regulate the differentiation of the mesenchyme into the connective tissue and the smooth muscle layers, thus demonstrating the occurrence of literally interactive processes in the development of the digestive organs.
Collapse
Affiliation(s)
- Sadao Yasugi
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.
| | | |
Collapse
|
41
|
Minegishi Y, Suzuki H, Arakawa M, Fukushima Y, Masaoka T, Ishikawa T, Wright NA, Hibi T. Reduced Shh expression in TFF2-overexpressing lesions of the gastric fundus under hypochlorhydric conditions. J Pathol 2007; 213:161-9. [PMID: 17763396 DOI: 10.1002/path.2221] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expression of sonic hedgehog (Shh), a morphogen for the gastric fundic glands, is reduced in the atrophic mucosa that develops in association with Helicobacter pylori infection, resulting in impaired differentiation of the fundic gland cells, increased expression of trefoil factor family 2 (TFF2) and the formation of spasmolytic polypeptide (SP)-expressing metaplasia (SPEM), a preneoplastic lesion. However, it is still unresolved whether H. pylori-induced inflammation and the resultant reduction in parietal cell number or reduced parietal cell function per se reduces Shh expression. The present study was designed to clarify the expression of Shh and TFF2 in the context of parietal cell dysfunction in the absence of inflammation, using histamine H(2) receptor-knockout (H(2)R-null) mice and an acid exposure model. Age-matched H(2)R-null mice and wild-type (WT) mice were used. The expression of Shh and TFF2 mRNA was quantified by quantitative RT-PCR. Immunohistochemistry was also performed to detect the expression of Shh, TFF2 and cell markers. To study the effects of acid exposure, HCl solution was administered to the animals. The H(2)R-null mice exhibited higher gastric pH, increased TFF2 expression and reduced Shh expression. Impaired mucous neck-to-zymogenic cell differentiation was observed in the H(2)R-null mice. Furthermore, Shh expression increased in the presence of gastric acid and showed a significant correlation with gastric surface pH. In conclusion, our results suggest that persistent parietal cell dysfunction alone (suppressed gastric acid secretion), in the absence of inflammation or parietal cell loss caused by H. pylori infection, may be sufficient to down-regulate Shh expression in TFF2-overexpressing preneoplastic lesions of the gastric fundus. Since exposure to acid restored fundic Shh expression, appropriate gastric acid secretion may play an important role in the morphogen dynamics involved in the maintenance of gastric fundic gland homeostasis.
Collapse
Affiliation(s)
- Y Minegishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Walsh LA, Carere DA, Cooper CA, Damjanovski S. Membrane type-1 matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 RNA levels mimic each other during Xenopus laevis metamorphosis. PLoS One 2007; 2:e1000. [PMID: 17912339 PMCID: PMC1991586 DOI: 10.1371/journal.pone.0001000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 09/16/2007] [Indexed: 11/30/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP), two TIMPs (TIMP-2, TIMP-3) and a potent gelatinase (Gel-A) that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.
Collapse
Affiliation(s)
- Logan A. Walsh
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Deanna A. Carere
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Colin A. Cooper
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Sashko Damjanovski
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Buchholz DR, Heimeier RA, Das B, Washington T, Shi YB. Pairing morphology with gene expression in thyroid hormone-induced intestinal remodeling and identification of a core set of TH-induced genes across tadpole tissues. Dev Biol 2007; 303:576-90. [PMID: 17214978 DOI: 10.1016/j.ydbio.2006.11.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/01/2006] [Accepted: 11/21/2006] [Indexed: 01/26/2023]
Abstract
Thyroid hormone (T3) plays a central role in vertebrate post-embryonic development, and amphibian metamorphosis provides a unique opportunity to examine T3-dependent developmental changes. To establish a molecular framework for understanding T3-induced morphological change, we identified a set of gene expression profiles controlled by T3 in the intestine via microarray analysis. Samples were obtained from premetamorphic Xenopus laevis tadpole intestines after 0, 1, 3, and 6 days of T3 treatment, which induces successive cell death and proliferation essential for intestinal remodeling. Using a set of 21,807 60-mer oligonucleotide probes representing >98% of the Unigene clusters, we found that 1997 genes were differentially regulated by 1.5-fold or more during this remodeling process and were clustered into four temporal expression profiles; transiently up- or downregulated and late up- or downregulated. Gene Ontology categories most significantly associated with these clusters were proteolysis, cell cycle, development and transcription, and electron transport and metabolism, respectively. These categories are common with those found for T3-regulated genes from brain, limb, and tail, although more than 70% of T3-regulated genes are tissue-specific, likely due to the fact that not all genes are annotated into GO categories and that GO categories common to different organs also contain genes regulated by T3 tissue specifically. Finally, a core set of upregulated genes, most previously unknown to be T3-regulated, were identified and enriched in genes involved in transcription and cell signaling.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development/NIH, Bethesda, MD 20892-5431, USA
| | | | | | | | | |
Collapse
|
44
|
Ishizuya-Oka A. Regeneration of the amphibian intestinal epithelium under the control of stem cell niche. Dev Growth Differ 2007; 49:99-107. [PMID: 17335431 DOI: 10.1111/j.1440-169x.2007.00913.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The epithelium of the mammalian digestive tract originates from stem cells and undergoes rapid cell-renewal throughout adulthood. It has been proposed that the microenvironment around the stem cells, called 'niche', plays an important role in epithelial cell-renewal through cell-cell and cell-extracellular matrix interactions. The amphibian intestine, which establishes epithelial cell-renewal during metamorphosis, serves as a unique and good model for studying molecular mechanisms of the stem cell niche. By using the organ culture of the Xenopus laevis intestine, we have previously shown that larval-to-adult epithelial remodeling can be organ-autonomously induced by thyroid hormone (TH) and needs interactions with the surrounding connective tissue. Thus, in this animal model, the functional analysis of TH response genes is useful for clarifying the epithelial-connective tissue interactions essential for intestinal remodeling at the molecular level. Recent progress in culture and transgenic technology now enables us to investigate functions of such TH response genes in the X. laevis intestine and sheds light on molecular aspects of the stem cell niche that are common to the mammalian intestine.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan.
| |
Collapse
|
45
|
Ishizuya-Oka A, Shi YB. Regulation of adult intestinal epithelial stem cell development by thyroid hormone duringXenopus laevis metamorphosis. Dev Dyn 2007; 236:3358-68. [PMID: 17705305 DOI: 10.1002/dvdy.21291] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During amphibian metamorphosis, most or all of the larval intestinal epithelial cells undergo apoptosis. In contrast, stem cells of yet-unknown origin actively proliferate and, under the influence of the connective tissue, differentiate into the adult epithelium analogous to the mammalian counterpart. Thus, amphibian intestinal remodeling is useful for studying the stem cell niche, the clarification of which is urgently needed for regenerative therapies. This review highlights the molecular aspects of the niche using the Xenopus laevis intestine as a model. Because amphibian metamorphosis is completely controlled by thyroid hormone (TH), the analysis of TH response genes serves as a powerful means for clarifying its molecular mechanisms. Although functional analysis of the genes is still on the way, recent progresses in organ culture and transgenic studies have gradually uncovered important roles of cell-cell and cell-extracellular matrix interactions through stromelysin-3 and sonic hedgehog/bone morphogenetic protein-4 signaling pathway in the epithelial stem cell development.
Collapse
|
46
|
Ishizuya-Oka A, Hasebe T, Shimizu K, Suzuki K, Ueda S. Shh/BMP-4 signaling pathway is essential for intestinal epithelial development duringXenopuslarval-to-adult remodeling. Dev Dyn 2006; 235:3240-9. [PMID: 17016847 DOI: 10.1002/dvdy.20969] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During amphibian larval-to-adult intestinal remodeling, progenitor cells of the adult epithelium actively proliferate and differentiate under the control of thyroid hormone (TH) to form the intestinal absorptive epithelium, which is analogous to the mammalian counterpart. We previously found that TH-up-regulated expression of bone morphogenetic protein-4 (BMP-4) spatiotemporally correlates with adult epithelial development in the Xenopus laevis intestine. Here, we aimed to clarify the role of BMP-4 in intestinal remodeling. Our reverse transcriptase-polymerase chain reaction and in situ hybridization analyses indicated that mRNA of BMPR-IA, a type I receptor of BMP-4, is expressed in both the developing connective tissue and progenitor cells of the adult epithelium. More importantly, using organ culture and immunohistochemical procedures, we have shown that BMP-4 not only represses cell proliferation of the connective tissue but promotes differentiation of the intestinal absorptive epithelium. In addition, we found that the connective tissue-specific expression of BMP-4 mRNA is up-regulated by sonic hedgehog (Shh), whose epithelium-specific expression is directly induced by TH. These results strongly suggest that the Shh/BMP-4 signaling pathway plays key roles in the amphibian intestinal remodeling through epithelial-connective tissue interactions.
Collapse
|
47
|
Ishizuya-Oka A, Shi YB. Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration. Dev Growth Differ 2006; 47:601-7. [PMID: 16316405 DOI: 10.1111/j.1440-169x.2005.00833.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During amphibian metamorphosis the digestive tract is extensively remodeled under the control of epithelial-connective tissue interactions. At the cellular level, larval epithelial cells undergo apoptosis, while a small number of stem cells appear, actively proliferate, and then differentiate to form adult epithelium that is analogous to its mammalian counterpart. Therefore the amphibian digestive tract is a unique model system for the study of postembryonic organ regeneration. As amphibian intestinal remodeling can be triggered by thyroid hormone (TH), the molecular mechanisms involved can be studied from the perspective of examining the expression cascade of TH response genes. A number of these genes have been isolated from the intestine of Xenopus laevis. Recent progress in the functional analysis of this cascade has shed light on key molecules in intestinal remodeling such as matrix metalloproteinase-11, sonic hedgehog, and bone morphogenetic protein-4. These genes are also thought to play key roles in organogenesis and/or homeostasis in both chick and mammalian digestive tract, suggesting the existence of conserved mechanisms underlying such events in terrestrial vertebrates. In this article, we review our recent findings in this field, focusing on the development of adult epithelium in the X. laevis intestine.
Collapse
Affiliation(s)
- Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan.
| | | |
Collapse
|
48
|
Ikuzawa M, Shimizu K, Yasumasu S, Iuchi I, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced expression of a bZip-containing transcription factor activates epithelial cell proliferation during Xenopus larval-to-adult intestinal remodeling. Dev Genes Evol 2006; 216:109-18. [PMID: 16292540 DOI: 10.1007/s00427-005-0037-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
In the intestine during amphibian metamorphosis, stem cells appear, actively proliferate, and differentiate into an adult epithelium analogous to the mammalian counterpart. To clarify the molecular mechanisms regulating this process, we focused on a bZip-containing transcription factor (TH/bZip). We previously isolated TH/bZip from the Xenopus intestine as one of the candidate genes involved in adult epithelial development. Northern blot and in situ hybridization analyses showed that the transient and region-dependent expression of TH/bZip mRNA correlates well with the growth of adult epithelial primordia originating from the stem cells throughout the Xenopus intestine. To investigate its role in the adult epithelial development, we established an in vitro gene transfer system by using electroporation and organ culture techniques, and we overexpressed TH/bZip in the epithelium of Xenopus tadpole intestines. In the presence of thyroid hormone (TH) where the adult epithelial primordia appeared after 3 days of cultivation, overexpression of TH/bZip significantly increased their proliferating activity. On the other hand, in the absence of TH where the epithelium remained as larval-type without any metamorphic changes, ectopic expression of TH/bZip significantly increased the proliferating activity of the larval epithelium but had no effects on its differentiated state. These results indicate that TH/bZip functions as a growth activator during amphibian intestinal remodeling, although TH/bZip expression in the epithelium alone is not sufficient for inducing the stem cells.
Collapse
Affiliation(s)
- Masayuki Ikuzawa
- Life Science Institute, Sophia University, Tokyo, 102-8554, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Buchholz DR, Paul BD, Fu L, Shi YB. Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol 2006; 145:1-19. [PMID: 16266705 DOI: 10.1016/j.ygcen.2005.07.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/23/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
The current review focuses on the molecular mechanisms and developmental roles of thyroid hormone receptors (TRs) in gene regulation and metamorphosis in Xenopus laevis and discusses implications for TR function in vertebrate development and diversity. Questions addressed are: (1) what are the molecular mechanisms of gene regulation by TR, (2) what are the developmental roles of TR in mediating the thyroid hormone (TH) signal, (3) what are the roles of the different TR isoforms, and (4) how do changes in these molecular and developmental mechanisms affect evolution? Even though detailed knowledge of molecular mechanisms of TR-mediated gene regulation is available from in vitro studies, relatively little is known about how TR functions in development in vivo. Studies on TR function during frog metamorphosis are leading the way toward bridging the gap between in vitro and in vivo studies. In particular, a dual function model for the role of TR in metamorphosis has been proposed and investigated. In this model, TRs repress genes allowing tadpole growth in the absence of TH during premetamorphosis and activate genes important for metamorphosis when TH is present. Despite the lack of metamorphosis in most other vertebrates, TR has important functions in development across vertebrates. The underlying molecular mechanisms of TR in gene regulation are conserved through evolution, so other mechanisms involving TH-target genes and TH tissue-sensitivity and dependence underlie differences in role of TR across vertebrates. Continued analysis of molecular and developmental roles of TR in X. laevis will provide the basis for understanding how TR functions in gene regulation in vivo across vertebrates and how TR is involved in the generation of evolutionary diversity.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, NICHD/NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA.
| | | | | | | |
Collapse
|
50
|
Ikuzawa M, Kobayashi KI, Yasumasu S, Iuchi I. Expression of CCAAT/enhancer binding protein delta is closely associated with degeneration of surface mucous cells of larval stomach during the metamorphosis of Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:505-11. [PMID: 15694599 DOI: 10.1016/j.cbpc.2004.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 11/17/2004] [Accepted: 11/18/2004] [Indexed: 11/18/2022]
Abstract
CCAAT/enhancer binding protein delta (C/EBP delta) is one of the transcription factors that have a basic-leucine zipper domain. In mammals, it has been suggested that this transcription factor plays a role in differentiation of adipocytes or in apoptosis of mammary gland epithelial cells. The factor also plays a role in acute-phase response in injury, infection and inflammation. We cloned Xenopus homologues of the C/EBP delta gene from metamorphosing stomach by subtractive hybridization and analyzed spatio-temporal expression pattern of the homologues. Two isoforms of C/EBP delta were isolated and named C/EBP delta-1 and -2. Their deduced amino acid sequences were highly similar to each other (identity, 91.2%). Expression of the C/EBP delta mRNAs in the stomach transiently increased during its metamorphosis-associated remodeling, and the transient up-regulation was also found in thyroid hormone-induced metamorphosis. The C/EBP delta mRNAs were exclusively localized in degenerating larval surface mucous cells, not in newly proliferating and differentiating adult-type epithelial cells. The result suggests a possibility that Xenopus C/EBP delta plays a role in apoptotic cell death of larval-type epithelium during the stomach remodeling.
Collapse
Affiliation(s)
- Masayuki Ikuzawa
- Life Science Institute, Sophia University, Kioi-cho 7-1, Chiyoda-ku, Tokyo 102-8554, Japan
| | | | | | | |
Collapse
|