1
|
Melnikova DN, Finkina EI, Bogdanov IV, Tagaev AA, Ovchinnikova TV. Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. MEMBRANES 2022; 13:2. [PMID: 36676809 PMCID: PMC9866449 DOI: 10.3390/membranes13010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In plants, lipid trafficking within and inside the cell is carried out by lipid-binding and transfer proteins. Ligands for these proteins are building and signaling lipid molecules, secondary metabolites with different biological activities due to which they perform diverse functions in plants. Many different classes of such lipid-binding and transfer proteins have been found, but the most common and represented in plants are lipid transfer proteins (LTPs), pathogenesis-related class 10 (PR-10) proteins, acyl-CoA-binding proteins (ACBPs), and puroindolines (PINs). A low degree of amino acid sequence homology but similar spatial structures containing an internal hydrophobic cavity are common features of these classes of proteins. In this review, we summarize the latest known data on the features of these protein classes with particular focus on their ability to bind and transfer lipid ligands. We analyzed the structural features of these proteins, the diversity of their possible ligands, the key amino acids participating in ligand binding, the currently known mechanisms of ligand binding and transferring, as well as prospects for possible application.
Collapse
Affiliation(s)
- Daria N. Melnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| |
Collapse
|
2
|
Fleury C, Gracy J, Gautier MF, Pons JL, Dufayard JF, Labesse G, Ruiz M, de Lamotte F. Comprehensive classification of the plant non-specific lipid transfer protein superfamily towards its sequence-structure-function analysis. PeerJ 2019; 7:e7504. [PMID: 31428542 PMCID: PMC6698131 DOI: 10.7717/peerj.7504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/17/2019] [Indexed: 11/20/2022] Open
Abstract
Background Non-specific Lipid Transfer Proteins (nsLTPs) are widely distributed in the plant kingdom and constitute a superfamily of related proteins. Several hundreds of different nsLTP sequences—and counting—have been characterized so far, but their biological functions remain unclear. It has been clear for years that they present a certain interest for agronomic and nutritional issues. Deciphering their functions means collecting and analyzing a variety of data from gene sequence to protein structure, from cellular localization to the physiological role. As a huge and growing number of new protein sequences are available nowadays, extracting meaningful knowledge from sequence–structure–function relationships calls for the development of new tools and approaches. As nsLTPs show high evolutionary divergence, but a conserved common right handed superhelix structural fold, and as they are involved in a large number of key roles in plant development and defense, they are a stimulating case study for validating such an approach. Methods In this study, we comprehensively investigated 797 nsLTP protein sequences, including a phylogenetic analysis on canonical protein sequences, three-dimensional structure modeling and functional annotation using several well-established bioinformatics programs. Additionally, two integrative methodologies using original tools were developed. The first was a new method for the detection of (i) conserved amino acid residues involved in structure stabilization and (ii) residues potentially involved in ligand interaction. The second was a structure–function classification based on the evolutionary trace display method using a new tree visualization interface. We also present a new tool for visualizing phylogenetic trees. Results Following this new protocol, an updated classification of the nsLTP superfamily was established and a new functional hypothesis for key residues is suggested. Lastly, this work allows a better representation of the diversity of plant nsLTPs in terms of sequence, structure and function.
Collapse
Affiliation(s)
| | - Jérôme Gracy
- CBS, CNRS Univ Montpellier INSERM, Montpellier, France
| | | | - Jean-Luc Pons
- CBS, CNRS Univ Montpellier INSERM, Montpellier, France
| | | | | | | | | |
Collapse
|
3
|
Melnikova DN, Finkina EI, Bogdanov IV, Ovchinnikova TV. Plant Pathogenesis-Related Proteins Binding Lipids and Other Hydrophobic Ligands. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
da Silva FCV, do Nascimento VV, Machado OLT, Pereira LDS, Gomes VM, de Oliveira Carvalho A. Insight into the α-Amylase Inhibitory Activity of Plant Lipid Transfer Proteins. J Chem Inf Model 2018; 58:2294-2304. [DOI: 10.1021/acs.jcim.8b00540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Flávia Camila Vieira da Silva
- Laboratório de Fisiologia e Bioquímica de Micro-organismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - Viviane Veiga do Nascimento
- Unidade de Biologia Integrativa, Laboratório de Biotecnologia, P8, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - Olga Lima Tavares Machado
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - Lídia da Silva Pereira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Micro-organismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Micro-organismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, CEP: 28013-602, Brazil
| |
Collapse
|
5
|
La Rosa C, Scalisi S, Lolicato F, Pannuzzo M, Raudino A. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations. J Chem Phys 2016; 144:184901. [DOI: 10.1063/1.4948323] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Carmelo La Rosa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Silvia Scalisi
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Fabio Lolicato
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Martina Pannuzzo
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Antonio Raudino
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
6
|
Kiełbowicz-Matuk A, Banachowicz E, Turska-Tarska A, Rey P, Rorat T. Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:98-111. [PMID: 26993240 DOI: 10.1016/j.plantsci.2016.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
Phosphatidylinositol transfer proteins (PITPs) include a large group of proteins implicated in the non-vesicular traffic of phosphatidylinositol (PI) between membranes. In yeast, the structure and function of the PITP Sec14-p protein have been well characterized. In contrast, the knowledge on plant PITP proteins is very scarce. In this work, we characterized a novel type of PITP protein in barley named HvSec14p and related to the yeast Sec14-p protein. Our data reveal that HvSec14p consists of only the Sec14p-domain structurally homologous to the yeast phosphoinositide binding domain. We show that HvSec14p expression is up-regulated at both transcript and protein levels at specific stages of development during seed formation and germination, and in leaves of a drought-tolerant barley genotype under osmotic constraints. Modeling analyses of the protein three-dimensional structure revealed its capacity to dock the phosphoinositides, PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P2. Consistently, the recombinant HvSec14p protein is able to bind in vitro most PIP types, the highest affinity being observed with PtdIns(3,5)P2. Based on the high gene expression at specific developmental stages and in drought-tolerant barley genotypes, we propose that HvSec14p plays essential roles in the biogenesis of membranes in expanding cells and in their preservation under osmotic stress conditions.
Collapse
Affiliation(s)
| | - Ewa Banachowicz
- Molecular Biophysics Department, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.
| | - Anna Turska-Tarska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Pascal Rey
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France.
| | - Tadeusz Rorat
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
7
|
Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5663-81. [PMID: 26139823 DOI: 10.1093/jxb/erv313] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant non-specific lipid-transfer proteins (nsLTPs) are small, basic proteins present in abundance in higher plants. They are involved in key processes of plant cytology, such as the stablization of membranes, cell wall organization, and signal transduction. nsLTPs are also known to play important roles in resistance to biotic and abiotic stress, and in plant growth and development, such as sexual reproduction, seed development and germination. The structures of plant nsLTPs contain an eight-cysteine residue conserved motif, linked by four disulfide bonds, and an internal hydrophobic cavity, which comprises the lipid-binding site. This structure endows stability and increases the ability to bind and/or carry hydrophobic molecules. There is growing interest in nsLTPs, due to their critical roles, resulting in the need for a comprehensive review of their form and function. Relevant topics include: nsLTP structure and biochemical features, their classification, identification, and characterization across species, sub-cellular localization, lipid binding and transfer ability, expression profiling, functionality, and evolution. We present advances, as well as limitations and trends, relating to the different topics of the nsLTP gene family. This review collates a large body of research pertaining to the role of nsLTPs across the plant kingdom, which has been integrated as an in depth functional analysis of this group of proteins as a whole, and their activities across multiple biochemical pathways, based on a large number of reports. This review will enhance our understanding of nsLTP activity in planta, prompting further work and insights into the roles of this multifaceted protein family in plants.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- Life Science and Technology Center, China National Seed Group Co. Ltd., Wuhan 430206, China
| | - Changming Lu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinhua Zeng
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yunjing Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
8
|
Smith LJ, Roby Y, Allison JR, van Gunsteren WF. Molecular dynamics simulations of barley and maize lipid transfer proteins show different ligand binding preferences in agreement with experimental data. Biochemistry 2013; 52:5029-38. [PMID: 23834513 DOI: 10.1021/bi4006573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental studies of barley and maize lipid transfer proteins (LTPs) show that the two proteins bind the ligand palmitate in opposite orientations in their internal cavities. Moreover, maize LTP is reported to bind the ligand caprate in the internal cavity in a mixture of two orientations with approximately equal occupancy. Six 30 ns molecular dynamics (MD) simulations of maize and barley LTP with ligands bound in two orientations (modes M and B) have been used to understand the different ligand binding preferences. The simulations show that both maize and barley LTP could bind palmitate in the orientation observed experimentally for maize LTP (mode M), with the predominant interaction being a salt bridge between the ligand carboxylate headgroup and a conserved arginine side chain. However, the simulation of barley LTP with palmitate in the mode B orientation shows the most favorable protein-ligand interaction energy. In contrast, the simulations of maize LTP with palmitate and with caprate in the mode B orientation show no persistent ligand binding, the ligands leaving the cavity during the simulations. Sequence differences between maize and barley LTP in the AB loop region, in residues at the base of the hydrophobic cavity, and in the helix A region are identified as contributing to the different behavior. The simulations reproduce well the experimentally observed binding preferences for palmitate and suggest that the experimental data for maize LTP with caprate reflect ligand mobility in binding mode M rather than the population of binding modes M and B.
Collapse
Affiliation(s)
- Lorna J Smith
- Department of Chemistry, University of Oxford , Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Lepski S, Brockmeyer J. Impact of dietary factors and food processing on food allergy. Mol Nutr Food Res 2012; 57:145-52. [DOI: 10.1002/mnfr.201200472] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 09/14/2012] [Accepted: 09/27/2012] [Indexed: 02/07/2023]
Affiliation(s)
- Silke Lepski
- Institute of Food Chemistry; University of Muenster; Münster Germany
| | - Jens Brockmeyer
- Institute of Food Chemistry; University of Muenster; Münster Germany
| |
Collapse
|
10
|
Gorjanović S, Spillner E, Beljanski MV, Gorjanović R, Pavlović M, Gojgić-Cvijanović G. Malting Barley Grain Non-specific Lipid-Transfer Protein (ns-LTP): Importance for Grain Protection. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2005.tb00654.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Gorjanović S. A Review: Biological and Technological Functions of Barley Seed Pathogenesis-Related Proteins (PRs). JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2009.tb00389.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Stanislava G. Barley Grain Non-specific Lipid-Transfer Proteins (ns-LTPs) in Beer Production and Quality. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2007.tb00291.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Champigny MJ, Shearer H, Mohammad A, Haines K, Neumann M, Thilmony R, He SY, Fobert P, Dengler N, Cameron RK. Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsis using DIR1:GUS and DIR1:EGFP reporters. BMC PLANT BIOLOGY 2011; 11:125. [PMID: 21896186 PMCID: PMC3180652 DOI: 10.1186/1471-2229-11-125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/06/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Systemic Acquired Resistance (SAR) is an induced resistance response to pathogens, characterized by the translocation of a long-distance signal from induced leaves to distant tissues to prime them for increased resistance to future infection. DEFECTIVE in INDUCED RESISTANCE 1 (DIR1) has been hypothesized to chaperone a small signaling molecule to distant tissues during SAR in Arabidopsis. RESULTS DIR1 promoter:DIR1-GUS/dir1-1 lines were constructed to examine DIR1 expression. DIR1 is expressed in seedlings, flowers and ubiquitously in untreated or mock-inoculated mature leaf cells, including phloem sieve elements and companion cells. Inoculation of leaves with SAR-inducing avirulent or virulent Pseudomonas syringae pv tomato (Pst) resulted in Type III Secretion System-dependent suppression of DIR1 expression in leaf cells. Transient expression of fluorescent fusion proteins in tobacco and intercellular washing fluid experiments indicated that DIR1's ER signal sequence targets it for secretion to the cell wall. However, DIR1 expressed without a signal sequence rescued the dir1-1 SAR defect, suggesting that a cytosolic pool of DIR1 is important for the SAR response. CONCLUSIONS Although expression of DIR1 decreases during SAR induction, the protein localizes to all living cell types of the vasculature, including companion cells and sieve elements, and therefore DIR1 is well situated to participate in long-distance signaling during SAR.
Collapse
Affiliation(s)
- Marc J Champigny
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
- Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Heather Shearer
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
- Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Asif Mohammad
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Karen Haines
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Melody Neumann
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Roger Thilmony
- Department of Plant Biology, Michigan State University, East Lansing MI, 48824 USA
- USDA-ARS, Western Regional Research Center, Crop Improvement and Utilization Research Unit, 800 Buchanan St., Albany, CA, 94710 USA
| | - Sheng Yang He
- Department of Plant Biology, Michigan State University, East Lansing MI, 48824 USA
| | - Pierre Fobert
- Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nancy Dengler
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Robin K Cameron
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|
14
|
Chae K, Lord EM. Pollen tube growth and guidance: roles of small, secreted proteins. ANNALS OF BOTANY 2011; 108:627-36. [PMID: 21307038 PMCID: PMC3170145 DOI: 10.1093/aob/mcr015] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/04/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pollination is a crucial step in angiosperm (flowering plant) reproduction. Highly orchestrated pollen-pistil interactions and signalling events enable plant species to avoid inbreeding and outcrossing as a species-specific barrier. In compatible pollination, pollen tubes carrying two sperm cells grow through the pistil transmitting tract and are precisely guided to the ovules, discharging the sperm cells to the embryo sac for fertilization. SCOPE In Lilium longiflorum pollination, growing pollen tubes utilize two critical mechanisms, adhesion and chemotropism, for directional growth to the ovules. Among several molecular factors discovered in the past decade, two small, secreted cysteine-rich proteins have been shown to play major roles in pollen tube adhesion and reorientation bioassays: stigma/style cysteine-rich adhesin (SCA, approx. 9·3 kDa) and chemocyanin (approx. 9·8 kDa). SCA, a lipid transfer protein (LTP) secreted from the stylar transmitting tract epidermis, functions in lily pollen tube tip growth as well as in forming the adhesive pectin matrix at the growing pollen tube wall back from the tip. Lily chemocyanin is a plantacyanin family member and acts as a directional cue for reorienting pollen tubes. Recent consecutive studies revealed that Arabidopsis thaliana homologues for SCA and chemocyanin play pivotal roles in tip polarity and directionality of pollen tube growth, respectively. This review outlines the biological roles of various secreted proteins in angiosperm pollination, focusing on plant LTPs and chemocyanin.
Collapse
|
15
|
Scientific Opinion on the assessment of allergenicity of GM plants and microorganisms and derived food and feed. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1700] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
16
|
Saltzmann KD, Giovanini MP, Ohm HW, Williams CE. Transcript profiles of two wheat lipid transfer protein-encoding genes are altered during attack by Hessian fly larvae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:54-61. [PMID: 19914842 DOI: 10.1016/j.plaphy.2009.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 05/28/2023]
Abstract
A sequence encoding a putative type-1 lipid transfer protein from wheat (Triticum aestivum L. em Thell) was identified through 'GeneCalling', an mRNA profiling technology. The mRNA for the Hfr-LTP (Hessian fly-responsive lipid transfer protein) gene decreased in abundance (196-fold) in susceptible wheat plants over the first eight days of attack by virulent Hessian fly larvae (Mayetiola destructor Say). Hfr-LTP encodes a putative protein containing eight cysteine residues that are conserved among plant LTPs and are responsible for correct protein folding through formation of disulfide bridges. Twelve hydrophobic amino acids in addition to arginine, glycine, proline, serine, threonine and tyrosine, plus an LTP signature sequence were present in conserved positions. A highly conserved signal peptide sequence was also present. Although attack by one virulent larva was sufficient to cause a decrease in Hfr-LTP mRNA abundance, higher infestation levels led to near silencing of the gene. Hfr-LTP transcript levels were not affected by other biotic factors (feeding by bird cherry-oat aphid, Rhopalosiphum padi L., and fall armyworm larvae, Spodoptera frugiperda Smith) or abiotic factors tested (mechanical wounding or treatment with abscisic acid, methyl jasmonate, or salicylic acid). Comparison to a previously described Hessian fly-responsive wheat LTP gene, TaLTP3, confirmed an initial increase in TaLTP3 mRNA in resistant plants. However, when quantified through eight days after egg hatch, responsiveness to infestation level and a marked decrease in susceptible plant TaLTP3 mRNA abundance were detected, as was seen for Hfr-LTP. Possible functions of LTP gene products in wheat-Hessian fly interactions are discussed.
Collapse
Affiliation(s)
- Kurt D Saltzmann
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
17
|
Bakan B, Hamberg M, Larue V, Prangé T, Marion D, Lascombe MB. The crystal structure of oxylipin-conjugated barley LTP1 highlights the unique plasticity of the hydrophobic cavity of these plant lipid-binding proteins. Biochem Biophys Res Commun 2009; 390:780-5. [PMID: 19836358 DOI: 10.1016/j.bbrc.2009.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/10/2009] [Indexed: 10/20/2022]
Abstract
The barley lipid transfer protein (LTP1) adducted by an alpha-ketol, (9-hydroxy-10-oxo-12(Z)-octadecenoic acid) exhibits an unexpected high lipid transfer activity. The crystal structure of this oxylipin-adducted LTP1, (LTP1b) was determined at 1.8A resolution. The covalently bound oxylipin was partly exposed at the surface of the protein and partly buried within the hydrophobic cavity. The structure of the oxylipidated LTP1 emphasizes the unique plasticity of the hydrophobic cavity of these plant lipid-binding proteins when compared to the other members of the family. The plasticity of the hydrophobic cavity and increase of its surface hydrophobicity induced by the oxylipin account for the improvement of the lipid transfer activity of LTP1b. These observations open new perspectives to explore the different biological functions of LTPs, including their allergenic properties.
Collapse
Affiliation(s)
- B Bakan
- INRA, Unité de recherches Biopolymères, Interactions, Assemblages, BP71627, La Géraudière, 44316 Nantes cedex 3, France.
| | | | | | | | | | | |
Collapse
|
18
|
Mills ENC, Sancho AI, Rigby NM, Jenkins JA, Mackie AR. Impact of food processing on the structural and allergenic properties of food allergens. Mol Nutr Food Res 2009; 53:963-9. [PMID: 19603402 DOI: 10.1002/mnfr.200800236] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article reviews recent studies that address one of the major unanswered questions in food allergy research: what attributes of food or food proteins contribute to or enhance food allergenicity?
Collapse
Affiliation(s)
- E N Clare Mills
- Institute of Food Research, Norwich Research Park, Colney Norwich, NR4 7UA UK.
| | | | | | | | | |
Collapse
|
19
|
González-Rioja R, Asturias JA, Martínez A, Goñi FM, Viguera AR. Par j 1 and Par j 2, the two major allergens in Parietaria judaica, bind preferentially to monoacylated negative lipids. FEBS J 2009; 276:1762-75. [PMID: 19236482 DOI: 10.1111/j.1742-4658.2009.06911.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Par j 1 and Par j 2 proteins are the two major allergens in Parietaria judaica pollen, one of the main causes of allergic diseases in the Mediterranean area. Each of them contains eight cysteine residues organized in a pattern identical to that found in plant nonspecific lipid transfer proteins. The 139- and 102-residue recombinant allergens, corresponding respectively to Par j 1 and Par j 2, refold properly to fully functional forms, whose immunological properties resemble those of the molecules purified from the natural source. Molecular modeling shows that, despite the lack of extensive primary structure homology with nonspecific lipid transfer proteins, both allergens contain a hydrophobic cavity suited to accommodate a lipid ligand. In the present study, we present novel evidence for the formation of complexes of these natural and recombinant proteins from Parietaria pollen with lipidic molecules. The dissociation constant of oleyl-lyso-phosphatidylcholine is 9.1 +/- 1.2 microm for recombinant Par j 1, whereas pyrenedodecanoic acid shows a much higher affinity, with a dissociation constant of approximately 1 microm for both recombinant proteins, as well as for the natural mixture. Lipid binding does not alter the secondary structure content of the protein but is very efficient in protecting disulfide bonds from reduction by dithiothreitol. We show that Par j 1 and Par j 2 not only bind lipids from micellar dispersions, but also are able to extract and transfer negative phospholipids from bilayers.
Collapse
|
20
|
Lai YT, Cheng CS, Liu YN, Liu YJ, Lyu PC. Effects of ligand binding on the dynamics of rice nonspecific lipid transfer protein 1: a model from molecular simulations. Proteins 2009; 72:1189-98. [PMID: 18338386 DOI: 10.1002/prot.22007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30043, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Oberhuber C, Ma Y, Marsh J, Rigby N, Smole U, Radauer C, Alessandri S, Briza P, Zuidmeer L, Maderegger B, Himly M, Sancho AI, van Ree R, Knulst A, Ebner C, Shewry P, Mills ENC, Wellner K, Breiteneder H, Hoffmann-Sommergruber K, Bublin M. Purification and characterisation of relevant natural and recombinant apple allergens. Mol Nutr Food Res 2008; 52 Suppl 2:S208-19. [DOI: 10.1002/mnfr.200700522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Chae K, Zhang K, Zhang L, Morikis D, Kim ST, Mollet JC, de la Rosa N, Tan K, Lord EM. Two SCA (Stigma/Style Cysteine-rich Adhesin) Isoforms Show Structural Differences That Correlate with Their Levels of in Vitro Pollen Tube Adhesion Activity. J Biol Chem 2007; 282:33845-33858. [PMID: 17878166 DOI: 10.1074/jbc.m703997200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lily pollen tubes grow adhering to an extracellular matrix produced by the transmitting tract epidermis in a hollow style. SCA, a small ( approximately 9.4 kDa), basic protein plus low esterified pectin from this extracellular matrix are involved in the pollen tube adhesion event. The mode of action for this adhesion event is unknown. We partially separated three SCA isoforms from the lily stigma in serial size exclusion column fractions (SCA1, 9370 Da; SCA2, 9384 Da; SCA3, 9484 Da). Peptide sequencing analysis allowed us to determine two amino acid variations in SCA3, compared with SCA1. For SCA2, however, there are more sequence variations yet to be identified. Our structural homology and molecular dynamics modeling results show that SCA isoforms have the plant nonspecific lipid transfer protein-like structure: a globular shape of the orthogonal 4-helix bundle architecture, four disulfide bonds, an internal hydrophobic and solvent-inaccessible cavity, and a long C-terminal tail. The Ala(71) in SCA3, replacing the Gly(71) in SCA1, has no predictable effect on structure. The Arg(26) in SCA3, replacing the Gly(26) in SCA1, is predicted to cause structural changes that result in a significantly reduced volume for the internal hydrophobic cavity in SCA3. The volume of the internal cavity fluctuates slightly during the molecular dynamics simulation, but overall, SCA1 displays a larger cavity than SCA3. SCA1 displays higher activity than SCA3 in the in vitro pollen tube adhesion assay. No differences were found between the two SCAs in a binding assay with pectin. The larger size of the hydrophobic cavity in SCA1 correlates with its higher adhesion activity.
Collapse
Affiliation(s)
- Keun Chae
- Center for Plant Cell Biology, University of California, Riverside, California, 92521; Department of Botany and Plant Sciences, University of California, Riverside, California, 92521
| | - Kangling Zhang
- Mass Spectrometry Facility, University of California, Riverside, California, 92521
| | - Li Zhang
- Department of Chemistry, University of California, Riverside, California, 92521
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, California 92521
| | - Sun Tae Kim
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Jean-Claude Mollet
- Laboratoire de Glycobiologie et Transports chez les Végétaux, UMR CNRS 6037, IRFPM 23, Université de Rouen, 76821 Mont Saint-Aignan Cedex, France
| | - Noelle de la Rosa
- Department of Botany and Plant Sciences, University of California, Riverside, California, 92521
| | - Kimberly Tan
- Department of Botany and Plant Sciences, University of California, Riverside, California, 92521
| | - Elizabeth M Lord
- Center for Plant Cell Biology, University of California, Riverside, California, 92521; Department of Botany and Plant Sciences, University of California, Riverside, California, 92521.
| |
Collapse
|
23
|
Salcedo G, Sánchez-Monge R, Barber D, Díaz-Perales A. Plant non-specific lipid transfer proteins: an interface between plant defence and human allergy. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:781-91. [PMID: 17349819 DOI: 10.1016/j.bbalip.2007.01.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 12/18/2006] [Accepted: 01/01/2007] [Indexed: 10/23/2022]
Abstract
Plant non-specific LTPs (lipid transfer proteins) form a protein family of basic polypeptides of 9 kDa ubiquitously distributed throughout the plant kingdom. The members of this family are located extracellularly, usually associated with plant cell walls, and possess a broad lipid-binding specificity closely related to their three-dimensional structure. The nsLTP fold is characterized by a compact domain composed of 4 alpha-helices, firmly held by a network of 4 conserved disulphide bridges. This fold presents a large internal tunnel-like cavity, which can accommodate different types of lipids. nsLTPs are involved in plant defence mechanisms against phytopathogenic bacteria and fungi, and, possibly, in the assembly of hydrophobic protective layers of surface polymers, such as cutin. In addition, several members of the nsLTP family have been identified as relevant allergens in plant foods and pollens. Their high resistance to both heat treatment and digestive proteolytic attack has been related with the induction by these allergens of severe symptoms in many patients. Therefore, they are probably primary sensitizers by the oral route. nsLTP sensitization shows an unexpected pattern throughout Europe, with a high prevalence in the Mediterranean area, but a low incidence in Northern and Central European countries.
Collapse
Affiliation(s)
- G Salcedo
- Unidad de Bioquímica, Departamento de Biotecnología, E.T.S. Ingenieros Agrónomos, UPM, Ciudad Universitaria, 28040-Madrid, Spain.
| | | | | | | |
Collapse
|
24
|
Gorjanović S, Beljanski M, Sužnjević D. Electrochemical Study of the Lipid-Transfer Protein. ELECTROANAL 2005. [DOI: 10.1002/elan.200503315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Da Silva P, Landon C, Industri B, Marais A, Marion D, Ponchet M, Vovelle F. Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features. Proteins 2005; 59:356-67. [PMID: 15726627 DOI: 10.1002/prot.20405] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plant lipid transfer proteins are small soluble extracellular proteins that are able to bind and transfer a variety of lipids in vitro. Recently, it has been proposed that lipid transfer proteins may play a key role in plant defence mechanisms, especially during the induction of systemic acquired resistance. However, very little is known about the proteins expressed in developing plants and tissues, since almost all the biophysical and structural data available to date on lipid transfer proteins originate from proteins present in storage tissues of monocot cereal seeds. In this paper, we report the structural and functional characteristics of a lipid transfer protein (named LTP1_1) constitutively expressed in young aerial organs of Nicotiana tabacum (common tobacco). The unlabelled and uniformly labelled proteins were produced in the yeast Pichia pastoris, and we determined the three-dimensional (3D) structure of LTP1_1 using nuclear magnetic resonance (NMR) spectroscopy and molecular modeling techniques. The global fold of LTP1_1 is very close to the previously published structures of LTP1 extracted from cereal seeds, including an internal cavity. However, the chemical shift variations of several NMR signals upon lipid binding show that tobacco LTP1_1 is able to bind only one LysoMyristoylPhosphatidylCholine (LMPC), while wheat and maize LTPs can bind either one or two. Titration experiments using intrinsic tyrosine fluorescence confirm this result not only with LMPC but also with two fatty acids. These differences can be explained by the presence in tobacco LTP1_1 of a hydrophobic cluster closing the second possible access to the protein cavity. This result suggests that LTP1 lipid binding properties could be modulated by subtle changes in a conserved global structure. The biological significance of this finding is discussed in the light of the signalling properties of the tobacco LTP1_1-jasmonate complex described elsewhere.
Collapse
Affiliation(s)
- Pedro Da Silva
- Centre de Biophysique Moléculaire, UPR 4301 CNRS affiliated with Orléans University, rue Charles Sadron, 45071 Orléans cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Gao ZS, van de Weg WE, Schaart JG, van der Meer IM, Kodde L, Laimer M, Breiteneder H, Hoffmann-Sommergruber K, Gilissen LJWJ. Linkage map positions and allelic diversity of two Mal d 3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:479-91. [PMID: 15647923 DOI: 10.1007/s00122-004-1856-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 10/20/2004] [Indexed: 05/04/2023]
Abstract
Non-specific lipid transfer proteins (nsLTPs) of Rosaceae fruits, such as peach, apricot, cherry, plum and apple, represent major allergens for Mediterranean atopic populations. As a first step in elucidating the genetics of nsLTPs, we directed the research reported here towards identifying the number and location of nsLTP (Mal d 3) genes in the apple genome and determining their allelic diversity. PCR cloning was initially performed on two cultivars, Prima and Fiesta, parents of a core apple mapping progeny in Europe, based on two Mal d 3 sequences (AF221502 and AJ277164) in the GenBank. This resulted in the identification of two distinct sequences (representing two genes) encoding the mature nsLTP proteins. One is identical to accession AF221502 and has been named Mal d 3.01, and the other is new and has been named Mal d 3.02. Subsequent genome walking in the upstream direction and DNA polymorphism analysis revealed that these two genes are intronless and that they could be mapped on two homoeologous segments of linkage groups 12 and 4, respectively. Further cloning and sequencing of the coding and upstream region of both Mal d 3 genes in eight cultivars was performed to identify allelic variation. Assessment of the deduced nsLTP amino acid sequences gave a total of two variants at the protein level for Mal d 3.01 and three for Mal d 3.02. The consequences of our results for allergen nomenclature and the breeding of low allergenic apple cultivars are discussed.
Collapse
Affiliation(s)
- Z S Gao
- Allergy Consortium Wageningen, Wageningen University and Research Centre, PO Box 16, 6700AA, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sourice S, Nisole A, Guéguen J, Popineau Y, Elmorjani K. High microbial production and characterization of strictly periodic polymers modelled on the repetitive domain of wheat gliadins. Biochem Biophys Res Commun 2004; 312:989-96. [PMID: 14651969 DOI: 10.1016/j.bbrc.2003.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Primary structures of wheat prolamins contain repetitive domains involved in the mechanical properties of gluten. In order to experience the ability of recombinant strictly periodic polypeptides, modelled on a consensus sequence of wheat gliadins (PQQPY)(8) and (PQQPY)(17) (SPR8 and SPR17 polypeptides, respectively), to be formulated in film solutions, their heterologous expression conditions, in batch culture and low cell densities, were optimized to match the high requirements of this process. A convenient and general purification procedure was also devised. Moreover, FTIR-ATR characterizations indicated that these periodic polypeptides prepared as hydrated doughy state and dried have the tendency to form a protein network through intermolecular beta-sheets, strongly maintained by hydrogen bonds. Accordingly, these recombinant polypeptides are assumed to be a suitable candidate for potential application.
Collapse
Affiliation(s)
- Sophie Sourice
- Unité de Recherche sur les Protéines végétales et leurs interactions INRA, Rue de la Géraudière, Nantes, France
| | | | | | | | | |
Collapse
|
28
|
Esposti MD, Cristea IM, Gaskell SJ, Nakao Y, Dive C. Proapoptotic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ 2003; 10:1300-9. [PMID: 12894218 DOI: 10.1038/sj.cdd.4401306] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recent evidence indicates that the mitochondrial lipid cardiolipin may be instrumental in the proapoptotic action of Bcl-2 family proteins on mitochondrial membranes, leading to the release of apoptogenic factors. However, contrasting evidence indicates that progressive loss of cardiolipin occurs during apoptosis. Here we show that Bid, a crucial proapoptotic protein that integrates the action of other Bcl-2 family members, exhibits discrete specificity for metabolites of cardiolipin, especially monolysocardiolipin (MCL). MCL, normally present in the remodelling of mitochondrial lipids, progressively increases in mitochondria during Fas-mediated apoptosis as a by-product of cardiolipin degradation, and also enhances Bid binding to membranes. MCL may thus play a crucial role in connecting lipid metabolism, relocation of Bid to mitochondria and integrated action of Bcl-2 proteins on mitochondrial membranes. We propose that Bid interaction with MCL 'primes' the mitochondrial outer membrane via segregation of lipid domains, facilitating membrane discontinuity and leakage of apoptogenic factors.
Collapse
Affiliation(s)
- M Degli Esposti
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
29
|
Eklund DM, Edqvist J. Localization of nonspecific lipid transfer proteins correlate with programmed cell death responses during endosperm degradation in Euphorbia lagascae seedlings. PLANT PHYSIOLOGY 2003; 132:1249-59. [PMID: 12857807 PMCID: PMC167065 DOI: 10.1104/pp.103.020875] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Revised: 02/28/2003] [Accepted: 03/10/2003] [Indexed: 05/19/2023]
Abstract
When the storage materials have been depleted, the endosperm cells undergo programmed cell death. Very little is known about how the components of the dying cells are recycled and used by the growing seedling. To learn more about endosperm degradation and nutrient recycling, we isolated soluble proteins from the endosperm of Euphorbia lagascae seedlings collected 2, 4, and 6 d after sowing. The protein extracts were subjected to two-dimensional gel electrophoresis. Proteins that increased in amount in the endosperm with time were selected for further analysis with mass spectrometry. We successfully identified 17 proteins, which became more abundant by time during germination. Among these proteins were three E. lagascae lipid transfer proteins (ElLTPs), ElLTP1, ElLTP2, and ElLTP3. Detailed expressional studies were performed on ElLTP1 and ElLTP2. ElLTP1 transcripts were detected in endosperm and cotyledons, whereas ElLTP2 transcripts were only detected in endosperm. Western blots confirmed that ElLTP1 and ElLTP2 accumulate during germination. Immunolocalization experiments showed that ElLTP1 was present in the vessels of the developing cotyledons, and also in the alloplastic space in the endosperm. ElLTP2 formed a concentration gradient in the endosperm, with higher amounts in the inner regions close to the cotyledons, and lesser amounts in the outer regions of the endosperm. On the basis of these data, we propose that ElLTP1 and ElLTP2 are involved in recycling of endosperm lipids, or that they act as protease inhibitors protecting the growing cotyledons from proteases released during programmed cell death.
Collapse
Affiliation(s)
- D Magnus Eklund
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| | | |
Collapse
|
30
|
Cantu C, Benlagha K, Savage PB, Bendelac A, Teyton L. The paradox of immune molecular recognition of alpha-galactosylceramide: low affinity, low specificity for CD1d, high affinity for alpha beta TCRs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4673-82. [PMID: 12707346 DOI: 10.4049/jimmunol.170.9.4673] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD1 resembles both class I and class II MHC but differs by the important aspect of presenting lipid/glycolipids, instead of peptides, to T cells. Biophysical studies of lipid/CD1 interactions have been limited, and kinetics of binding are in contradiction with functional studies. We have revisited this issue by designing new assays to examine the loading of CD1 with lipids. As expected for hydrophobic interactions, binding affinity was not high and had limited specificity. Lipid critical micelle concentration set the limitation to these studies. Once loaded onto CD1d, the recognition of glycolipids by alphabeta T cell receptor was studied by surface plasmon resonance using soluble Valpha14-Vbeta8.2 T cell receptors. The Valpha14 Jalpha18 chain could be paired with NK1.1 cell-derived Vbeta chain, or any Vbeta8 chain, to achieve high affinity recognition of alpha-galactosylceramide. Biophysical analysis indicated little effect of temperature or ionic strength on the binding interaction, in contrast to what has been seen in peptide/MHC-TCR studies. This suggests that there is less accommodation made by this TCR in recognizing alpha-galactosylceramide, and it can be assumed that the most rigid part of the Ag, the sugar moiety, is critical in the interaction.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, CD1d
- Binding Sites/immunology
- Calorimetry/methods
- Cell Line
- Dimerization
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Galactosylceramides/immunology
- Galactosylceramides/metabolism
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Isoelectric Focusing/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Kinetics
- Lymphocyte Activation
- Mice
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thermodynamics
- Transfection
Collapse
Affiliation(s)
- Carlos Cantu
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
31
|
Blein JP, Coutos-Thévenot P, Marion D, Ponchet M. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. TRENDS IN PLANT SCIENCE 2002; 7:293-296. [PMID: 12119165 DOI: 10.1016/s1360-1385(02)02284-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Elicitins and lipid-transfer proteins are small cysteine-rich lipid-binding proteins secreted by oomycetes and plant cells, respectively, that share some structural and functional properties. In spite of intensive work on their structure and diversity at the protein and genetic levels, the precise biological roles of lipid-transfer proteins remains unclear, although the most recent data suggest a role in somatic embryogenesis, in the formation of protective surface layers and in defence against pathogens. By contrast, elicitins are known elicitors of plant defence, and recent work demonstrating that elicitins and lipid-transfer proteins share the same biological receptors gives a new perspective to understand the role played by lipid binding proteins, mainly the early recognition of intruders in plants.
Collapse
Affiliation(s)
- Jean-Pierre Blein
- UMR 692 INRA/Université de Bourgogne, Laboratoire de Phytopharmacie et de Biochimie des Interactions Cellulaires, INRA, BP 86510, 21065 Dijon Cedex, France.
| | | | | | | |
Collapse
|
32
|
Douliez JP, Pato C, Rabesona H, Mollé D, Marion D. Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1400-3. [PMID: 11231292 DOI: 10.1046/j.1432-1327.2001.02007.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 7-kDa lipid transfer proteins, LTP2s, share some amino-acid sequence similarities with the 9-kDa isoforms, LTP1s. Both proteins display an identical cysteine motif and, in this regard, LTP2s have been classified as lipid transfer proteins. However, in contrast with LTP1s, no data are available on their structure, cysteine pairings, lipid transfer and lipid binding properties. We reported on the isolation of two isoforms of 7-kDa lipid transfer protein, LTP2, from wheat seeds and showed for the first time that they indeed display lipid transfer activity. Trypsin and chymotrypsin digestions of the native LTP2 afforded the sequence of both isoforms and assignment of disulfide bonds. The cysteine pairings, Cys10--Cys24, Cys25--Cys60, Cys2--Cys34, Cys36--Cys67, revealed a mismatch at the Cys34-X-Cys36 motif of LTP2 compared to LTP1. Moreover, the secondary structure as determined by circular dichroism suggested an identical proportion of alpha helices, beta sheets and random coils. By analogy with the structure of the LTP1, we discussed what structural changes are required to accommodate the LTP2 disulfide pattern.
Collapse
Affiliation(s)
- J P Douliez
- Laboratoire de Biochimie et Technologie des Protéines, INRA, rue de la Géraudière, Nantes, France.
| | | | | | | | | |
Collapse
|