1
|
Chen Y, Lan T. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front Pharmacol 2024; 15:1451957. [PMID: 39359255 PMCID: PMC11444995 DOI: 10.3389/fphar.2024.1451957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The incidence rate of prostate cancer (PCa) has risen by 3% per year from 2014 through 2019 in the United States. An estimated 34,700 people will die from PCa in 2023, corresponding to 95 deaths per day. Castration resistant prostate cancer (CRPC) is the leading cause of deaths among men with PCa. Androgen receptor (AR) plays a critical role in the development of CRPC. N-terminal domain (NTD) is the essential functional domain for AR transcriptional activation, in which modular activation function-1 (AF-1) is important for gene regulation and protein interactions. Over last 2 decades drug discovery against NTD has attracted interest for CRPC treatment. However, NTD is an intrinsically disordered domain without stable three-dimensional structure, which has so far hampered the development of drugs targeting this highly dynamic structure. Employing high throughput cell-based assays, small-molecule NTD inhibitors exhibit a variety of unexpected properties, ranging from specific binding to NTD, blocking AR transactivation, and suppressing oncogenic proliferation, which prompts its evaluation in clinical trials. Furthermore, molecular dynamics simulations reveal that compounds can induce the formation of collapsed helical states. Nevertheless, our knowledge of NTD structure has been limited to the primary sequence of amino acid chain and a few secondary structure motif, acting as a barrier for computational and pharmaceutical analysis to decipher dynamic conformation and drug-target interaction. In this review, we provide an overview on the sequence-structure-function relationships of NTD, including the polymorphism of mono-amino acid repeats, functional elements for transcription regulation, and modeled tertiary structure of NTD. Moreover, we summarize the activities and therapeutic potential of current NTD-targeting inhibitors and outline different experimental methods contributing to screening novel compounds. Finally, we discuss current directions for structure-based drug design and potential breakthroughs for exploring pharmacological motifs and pockets in NTD, which could contribute to the discovery of new NTD inhibitors.
Collapse
Affiliation(s)
- Ye Chen
- Department of Anesthesiology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| | - Tian Lan
- Department of Urology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Gerald T, Raj G. Testosterone and the Androgen Receptor. Urol Clin North Am 2022; 49:603-614. [DOI: 10.1016/j.ucl.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
El Kharraz S, Dubois V, Launonen KM, Helminen L, Palvimo JJ, Libert C, Smeets E, Moris L, Eerlings R, Vanderschueren D, Helsen C, Claessens F. N/C Interactions Are Dispensable for Normal In Vivo Functioning of the Androgen Receptor in Male Mice. Endocrinology 2022; 163:6652495. [PMID: 35908178 PMCID: PMC9756762 DOI: 10.1210/endocr/bqac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) plays a central role in the development and maintenance of the male phenotype. The binding of androgens to the receptor induces interactions between the carboxyterminal ligand-binding domain and the highly conserved 23FQNLF27 motif in the aminoterminal domain. The role of these so-called N/C interactions in AR functioning is debated. In vitro assays show that mutating the AR in the 23FQNLF27 motif (called ARNoC) attenuates the AR transactivation of reporter genes, has no effect on ligand binding, but does affect protein-protein interactions with several AR coregulators. To test the in vivo relevance of the N/C interaction, we analyzed the consequences of the genomic introduction of the ARNoC mutation in mice. Surprisingly, the ARNoC/Y mice show a normal male development, with unaffected male anogenital distance and normal accessory sex glands, male circulating androgen levels, body composition, and fertility. The responsiveness of androgen target genes in kidney, prostate, and testes was also unaffected. We thus conclude that the N/C interactions in the AR are not essential for the development of a male phenotype under normal physiological conditions.
Collapse
Affiliation(s)
- Sarah El Kharraz
- Correspondence: Frank Claessens, PhD, Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium. . Reprint requests can be sent to or
| | - Vanessa Dubois
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, 3000, Belgium
- Department of Basic and Applied Medical Sciences, Basic and Translational Endocrinology, Ghent University, Ghent, 9000, Belgium
| | - Kaisa-Mari Launonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Laura Helminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent, 9052, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Elien Smeets
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Lisa Moris
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Dirk Vanderschueren
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, 3000, Belgium
| | - Christine Helsen
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Frank Claessens
- Correspondence: Frank Claessens, PhD, Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium. . Reprint requests can be sent to or
| |
Collapse
|
4
|
Song T, Li J. New Insights into the Binding Mechanism of Co-regulator BUD31 to AR AF2 Site: Structural Determination and Analysis of the Mutation Effect. Curr Comput Aided Drug Des 2019; 16:45-53. [PMID: 31057123 PMCID: PMC6967182 DOI: 10.2174/1573409915666190502153307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/19/2019] [Accepted: 04/18/2019] [Indexed: 12/01/2022]
Abstract
Introduction Androgen Receptor (AR) plays a pivotal role in the development of male sex and contributes to prostate cancer growth. Different from other nuclear receptors that bind to the co-regulator LxxLL motif in coregulator peptide interaction, the AR Ligand Binding Domain (LBD) prefers to bind to the FxxLF motif. BUD31, a novel co-regulator with FxxLF motif, has been demonstrated to suppress wild-type and mutated AR-mediated prostate cancer growth. Methods To find out the interaction mechanisms of BUD31 with WT/T877A/W741L AR complex, molecular dynamics simulations were employed to study the complex BUD31 and WT/mutant ARs. The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) results demonstrated that T877A and W741L point mutations can reduce the binding affinity between BUD31 and AR. The RMSF and dynamic cross-correlation analysis indicated that amino acid point mutations can affect the motions of loop residues in the AR structure. Results These results indicated that AR co-regulator binding site AF2 can serve as a target for drug discovery to solve the resistance problem.
Collapse
Affiliation(s)
- Tianqing Song
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000 Lanzhou, China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000 Lanzhou, China
| |
Collapse
|
5
|
Elfferich P, van Royen M, van de Wijngaart D, Trapman J, Drop S, van den Akker E, Lusher S, Bosch R, Bunch T, Hughes I, Houtsmuller A, Cools M, Faradz S, Bisschop P, Bunck M, Oostdijk W, Brüggenwirth H, Brinkmann A. Variable Loss of Functional Activities of Androgen Receptor Mutants in Patients with Androgen Insensitivity Syndrome. Sex Dev 2013; 7:223-34. [DOI: 10.1159/000351820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 01/05/2023] Open
|
6
|
Caboni L, Lloyd DG. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Med Res Rev 2012; 33:1081-118. [PMID: 23344935 DOI: 10.1002/med.21275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nuclear receptors (NRs) are a family of ligand-modulated transcription factors with significant therapeutic relevance from metabolic disorders and inflammation to cancer, neurodegenerative, and psychiatric disorders. Drug discovery efforts are typically concentrated on modulating the natural ligand action within the ligand-binding pocket (LBP) in the C-terminal ligand-binding domain (LBD). Drawbacks of LBP-based strategies include physiological alterations due to disruption of ligand binding and difficulties in achieving tissue specificity. Furthermore, the lack of a "pure" and predictable mechanism of action predisposes such intervention toward drug resistance. Recent outstanding progress in our understanding of NR biology has shifted the focus of drug discovery efforts from inside to outside the LBP, affording consideration to the interaction between NRs and coactivator proteins, the interaction between NRs and DNA and the NRs' ligand-independent functions. This review encompasses such currently available NR non-LBP-based interventions and their potential application in therapy or as specific tools to probe NR biology.
Collapse
Affiliation(s)
- Laura Caboni
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
7
|
Minges JT, Su S, Grossman G, Blackwelder AJ, Pop EA, Mohler JL, Wilson EM. Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers. J Biol Chem 2012; 288:1939-52. [PMID: 23172223 DOI: 10.1074/jbc.m112.428409] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer growth and progression depend on androgen receptor (AR) signaling through transcriptional mechanisms that require interactions with coregulatory proteins, one of which is the primate-specific steroid receptor coregulator melanoma antigen-A11 (MAGE-A11). In this report, we provide evidence how increased expression of MAGE-A11 during prostate cancer progression enhances AR signaling and prostate cancer growth. MAGE-A11 protein levels were highest in castration-recurrent prostate cancer. The cyclic AMP-induced increase in androgen-dependent and androgen-independent AR transcriptional activity correlated with an increase in MAGE-A11 and was inhibited by silencing MAGE-A11 expression. MAGE-A11 mediated synergistic AR transcriptional activity in LAPC-4 prostate cancer cells. The ability of MAGE-A11 to rescue transcriptional activity of complementary inactive AR mutants and promote coimmunoprecipitation between unlike forms of AR suggests that MAGE-A11 links transcriptionally active AR dimers. A model for the AR·MAGE-A11 multidimeric complex is proposed in which one AR FXXLF motif of the AR dimer engages in the androgen-dependent AR NH(2)- and carboxyl-terminal interaction, whereas the second FXXLF motif region of the AR dimer interacts with dimeric MAGE-A11. The AR·MAGE-A11 multidimeric complex accounts for the dual functions of the AR FXXLF motif in the androgen-dependent AR NH(2)- and carboxyl-terminal interaction and binding MAGE-A11 and for synergy between reported AR splice variants and full-length AR. We conclude that the increased expression of MAGE-A11 in castration-recurrent prostate cancer, which is enhanced by cyclic AMP signaling, increases AR-dependent growth of prostate cancer by MAGE-A11 forming a molecular bridge between transcriptionally active AR dimers.
Collapse
Affiliation(s)
- John T Minges
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599-7500, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 2012; 352:57-69. [PMID: 21871527 DOI: 10.1016/j.mce.2011.08.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
Abstract
Androgens are key regulators of male sexual differentiation and essential for development and maintenance of male reproductive tissues. The androgens testosterone and dihydrotestosterone mediate their effect by binding to, and activation of the androgen receptor (AR). Upon activation, the AR is able to recognize specific DNA sequences in gene promoters and enhancers from where it recruits coregulators to orchestrate chromatin remodeling and transcription regulation. The number of proteins that bind to the AR has surpassed 200 and many of them enhance (coactivator) or repress (corepressor) its transactivating capacity. For most of these coregulators, their AR binding interface and their exact mode of action still needs to be elucidated, but for some of the more classical coactivators and corepressors, we gained insight in their working mechanisms. Of particular interest are specific sequences (LxxLL and FxxLF-like motifs) in a subset of coactivators that interact with the AR via a coactivator binding groove in the ligand-binding domain. As compared to other steroid receptors, the conformation of the AR coactivator binding pocket is unique and preferentially binds FxxLF-like motifs. This predisposition is expected to contribute to the regulation of specific sets of target genes via recruitment of selected coregulators. This review provides an overview of these (inter)actions with a focus on the unique characteristics of the AR coactivator binding groove.
Collapse
|
9
|
Askew EB, Minges JT, Hnat AT, Wilson EM. Structural features discriminate androgen receptor N/C terminal and coactivator interactions. Mol Cell Endocrinol 2012; 348:403-10. [PMID: 21664945 PMCID: PMC3199032 DOI: 10.1016/j.mce.2011.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 11/20/2022]
Abstract
Human androgen receptor (AR) transcriptional activity involves interdomain and coactivator interactions with the agonist-bound AR ligand binding domain (LBD). Structural determinants of the AR NH(2)- and carboxyl-terminal interaction between the AR NH(2)-terminal FXXLF motif and activation function 2 (AF2) in the LBD were shown previously by crystallography. In this report, we provide evidence for a region in AR LBD helix 12 outside the AF2 binding cleft that facilitates interactions with the FXXLF and LXXLL motifs. Mutagenesis of glutamine 902 to alanine in AR LBD helix 12 (Q902A) disrupted AR FXXLF motif binding to AF2, but enhanced coactivator LXXLL motif binding. Functional compensation for defective FXXLF motif binding by AR-Q902A was suggested by the slower dissociation rate of bound androgen. Functional importance of glutamine 902 was indicated by the charged residue germline mutation Q902R that caused partial androgen insensitivity, and a similar somatic mutation Q902K reported in prostate cancer, both of which increased the androgen dissociation rate and decreased AR transcriptional activity. High affinity equilibrium androgen binding was retained by alanine substitution mutations at Tyr-739 in AR LBD helix 5 or Lys-905 in helix 12 structurally adjacent to AF2, whereas transcriptional activity decreased and the androgen dissociation increased. Deleterious effects of these loss of function mutations were rescued by the helix stabilizing AR prostate cancer somatic mutation H874Y. Sequence NH(2)-terminal to the AR FXXLF motif contributed to the AR NH(2)- and carboxyl-terminal interaction based on greater AR-2-30 FXXLF motif peptide binding to the agonist-bound AR LBD than a shorter AR-20-30 FXXLF motif peptide. We conclude that helix 12 residues outside the AF2 binding cleft modulate AR transcriptional activity by providing flexibility to accommodate FXXLF or LXXLL motif binding.
Collapse
Affiliation(s)
| | - John T. Minges
- Curriculum in Toxicology, Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, and the Departments of Pediatrics, and Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7500 USA
| | - Andrew T. Hnat
- Curriculum in Toxicology, Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, and the Departments of Pediatrics, and Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7500 USA
| | - Elizabeth M. Wilson
- Curriculum in Toxicology, Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, and the Departments of Pediatrics, and Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7500 USA
| |
Collapse
|
10
|
van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Jenster G, Trapman J. Inhibition of androgen receptor functions by gelsolin FxxFF peptide delivered by transfection, cell-penetrating peptides, and lentiviral infection. Prostate 2011; 71:241-53. [PMID: 20690138 DOI: 10.1002/pros.21238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prostate cancer (PC) growth is dependent on the androgen-androgen receptor (AR) axis. Because current androgen ablation therapies of PC lead to resistance, novel approaches to block AR activity are urgently needed. METHODS We inhibited AR function beyond the level of hormone binding by blockade of the coactivator groove in the ligand-binding domain (LBD) using a high-affinity gelsolin FxxFF peptide. Following peptide selection, the effect of the gelsolin FxxFF peptide on AR functions was determined in Hep3B cells that were transiently transfected with pM-peptide expression vectors or were incubated with synthetic gelsolin FxxFF peptide coupled to the TAT cell-penetrating peptide. Lentiviruses expressing the gelsolin FxxFF peptide were used to study endogenous AR target gene expression in LNCaP cells. RESULTS pM-Gelsolin FxxFF efficiently interfered with AR N/C interaction and specifically inhibited AR-regulated reporter gene activity. The peptide did not inhibit progesterone receptor (PR) and glucocorticoid receptor (GR) activity, nor constitutively active gene promoters. The peptide also specifically blocked in vitro interactions of AR LBD with peptides. Like the gelsolin FxxFF peptide expressed by an expression vector, synthetic TAT-gelsolin FxxFF peptide efficiently blocked AR N/C interaction and inhibited full-length AR-regulated reporter gene activity. It hardly affected PR and GR activity, but the effect on constitutively active promoters was variable. Lentiviral gelsolin FxxFF peptide inhibited expression of KLK2 and NDRG1, but hardly affected PSA and TMPRSS2. CONCLUSIONS Our results show that the AR coactivator groove may function as a target to overcome therapeutic failure that arises during current androgen ablation therapies.
Collapse
|
11
|
van de Wijngaart DJ, Molier M, Lusher SJ, Hersmus R, Jenster G, Trapman J, Dubbink HJ. Systematic structure-function analysis of androgen receptor Leu701 mutants explains the properties of the prostate cancer mutant L701H. J Biol Chem 2009; 285:5097-105. [PMID: 20007693 DOI: 10.1074/jbc.m109.039958] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One mechanism of prostate tumors for escape from androgen ablation therapies is mutation of the androgen receptor (AR). We investigated the unique properties of the AR L701H mutant, which is strongly stimulated by cortisol, by a systematic structure-function analysis. Most amino acid substitutions at position 701 did not affect AR activation by 5alpha-dihydrotestosterone. Further analysis of the AR Leu(701) variants showed that AR L701M and AR L701Q, like AR L701H, had changed ligand responsiveness. AR L701M was strongly activated by progesterone but not by cortisol, whereas the opposite was observed for AR L701Q and AR L701H. Next, we analyzed a panel of structurally related steroids to study which of the OH groups at positions 11beta, 17alpha, and 21, which discriminate cortisol from progesterone, underlie the differential responses to both hormones. The results showed that the 17alpha-OH group was essential for activation of AR L701H and AR L701Q, whereas its absence was important for activation of AR L701M. Modeling indicated a conserved H-bonding network involving the steroidal 17alpha-OH group, His(701) or Gln(701), and the backbone of Ser(778). This network is absent in Leu(701) and in other mutants. A hydrophobic leucine or methionine at position 701 is unfavorable for the 17alpha-OH group. Our results indicate that the specific amino acid residue at position 701, its interaction with the backbone of Ser(778), and the steroidal 17alpha-hydroxyl group of the ligand are all important for the distinct transcriptional responses to progesterone and cortisol of AR mutants, including the prostate cancer mutant L701H.
Collapse
Affiliation(s)
- Dennis J van de Wijngaart
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Trapman J, Jenster G. Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression. Mol Endocrinol 2009; 23:1776-86. [PMID: 19762545 DOI: 10.1210/me.2008-0280] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Androgen receptor (AR) transcriptional activity is tightly regulated by interacting cofactors and cofactor complexes. The best described cofactor interaction site in the AR is the hormone-induced coactivator binding groove in the ligand-binding domain, which serves as a high-affinity docking site for FxxLF-like motifs. This study aimed at identifying novel AR cofactors by in silico selection and functional screening of FxxLF-like peptide motifs. Candidate interacting motifs were selected from a proteome-wide screening and from a supervised screening focusing on components of protein complexes involved in transcriptional regulation. Of the 104 peptides tested, 12 displayed moderate to strong in vivo hormone-dependent interactions with AR. For three of these, ZBTB16/PLZF, SMARCA4/BRG1, and SMARCD1/BAF60a, the full-length protein was tested for interaction with AR. Of these, BAF60a, a subunit of the SWI/SNF chromatin remodeling complex, displayed hormone-dependent interactions with AR through its FxxFF motif. Vice versa, recruitment of BAF60a by the AR required an intact coactivator groove. BAF60a depletion by small interfering RNA in LNCaP cells demonstrated differential effects on expression of endogenous AR target genes. AR-driven expression of TMPRSS2 was almost completely blocked by BAF60a small interfering RNA. In summary, our data demonstrate that BAF60a directly interacts with the coactivator groove in the AR ligand-binding domain via its FxxFF motif, thereby selectively activating specific AR-driven promoters.
Collapse
Affiliation(s)
- Dennis J van de Wijngaart
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical College, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Wang G, Sadar MD. Amino-terminus domain of the androgen receptor as a molecular target to prevent the hormonal progression of prostate cancer. J Cell Biochem 2009; 98:36-53. [PMID: 16440300 DOI: 10.1002/jcb.20802] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prostate cancer has a propensity to metastasize to the bone. Currently the only effective systemic treatment for these patients is androgen ablation therapy. However, the tumor will invariably progress to an androgen-independent stage and the patient will succumb to his disease within approximately 2 years. The earliest indication of hormonal progression is the rising titer of serum prostate specific antigen. Current evidence implicates the androgen receptor (AR) as a key factor in maintaining the growth of prostate cancer cells in an androgen-depleted state. Under normal conditions, binding of ligand activates the receptor, allowing it to effectively bind to its respective DNA element. However, AR is also transformed in the absence of androgen (ligand-independent activation) in prostate cells via multiple protein kinase pathways and the interleukin-6 (IL-6) pathway that converge upon the N-terminal domain of the AR. This domain is the main region for phosphorylation and is also critical for normal coregulator recruitment. Here we discuss evidence supporting the role of the AR, IL-6 and other protein kinase pathways in the hormonal progression of prostate cancer to androgen independence and the mechanisms involved in activation of the AR by these pathways. Receptor-targeted therapy, especially potential drugs targeting the N-terminal domain, may effectively prevent or delay the hormonal progression of AR-dependent prostate cancer.
Collapse
Affiliation(s)
- Gang Wang
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, V5Z1L3, Canada
| | | |
Collapse
|
14
|
Vaz B, Möcklinghoff S, Brunsveld L. Targeting the Nuclear Receptor–Cofactor Interaction. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527623297.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Wong HY, Hoogerbrugge JW, Pang KL, van Leeuwen M, van Royen ME, Molier M, Berrevoets CA, Dooijes D, Dubbink HJ, van de Wijngaart DJ, Wolffenbuttel KP, Trapman J, Kleijer WJ, Drop SLS, Grootegoed JA, Brinkmann AO. A novel mutation F826L in the human androgen receptor in partial androgen insensitivity syndrome; increased NH2-/COOH-terminal domain interaction and TIF2 co-activation. Mol Cell Endocrinol 2008; 292:69-78. [PMID: 18656523 DOI: 10.1016/j.mce.2008.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 10/21/2022]
Abstract
A novel mutation F826L located within the ligand binding domain (LBD) of the human androgen receptor (AR) was investigated. This mutation was found in a boy with severe penoscrotal hypospadias (classified as 46,XY DSD). The AR mutant F826L appeared to be indistinguishable from the wild-type AR, with respect to ligand binding affinity, transcriptional activation of MMTV-luciferase and ARE2-TATA-luciferase reporter genes, protein level in genital skin fibroblasts (GSFs), and sub-cellular distribution in transfected cells. However, an at least two-fold higher NH2-/COOH-terminal domain interaction was found in luciferase and GST pull-down assays. A two-fold increase was also observed for TIF2 (transcription intermediary factor 2) co-activation of the AR F826L COOH-terminal domain. This increase could not be explained by a higher stability of the mutant protein, which was within wild-type range. Repression of transactivation by the nuclear receptor co-repressor (N-CoR) was not affected by the AR F826L mutation. The observed properties of AR F826L would be in agreement with an increased activity rather than with a partial defective AR transcriptional activation. It is concluded that the penoscrotal hypospadias in the present case is caused by an as yet unknown mechanism, which still may involve the mutant AR.
Collapse
Affiliation(s)
- Hao Yun Wong
- Department of Reproduction and Development, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. NUCLEAR RECEPTOR SIGNALING 2008; 6:e008. [PMID: 18612376 PMCID: PMC2443950 DOI: 10.1621/nrs.06008] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/29/2008] [Indexed: 01/07/2023]
Abstract
Androgens control male sexual development and maintenance of the adult male phenotype. They have very divergent effects on their target organs like the reproductive organs, muscle, bone, brain and skin. This is explained in part by the fact that different cell types respond differently to androgen stimulus, even when all these responses are mediated by the same intracellular androgen receptor. To understand these tissue- and cell-specific readouts of androgens, we have to learn the many different steps in the transcription activation mechanisms of the androgen receptor (NR3C4). Like all nuclear receptors, the steroid receptors have a central DNA-binding domain connected to a ligand-binding domain by a hinge region. In addition, all steroid receptors have a relatively large amino-terminal domain. Despite the overall structural homology with other nuclear receptors, the androgen receptor has several specific characteristics which will be discussed here. This receptor can bind two types of androgen response elements (AREs): one type being similar to the classical GRE/PRE-type elements, the other type being the more divergent and more selective AREs. The hormone-binding domain has low intrinsic transactivation properties, a feature that correlates with the low affinity of this domain for the canonical LxxLL-bearing coactivators. For the androgen receptor, transcriptional activation involves the alternative recruitment of coactivators to different regions in the amino-terminal domain, as well as the hinge region. Finally, a very strong ligand-induced interaction between the amino-terminal domain and the ligand-binding domain of the androgen receptor seems to be involved in many aspects of its function as a transcription factor. This review describes the current knowledge on the structure-function relationships within the domains of the androgen receptor and tries to integrate the involvement of different domains, subdomains and motifs in the functioning of this receptor as a transcription factor with tissue- and cell-specific readouts.
Collapse
Affiliation(s)
- Frank Claessens
- Molecular Endocrinology Laboratory, Campus Gasthuisberg, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
17
|
Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold T, Chang CY, Hager GL, Saatcioglu F. Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol Cell Biol 2007; 27:1823-43. [PMID: 17189428 PMCID: PMC1820481 DOI: 10.1128/mcb.01297-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/24/2006] [Accepted: 12/08/2006] [Indexed: 12/29/2022] Open
Abstract
Androgens have key roles in normal physiology and in male sexual differentiation as well as in pathological conditions such as prostate cancer. Androgens act through the androgen receptor (AR), which is a ligand-modulated transcription factor. Antiandrogens block AR function and are widely used in disease states, but little is known about their mechanism of action in vivo. Here, we describe a rapid differential interaction of AR with target genomic sites in living cells in the presence of agonists which coincides with the recruitment of BRM ATPase complex and chromatin remodeling, resulting in transcriptional activation. In contrast, the interaction of antagonist-bound or mutant AR with its target was found to be kinetically different: it was dramatically faster, occurred without chromatin remodeling, and resulted in the lack of transcriptional inhibition. Fluorescent resonance energy transfer analysis of wild-type AR and a transcriptionally compromised mutant at the hormone response element showed that intramolecular interactions between the N and C termini of AR play a key functional role in vivo compared to intermolecular interactions between two neighboring ARs. These data provide a kinetic and mechanistic basis for regulation of gene expression by androgens and antiandrogens in living cells.
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Androgen Antagonists/pharmacology
- Androgens/pharmacology
- Anilides/pharmacology
- Animals
- Cell Line, Tumor
- Chromatin Assembly and Disassembly
- Cyproterone Acetate/pharmacology
- Dihydrotestosterone/pharmacology
- Female
- Fluorescence Recovery After Photobleaching
- Flutamide/analogs & derivatives
- Flutamide/pharmacology
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- In Situ Hybridization, Fluorescence
- Ligands
- Luciferases/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Metribolone/pharmacology
- Mice
- Microscopy, Video
- Mifepristone/pharmacology
- Models, Biological
- Nitriles/pharmacology
- Plasmids
- Promoter Regions, Genetic
- Receptors, Androgen/drug effects
- Receptors, Androgen/metabolism
- Response Elements/physiology
- Testosterone/pharmacology
- Tosyl Compounds/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- Tove I Klokk
- Department of Molecular Biosciences, University of Oslo, Postboks 1041 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bonagura TW, Deng M, Brown TR. A naturally occurring mutation in the human androgen receptor of a subject with complete androgen insensitivity confers binding and transactivation by estradiol. Mol Cell Endocrinol 2007; 263:79-89. [PMID: 17011702 DOI: 10.1016/j.mce.2006.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
The clinical phenotype of complete androgen insensitivity (CAIS) was associated with a mutation in the human androgen receptor (hAR) gene encoding the amino acid substitution, M745I, in the hAR protein. Transcriptional activation of hAR(M745I) by the synthetic androgen, methyltrienolone (R1881), was reduced compared to wild-type (wt) hAR. The transcriptional co-activator, androgen receptor associated protein 70 (ARA70), failed to enhance transactivation of hAR(M745I) at lower concentrations of R1881 (0.01-0.1 nM), whereas the p160 co-activators, SRC-1 and TIF2, stimulated activity. Transcriptional activity of hAR(M745I) was stimulated by 1 or 10 nM R1881 and activity was further enhanced by co-expression of ARA70 similar to that of the hAR(wt). Transcriptional activity of hAR(wt) was minimally stimulated by estradiol (E2) without or with co-expression of ARA70, whereas 10 or 100 nM E2 increased transactivation by hAR(M745I) of the androgen-responsive MMTV-luciferase reporter gene by 10-fold and activity was further enhanced by ARA70. Increasing concentrations of E2 competed more effectively for binding of R1881 to hAR(M745I) than to hAR(wt), indicative of the preferential binding of E2 to the mutant hAR. Partial tryptic digestion of hAR wt and M745I revealed that activation of the mutant protein was reduced in the presence of R1881. By contrast, tryptic digestion showed that the mutant hAR was activated by the binding of E2. In conclusion, the clinical phenotype of CAIS resulted from a hAR gene mutation encoding hAR(M745I) with reduced binding and transactivation by androgens, but the novel properties of enhanced affinity for and increased transactivation by estradiol.
Collapse
Affiliation(s)
- Thomas W Bonagura
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2103, United States
| | | | | |
Collapse
|
19
|
van de Wijngaart DJ, van Royen ME, Hersmus R, Pike ACW, Houtsmuller AB, Jenster G, Trapman J, Dubbink HJ. Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. J Biol Chem 2006; 281:19407-16. [PMID: 16690616 DOI: 10.1074/jbc.m602567200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon hormone binding, a hydrophobic coactivator binding groove is induced in the androgen receptor (AR) ligand-binding domain (LBD). This groove serves as high affinity docking site for alpha-helical FXXLF motifs present in the AR N-terminal domain and in AR cofactors. Study of the amino acid requirements at position +4 of the AR FXXLF motif revealed that most amino acid substitutions strongly reduced or completely abrogated AR LBD interaction. Strong interactions were still observed following substitution of Leu+4 by Phe or Met residues. Leu+4 to Met or Phe substitutions in the FXXLF motifs of AR cofactors ARA54 and ARA70 were also compatible with strong AR LBD binding. Like the corresponding FXXLF motifs, interactions of FXXFF and FXXMF variants of AR and ARA54 motifs were AR specific, whereas variants of the less AR-selective ARA70 motif displayed increased AR specificity. A survey of currently known AR-binding proteins revealed the presence of an FXXFF motif in gelsolin and an FXXMF motif in PAK6. In vivo fluorescence resonance energy transfer and functional protein-protein interaction assays showed direct, efficient, and specific interactions of both motifs with AR LBD. Mutation of these motifs abrogated interaction of gelsolin and PAK6 proteins with AR. In conclusion, we have demonstrated strong interaction of FXXFF and FXXMF motifs to the AR coactivator binding groove, thereby mediating specific binding of a subgroup of cofactors to the AR LBD.
Collapse
Affiliation(s)
- Dennis J van de Wijngaart
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, P. O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dubbink HJ, Hersmus R, Pike ACW, Molier M, Brinkmann AO, Jenster G, Trapman J. Androgen receptor ligand-binding domain interaction and nuclear receptor specificity of FXXLF and LXXLL motifs as determined by L/F swapping. Mol Endocrinol 2006; 20:1742-55. [PMID: 16627595 DOI: 10.1210/me.2005-0348] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) ligand-binding domain (LBD) binds FXXLF motifs, present in the AR N-terminal domain and AR-specific cofactors, and some LXXLL motifs of nuclear receptor coactivators. We demonstrated that in the context of the AR FXXLF motif many different amino acid residues at positions +2 and +3 are compatible with strong AR LBD interaction, although a preference for E at +2 and K or R at +3 was found. Pairwise systematic analysis of F/L swaps at +1 and +5 in FXXLF and LXXLL motifs showed: 1) F to L substitutions in natural FXXLF motifs abolished AR LBD interaction; 2) binding of interacting LXXLL motifs was unchanged or increased upon L to F substitutions; 3) certain noninteracting LXXLL motifs became strongly AR-interacting FXXLF motifs; whereas 4) other nonbinders remained unaffected by L to F substitutions. All FXXLF motifs, but not the corresponding LXXLL motifs, displayed a strong preference for AR LBD. Progesterone receptor LBD interacted with some FXXLF motifs, albeit always less efficiently than corresponding LXXLL motifs. AR LBD interaction of most FXXLF and LXXLL peptides depended on classical charge clamp residue K720, whereas E897 was less important. Other charged residues lining the AR coactivator-binding groove, K717 and R726, modulated optimal peptide binding. Interestingly, these four charged residues affected binding of individual peptides independent of an F or L at +1 and +5 in swap experiments. In conclusion, F residues determine strong and selective peptide interactions with AR. Sequences flanking the core motif determine the specific mode of FXXLF and LXXLL interactions.
Collapse
Affiliation(s)
- Hendrikus J Dubbink
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Callewaert L, Van Tilborgh N, Claessens F. Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res 2006; 66:543-53. [PMID: 16397271 DOI: 10.1158/0008-5472.can-05-2389] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) plays a key role in prostate cancer development, as well as its treatments, even for the hormone-refractory state. Here, we report that an earlier described lysine-to-arginine mutation at position 179 in AR leads to a more potent AR. We show that two activation domains (Tau-1 and Tau-5) are necessary and sufficient for the full activity of AR and the intrinsic activity of the AR-NTD. Two alpha-helices surrounding the Lys179 define the core of Tau-1, which can act as an autonomous activation function, independent of p160 coactivators. Furthermore, we show that although the recruitment of p160 coactivators is mediated through Tau-5, this event is attenuated by core Tau-1. This better definition of the mechanisms of action of both Tau-1 and Tau-5 is instrumental for the design of alternative therapeutic strategies against prostate cancer.
Collapse
Affiliation(s)
- Leen Callewaert
- Molecular Endocrinology Laboratory, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
22
|
Lavery D, Mcewan I. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 2006; 391:449-64. [PMID: 16238547 PMCID: PMC1276946 DOI: 10.1042/bj20050872] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Steroid hormones are important endocrine signalling molecules controlling reproduction, development, metabolism, salt balance and specialized cellular responses, such as inflammation and immunity. They are lipophilic in character and act by binding to intracellular receptor proteins. These receptors function as ligand-activated transcription factors, switching on or off networks of genes in response to a specific hormone signal. The receptor proteins have a conserved domain organization, comprising a C-terminal LBD (ligand-binding domain), a hinge region, a central DBD (DNA-binding domain) and a highly variable NTD (N-terminal domain). The NTD is structurally flexible and contains surfaces for both activation and repression of gene transcription, and the strength of the transactivation response has been correlated with protein length. Recent evidence supports a structural and functional model for the NTD that involves induced folding, possibly involving alpha-helix structure, in response to protein-protein interactions and structure-stabilizing solutes.
Collapse
Affiliation(s)
- Derek N. Lavery
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
| | - Iain J. Mcewan
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Li W, Cavasotto CN, Cardozo T, Ha S, Dang T, Taneja SS, Logan SK, Garabedian MJ. Androgen Receptor Mutations Identified in Prostate Cancer and Androgen Insensitivity Syndrome Display Aberrant ART-27 Coactivator Function. Mol Endocrinol 2005; 19:2273-82. [PMID: 15919721 DOI: 10.1210/me.2005-0134] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The transcriptional activity of the androgen receptor (AR) is modulated by interactions with coregulatory molecules. It has been proposed that aberrant interactions between AR and its coregulators may contribute to diseases related to AR activity, such as prostate cancer and androgen insensitivity syndrome (AIS); however, evidence linking abnormal receptor-cofactor interactions to disease is scant. ART-27 is a recently identified AR N-terminal coactivator that is associated with AR-mediated growth inhibition. Here we analyze a number of naturally occurring AR mutations identified in prostate cancer and AIS for their ability to affect AR response to ART-27. Although the vast majority of AR mutations appeared capable of increased activation in response to ART-27, an AR mutation identified in prostate cancer (AR P340L) and AIS (AR E2K) show reduced transcriptional responses to ART-27, whereas their response to the p160 class of coactivators was not diminished. Relative to the wild-type receptor, less ART-27 protein associated with the AR E2K substitution, consistent with reduced transcriptional response. Surprisingly, more ART-27 associated with AR P340L, despite the fact that the mutation decreased transcriptional activation in response to ART-27. Our findings suggest that aberrant AR-coactivator association interferes with normal ART-27 coactivator function, resulting in suppression of AR activity, and may contribute to the pathogenesis of diseases related to alterations in AR activity, such as prostate cancer and AIS.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Microbiology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Duff J, McEwan IJ. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol 2005; 19:2943-54. [PMID: 16081517 DOI: 10.1210/me.2005-0231] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The androgen receptor (AR) signaling pathway is a major therapeutic target in the treatment of prostate cancer. The AR functions as a ligand-activated transcription factor in the presence of the cognate hormone ligands testosterone and dihydrotestosterone (DHT). We have characterized a highly conserved sequence at the C-terminal end of helix 10/11 in the ligand-binding domain (LBD), which is prone to receptor point mutations in prostate cancer. This sequence includes threonine 877 that is involved in hydrogen bonding to the D ring of the steroid molecule and leads to promiscuous ligand activation of the AR when mutated to alanine or serine. A second mutation in this region, H874Y, also results in a receptor protein that has broadened ligand-binding specificity, but retains an affinity for DHT (K(d) = 0.77 nm) similar to that of the wild-type receptor. The structure of the mutant LBD, expressed in Escherichia coli, is not dramatically altered compared with the wild-type AR-LBD in the presence of DHT, but shows a modestly increased sensitivity to protease digestion in the absence of hormone. This mutant AR showed wild-type AR-LBD/N-terminal domain interactions, but significantly enhanced binding and transactivation activity with all three members of the p160 family of coactivator proteins. Together, these phenotypic changes are likely to confer a selective advantage for tumor cells in a low androgen environment resulting from hormone therapy.
Collapse
Affiliation(s)
- Jennifer Duff
- School of Medical Sciences, Institute of Medical Sciences Building, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | |
Collapse
|
25
|
Bai S, He B, Wilson EM. Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol Cell Biol 2005; 25:1238-57. [PMID: 15684378 PMCID: PMC548016 DOI: 10.1128/mcb.25.4.1238-1257.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene activation by steroid hormone receptors involves the recruitment of the steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs to activation function 2 (AF2) in the ligand binding domain. For the androgen receptor (AR), AF2 also serves as the interaction site for the AR NH(2)-terminal FXXLF motif in the androgen-dependent NH(2)-terminal and carboxyl-terminal (N/C) interaction. The relative importance of the AR AF2 site has been unclear, since the AR FXXLF motif interferes with coactivator recruitment by competitive inhibition of LXXLL motif binding. In this report, we identified the X chromosome-linked melanoma antigen gene product MAGE-11 as an AR coregulator that specifically binds the AR NH(2)-terminal FXXLF motif. Binding of MAGE-11 to the AR FXXLF alpha-helical region stabilizes the ligand-free AR and, in the presence of an agonist, increases exposure of AF2 to the recruitment and activation by the SRC/p160 coactivators. Intracellular association between AR and MAGE-11 is supported by their coimmunoprecipitation and colocalization in the absence and presence of hormone and by competitive inhibition of the N/C interaction. AR transactivation increases in response to MAGE-11 and the SRC/p160 coactivators through mechanisms that include but are not limited to the AF2 site. MAGE-11 is expressed in androgen-dependent tissues and in prostate cancer cell lines. The results suggest MAGE-11 is a unique AR coregulator that increases AR activity by modulating the AR interdomain interaction.
Collapse
Affiliation(s)
- Suxia Bai
- Laboratories for Reproductive Biology, CB# 7500, Rm. 3340, Medical Biomolecular Research Building, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
26
|
Burd CJ, Petre CE, Moghadam H, Wilson EM, Knudsen KE. Cyclin D1 binding to the androgen receptor (AR) NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Mol Endocrinol 2004; 19:607-20. [PMID: 15539430 DOI: 10.1210/me.2004-0266] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily, the activity of which is critical for the development and progression of prostate cancer. We and others have previously demonstrated that cyclin D1 is a potent corepressor of the AR. Although cyclin D1 is suspected to recruit histone deacetylases to the AR complex, previous studies have demonstrated that this activity alone is insufficient for cyclin D1 function. Here, we uncover a novel, secondary means of cyclin D1-mediated repression, through modulation of AR amino-carboxy terminal interactions. We show that cyclin D1 predominantly binds the N-terminal domain of the AR, dependent on the AR 23FxxLF27 motif. Through this motif, cyclin D1 abrogates the ability of the AR N-terminal domain to interact with the C terminus. Secondary amino-terminal domain sites capable of fostering interaction with the C terminus were refractory to cyclin D1 action, indicating that the ability of cyclin D1 to modulate AR amino-carboxy terminal interactions is specific to 23FxxLF27. Deletion of the N-terminal cyclin D1 binding site severely compromised AR activity (due to loss of FxxLF) but unmasked a repressor action through interaction with the AR C terminus. In summary, these data reveal novel, unexpected mechanisms of cyclin D1 activity and demonstrate that this function of cyclin D1 is critical for AR modulation.
Collapse
Affiliation(s)
- C J Burd
- Department of Cell Biology, University of Cincinnati College of Medicine, P.O. Box 670521, 3125 Eden Avenue, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | |
Collapse
|
27
|
Dubbink HJ, Hersmus R, Verma CS, van der Korput HAGM, Berrevoets CA, van Tol J, Ziel-van der Made ACJ, Brinkmann AO, Pike ACW, Trapman J. Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor. Mol Endocrinol 2004; 18:2132-50. [PMID: 15178743 DOI: 10.1210/me.2003-0375] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Among nuclear receptors, the androgen receptor (AR) is unique in that its ligand-binding domain (LBD) interacts with the FXXLF motif in the N-terminal domain, resembling coactivator LXXLL motifs. We compared AR- and estrogen receptor alpha-LBD interactions of the wild-type AR FXXLF motif and coactivator transcriptional intermediary factor 2 LXXLL motifs and variants of these motifs. Random mutagenesis revealed a key role for the F residues in FXXLF motifs in high-affinity and selective AR LBD interaction. The FXXLF motif in full-length AR and transcriptional intermediary factor 2 LXXLL motifs competed for an overlapping binding site. A computer model of the AR LBD/AR FXXLF complex showed that the bulky F residues are buried in a deep coactivator-binding groove. The corresponding groove in estrogen receptor alpha LBD is considerably shallower, explaining lack of binding of any of the FXXLF motifs tested. FXXLF and LXXLL motif interaction depended on different charged amino acid residues in the AR LBD present at opposite ends of the coactivator groove. In conclusion, our data demonstrate the importance of a deep hydrophobic groove and alternative usage of charged amino acids in specifying peptide binding to the AR LBD.
Collapse
Affiliation(s)
- Hendrikus J Dubbink
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Minamiguchi K, Kawada M, Ohba SI, Takamoto K, Ishizuka M. Ectopic expression of the amino-terminal peptide of androgen receptor leads to androgen receptor dysfunction and inhibition of androgen receptor-mediated prostate cancer growth. Mol Cell Endocrinol 2004; 214:175-87. [PMID: 15062556 DOI: 10.1016/j.mce.2003.10.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 10/14/2003] [Indexed: 11/24/2022]
Abstract
Androgen receptor (AR) is a ligand-activated transcription factor that requires androgen binding to initiate a series of molecular events leading to specific gene activation. AR has been suggested to form an antiparallel homodimer based on the characteristics of high affinity interaction between the amino (N) and carboxyl (C) termini of it. Recently, it is suggested that AR N-to-C interaction is critical for the ability of this receptor to up-regulate the transcription of androgen-responsive genes, and may be a new target for treatment of prostate cancer (PCa). In this study, we investigated the effect of N-terminal (1-34) peptide of AR (ARN34) on androgen-dependent function in PCa cell. Ectopic expression of ARN34 suppressed both androgen-dependent AR N-to-C interaction and prostate specific antigen transcription. Ectopic expression of ARN34 also caused delaying translocation to the nucleus and the decreasing stability of the AR. Stable expression of ARN34 suppressed androgen-dependent cell growth of LNCaP cells. Moreover, transactivation and cell growth of the AR variant in LNCaP cells by the AR antagonist, hydroxyflutamide, were also inhibited by ARN34. Although treatment of LNCaP cells with androgen drove transition of cells from G1 to S-phase, the cells expressing ARN34 were inhibited to enter into S phase in the presence of androgen. This cell cycle arrest was attended by decrease in cyclin E levels and cyclin-dependent-kinase 2 activity, and increase in p27 levels. Our results demonstrated that disruption of AR N-to-C interaction caused by ARN34 leads to AR dysfunction and inhibition of AR-mediated prostate cancer cell growth. This approach is thus considered to provide a useful therapeutic opinion for blocking AR-mediated PCa growth.
Collapse
Affiliation(s)
- Kazuhisa Minamiguchi
- Institute for Chemotherapy, Microbial Chemistry Research Foundation, Numazu, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
29
|
Callewaert L, Christiaens V, Haelens A, Verrijdt G, Verhoeven G, Claessens F. Implications of a polyglutamine tract in the function of the human androgen receptor. Biochem Biophys Res Commun 2003; 306:46-52. [PMID: 12788064 DOI: 10.1016/s0006-291x(03)00902-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The androgen receptor (AR) is a ligand-dependent transcription factor and belongs to the nuclear receptor family. The AR gene contains a long polymorphic CAG repeat, coding for a polyglutamine tract. In the full size AR, the deletion of the polyglutamine tract results in an increase in the transactivation through canonical AREs. However, this effect is clearly dependent on the response elements, since it is not observed on selective elements. In our assays, a deletion of the repeat positively affected the interactions of the ligand-binding domain with the amino-terminal domain as well as the recruitment of the p160 coactivator SRC-1e to the amino-terminal domain of the AR. This is reflected by an enhanced coactivation of the AR by SRC-1e.
Collapse
Affiliation(s)
- Leen Callewaert
- Division of Biochemistry, Faculty of Medicine, Campus Gasthuisberg O/N, University of Leuven, O/N, Herestraat 49, B-3000, Louvain, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Callewaert L, Verrijdt G, Christiaens V, Haelens A, Claessens F. Dual function of an amino-terminal amphipatic helix in androgen receptor-mediated transactivation through specific and nonspecific response elements. J Biol Chem 2003; 278:8212-8. [PMID: 12509416 DOI: 10.1074/jbc.m210744200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid receptors are transcription factors that, upon binding to their response elements, regulate the expression of several target genes via direct protein interactions with transcriptional coactivators. For the androgen receptor, additional interactions between the amino- and carboxyl-terminal regions have been reported. The first amino acids of the amino-terminal domain are necessary for this amino/carboxyl-terminal interaction. Deletion of a FQNLF core sequence in this region blunts the interaction, as does a G21E mutation. We investigated the effect of the aforementioned mutations in the context of the full size androgen receptor on a series of selective and nonselective androgen response elements. Strikingly, the FQNLF deletion strongly reduced the androgen receptor capacity to transactivate through nonselective motifs but did not affect its activity on selective elements. Although the G21E mutation strongly impairs the amino/carboxyl-terminal interaction, it does not significantly influence androgen receptor activity on either selective or nonselective elements. Surprisingly, this mutation leads to an increased binding of the amino-terminal domain to the glutamine-rich region of the steroid receptor coactivator-1 of the p160 family. Taken together, these data suggest that the amino-terminal amino acids of the androgen receptor play a key role in determining its transcriptional activity by modulating the interaction with the ligand-binding domain as well as interaction with p160 coactivators.
Collapse
Affiliation(s)
- Leen Callewaert
- Division of Biochemistry, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Herestraat 49, Belgium
| | | | | | | | | |
Collapse
|