1
|
Rulifson IC, Cao P, Miao L, Kopecky D, Huang L, White RD, Samayoa K, Gardner J, Wu X, Chen K, Tsuruda T, Homann O, Baribault H, Yamane H, Carlson T, Wiltzius J, Li Y. Identification of Human Islet Amyloid Polypeptide as a BACE2 Substrate. PLoS One 2016; 11:e0147254. [PMID: 26840340 PMCID: PMC4739698 DOI: 10.1371/journal.pone.0147254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022] Open
Abstract
Pancreatic amyloid formation by islet amyloid polypeptide (IAPP) is a hallmark pathological feature of type 2 diabetes. IAPP is stored in the secretory granules of pancreatic beta-cells and co-secreted with insulin to maintain glucose homeostasis. IAPP is innocuous under homeostatic conditions but imbalances in production or processing of IAPP may result in homodimer formation leading to the rapid production of cytotoxic oligomers and amyloid fibrils. The consequence is beta-cell dysfunction and the accumulation of proteinaceous plaques in and around pancreatic islets. Beta-site APP-cleaving enzyme 2, BACE2, is an aspartyl protease commonly associated with BACE1, a related homolog responsible for amyloid processing in the brain and strongly implicated in Alzheimer's disease. Herein, we identify two distinct sites of the mature human IAPP sequence that are susceptible to BACE2-mediated proteolytic activity. The result of proteolysis is modulation of human IAPP fibrillation and human IAPP protein degradation. These results suggest a potential therapeutic role for BACE2 in type 2 diabetes-associated hyperamylinaemia.
Collapse
Affiliation(s)
- Ingrid C. Rulifson
- Amgen, Cardiometabolic Disorders, South San Francisco, California, United States of America
| | - Ping Cao
- Amgen, Molecular Structure and Characterization, South San Francisco, California, United States of America
| | - Li Miao
- Amgen, Cardiometabolic Disorders, South San Francisco, California, United States of America
| | - David Kopecky
- Amgen, Medicinal Chemistry, Thousand Oaks, California, United States of America
| | - Linda Huang
- Amgen, Molecular Structure and Characterization, South San Francisco, California, United States of America
| | - Ryan D. White
- Amgen, Medicinal Chemistry, Cambridge, Massachusetts, United States of America
| | - Kim Samayoa
- Amgen, Pathology, South San Francisco, California, United States of America
| | - Jonitha Gardner
- Amgen, Cardiometabolic Disorders, South San Francisco, California, United States of America
| | - Xiaosu Wu
- Amgen, Cardiometabolic Disorders, South San Francisco, California, United States of America
| | - Kui Chen
- Amgen, Discovery Technologies, Thousand Oaks, California, United States of America
| | - Trace Tsuruda
- Amgen, Biologics, Thousand Oaks, California, United States of America
| | - Oliver Homann
- Amgen, Genome Analysis Unit, South San Francisco, California, United States of America
| | - Helene Baribault
- Amgen, Cardiometabolic Disorders, South San Francisco, California, United States of America
| | - Harvey Yamane
- Amgen, Biologics, Thousand Oaks, California, United States of America
| | - Tim Carlson
- Amgen, Pharmacokinetics and Drug Metabolism, South San Francisco, California, United States of America
| | - Jed Wiltzius
- Amgen, Genome Analysis Unit, South San Francisco, California, United States of America
| | - Yang Li
- Amgen, Cardiometabolic Disorders, South San Francisco, California, United States of America
| |
Collapse
|
2
|
Kumalo HM, Soliman ME. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility. J Recept Signal Transduct Res 2016; 36:505-14. [PMID: 26804314 DOI: 10.3109/10799893.2015.1130058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Beta-amyloid precursor protein cleavage enzyme1 (BACE1) and beta-amyloid precursor protein cleavage enzyme2 (BACE2), members of aspartyl protease family, are close homologs and have high similarity in their protein crystal structures. However, their enzymatic properties are different, which leads to different clinical outcomes. In this study, we performed sequence analysis and all-atom molecular dynamic (MD) simulations for both enzymes in their ligand-free states in order to compare their dynamical flap behaviors. This is to enhance our understanding of the relationship between sequence, structure and the dynamics of this protein family. Sequence analysis shows that in BACE1 and BACE2, most of the ligand-binding sites are conserved, indicative of their enzymatic property as aspartyl protease members. The other conserved residues are more or less unsystematically localized throughout the structure. Herein, we proposed and applied different combined parameters to define the asymmetric flap motion; the distance, d1, between the flap tip and the flexible region; the dihedral angle, φ, to account for the twisting motion and the TriCα angle, θ2 and θ1. All four combined parameters were found to appropriately define the observed "twisting" motion during the flaps different conformational states. Additional analysis of the parameters indicated that the flaps can exist in an ensemble of conformations, i.e. closed, semi-open and open conformations for both systems. However, the behavior of the flap tips during simulations is different between BACE1 and BACE2. The BACE1 active site cavity is more spacious as compared to that of BACE2. The analysis of 10S loop and 113S loop showed a similar trend to that of flaps, with the BACE1 loops being more flexible and less stable than those of BACE2. We believe that the results, methods and perspectives highlighted in this report would assist researchers in the discovery of BACE inhibitors as potential Alzheimer's disease therapies.
Collapse
Affiliation(s)
- H M Kumalo
- a Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban , South Africa
| | - Mahmoud E Soliman
- a Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban , South Africa
| |
Collapse
|
3
|
Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass. Cell Metab 2011; 14:365-77. [PMID: 21907142 DOI: 10.1016/j.cmet.2011.06.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/11/2011] [Accepted: 06/22/2011] [Indexed: 11/23/2022]
Abstract
Decreased β cell mass and function are hallmarks of type 2 diabetes. Here we identified, through a siRNA screen, beta site amyloid precursor protein cleaving enzyme 2 (Bace2) as the sheddase of the proproliferative plasma membrane protein Tmem27 in murine and human β cells. Mice with functionally inactive Bace2 and insulin-resistant mice treated with a newly identified Bace2 inhibitor both display augmented β cell mass and improved control of glucose homeostasis due to increased insulin levels. These results implicate Bace2 in the control of β cell maintenance and provide a rational strategy to inhibit this protease for the expansion of functional pancreatic β cell mass.
Collapse
|
4
|
LaFevre-Bernt M, Wu S, Lin X. Recombinant, refolded tetrameric p53 and gonadotropin-releasing hormone-p53 slow proliferation and induce apoptosis in p53-deficient cancer cells. Mol Cancer Ther 2008; 7:1420-9. [DOI: 10.1158/1535-7163.mct-08-0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The p53 tumor suppressor is mutated in over 50% of human cancers. Mutations resulting in amino acid changes within p53 result in a loss of activity and consequent changes in expression of genes that regulate DNA repair and cell cycle progression. Replacement of p53 using protein therapy would restore p53 function in p53-deficient tumor cells, with a consequence of tumor cell death and tumor regression. p53 functions in a tetrameric form in vivo. Here, we refolded a wild-type, full-length p53 from inclusion bodies expressed in Escherichia coli as a stable tetramer. The tetrameric p53 binds to p53-specific DNA and, when transformed into a p53-deficient cancer cell line, induced apoptosis of the transformed cells. Next, using the same expression and refolding technology, we produced a stable tetramer of recombinant gonadotropin-releasing hormone-p53 fusion protein (GnRH-p53), which traverses the plasma membrane, slows proliferation, and induces apoptosis in p53-deficient, GnRH-receptor–expressing cancer cell lines. In addition, we showed a time-dependent binding and internalization of GnRH-p53 to a receptor-expressing cell line. We conclude that the GnRH-p53 fusion strategy may provide a basis for constructing an effective cancer therapeutic for patients with tumors in GnRH-receptor–positive tissue types. [Mol Cancer Ther 2008;7(6):1420–9]
Collapse
Affiliation(s)
| | - Shili Wu
- 1ProteomTech, Inc., Costa Mesa, California and
| | - Xinli Lin
- 1ProteomTech, Inc., Costa Mesa, California and
- 2GeneCopoeia, Inc., Germantown, Maryland
| |
Collapse
|
5
|
Zhou W, Scott SA, Shelton SB, Crutcher KA. Cathepsin D-mediated proteolysis of apolipoprotein E: possible role in Alzheimer's disease. Neuroscience 2006; 143:689-701. [PMID: 16997486 DOI: 10.1016/j.neuroscience.2006.08.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/12/2006] [Accepted: 08/09/2006] [Indexed: 10/24/2022]
Abstract
Proteolysis of apolipoprotein E (apoE) may be involved in the pathogenesis of Alzheimer's disease (AD). We previously identified aspartic protease(s) as possibly contributing to the proteolysis of apoE in human brain homogenates. The current study used biochemical and immunohistochemical methods to examine whether cathepsin D (catD) and cathepsin E (catE), candidate aspartic proteases, may be involved in apoE proteolysis. CatD was found to proteolyze both lipid-free recombinant full-length human apoE and lipidated human plasma full-length apoE (apoE4/dipalmitoylphosphatidylcholine-reconstituted discs). CatE was found to proteolyze lipid-free recombinant human apoE to a much greater extent than lipidated apoE. This proteolysis, as well as proteolysis of human apoE added to brain homogenates from apoE-deficient mice, was inhibited by pepstatin A (an aspartic protease inhibitor), but not by phenylmethanesulfonyl fluoride (a serine protease inhibitor). The major apoE fragment obtained with catD included the receptor-binding domain and had an apparent molecular weight similar to that found in human brain homogenates. There was little immunoreactivity for catE in AD brain tissue sections. In contrast, qualitative and quantitative analyses of immunostained sections of the frontal cortex revealed that catD and apoE are colocalized in a subset of predominantly dense-core neuritic plaques and in some neurofibrillary tangles. A positive correlation was observed between estimated duration of illness and the percentage of apoE-positive plaques that were also catD-positive. These results suggest that aspartic proteases, catD in particular, may be involved in proteolysis of apoE and perhaps contribute to the generation of apoE fragments previously implicated in AD pathology.
Collapse
Affiliation(s)
- W Zhou
- Department of Neurosurgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0515, USA
| | | | | | | |
Collapse
|
6
|
Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 2006; 30:351-67. [PMID: 16622600 DOI: 10.1007/s00726-005-0289-3] [Citation(s) in RCA: 490] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/16/2005] [Indexed: 10/24/2022]
Abstract
Due to the obvious advantages of long-acting peptide and protein drugs, strategies to prolong plasma half life time of such compounds are highly on demand. Short plasma half life times are commonly due to fast renal clearance as well as to enzymatic degradation occurring during systemic circulation. Modifications of the peptide/protein can lead to prolonged plasma half life times. By shortening the overall amino acid amount of somatostatin and replacing L: -analogue amino acids with D: -amino acids, plasma half life time of the derivate octreotide was 1.5 hours in comparison to only few minutes of somatostatin. A PEG(2,40 K) conjugate of INF-alpha-2b exhibited a 330-fold prolonged plasma half life time compared to the native protein. It was the aim of this review to provide an overview of possible strategies to prolong plasma half life time such as modification of N- and C-terminus or PEGylation as well as methods to evaluate the effectiveness of drug modifications. Furthermore, fundamental data about most important proteolytic enzymes of human blood, liver and kidney as well as their cleavage specificity and inhibitors for them are provided in order to predict enzymatic cleavage of peptide and protein drugs during systemic circulation.
Collapse
Affiliation(s)
- M Werle
- ThioMatrix GmbH, Research Center Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
7
|
Hou W, Medynski D, Wu S, Lin X, Li LY. VEGI-192, a new isoform of TNFSF15, specifically eliminates tumor vascular endothelial cells and suppresses tumor growth. Clin Cancer Res 2006; 11:5595-602. [PMID: 16061878 DOI: 10.1158/1078-0432.ccr-05-0384] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We determined the antiangiogenic and anticancer activity of VEGI-192, a new isoform of TNFSF15 (VEGI, TL1), with a Lewis lung cancer murine tumor model. EXPERIMENTAL DESIGN Recombinant human VEGI-192 was produced in Escherichia coli and purified to apparent homogeneity. The protein was given systemically via i.p., i.v., or s.c. injections to tumor-bearing C57BL/6 mice. Tumor growth rates, animal survival rates, and general toxicity were determined. Effect on endothelial cell/smooth muscle cell ratio of the tumor vasculature was analyzed. RESULTS Systemic administration of VEGI-192 gave rise to a marked inhibition of tumor growth. As much as 50% inhibition of the tumor growth rate was achieved with treatment initiated when the tumor volumes reached nearly 5% of the body weight. Inhibition of tumor formation was also observed when VEGI-192 was given at the time of tumor inoculation. Consistently, we observed an increased survival time of the treated animals. The VEGI-192-treated animals showed no liver or kidney toxicity. The treatment eliminated tumor endothelial cells but not vascular smooth muscle cells, which remained associated with a residual vascular structure consisting of the basement membrane. In addition, we carried out immunohistochemical analysis of rat kidneys and found that vascular endothelial cell growth inhibitor (VEGI) expression is largely limited to endothelial cells. CONCLUSIONS Our findings indicate that VEGI is an endogenous inhibitor of angiogenesis, and that systemic administration of the VEGI-192 isoform resulted in inhibition of tumor angiogenesis and growth.
Collapse
Affiliation(s)
- Wen Hou
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
8
|
Ostermann N, Eder J, Eidhoff U, Zink F, Hassiepen U, Worpenberg S, Maibaum J, Simic O, Hommel U, Gerhartz B. Crystal Structure of Human BACE2 in Complex with a Hydroxyethylamine Transition-state Inhibitor. J Mol Biol 2006; 355:249-61. [PMID: 16305800 DOI: 10.1016/j.jmb.2005.10.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 11/28/2022]
Abstract
BACE2 is a membrane-bound aspartic protease of the A1 family with a high level of sequence homology to BACE1. While BACE1 is involved in the generation of amyloid plaques in Alzheimer's disease by cleaving Abeta-peptides from the amyloid precursor protein, the physiological function of BACE2 is not well understood. BACE2 appears to be associated with the early onset of dementia in patients with Down's syndrome, and it has been shown to be highly expressed in breast cancers. Further, it may participate in the function of normal and abnormal processes of human muscle biology. Similar to other aspartic proteases, BACE2 is expressed as an inactive zymogen requiring the cleavage of its pro-sequence during the maturation process. We have produced mature BACE2 by expression of pro-BACE2 in Escherichia coli as inclusion bodies, followed by refolding and autocatalytic activation at pH 3.4. Using a C and N-terminally truncated BACE2 variant, we were able to crystallize and determine the crystal structure of mature BACE2 in complex with a hydroxyethylamine transition-state mimetic inhibitor at 3.1 angstroms resolution. The structure of BACE2 follows the general fold of A1 aspartic proteases. However, similar to BACE1, its C-terminal domain is significantly larger than that of the other family members. Furthermore, the structure of BACE2 reveals differences in the S3, S2, S1' and S2' active site substrate pockets as compared to BACE1, and allows, therefore, for a deeper understanding of the structural features that may facilitate the design of selective BACE1 or BACE2 inhibitors.
Collapse
Affiliation(s)
- Nils Ostermann
- Protease Platform, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Xie J, Guo Q. PAR-4 is involved in regulation of beta-secretase cleavage of the Alzheimer amyloid precursor protein. J Biol Chem 2005; 280:13824-32. [PMID: 15671026 DOI: 10.1074/jbc.m411933200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mounting evidence indicates that aberrant production and aggregation of amyloid beta-peptide (Abeta)-(1-42) play a central role in the pathogenesis of Alzheimer disease (AD). Abeta is produced when amyloid precursor protein (APP) is cleaved by beta- and gamma-secretases at the N and C termini of the Abeta domain, respectively. The beta-secretase is membrane-bound aspartyl protease, most commonly known as BACE1. Because BACE1 cleaves APP at the N terminus of the Abeta domain, it catalyzes the first step in Abeta generation. PAR-4 (prostate apoptosis response-4) is a leucine zipper protein that was initially identified to be associated with neuronal degeneration and aberrant Abeta production in models of AD. We now report that the C-terminal domain of PAR-4 is necessary for forming a complex with the cytosolic tail of BACE1 in co-immunoprecipitation assays and in vitro pull-down experiments. Overexpression of PAR-4 significantly increased, whereas silencing of PAR-4 expression by RNA interference significantly decreased, beta-secretase cleavage of APP. These results suggest that PAR-4 may be directly involved in regulating the APP cleavage activity of BACE1. Because the increased BACE1 activity observed in AD patients does not seem to arise from genetic mutations or polymorphisms in BACE1, the identification of PAR-4 as an endogenous regulator of BACE1 activity may have significant implications for developing novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Jun Xie
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|