1
|
Krušič A, Mencin N, Leban M, Nett E, Perković M, Sahin U, Megušar P, Štrancar A, Sekirnik R. Reverse-phase chromatography removes double-stranded RNA, fragments, and residual template to decrease immunogenicity and increase cell potency of mRNA and saRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102491. [PMID: 40166612 PMCID: PMC11957593 DOI: 10.1016/j.omtn.2025.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025]
Abstract
mRNA is produced by in vitro transcription reaction, which also leads to formation of immuno-stimulatory impurities, such as double-stranded RNA (dsRNA). dsRNA leads to activation of innate immune response linked to inhibition of protein synthesis. Its removal from mRNA preparations increases efficiency of protein translation. Previous studies identified ion-pair reverse-phase high-performance liquid chromatography as a highly efficient approach for dsRNA removal. Here, we present a comprehensive study of IP-RP LC purification on monolith chromatographic supports for mRNA polishing, demonstrating its ability to remove dsRNA, as well as hybridized RNA fragments and residual DNA template, which are not fully removed by mRNA capture methods. We develop step elution methodology, including at microgram scale with novel spin columns operated by centrifugation. We demonstrate SDVB efficiency across a range of molecular sizes and explore the necessity for temperature control for effective dsRNA removal from self-amplifying RNA. SDVB-purified mRNA and saRNA showed significantly increased transgene expression in cell-based assays and reduced the activation of cell autonomous innate immunity in A549 at early time points. Our findings highlight the importance of IP-RP purification for high-quality mRNA production, while simplifying the technological requirements for its adoption in clinical mRNA and saRNA manufacturing processes.
Collapse
Affiliation(s)
- Andreja Krušič
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Nina Mencin
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Marta Leban
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Evelin Nett
- TRON – Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Mario Perković
- TRON – Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Ugur Sahin
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeck street, 55131 Mainz, Germany
| | - Polona Megušar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Rok Sekirnik
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| |
Collapse
|
2
|
Shen Y, Yang DQ, Liu Y, Lao JE, Liu CQ, Gao XH, He YR, Xia H. A review of advances in in vitro RNA preparation by ssRNAP. Int J Biol Macromol 2025; 304:141002. [PMID: 39952516 DOI: 10.1016/j.ijbiomac.2025.141002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
In vitro transcription (IVT) based on single-subunit RNA polymerase (ssRNAP) has enhanced the widespread application of RNA drugs in the biomedical field, showcasing unprecedented potential for disease prevention and treatment. While the classical enzyme T7 RNA polymerase (T7 RNAP) has driven significant progress in RNA production, several challenges persist. These challenges include the selectivity of the initiation nucleotide, low incorporation efficiency of modified nucleotides, limited processivity on certain templates, heterogeneity at the 3' end of RNA products, and high level of double-stranded RNA (dsRNA) byproducts. No review has systematically addressed the efforts to overcome these challenges. To fill this gap, we reviewed recent advances in engineering T7 RNAP variants and the discovery of novel ssRNAPs aimed at addressing the shortcomings of T7 RNAP. We also discussed the underlying mechanisms of ssRNAP-mediated byproduct formation, strategies to mitigate dsRNA production using modified nucleotides, and for the first time to sorted out the application of artificial intelligence in IVT. Overall, this review summarizes the advances in RNA synthesis via IVT and provides potential strategies for improving RNA products. We believe that ssRNAPs with more excellent performance will be on the stage of RNA synthesis in the near future to meet the growing demands of both scientific research and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuan Shen
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Dong-Qi Yang
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yuan Liu
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jia-En Lao
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chun-Qing Liu
- Eesy Time (Shenzhen) Technology Co., LTD., Bao An District, Shenzhen 518101, China
| | - Xing-Hong Gao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi 563006, Guizhou, China.
| | - Yun-Ru He
- Scientific Research Center of The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen 518107, China.
| | - Heng Xia
- Scientific Research Center of The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen 518107, China.
| |
Collapse
|
3
|
Kitte R, Serfling R, Blache U, Seitz C, Schrader S, Köhl U, Fricke S, Bär C, Tretbar US. Optimal Chimeric Antigen Receptor (CAR)-mRNA for Transient CAR T Cell Generation. Int J Mol Sci 2025; 26:965. [PMID: 39940734 PMCID: PMC11818003 DOI: 10.3390/ijms26030965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) are becoming increasingly important in the treatment of hematologic malignancies and are also intensively being investigated for other diseases such as autoimmune disorders and HIV. Current CAR T cell therapies predominantly use viral transduction methods which, despite their efficacy, raise safety concerns related to genomic integration and potentially associated malignancies as well as labor- and cost-intensive manufacturing. Therefore, non-viral gene transfer methods, especially mRNA-based approaches, have attracted research interest due to their transient modification and enhanced safety profile. In this study, the optimization of CAR-mRNA for T cell applications is investigated, focusing on the impact of mRNA modifications, in vitro transcription protocols, and purification techniques on the translation efficiency and immunogenicity of mRNA. Furthermore, the refined CAR-mRNA was used to generate transient CAR T cells from acute myeloid leukemia patient samples, demonstrating efficacy in vitro and proof-of-concept for clinically relevant settings. These results highlight the potential of optimized mRNA to produce transient and safe CAR T cells.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Reni Kitte
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Robert Serfling
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| | - Claudius Seitz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Selina Schrader
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Medicine Campus MEDiC, Technical University of Dresden, Klinikum Chemnitz gGmbH, 09116 Chemnitz, Germany
| | - Christian Bär
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany;
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - U. Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Siew YY, Zhang W. Removing immunogenic double-stranded RNA impurities post in vitro transcription synthesis for mRNA therapeutics production: A review of chromatography strategies. J Chromatogr A 2025; 1740:465576. [PMID: 39642661 DOI: 10.1016/j.chroma.2024.465576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/14/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Messenger RNA (mRNA) vaccines and therapeutics hold immense potential for a wide range of clinical applications. However, the in vitro transcription (IVT) process used to synthesize mRNA also results in the generation of a by-product, double-stranded RNA (dsRNA), which can trigger innate immune activation and reduce translation activity. Although various efforts have been made to optimize IVT synthesis to minimize dsRNA formation, dsRNA impurities still cannot be fully resolved. Therefore, the urgency and significance of a downstream purification strategy to tackle these unresolved dsRNA impurities cannot be overstated. In this review, we discuss in detail the use of non-enzymatic (reversed phase-ion pairing chromatography, hydrophobic interaction chromatography, cellulose, dsRNA-specific scavenger resin, hydroxyapatite chromatography, anion exchange chromatography, hydrogen bonding chromatography, asymmetric flow field-flow fractionation, salt precipitation, low pH denaturation) and RNase III enzymatic purification strategies aimed at dsRNA removal. We summarize key findings on the effectiveness of these approaches in removing dsRNA impurities, as well as their strengths and limitations. In addition, we also compile purification optimization strategies that can be performed after mRNA synthesis to improve the efficiency of dsRNA contaminant removal, enhance the recovery of mRNA products, preserve mRNA integrity, and augment translation activity. Other small-scale purification strategies and future outlooks are also presented. This review is intended to serve as a comprehensive reference guide for all personnel working on the production of mRNA therapeutics.
Collapse
Affiliation(s)
- Yin Yin Siew
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore.
| | - Wei Zhang
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of Singapore.
| |
Collapse
|
5
|
Shu L, Yang L, Nie Z, Lei C. Advances in Evolved T7 RNA Polymerases for Expanding the Frontiers of Enzymatic Nucleic Acid Synthesis. Chembiochem 2024; 25:e202400483. [PMID: 39085046 DOI: 10.1002/cbic.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
In vitro RNA synthesis technologies are crucial in developing therapeutic RNA drugs, such as mRNA vaccines and RNA interference (RNAi) therapies. Enzymatic RNA synthesis, recognized for its sustainability and efficiency, enables the production of extensive RNA sequences under mild conditions. Among the enzymes utilized, T7 RNA polymerase is distinguished by its exceptional catalytic efficiency, enabling the precise and rapid transcription of RNA from DNA templates by recognizing the specific T7 promoter sequence. With the advancement in clinical applications of RNA-based drugs, there is an increasing demand for the synthesis of chemically modified RNAs that are stable and resistant to nuclease degradation. To this end, researchers have applied directed evolution to broaden the enzyme's substrate scope, enhancing its compatibility with non-canonical substrates and reducing the formation of by-products. This review summarizes the progress in engineering T7 RNA polymerase for these purposes and explores prospective developments in the field.
Collapse
Affiliation(s)
- Liu Shu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P.R. China
| | - Lijuan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P.R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P.R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
6
|
MalagodaPathiranage K, Banerjee R, Martin C. A new approach to RNA synthesis: immobilization of stably and functionally co-tethered promoter DNA and T7 RNA polymerase. Nucleic Acids Res 2024; 52:10607-10618. [PMID: 39011885 PMCID: PMC11417385 DOI: 10.1093/nar/gkae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Current approaches to RNA synthesis/manufacturing require substantial (and incomplete) purification post-synthesis. We have previously demonstrated the synthesis of RNA from a complex in which T7 RNA polymerase is tethered to promoter DNA. In the current work, we extend this approach to demonstrate an extremely stable system of functional co-tethered complex to a solid support. Using the system attached to magnetic beads, we carry out more than 20 rounds of synthesis using the initial polymerase-DNA construct. We further demonstrate the wide utility of this system in the synthesis of short RNA, a CRISPR guide RNA, and a protein-coding mRNA. In all cases, the generation of self-templated double stranded RNA (dsRNA) impurities are greatly reduced, by both the tethering itself and by the salt-tolerance that local co-tethering provides. Transfection of the mRNA into HEK293T cells shows a correlation between added salt in the transcription reaction (which inhibits RNA rebinding that generates RNA-templated extensions) and significantly increased expression and reduced innate immune stimulation by the mRNA reaction product. These results point in the direction of streamlined processes for synthesis/manufacturing of high-quality RNA of any length, and at greatly reduced costs.
Collapse
Affiliation(s)
| | - Ruptanu Banerjee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Clark NE, Schraut MR, Winters RA, Kearns K, Scanlon TC. An immuno-northern technique to measure the size of dsRNA byproducts in in vitro transcribed RNA. Electrophoresis 2024; 45:1546-1554. [PMID: 38785136 DOI: 10.1002/elps.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Double-stranded RNA is an immunogenic byproduct present in RNA synthesized with in vitro transcription. dsRNA byproducts engage virus-sensing innate immunity receptors and cause inflammation. Removing dsRNA from in vitro transcribed messenger RNA (mRNA) reduces immunogenicity and improves protein translation. Levels of dsRNA are typically 0.1%-0.5% of total transcribed RNA. Because they form such a minor fraction of the total RNA in transcription reactions, it is difficult to confidently identify discrete bands on agarose gels that correspond to the dsRNA byproducts. Thus, the sizes of dsRNA byproducts are largely unknown. Total levels of dsRNA are typically assayed with dsRNA-specific antibodies in ELISA and immuno dot-blot assays. Here we report a dsRNA-specific immuno-northern blot technique that provides a clear picture of the dsRNA size distributions in transcribed RNA. This technique could complement existing dsRNA analytical methods in studies of dsRNA byproduct synthesis, dsRNA removal, and characterization of therapeutic RNA drug substances.
Collapse
|
8
|
Sari Y, Sousa Rosa S, Jeffries J, Marques MPC. Comprehensive evaluation of T7 promoter for enhanced yield and quality in mRNA production. Sci Rep 2024; 14:9655. [PMID: 38671016 PMCID: PMC11053036 DOI: 10.1038/s41598-024-59978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The manufacturing of mRNA vaccines relies on cell-free based systems that are easily scalable and flexible compared with the traditional vaccine manufacturing processes. Typically, standard processes yield 2 to 5 g L-1 of mRNA, with recent process optimisations increasing yields to 12 g L-1. However, increasing yields can lead to an increase in the production of unwanted by-products, namely dsRNA. It is therefore imperative to reduce dsRNA to residual levels in order to avoid intensive purification steps, enabling cost-effective manufacturing processes. In this work, we exploit sequence modifications downstream of the T7 RNA polymerase promoter to increase mRNA yields whilst simultaneously minimising dsRNA. In particular, transcription performance was optimised by modifying the sequence downstream of the T7 promoter with additional AT-rich sequences. We have identified variants that were able to produce higher amounts of mRNA (up to 14 g L-1) in 45 min of reaction. These variants exhibited up to a 30% reduction in dsRNA byproduct levels compared to a wildtype T7 promoter, and have similar EGFP protein expression. The results show that optimising the non-coding regions can have an impact on mRNA production yields and quality, reducing overall manufacturing costs.
Collapse
Affiliation(s)
- Yustika Sari
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK
| | - Sara Sousa Rosa
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jack Jeffries
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK
| | - Marco P C Marques
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Martínez J, Lampaya V, Larraga A, Magallón H, Casabona D. Purification of linearized template plasmid DNA decreases double-stranded RNA formation during IVT reaction. Front Mol Biosci 2023; 10:1248511. [PMID: 37842641 PMCID: PMC10570549 DOI: 10.3389/fmolb.2023.1248511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
After the COVID-19 pandemic, messenger RNA (mRNA) has revolutionized traditional vaccine manufacturing. With the increasing number of RNA-based therapeutics, valuable new scientific insights into these molecules have emerged. One fascinating area of study is the formation of double-stranded RNA (dsRNA) during in vitro transcription (IVT) which is considered a significant impurity, as it has been identified as a major trigger in the cellular immune response pathway. Therefore, there is a growing importance placed to develop and optimize purification processes for the removal of this by-product. Traditionally, efforts have primarily focused on mRNA purification after IVT through chromatographic separations, with anion exchange and reverse phase chromatography emerging as effective tools for this purpose. However, to the best of our knowledge, the influence and significance of the quality of the linearized plasmid have not been thoroughly investigated. Plasmids production involves the growth of bacterial cultures, bacterial harvesting and lysis, and multiple filtration steps for plasmid DNA purification. The inherent complexity of these molecules, along with the multitude of purification steps involved in their processing, including the subsequent linearization and the less-developed purification techniques for linearized plasmids, often result in inconsistent batches with limited control over by-products such as dsRNA. This study aims to demonstrate how the purification process employed for linearized plasmids can impact the formation of dsRNA. Several techniques for the purification of linearized plasmids based on both, resin filtration and chromatographic separations, have been studied. As a result of that, we have optimized a chromatographic method for purifying linearized plasmids using monolithic columns with C4 chemistry (butyl chains located in the surface of the particles), which has proven successful for mRNAs of various sizes. This chromatographic separation facilitates the generation of homogeneous linearized plasmids, leading to mRNA batches with lower levels of dsRNA during subsequent IVT processes. This finding reveals that dsRNA formation is influenced not only by RNA polymerase and IVT conditions but also by the quality of the linearized template. The results suggest that plasmid impurities may contribute to the production of dsRNA by providing additional templates that can be transcribed into sequences that anneal with the mRNA molecules. This highlights the importance of considering the quality of plasmid purification in relation to dsRNA generation during transcription. Further investigation is needed to fully understand the mechanisms and implications of plasmid-derived dsRNA. This discovery could shift the focus in mRNA vaccine production, placing more emphasis on the purification of linearized plasmids and potentially saving, in some instances, a purification step for mRNA following IVT.
Collapse
Affiliation(s)
| | | | | | | | - Diego Casabona
- RNA Synthesis and Development Department, Certest Pharma, Certest Biotec, Zaragoza, Spain
| |
Collapse
|
10
|
Schweibenz BD, Solotchi M, Hanpude P, Devarkar S, Patel S. RIG-I recognizes metabolite-capped RNAs as signaling ligands. Nucleic Acids Res 2023; 51:8102-8114. [PMID: 37326006 PMCID: PMC10450190 DOI: 10.1093/nar/gkad518] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
The innate immune receptor RIG-I recognizes 5'-triphosphate double-stranded RNAs (5' PPP dsRNA) as pathogenic RNAs. Such RNA-ends are present in viral genomes and replication intermediates, and they activate the RIG-I signaling pathway to produce a potent interferon response essential for viral clearance. Endogenous mRNAs cap the 5' PPP-end with m7G and methylate the 2'-O-ribose to evade RIG-I, preventing aberrant immune responses deleterious to the cell. Recent studies have identified RNAs in cells capped with metabolites such as NAD+, FAD and dephosphoCoA. Whether RIG-I recognizes these metabolite-capped RNAs has not been investigated. Here, we describe a strategy to make metabolite-capped RNAs free from 5' PPP dsRNA contamination, using in vitro transcription initiated with metabolites. Mechanistic studies show that metabolite-capped RNAs have a high affinity for RIG-I, stimulating the ATPase activity at comparable levels to 5' PPP dsRNA. Cellular signaling assays show that the metabolite-capped RNAs potently stimulate the innate antiviral immune response. This demonstrates that RIG-I can tolerate diphosphate-linked, capped RNAs with bulky groups at the 5' RNA end. This novel class of RNAs that stimulate RIG-I signaling may have cellular roles in activating the interferon response and may be exploited with proper functionalities for RIG-I-related RNA therapeutics.
Collapse
Affiliation(s)
- Brandon D Schweibenz
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, USA
| | - Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, USA
| | - Pranita Hanpude
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Swapnil C Devarkar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Luo D, Wu Z, Wang D, Zhang J, Shao F, Wang S, Cestellos-Blanco S, Xu D, Cao Y. Lateral flow immunoassay for rapid and sensitive detection of dsRNA contaminants in in vitro-transcribed mRNA products. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:445-453. [PMID: 37181450 PMCID: PMC10173069 DOI: 10.1016/j.omtn.2023.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
High purity is essential in mRNA-based therapeutic applications. A major contaminant of in vitro-transcribed (IVT) mRNA manufacturing is double-stranded RNA (dsRNA), which can induce severe anti-viral immune responses. Detection methods, such as agarose gel electrophoresis, ELISA, and dot-blot assay, are used to detect the existence of dsRNA in IVT mRNA products. However, these methods are either not sensitive enough or time-consuming. To overcome these challenges, we develop a rapid, sensitive, and easy-to-implement colloidal gold nanoparticle-based lateral flow strip assay (LFSA) with sandwich format for the detection of dsRNA from IVT process. dsRNA contaminant can be determined visually on the test strip or quantitatively with a portable optical detector. This method allows for a 15 min detection of N1-methyl-pseudouridine (m1Ψ)-containing dsRNA with a detection limit of 69.32 ng/mL. Furthermore, we establish the correlation between the LFSA test results and the immune response caused by dsRNA in mice. The LFSA platform allows the rapid, sensitive, and quantitative monitoring of purity in massive IVT mRNA products and aids for the prevention of immunogenicity by dsRNA impurities.
Collapse
Affiliation(s)
- Dengwang Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daming Wang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
- Anbio Biotechnology Company, Xiamen, Fujian 361026, China
| | - Jieli Zhang
- Anbio Biotechnology Company, Xiamen, Fujian 361026, China
| | - Fei Shao
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Stefano Cestellos-Blanco
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dawei Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- Corresponding author: Dawei Xu, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuhong Cao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author: Yuhong Cao, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
12
|
Piao X, Yadav V, Wang E, Chang W, Tau L, Lindenmuth BE, Wang SX. Double-stranded RNA reduction by chaotropic agents during in vitro transcription of messenger RNA. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:618-624. [PMID: 36090758 PMCID: PMC9421179 DOI: 10.1016/j.omtn.2022.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/01/2022] [Indexed: 10/26/2022]
|
13
|
Schaffter SW, Strychalski EA. Cotranscriptionally encoded RNA strand displacement circuits. SCIENCE ADVANCES 2022; 8:eabl4354. [PMID: 35319994 PMCID: PMC8942360 DOI: 10.1126/sciadv.abl4354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/01/2022] [Indexed: 05/21/2023]
Abstract
Engineered molecular circuits that process information in biological systems could address emerging human health and biomanufacturing needs. However, such circuits can be difficult to rationally design and scale. DNA-based strand displacement reactions have demonstrated the largest and most computationally powerful molecular circuits to date but are limited in biological systems due to the difficulty in genetically encoding components. Here, we develop scalable cotranscriptionally encoded RNA strand displacement (ctRSD) circuits that are rationally programmed via base pairing interactions. ctRSD circuits address the limitations of DNA-based strand displacement circuits by isothermally producing circuit components via transcription. We demonstrate circuit programmability in vitro by implementing logic and amplification elements, as well as multilayer cascades. Furthermore, we show that circuit kinetics are accurately predicted by a simple model of coupled transcription and strand displacement, enabling model-driven design. We envision ctRSD circuits will enable the rational design of powerful molecular circuits that operate in biological systems, including living cells.
Collapse
|
14
|
Abstract
In vitro-transcribed RNAs are emerging as new biologics for therapeutic innovation, as exemplified by their application recently in SARS-CoV-2 vaccinations. RNAs prepared by in vitro transcription (IVT) allow transient expression of proteins of interest, conferring safety over DNA- or virus-mediated gene delivery systems. However, in vitro-transcribed RNAs should be used with caution because of their immunogenicity, which is in part triggered by double-stranded RNA (dsRNA) byproducts during IVT. Cellular innate immune response to dsRNA byproducts can lead to undesirable consequences, including suppression of protein synthesis and cell death, which in turn can detrimentally impact the efficacy of mRNA therapy. Thus, it is critical to understand the nature of IVT byproducts and the mechanisms by which they trigger innate immune responses.Our lab has been investigating the mechanisms by which the innate immune system discriminates between "self" and "nonself" RNA, with the focus on the cytoplasmic dsRNA receptors retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated 5 (MDA5). We have biochemically and structurally characterized critical events involving RNA discrimination and signal transduction by RIG-I or MDA5. We have used in vitro-transcribed RNAs as tools to investigate RNA specificity of RIG-I and MDA5, which required optimization of the IVT reaction and purification processes to eliminate the effect of IVT byproducts. In this Account, we summarize our current understanding of RIG-I and MDA5 and IVT reactions and propose future directions for improving IVT as a method to generate both research tools and therapeutics. Other critical proteins in cellular innate immune response to dsRNAs are also discussed. We arrange the contents in the following order: (i) innate immunity sensors for nonself RNA, including the RIG-I-like receptors (RLRs) in the cytosol and the toll-like receptors (TLRs) in the endosome, as well as cytoplasmic dsRNA-responding proteins, including protein kinase R (PKR) and 2',5'-oligoadenylate synthetases (OASes), illustrating the feature of protein-RNA binding and its consequences; (ii) the immunogenicity of IVT byproducts, specifically the generation of dsRNA molecules during IVT; and (iii) methods to reduce IVT RNA immunogenicity, including optimizations of RNA polymerases, reagents, and experimental conditions during IVT and subsequent purification.
Collapse
Affiliation(s)
- Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
High-salt transcription of DNA cotethered with T7 RNA polymerase to beads generates increased yields of highly pure RNA. J Biol Chem 2021; 297:100999. [PMID: 34303704 PMCID: PMC8368030 DOI: 10.1016/j.jbc.2021.100999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
High yields of RNA are routinely prepared following the two-step approach of high-yield in vitro transcription using T7 RNA polymerase followed by extensive purification using gel separation or chromatographic methods. We recently demonstrated that in high-yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer-than-desired, (partially) double-stranded impurities. Current purification methods often fail to fully eliminate these impurities, which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. In this work, we introduce a novel in vitro transcription method that generates high yields of encoded RNA without double-stranded impurities, reducing the need for further purification. Transcription is carried out at high-salt conditions to eliminate RNA product rebinding, while promoter DNA and T7 RNA polymerase are cotethered in close proximity on magnetic beads to drive promoter binding and transcription initiation, resulting in an increase in overall yield and purity of only the encoded RNA. A more complete elimination of double-stranded RNA during synthesis will not only reduce overall production costs, but also should ultimately enable therapies and technologies that are currently being hampered by those impurities.
Collapse
|
16
|
Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 2020; 160:1-18. [PMID: 33039498 DOI: 10.1016/j.addr.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide. It is caused by an acute imbalance between oxygen supply and demand in the myocardium, usually caused by an obstruction in the coronary arteries. The conventional therapy is based on the application of (a combination of) anti-thrombotics, reperfusion strategies to open the occluded artery, stents and bypass surgery. However, numerous patients cannot fully recover after these interventions. In this context, new therapeutic methods are explored. Three decades ago, the first biologicals were tested to improve cardiac regeneration. Angiogenic proteins gained popularity as potential therapeutics. This is not straightforward as proteins are delicate molecules that in order to have a reasonably long time of activity need to be stabilized and released in a controlled fashion requiring advanced delivery systems. To ensure long-term expression, DNA vectors-encoding for therapeutic proteins have been developed. Here, the nuclear membrane proved to be a formidable barrier for efficient expression. Moreover, the development of delivery systems that can ensure entry in the target cell, and also correct intracellular trafficking towards the nucleus are essential. The recent introduction of mRNA as a therapeutic entity has provided an attractive intermediate: prolonged but transient expression from a cytoplasmic site of action. However, protection of the sensitive mRNA and correct delivery within the cell remains a challenge. This review focuses on the application of synthetic delivery systems that target the myocardium to stimulate cardiac repair using proteins, DNA or RNA.
Collapse
Affiliation(s)
- Qiangbing Yang
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Juntao Fang
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zhiyong Lei
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Circulatory Health Laboratory, Utrecht University, Utrecht, the Netherlands
| | - Raymond Schiffelers
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Torelli E, Kozyra J, Shirt-Ediss B, Piantanida L, Voïtchovsky K, Krasnogor N. Cotranscriptional Folding of a Bio-orthogonal Fluorescent Scaffolded RNA Origami. ACS Synth Biol 2020; 9:1682-1692. [PMID: 32470289 DOI: 10.1021/acssynbio.0c00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The scaffolded origami technique is an attractive tool for engineering nucleic acid nanostructures. This paper demonstrates scaffolded RNA origami folding in vitro in which, for the first time, all components are transcribed simultaneously in a single-pot reaction. Double-stranded DNA sequences are transcribed by T7 RNA polymerase into scaffold and staple strands able to correctly fold in a high synthesis yield into the nanoribbon. Synthesis is successfully confirmed by atomic force microscopy, and the unpurified transcription reaction mixture is analyzed by an in gel-imaging assay where the transcribed RNA nanoribbons are able to capture the specific dye through the reconstituted split Broccoli aptamer showing a clear green fluorescent band. Finally, we simulate the RNA origami in silico using the nucleotide-level coarse-grained model oxRNA to investigate the thermodynamic stability of the assembled nanostructure in isothermal conditions over a period of time. Our work suggests that the scaffolded origami technique is a viable, and potentially more powerful, assembly alternative to the single-stranded origami technique for future in vivo applications.
Collapse
Affiliation(s)
- Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Jerzy Kozyra
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Luca Piantanida
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Kislon Voïtchovsky
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| |
Collapse
|
18
|
Gholamalipour Y, Johnson WC, Martin CT. Efficient inhibition of RNA self-primed extension by addition of competing 3'-capture DNA-improved RNA synthesis by T7 RNA polymerase. Nucleic Acids Res 2019; 47:e118. [PMID: 31392994 PMCID: PMC6821179 DOI: 10.1093/nar/gkz700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
In vitro synthesized RNA is used widely in studies of RNA biology, biotechnology and RNA therapeutics. However, in vitro synthesized RNA often contains impurities, such as RNAs with lengths shorter and longer than the expected runoff RNA. We have recently confirmed that longer RNA products are formed predominantly via cis self-primed extension, in which released runoff RNA folds back on itself to prime its own RNA-templated extension. In the current work, we demonstrate that addition of a DNA oligonucleotide (capture DNA) that is complementary to the 3′ end of the expected runoff RNA effectively prevents self-primed extension, even under conditions commonly used for high RNA yields. Moreover, the presence of this competing capture DNA during ‘high yield’ transcription, leads to an increase in the yield of expected runoff RNA by suppressing the formation of undesired longer RNA byproducts.
Collapse
Affiliation(s)
- Yasaman Gholamalipour
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - William C Johnson
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Lu X, Wu H, Xia H, Huang F, Yan Y, Yu B, Cheng R, Drulis-Kawa Z, Zhu B. Klebsiella Phage KP34 RNA Polymerase and Its Use in RNA Synthesis. Front Microbiol 2019; 10:2487. [PMID: 31736920 PMCID: PMC6834552 DOI: 10.3389/fmicb.2019.02487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/15/2019] [Indexed: 11/28/2022] Open
Abstract
We have characterized the single subunit RNA polymerase from Klebsiella phage KP34. The enzyme is unique among known bacteriophage RNA polymerases in that it recognizes two unrelated promoter sequences, which provided clues for the evolution of phage single-subunit RNA polymerases. As the first representative enzyme from the “phiKMV-like viruses” cluster, its use in run-off RNA synthesis was investigated. RNA-Seq analysis revealed that the KP34 RNA polymerase does not possess the undesired self-templated RNA terminus extension known for T7 RNA polymerase and is suitable to synthesize RNAs with structured 3′ termini such as sgRNAs. A KP34 RNA polymerase Y603F mutant is engineered to incorporate deoxy- and 2′-fluoro ribonucleotide into RNA.
Collapse
Affiliation(s)
- Xueling Lu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Sciences and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Sciences and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Xia
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Sciences and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengtao Huang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Sciences and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yan
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Sciences and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Sciences and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Sciences and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Sciences and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
RNA-based therapy for osteogenesis. Int J Pharm 2019; 569:118594. [DOI: 10.1016/j.ijpharm.2019.118594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023]
|
21
|
Gholamalipour Y, Karunanayake Mudiyanselage A, Martin CT. 3' end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character-RNA-Seq analyses. Nucleic Acids Res 2019; 46:9253-9263. [PMID: 30219859 PMCID: PMC6182178 DOI: 10.1093/nar/gky796] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Synthetic RNA is widely used in basic science, nanotechnology and therapeutics research. The vast majority of this RNA is synthesized in vitro by T7 RNA polymerase or one of its close family members. However, the desired RNA is generally contaminated with products longer and shorter than the DNA-encoded product. To better understand these undesired byproducts and the processes that generate them, we analyze in vitro transcription reactions using RNA-Seq as a tool. The results unambiguously confirm that product RNA rebinds to the polymerase and self-primes (in cis) generation of a hairpin duplex, a process that favorably competes with promoter driven synthesis under high yield reaction conditions. While certain priming modes can be favored, the process is heterogeneous, both in initial priming and in the extent of priming, and already extended products can rebind for further extension, in a distributive process. Furthermore, addition of one or a few nucleotides, previously termed 'nontemplated addition,' also occurs via templated primer extension. At last, this work demonstrates the utility of RNA-Seq as a tool for in vitro mechanistic studies, providing information far beyond that provided by traditional gel electrophoresis.
Collapse
Affiliation(s)
- Yasaman Gholamalipour
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Craig T Martin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
22
|
Salmén F, Ståhl PL, Mollbrink A, Navarro JF, Vickovic S, Frisén J, Lundeberg J. Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in mammalian tissue sections. Nat Protoc 2019; 13:2501-2534. [PMID: 30353172 DOI: 10.1038/s41596-018-0045-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spatial resolution of gene expression enables gene expression events to be pinpointed to a specific location in biological tissue. Spatially resolved gene expression in tissue sections is traditionally analyzed using immunohistochemistry (IHC) or in situ hybridization (ISH). These technologies are invaluable tools for pathologists and molecular biologists; however, their throughput is limited to the analysis of only a few genes at a time. Recent advances in RNA sequencing (RNA-seq) have made it possible to obtain unbiased high-throughput gene expression data in bulk. Spatial Transcriptomics combines the benefits of traditional spatially resolved technologies with the massive throughput of RNA-seq. Here, we present a protocol describing how to apply the Spatial Transcriptomics technology to mammalian tissue. This protocol combines histological staining and spatially resolved RNA-seq data from intact tissue sections. Once suitable tissue-specific conditions have been established, library construction and sequencing can be completed in ~5-6 d. Data processing takes a few hours, with the exact timing dependent on the sequencing depth. Our method requires no special instruments and can be performed in any laboratory with access to a cryostat, microscope and next-generation sequencing.
Collapse
Affiliation(s)
- Fredrik Salmén
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.,Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Patrik L Ståhl
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Annelie Mollbrink
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - José Fernández Navarro
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sanja Vickovic
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
23
|
Baiersdörfer M, Boros G, Muramatsu H, Mahiny A, Vlatkovic I, Sahin U, Karikó K. A Facile Method for the Removal of dsRNA Contaminant from In Vitro-Transcribed mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 15:26-35. [PMID: 30933724 PMCID: PMC6444222 DOI: 10.1016/j.omtn.2019.02.018] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/12/2023]
Abstract
The increasing importance of in vitro-transcribed (IVT) mRNA for synthesizing the encoded therapeutic protein in vivo demands the manufacturing of pure mRNA products. The major contaminant in the IVT mRNA is double-stranded RNA (dsRNA), a transcriptional by-product that can be removed only by burdensome procedure requiring special instrumentation and generating hazardous waste. Here we present an alternative simple, fast, and cost-effective method involving only standard laboratory techniques. The purification of IVT mRNA is based on the selective binding of dsRNA to cellulose in an ethanol-containing buffer. We demonstrate that at least 90% of the dsRNA contaminants can be removed with a good, >65% recovery rate, regardless of the length, coding sequence, and nucleoside composition of the IVT mRNA. The procedure is scalable; purification of microgram or milligram amounts of IVT mRNA is achievable. Evaluating the impact of the mRNA purification in vivo in mice, increased translation could be measured for the administered transcripts, including the 1-methylpseudouridine-containing IVT mRNA, which no longer induced interferon (IFN)-α. The cellulose-based removal of dsRNA contaminants is an effective, reliable, and safe method to obtain highly pure IVT mRNA suitable for in vivo applications.
Collapse
Affiliation(s)
| | - Gábor Boros
- BioNTech RNA Pharmaceuticals, 55131 Mainz, Germany
| | | | - Azita Mahiny
- BioNTech RNA Pharmaceuticals, 55131 Mainz, Germany
| | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals, 55131 Mainz, Germany
| | | |
Collapse
|
24
|
Van Hoecke L, Roose K. How mRNA therapeutics are entering the monoclonal antibody field. J Transl Med 2019; 17:54. [PMID: 30795778 PMCID: PMC6387507 DOI: 10.1186/s12967-019-1804-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/17/2019] [Indexed: 01/06/2023] Open
Abstract
In 1975, Milstein and Köhler revolutionized the medical world with the development of the hybridoma technique to produce monoclonal antibodies. Since then, monoclonal antibodies have entered almost every branch of biomedical research. Antibodies are now used as frontline therapeutics in highly divergent indications, ranging from autoimmune disease over allergic asthma to cancer. Wider accessibility and implementation of antibody-based therapeutics is however hindered by manufacturing challenges and high development costs inherent to protein-based drugs. For these reasons, alternative ways are being pursued to produce and deliver antibodies more cost-effectively without hampering safety. Over the past decade, messenger RNA (mRNA) based drugs have emerged as a highly appealing new class of biologics that can be used to encode any protein of interest directly in vivo. Whereas current clinical efforts to use mRNA as a drug are mainly situated at the level of prophylactic and therapeutic vaccination, three recent preclinical studies have addressed the feasibility of using mRNA to encode therapeutic antibodies directly in vivo. Here, we highlight the potential of mRNA-based approaches to solve several of the issues associated with antibodies produced and delivered in protein format. Nonetheless, we also identify key hurdles that mRNA-based approaches still need to take to fulfill this potential and ultimately replace the current protein antibody format.
Collapse
Affiliation(s)
- Lien Van Hoecke
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Kenny Roose
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium.,Departement of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Sarcar SN, Miller DL. A specific, promoter-independent activity of T7 RNA polymerase suggests a general model for DNA/RNA editing in single subunit RNA Polymerases. Sci Rep 2018; 8:13885. [PMID: 30224735 PMCID: PMC6141538 DOI: 10.1038/s41598-018-32231-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/31/2018] [Indexed: 01/23/2023] Open
Abstract
Insertional RNA editing has been observed and characterized in mitochondria of myxomycetes. The single subunit mitochondrial RNA polymerase adds nontemplated nucleotides co-transcriptionally to produce functional tRNA, rRNA and mRNAs with full genetic information. Addition of nontemplated nucleotides to the 3′ ends of RNAs have been observed in polymerases related to the mitochondrial RNA polymerase. This activity has been observed with T7 RNA polymerase (T7 RNAP), the well characterized prototype of the single subunit polymerases, as a nonspecific addition of nucleotides to the 3′ end of T7 RNAP transcripts in vitro. Here we show that this novel activity is an editing activity that can add specific ribonucleotides to 3′ ends of RNA or DNA when oligonucleotides, able to form intramolecular or intermolecular hairpin loops with recessed 3′ ends, are added to T7 RNA polymerase in the presence of at least one ribonucleotide triphosphate. Specific ribonucleotides are added to the recessed 3′ ends through Watson-Crick base pairing with the non-base paired nucleotide adjacent to the 3′ end. Optimization of this activity is obtained through alteration of the lengths of the 5′-extension, hairpin loop, and hairpin duplex. These properties define a T7 RNAP activity different from either transcriptional elongation or initiation.
Collapse
Affiliation(s)
- Subha Narayan Sarcar
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, 75083-0688, USA
| | - Dennis L Miller
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, 75083-0688, USA.
| |
Collapse
|
26
|
Vaidyanathan S, Azizian KT, Haque AKMA, Henderson JM, Hendel A, Shore S, Antony JS, Hogrefe RI, Kormann MSD, Porteus MH, McCaffrey AP. Uridine Depletion and Chemical Modification Increase Cas9 mRNA Activity and Reduce Immunogenicity without HPLC Purification. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:530-542. [PMID: 30195789 PMCID: PMC6076213 DOI: 10.1016/j.omtn.2018.06.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/25/2022]
Abstract
The Cas9/guide RNA (Cas9/gRNA) system is commonly used for genome editing. mRNA expressing Cas9 can induce innate immune responses, reducing Cas9 expression. First-generation Cas9 mRNAs were modified with pseudouridine and 5-methylcytosine to reduce innate immune responses. We combined four approaches to produce more active, less immunogenic second-generation Cas9 mRNAs. First, we developed a novel co-transcriptional capping method yielding natural Cap 1. Second, we screened modified nucleotides in Cas9 mRNA to identify novel modifications that increase Cas9 activity. Third, we depleted the mRNA of uridines to improve mRNA activity. Lastly, we tested high-performance liquid chromatography (HPLC) purification to remove double-stranded RNAs. The activity of these mRNAs was tested in cell lines and primary human CD34+ cells. Cytokines were measured in whole blood and mice. These approaches yielded more active and less immunogenic mRNA. Uridine depletion (UD) most impacted insertion or deletion (indel) activity. Specifically, 5-methoxyuridine UD induced indel frequencies as high as 88% (average ± SD = 79% ± 11%) and elicited minimal immune responses without needing HPLC purification. Our work suggests that uridine-depleted Cas9 mRNA modified with 5-methoxyuridine (without HPLC purification) or pseudouridine may be optimal for the broad use of Cas9 both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - A K M Ashiqul Haque
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany
| | | | - Ayal Hendel
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | - Justin S Antony
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany
| | | | - Michael S D Kormann
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
27
|
Stanton MG, Murphy-Benenato KE. Messenger RNA as a Novel Therapeutic Approach. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Vasilyev N, Serganov A. Preparation of Short 5'-Triphosphorylated Oligoribonucleotides for Crystallographic and Biochemical Studies. Methods Mol Biol 2016; 1320:11-20. [PMID: 26227034 DOI: 10.1007/978-1-4939-2763-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA molecules participate in virtually all cellular processes ranging from transfer of hereditary information to gene expression control. In cells, many RNAs form specific interactions with proteins often using short nucleotide sequences for protein recognition. Biochemical and structural studies of such RNA-protein complexes demand preparation of short RNAs. Although short RNAs can be synthesized chemically, certain proteins require monophosphate or triphosphate moieties on the 5' end of RNA. Given high cost of chemical triphosphorylation, broad application of such RNAs is impractical. In vitro transcription of RNA by DNA-dependent bacteriophage T7 RNA polymerase provides an alternative option to prepare short RNAs with different phosphorylation states as well as modifications on the 5' terminus. Here we outline the in vitro transcription methodology employed to prepare ≤5-mer oligoribonucleotide for structural and biochemical applications. The chapter describes the principles of construct design, in vitro transcription and RNA purification applied for characterization of a protein that targets the 5' end of RNA.
Collapse
Affiliation(s)
- Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | | |
Collapse
|
29
|
Abstract
Recent studies have revealed that the majority of biological processes are controlled by noncoding RNAs. Among many classes of noncoding RNAs, metabolite-sensing segments of mRNAs called riboswitches are unique. Discovered over a decade ago in all three kingdoms of life, riboswitches specifically and directly interact with various metabolites and regulate expression of multiple genes, often associated with metabolism and transport of small molecules. Thus, riboswitches do not depend on proteins for binding to small molecules and play a role as both metabolite sensors and effectors of gene control. Riboswitches are typically located in the untranslated regions of mRNAs where they form alternative structures in the presence and absence of the ligand and modulate expression of genes through the formation of regulatory elements. To understand the mechanism of the riboswitch-driven gene control, it is important to elucidate how riboswitches interact with cognate and discriminate against non-cognate ligands. Here we outline the methodology to synthesize riboswitch RNAs and prepare riboswitch-ligand complexes for crystallographic and biochemical studies. The chapter describes how to design, prepare, and conduct crystallization screening of riboswitch-ligand complexes. The methodology was refined on crystallographic studies of several riboswitches and can be employed for other types of RNA molecules.
Collapse
|
30
|
Pandey S, Ogloblina AM, Belotserkovskii BP, Dolinnaya NG, Yakubovskaya MG, Mirkin SM, Hanawalt PC. Transcription blockage by stable H-DNA analogs in vitro. Nucleic Acids Res 2015; 43:6994-7004. [PMID: 26101261 PMCID: PMC4538819 DOI: 10.1093/nar/gkv622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/03/2015] [Indexed: 11/14/2022] Open
Abstract
DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn(2+) or by increased concentrations of K(+) and Li(+). Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed.
Collapse
Affiliation(s)
- Shristi Pandey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Nina G Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
31
|
Abstract
mRNA is the central molecule of all forms of life. It is generally accepted that current life on Earth descended from an RNA world. mRNA, after its first therapeutic description in 1992, has recently come into increased focus as a method to deliver genetic information. The recent solution to the two main difficulties in using mRNA as a therapeutic, immune stimulation and potency, has provided the basis for a wide range of applications. While mRNA-based cancer immunotherapies have been in clinical trials for a few years, novel approaches; including, in vivo delivery of mRNA to replace or supplement proteins, mRNA-based generation of pluripotent stem cells, or genome engineering using mRNA-encoded meganucleases are beginning to be realized. This review presents the current state of mRNA drug technologies and potential applications, as well as discussing the challenges and prospects in mRNA development and drug discovery.
Collapse
Affiliation(s)
- Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Probing the sequence and structure of in vitro synthesized antisense and target RNAs from the replication control system of plasmid pMV158. Plasmid 2013; 70:94-103. [PMID: 23541653 DOI: 10.1016/j.plasmid.2013.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/21/2013] [Accepted: 02/28/2013] [Indexed: 12/30/2022]
Abstract
Antisense RNAII is a replication control element encoded by promiscuous plasmid pMV158. RNAII binds to its complementary sequence in the copG-repB mRNA, thus inhibiting translation of the replication initiator repB gene. In order to initiate the biochemical characterization of the pMV158 antisense RNA-mediated control system, conditions for in vitro transcription by T7RNA polymerase were set up that yielded large amounts of antisense and target run-off products able to bind to each other. The run-off antisense transcript was expected, and confirmed, to span the entire RNAII as synthesized by the bacterial RNA polymerase, including the intrinsic transcription terminator at its 3'-terminus. On the other hand, two different target transcripts, mRNA₆₀ and mRNA₈₀, were produced, characterized and tested for efficient binding to the antisense product. The mRNA₆₀ and mRNA₈₀ run-off transcripts supposedly spanned 60 and 80 nucleotides, respectively, on the copG-repB mRNA and lacked terminator-like structures at their 3'-termini. Probing of the sequence and conformation of the main products, along with modeling of their secondary structures, showed that both target transcripts were actually longer-than-expected, and contained a 3'-terminal hairpin wherein the extra nucleotides base-paired to the expected 3'-terminus of the corresponding run-off transcript. These longer products were proposed to arise from the RNA-dependent polymerizing activity of T7RNA polymerase on correct run-off transcripts primed by extremely short 3'-selfcomplementarity. Seizing of the target mRNA sequence complementary to the 5'-terminus of RNAII in a stable 3'-terminal hairpin generated by this activity seemed to cause a 3-fold decrease in the efficiency of binding to the antisense RNA.
Collapse
|
33
|
Abstract
In vitro transcription of DNA with phage RNA polymerases is currently the most efficient method to produce long sequence-specific RNA. While the reaction can yield large quantities of RNA, it contains impurities due to various unwanted activities of the polymerases. Here, we described an easily performed HPLC purification that removes multiple contaminants from in vitro transcribed RNA and is scalable. The purified RNA is translated at much greater levels, especially in primary cells and in vivo. HPLC purification of RNA containing modified nucleosides that suppress RNA-mediated activation of innate immune sensors leads to a non-immunogenic RNA with superior translational capacity.
Collapse
|
34
|
Abstract
This chapter describes the preparation of NMR quantities of RNA purified to single-nucleotide resolution for protein-RNA interaction studies. The protocol is easily modified to make nucleotide-specific isotopically labeled RNAs or uniformly labeled RNA fragments for ligation to generate segmentally labeled RNAs.
Collapse
Affiliation(s)
- Carla A Theimer
- Department of Chemistry, University at Albany SUNY, Albany, NY, USA.
| | | | | |
Collapse
|
35
|
Davis WG, Bowzard JB, Sharma SD, Wiens ME, Ranjan P, Gangappa S, Stuchlik O, Pohl J, Donis RO, Katz JM, Cameron CE, Fujita T, Sambhara S. The 3' untranslated regions of influenza genomic sequences are 5'PPP-independent ligands for RIG-I. PLoS One 2012; 7:e32661. [PMID: 22438882 PMCID: PMC3305289 DOI: 10.1371/journal.pone.0032661] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 02/01/2012] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid inducible gene-I (RIG-I) is a key regulator of antiviral immunity. RIG-I is generally thought to be activated by ssRNA species containing a 5'-triphosphate (PPP) group or by unphosphorylated dsRNA up to ~300 bp in length. However, it is not yet clear how changes in the length, nucleotide sequence, secondary structure, and 5' end modification affect the abilities of these ligands to bind and activate RIG-I. To further investigate these parameters in the context of naturally occurring ligands, we examined RNA sequences derived from the 5' and 3' untranslated regions (UTR) of the influenza virus NS1 gene segment. As expected, RIG-I-dependent interferon-β (IFN-β) induction by sequences from the 5' UTR of the influenza cRNA or its complement (26 nt in length) required the presence of a 5'PPP group. In contrast, activation of RIG-I by the 3' UTR cRNA sequence or its complement (172 nt) exhibited only a partial 5'PPP-dependence, as capping the 5' end or treatment with CIP showed a modest reduction in RIG-I activation. Furthermore, induction of IFN-β by a smaller, U/A-rich region within the 3' UTR was completely 5'PPP-independent. Our findings demonstrated that RNA sequence, length, and secondary structure all contributed to whether or not the 5'PPP moiety is needed for interferon induction by RIG-I.
Collapse
Affiliation(s)
- William G. Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - J. Bradford Bowzard
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suresh D. Sharma
- Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mayim E. Wiens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shivaprakash Gangappa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Olga Stuchlik
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Pohl
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben O. Donis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Craig E. Cameron
- Pennsylvania State University, University Park, Pennsylvania, United States of America
| | | | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
36
|
Morohashi N, Kimoto M, Sato A, Kawai R, Hirao I. Site-specific incorporation of functional components into RNA by an unnatural base pair transcription system. Molecules 2012; 17:2855-76. [PMID: 22399139 PMCID: PMC6268917 DOI: 10.3390/molecules17032855] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 01/08/2023] Open
Abstract
Toward the expansion of the genetic alphabet, an unnatural base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and pyrrole-2-carbaldehyde (Pa) functions as a third base pair in replication and transcription, and provides a useful tool for the site-specific, enzymatic incorporation of functional components into nucleic acids. We have synthesized several modified-Pa substrates, such as alkylamino-, biotin-, TAMRA-, FAM-, and digoxigenin-linked PaTPs, and examined their transcription by T7 RNA polymerase using Ds-containing DNA templates with various sequences. The Pa substrates modified with relatively small functional groups, such as alkylamino and biotin, were efficiently incorporated into RNA transcripts at the internal positions, except for those less than 10 bases from the 3′-terminus. We found that the efficient incorporation into a position close to the 3′-terminus of a transcript depended on the natural base contexts neighboring the unnatural base, and that pyrimidine-Ds-pyrimidine sequences in templates were generally favorable, relative to purine-Ds-purine sequences. The unnatural base pair transcription system provides a method for the site-specific functionalization of large RNA molecules.
Collapse
Affiliation(s)
- Nobuyuki Morohashi
- TagCyx Biotechnologies, 1-6-126 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mails: (N.M.); (M.K.); (R.K.)
| | - Michiko Kimoto
- TagCyx Biotechnologies, 1-6-126 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mails: (N.M.); (M.K.); (R.K.)
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mail:
| | - Akira Sato
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mail:
| | - Rie Kawai
- TagCyx Biotechnologies, 1-6-126 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mails: (N.M.); (M.K.); (R.K.)
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mail:
| | - Ichiro Hirao
- TagCyx Biotechnologies, 1-6-126 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mails: (N.M.); (M.K.); (R.K.)
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-45-503-9644; Fax: +81-45-503-9645
| |
Collapse
|
37
|
Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 2011; 39:e142. [PMID: 21890902 PMCID: PMC3241667 DOI: 10.1093/nar/gkr695] [Citation(s) in RCA: 615] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In vitro-transcribed mRNA has great therapeutic potential to transiently express the encoded protein without the adverse effects of viral and DNA-based constructs. Mammalian cells, however, contain RNA sensors of the innate immune system that must be considered in the generation of therapeutic RNA. Incorporation of modified nucleosides both reduces innate immune activation and increases translation of mRNA, but residual induction of type I interferons (IFNs) and proinflammatory cytokines remains. We identify that contaminants, including double-stranded RNA, in nucleoside-modified in vitro-transcribed RNA are responsible for innate immune activation and their removal by high performance liquid chromatography (HPLC) results in mRNA that does not induce IFNs and inflammatory cytokines and is translated at 10- to 1000-fold greater levels in primary cells. Although unmodified mRNAs were translated significantly better following purification, they still induced high levels of cytokine secretion. HPLC purified nucleoside-modified mRNA is a powerful vector for applications ranging from ex vivo stem cell generation to in vivo gene therapy.
Collapse
Affiliation(s)
- Katalin Karikó
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA, Institute of Clinical Chemistry and Pharmacology, University of Bonn, Bonn, Germany and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA, Institute of Clinical Chemistry and Pharmacology, University of Bonn, Bonn, Germany and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - János Ludwig
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA, Institute of Clinical Chemistry and Pharmacology, University of Bonn, Bonn, Germany and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA, Institute of Clinical Chemistry and Pharmacology, University of Bonn, Bonn, Germany and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- *To whom correspondence should be addressed. Tel: +1 215 573 8491; Fax: +215 349 5111;
| |
Collapse
|
38
|
Salinas-Rios V, Belotserkovskii BP, Hanawalt PC. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res 2011; 39:7444-54. [PMID: 21666257 PMCID: PMC3177194 DOI: 10.1093/nar/gkr429] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The abnormal number of repeats found in triplet repeat diseases arises from 'repeat instability', in which the repetitive section of DNA is subject to a change in copy number. Recent studies implicate transcription in a mechanism for repeat instability proposed to involve RNA polymerase II (RNAPII) arrest caused by a CTG slip-out, triggering transcription-coupled repair (TCR), futile cycles of which may lead to repeat expansion or contraction. In the present study, we use defined DNA constructs to directly test whether the structures formed by CAG and CTG repeat slip-outs can cause transcription arrest in vitro. We found that a slip-out of (CAG)(20) or (CTG)(20) repeats on either strand causes RNAPII arrest in HeLa cell nuclear extracts. Perfect hairpins and loops on either strand also cause RNAPII arrest. These findings are consistent with a transcription-induced repeat instability model in which transcription arrest in mammalian cells may initiate a 'gratuitous' TCR event leading to a change in repeat copy number. An understanding of the underlying mechanism of repeat instability could lead to intervention to slow down expansion and delay the onset of many neurodegenerative diseases in which triplet repeat expansion is implicated.
Collapse
|
39
|
Todd RC, Lippard SJ. Consequences of cisplatin binding on nucleosome structure and dynamics. ACTA ACUST UNITED AC 2011; 17:1334-43. [PMID: 21168769 DOI: 10.1016/j.chembiol.2010.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/06/2010] [Accepted: 10/18/2010] [Indexed: 11/15/2022]
Abstract
The effects of cisplatin binding to DNA were explored at the nucleosome level to incorporate key features of the eukaryotic nuclear environment. An X-ray crystal structure of a site-specifically platinated nucleosome carrying a 1,3-cis-{Pt(NH₃)₂}²+-d(GpTpG) intrastrand cross-link reveals the details of how this adduct dictates the rotational positioning of DNA in the nucleosome. Results from in vitro nucleosome mobility assays indicate that a single platinum adduct interferes with ATP-independent sliding of DNA around the octamer core. Data from in vitro transcription experiments suggest that RNA polymerases can successfully navigate along cisplatin-damaged DNA templates that contain nucleosomes, but stall when the transcription elongation complex physically contacts a platinum cross-link located on the template strand. These results provide information about the effects of cisplatin binding to nuclear DNA and enhance our understanding of the mechanism of transcription inhibition by platinum anticancer compounds.
Collapse
Affiliation(s)
- Ryan C Todd
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
40
|
Cervantes-Rivera R, Romero-López C, Berzal-Herranz A, Cevallos MA. Analysis of the mechanism of action of the antisense RNA that controls the replication of the repABC plasmid p42d. J Bacteriol 2010; 192:3268-3278. [PMID: 20435728 PMCID: PMC2897686 DOI: 10.1128/jb.00118-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/22/2010] [Indexed: 02/08/2023] Open
Abstract
Replication and segregation of the Rhizobium etli symbiotic plasmid (pRetCFN42d) depend on the presence of a repABC operon, which carries all the plasmid-encoded elements required for these functions. All repABC operons share three protein-encoding genes (repA, repB, and repC), an antisense RNA (ctRNA) coding gene, and at least one centromere-like region (parS). The products of repA and repB, in conjunction with the parS region, make up the segregation system, and they negatively regulate operon transcription. The last gene of the operon, repC, encodes the initiator protein. The ctRNA is a negative posttranscriptional regulator of repC. In this work, we analyzed the secondary structures of the ctRNA and its target and mapped the motifs involved in the complex formed between them. Essential residues for the effective interaction localize at the unpaired 5' end of the antisense molecule and the loop of the target mRNA. In light of our results, we propose a model explaining the mechanism of action of this ctRNA in the regulation of plasmid replication in R. etli.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México, Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Cristina Romero-López
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México, Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Alfredo Berzal-Herranz
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México, Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Miguel A. Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México, Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| |
Collapse
|
41
|
Dauber B, Wolff T. Activation of the Antiviral Kinase PKR and Viral Countermeasures. Viruses 2009; 1:523-44. [PMID: 21994559 PMCID: PMC3185532 DOI: 10.3390/v1030523] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 12/25/2022] Open
Abstract
The interferon-induced double-stranded (ds)RNA-dependent protein kinase (PKR) limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5′-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR.
Collapse
Affiliation(s)
- Bianca Dauber
- Department of Medical Microbiology & Immunology, University of Alberta, 632 Heritage Medical Research Center, Edmonton, AB, T6G 2S2, Canada
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| | - Thorsten Wolff
- P15, Robert Koch-Institute/Nordufer 20, 13353 Berlin, Germany
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| |
Collapse
|
42
|
5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 2009; 106:12067-72. [PMID: 19574455 DOI: 10.1073/pnas.0900971106] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ATPase retinoid acid-inducible gene (RIG)-I senses viral RNA in the cytoplasm of infected cells and subsequently activates cellular antiviral defense mechanisms. RIG-I recognizes molecular structures that discriminate viral from host RNA. Here, we show that RIG-I ligands require base-paired structures in conjunction with a free 5'-triphosphate to trigger antiviral signaling. Hitherto unavailable chemically synthesized 5'-triphosphate RNA ligands do not trigger RIG-I-dependent IFN production in cells, and they are unable to trigger the ATPase activity of RIG-I without a base-paired stretch. Consistently, immunostimulatory RNA from cells infected with a virus recognized by RIG-I is sensitive to double-strand, but not single-strand, specific RNases. In vitro, base-paired stretches and the 5'-triphosphate bind to distinct sites of RIG-I and synergize to trigger the induction of signaling competent RIG-I multimers. Strengthening our model of a bipartite molecular pattern for RIG-I activation, we show that the activity of supposedly "single-stranded" 5'-triphosphate RNAs generated by in vitro transcription depends on extended and base-paired by-products inadvertently, but commonly, produced by this method. Together, our findings accurately define a minimal molecular pattern sufficient to activate RIG-I that can be found in viral genomes or transcripts.
Collapse
|
43
|
The T7-primer is a source of experimental bias and introduces variability between microarray platforms. PLoS One 2008; 3:e1980. [PMID: 18431470 PMCID: PMC2292241 DOI: 10.1371/journal.pone.0001980] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/28/2008] [Indexed: 11/22/2022] Open
Abstract
Eberwine(-like) amplification of mRNA adds distinct 6–10 bp nucleotide stretches to the 5′ end of amplified RNA transcripts. Analysis of over six thousand microarrays reveals that probes containing motifs complementary to these stretches are associated with aberrantly high signals up to a hundred fold the signal observed in unaffected probes. This is not observed when total RNA is used as target source. Different T7 primer sequences are used in different laboratories and platforms and consequently different T7 primer bias is observed in different datasets. This will hamper efforts to compare data sets across platforms.
Collapse
|
44
|
Rabinovich PM, Komarovskaya ME, Ye ZJ, Imai C, Campana D, Bahceci E, Weissman SM. Synthetic messenger RNA as a tool for gene therapy. Hum Gene Ther 2007; 17:1027-35. [PMID: 17007566 DOI: 10.1089/hum.2006.17.1027] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transfection of human cells with DNA in biomedical applications carries the risk of insertional mutagenesis. Transfection with mRNA avoids this problem; however, in vitro production of mRNA, based on preliminary DNA template cloning in special vectors, is a laborious and time-consuming procedure. We report an efficient vectorfree method of mRNA production from polymerase chain reaction-generated DNA templates. For all cell types tested mRNA was transfected more readily than DNA, and its expression was highly uniform in cell populations. Even cell types relatively resistant to transfection with DNA could express transfected mRNA well. The level of mRNA expression could be controlled over a wide range by changing the amount of input RNA. Cells could be efficiently and simultaneously loaded with several different transcripts. To test a potential clinical application of this method, we transfected human T lymphocytes with mRNA encoding a chimeric immune receptor directed against CD19, a surface antigen widely expressed in leukemia and lymphoma. The transfected mRNA conferred powerful cytotoxicity to T cells against CD19+ targets from the same donor. These results demonstrate that this method can be applied to generate autologous T lymphocytes directed toward malignant cells.
Collapse
Affiliation(s)
- Peter M Rabinovich
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, and Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Rabinovich PM, Komarovskaya ME, Ye ZJ, Imai C, Campana D, Bahceci E, Weissman SM. Synthetic Messenger RNA as a Tool for Gene Therapy. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Mitsui T, Kimoto M, Harada Y, Yokoyama S, Hirao I. An efficient unnatural base pair for a base-pair-expanded transcription system. J Am Chem Soc 2005; 127:8652-8. [PMID: 15954770 DOI: 10.1021/ja0425280] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the site-specific incorporation of artificial components into RNA by transcription, an efficient, unnatural base pair between 2-amino-6-(2-thiazolyl)purine (denoted as v) and 2-oxo(1H)pyridine (denoted as y) was developed. The substrates of y and 5-substituted y were site-specifically incorporated into RNA by T7 RNA polymerase opposite v in templates. The efficiency and fidelity of the v-y pairing in transcription were as high as those of the natural A-T(U) and G-C pairings. Furthermore, RNAs containing two adjacent y bases were also transcribed from DNA templates containing two v bases. This specific transcription allows the large-scale preparation of artificial RNAs and can be combined with other systems to simultaneously incorporate several different components into a transcript.
Collapse
Affiliation(s)
- Tsuneo Mitsui
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | | | |
Collapse
|