1
|
Xie Y, Liu Z, Zhang J, Li G, Ni B, Shi C, Zou Y, Zhou Y, Shang X. Deciphering the composition and key driver genes of breast invasive micropapillary carcinoma by multi-omics analysis. iScience 2024; 27:111178. [PMID: 39524324 PMCID: PMC11549989 DOI: 10.1016/j.isci.2024.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, we delved into the intrinsic cellular components and transcriptomic signatures characterizing breast-invasive micropapillary carcinoma (IMPC). Employing bulk RNA sequencing, we conducted differential gene expression and functional profiles across breast cancer tissues. Single-cell transcriptome sequencing was performed on mixed IMPC samples. Moreover, a multicenter retrospective cohort of IMPC patients validated the critical role of KRT80. Our findings illuminated heightened activity in redox reactions and metabolism-related functions within IMPC compared to other tissue types. The single-cell atlas of IMPC demonstrated substantial heterogeneity predominantly driven by two distinct cell subsets: epithelioid and interstitial cells. Pseudotime analysis unveiled unique cell trajectories, and we found positive correlation between KRT80 expression and clinicopathological characteristics in IMPC. High KRT80 expression was associated with shorter overall survival for IMPC patients. This investigation unmasked extensive heterogeneity within breast IMPC tumors, delineating lineage distinctions across diverse cell clusters. It unveils potential prospective therapeutic targets with clinical relevance.
Collapse
Affiliation(s)
- Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ziyun Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jie Zhang
- Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Guangming Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chunlei Shi
- Department of colorectal Surgery, The Wuhu Hospital of Traditional Chinese Medicine, Anhui, China
| | - Yiping Zou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yaoyao Zhou
- Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaobin Shang
- Department of Minimally Invasive Esophageal Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
2
|
Xiang ZY, Chen SL, Qin XR, Lin SL, Xu Y, Lu LN, Zou HD. Changes and related factors of blood CCN1 levels in diabetic patients. Front Endocrinol (Lausanne) 2023; 14:1131993. [PMID: 37334311 PMCID: PMC10273100 DOI: 10.3389/fendo.2023.1131993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Objective To study the differences in blood cellular communication network factor 1 (CCN1) levels between patients with diabetes mellitus (DM) and healthy individuals and to explore the relationship between CCN1 and diabetic retinopathy (DR). Methods Plasma CCN1 levels were detected using ELISA in 50 healthy controls, 74 patients with diabetes without diabetic retinopathy (DM group), and 69 patients with diabetic retinopathy (DR group). Correlations between CCN1 levels and age, body mass index, mean arterial pressure, hemoglobin A1c, and other factors were analyzed. The relationship between CCN1 expression and DR was explored using logistic regression after adjusting for confounding factors. Blood mRNA sequencing analysis was performed for all subjects, and the molecular changes that may be related to CCN1 were explored. The retinal vasculature of streptozotocin-induced diabetic rats was examined using fundus fluorescein angiography; in addition, retinal protein expression was examined using western blotting. Results Plasma CCN1 levels in patients with DR were significantly higher than in the control and DM groups; however, no significant differences were observed between healthy controls and patients with DM. CCN1 levels negatively correlated with body mass index and positively correlated with the duration of diabetes and urea levels. It was observed that high (OR 4.72, 95% CI: 1.10-20.25) and very high (OR 8.54, 95% CI: 2.00-36.51) levels of CCN1 were risk factors for DR. Blood mRNA sequencing analysis revealed that CCN1-related pathways were significantly altered in the DR group. The expression of hypoxia-, oxidative stress-, and dephosphorylation-related proteins were elevated, while that of tight junction proteins were reduced in the retinas of diabetic rats. Conclusion Blood CCN1 levels are significantly elevated in patients with DR. High and very high levels of plasma CCN1 are risk factors for DR. Blood CCN1 level may be a potential biomarker for diagnosis of DR. The effects of CCN1 on DR may be related to hypoxia, oxidative stress, and dephosphorylation.
Collapse
Affiliation(s)
- Zhao-Yu Xiang
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Shu-Li Chen
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Xin-Ran Qin
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Sen-Lin Lin
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Yi Xu
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Li-Na Lu
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Hai-Dong Zou
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| |
Collapse
|
3
|
Ascenção K, Lheimeur B, Szabo C. Regulation of CyR61 expression and release by 3-mercaptopyruvate sulfurtransferase in colon cancer cells. Redox Biol 2022; 56:102466. [PMID: 36113340 PMCID: PMC9482125 DOI: 10.1016/j.redox.2022.102466] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 10/28/2022] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61, also termed CCN family member 1 or CCN1), is a matricellular protein encoded by the CYR61 gene. This protein has been implicated in the regulation of various cancer-associated processes including tumor growth, angiogenesis, tumor cell adhesion, migration, and invasion as well as the regulation of anticancer drug resistance. Hydrogen sulfide (H2S) is a gaseous endogenous biological mediator, involved in the regulation of cellular bioenergetics, angiogenesis, invasion, and chemotherapeutic resistance in several types of cancer. H2S is produced by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current studies were set up to investigate if CBS or 3-MST regulates CyR61 in colon cancer cells in the context of the regulation of proliferation, migration, and survival. The study mainly utilized HCT116 cells, in which two of the principal H2S-producing enzymes, CBS and 3-MST, are highly expressed. The H2S donor GYY4137 and the polysulfide donor Na2S3 activated the CyR61 promoter in a concentration-dependent fashion. Aminooxyacetic acid (AOAA), a pharmacological inhibitor of CBS as well as HMPSNE: 2-[(4-hydroxy-6- methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one, a pharmacological inhibitor of 3-MST inhibited CyR61 mRNA expression. This effect was more pronounced in response to HMPSNE than to AOAA and occurred through the modulation of S1PR via ATF1 and CREB. CyR61 was found to play an active, but relatively minor role in maintaining colon cell proliferation. HMPSNE markedly suppressed the secretion/release of CyR61 from the colon cancer cells. Moreover, HMPSNE promoted colon cancer cell apoptosis; endogenously produced CyR61 was found to counteract this effect, at least in part via RhoA activation. Taken together, we conclude that the upregulation of 3-MST in cancer cells exerts cytoprotective effects and confers the cancer cells a more aggressive phenotype - at least in part via the modulation of CyR61 expression and release.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bassma Lheimeur
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
4
|
Sun J, Zhang W, Tan Z, Zheng C, Tang Y, Ke X, Zhang Y, Liu Y, Li P, Hu Q, Wang H, Mao P, Zheng Z. Zika virus promotes CCN1 expression via the CaMKIIα-CREB pathway in astrocytes. Virulence 2021; 11:113-131. [PMID: 31957543 PMCID: PMC6984649 DOI: 10.1080/21505594.2020.1715189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Zika virus (ZIKV) infection in the human central nervous system (CNS) causes Guillain–Barre syndrome, cerebellum deformity, and other diseases. Astrocytes are immune response cells in the CNS and an important component of the blood–brain barrier. Consequently, any damage to astrocytes facilitates the spread of ZIKV in the CNS. Connective tissue growth factor/Nephroblastoma overexpressed gene family 1 (CCN1), an important inflammatory factor secreted by astrocytes, is reported to regulate innate immunity and viral infection. However, the mechanism by which astrocyte viral infection affects CCN1 expression remains undefined. In this study, we demonstrate that ZIKV infection up-regulates CCN1 expression in astrocytes, thus promoting intracellular viral replication. Other studies revealed that the cAMP response element (CRE) in the CCN1 promoter is activated by the ZIKV NS3 protein. The cAMP-responsive element-binding protein (CREB), a transacting factor of the CRE, is also activated by NS3 or ZIKV. Furthermore,a specific inhibitor of CREB, i.e. SGC-CBP30, reduced ZIKV-induced CCN1 up-regulation and ZIKV replication. Moreover, co-immunoprecipitation, overexpression, and knockdown studies confirmed that the interaction between NS3 and the regulatory domain of CaMKIIα could activate the CREB pathway, thus resulting in the up-regulation of CCN1 expression and enhancement of virus replication. In conclusion, the findings of our investigations on the NS3-CaMKIIα-CREB-CCN1 pathway provide a foundation for understanding the infection mechanism of ZIKV in the CNS.
Collapse
Affiliation(s)
- Jianhong Sun
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,College of life sciences and health, Wuhan university of science and technology, Wuhan, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhongyuan Tan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Caishang Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Tang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xianliang Ke
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Penghui Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Panyong Mao
- Beijing Institute of Infectious Diseases,Military Hospital of China, Beijing, P.R. China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Chaqour B. Caught between a "Rho" and a hard place: are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J Cell Commun Signal 2019; 14:21-29. [PMID: 31376071 DOI: 10.1007/s12079-019-00529-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is a deformable dynamic structure that dictates the behavior, function and integrity of blood vessels. The composition, density, chemistry and architecture of major globular and fibrillar proteins of the matrisome regulate the mechanical properties of the vasculature (i.e., stiffness/compliance). ECM proteins are linked via integrins to a protein adhesome directly connected to the actin cytoskeleton and various downstream signaling pathways that enable the cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. However, cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, ischemia and aging compromise the mechanical balance of the vascular wall. Stiffening of large blood vessels is associated with well-known qualitative and quantitative changes of fibrillar and fibrous macromolecules of the vascular matrisome. However, the mechanical properties of the thin-walled microvasculature are essentially defined by components of the subendothelial matrix. Cellular communication network (CCN) 1 and 2 proteins (aka Cyr61 and CTGF, respectively) of the CCN protein family localize in and act on the pericellular matrix of microvessels and constitute primary candidate markers and regulators of microvascular compliance. CCN1 and CCN2 bind various integrin and non-integrin receptors and initiate signaling pathways that regulate connective tissue remodeling and response to injury, the associated mechanoresponse of vascular cells, and the subsequent inflammatory response. The CCN1 and CCN2 genes are themselves responsive to mechanical stimuli in vascular cells, wherein mechanotransduction signaling converges into the common Rho GTPase pathway, which promotes actomyosin-based contractility and cellular stiffening. However, CCN1 and CCN2 each exhibit unique functional attributes in these processes. A better understanding of their synergistic or antagonistic effects on the maintenance (or loss) of microvascular compliance in physiological and pathological situations will assist more broadly based studies of their functional properties and translational value.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Cell Biology and Department of Ophthalmology, State University of New York - SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
6
|
Deng J, Qian X, Li J, Li Y, Li Y, Luo Y. Evaluation of serum cysteine-rich protein 61 levels in patients with coronary artery disease. Biomark Med 2018; 12:329-339. [PMID: 29345157 DOI: 10.2217/bmm-2017-0390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIM The aim is to evaluate serum cysteine-rich protein 61 (Cyr61) levels in patients with coronary artery disease (CAD). PATIENTS & METHODS Serum Cyr61 levels were measured in 180 patients with CAD and 74 participants without CAD. RESULTS Serum Cyr61 levels were significantly higher in CAD patients. Patients with acute coronary syndrome showed significantly higher Cyr61 than those with stable angina pectoris. Serum Cyr61 levels in complex lesion group were significantly higher. Serum Cyr61 was positively correlated with Gensini score and C-reactive protein. Multivariable logistic regression analyses demonstrated that serum Cyr61 levels were independently correlated with the existence of CAD (p = 0.01). CONCLUSION Our study suggested Cyr61 as a potential biomarker in characterizing CAD and therapeutic target for CAD.
Collapse
Affiliation(s)
- Jingang Deng
- Division of Cardiology, Shenzhen Tenth People's Hospital, Shenzhen, Guangdong, China
| | - Xiaoxian Qian
- Division of Cardiology, The Third Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianping Li
- Division of Cardiology, Shenzhen Tenth People's Hospital, Shenzhen, Guangdong, China
| | - Yanghua Li
- Division of Cardiology, Shenzhen Tenth People's Hospital, Shenzhen, Guangdong, China
| | - Yang Li
- Division of Cardiology, Shenzhen Tenth People's Hospital, Shenzhen, Guangdong, China
| | - Yijun Luo
- Division of Cardiology, Shenzhen Tenth People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Lee S, Elaskandrany M, Lau LF, Lazzaro D, Grant MB, Chaqour B. Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 2017; 7:1405. [PMID: 28469167 PMCID: PMC5431199 DOI: 10.1038/s41598-017-01585-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
CYR61-CTGF-NOV (CCN)1 is a dynamically expressed extracellular matrix (ECM) protein with critical functions in cardiovascular development and tissue repair. Angiogenic endothelial cells (ECs) are a major cellular source of CCN1 which, once secreted, associates with the ECM and the cell surface and tightly controls the bidirectional flow of information between cells and the surrounding matrix. Endothelium-specific CCN1 deletion in mice using a cre/lox strategy induces EC hyperplasia and causes blood vessels to coalesce into large flat hyperplastic sinuses with no distinctive hierarchical organization. This is consistent with the role of CCN1 as a negative feedback regulator of vascular endothelial growth factor (VEGF) receptor activation. In the mouse model of oxygen-induced retinopathy (OIR), pericytes become the predominant CCN1 producing cells. Pericyte-specific deletion of CCN1 significantly decreases pathological retinal neovascularization following OIR. CCN1 induces the expression of the non-canonical Wnt5a in pericyte but not in EC cultures. In turn, exogenous Wnt5a inhibits CCN1 gene expression, induces EC proliferation and increases hypersprouting. Concordantly, treatment of mice with TNP470, a non-canonical Wnt5a inhibitor, reestablishes endothelial expression of CCN1 and significantly decreases pathological neovascular growth in OIR. Our data highlight the significance of CCN1-EC and CCN1-pericyte communication signals in driving physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Menna Elaskandrany
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, 60607, USA
| | - Douglas Lazzaro
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Maria B Grant
- Departments of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA.
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA.
| |
Collapse
|
8
|
Lee H, Park JB, Ryu WI, Kim JH, Shin JJ, Son SW. Chloroform induces cystein-rich 61, a mediator of collagen homeostasis via early growth response-1 dependent pathway in human skin dermal fibroblasts. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-016-0038-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Dou Q, Hao F, Sun L, Xu X, Cui MZ. CRE and SRE mediate LPA-induced CCN1 transcription in mouse aortic smooth muscle cells. Can J Physiol Pharmacol 2016; 95:275-280. [PMID: 28157379 DOI: 10.1139/cjpp-2016-0559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysophosphatidic acid (LPA), one component of oxidized low-density lipoprotein (ox-LDL), is a potent bioactive phospholipid. Our recent data reveal that LPA induces matricellular protein CCN1 (also known as Cyr61) expression in aortic smooth muscle cells (SMCs) and that CCN1 bridges LPA and integrin signaling pathways leading to SMC migration. Whether and how LPA regulates the transcriptional machinery of the CCN1 gene are unknown. In this study, we found that LPA markedly induces CCN1 mRNA expression in SMCs. Using deleting mutation and reporter gene strategies, we demonstrated regions from -2038 to -1787 and from -101 to +63 of the CCN1 promoter contain the essential regulatory elements. The serum response element (SRE) and cyclic AMP-response element (CRE) are located in these regions. LPA induced time-dependent phosphorylation of serum response factor (SRF) and CRE-binding protein (CREB) in mouse SMCs. Luciferase assays of a series of deleted, mutated CCN1 promoter-reporter gene constructs and dominant negative construct revealed the distal SRE and the proximal CRE in the CCN1 promoter are required for LPA-induced CCN1 gene expression. Our results imply that elevated LPA levels may trigger SMC migration and exacerbate restenosis and atherosclerotic lesions through the induced CCN1, which communicates with a set of plasma membrane proteins and intracellular kinases.
Collapse
Affiliation(s)
- Quanlin Dou
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA.,b State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China 810016
| | - Feng Hao
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Longsheng Sun
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA.,c College of Animal Science and Technology, Yangzhou University, China 225009
| | - Xuemin Xu
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Mei-Zhen Cui
- a Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Thakur R, Mishra DP. Matrix reloaded: CCN, tenascin and SIBLING group of matricellular proteins in orchestrating cancer hallmark capabilities. Pharmacol Ther 2016; 168:61-74. [DOI: 10.1016/j.pharmthera.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Kwon EJ, Park EJ, Choi S, Kim SR, Cho M, Kim J. PPARγ agonist rosiglitazone inhibits migration and invasion by downregulating Cyr61 in rheumatoid arthritis fibroblast-like synoviocytes. Int J Rheum Dis 2016; 20:1499-1509. [PMID: 27456070 DOI: 10.1111/1756-185x.12913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have anti-inflammatory properties that reduce inflammatory cytokine production in rheumatoid arthritis (RA). Cysteine-rich angiogenic inducer 61 (Cyr61) is associated with diseases related to chronic inflammation. The aim of this study was to investigate the mechanisms underlying the effects of PPARγ agonists on tumor necrosis factor (TNF)-α-induced fibroblast-like synoviocyte (FLS) invasion and migration, as well as Cyr61 production, in RA-FLS. METHODS FLS were cultured with TNF-α and Cyr61 in the presence or absence of PPARγ agonists. Matrix metalloproteinase and Cyr61 expression levels in RA-FLS and culture supernatants were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The migration and invasion phenotypes of RA-FLS were determined by wound healing and Boyden chamber assays. RESULTS Cyr61 protein was expressed in RA-FLS, and its intracellular expression and secretion levels were increased by TNF-α. Moreover, Cyr61 directly promoted RA-FLS migration and invasion. Rosiglitazone (RSG) significantly decreased TNF-α-induced Cyr61 expression. RSG decreased TNF-α-induced nuclear factor (NF)-κB activation and inhibitor of κBα degradation. Furthermore, RSG inhibited TNF-α-induced RA-FLS migration and invasion and decreased Cyr61 treatment-induced RA-FLS invasion. Finally, blocking Cyr61 significantly attenuated TNF-α-induced migration. CONCLUSIONS Our results demonstrate for the first time that PPARγ agonists may have beneficial effects on the migration and invasion of RA-FLS via the downregulation of Cyr61. Therefore, PPARγ agonists could be potential treatment targets for RA.
Collapse
Affiliation(s)
- Eun-Jeong Kwon
- Department of Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Eun-Jung Park
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| | - Sungwook Choi
- Department of Orthopedic Surgery, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Sang-Rim Kim
- Department of Orthopedic Surgery, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Moonjae Cho
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Jinseok Kim
- Department of Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea.,Department of Internal Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| |
Collapse
|
12
|
Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget 2016; 6:10712-27. [PMID: 25926554 PMCID: PMC4484414 DOI: 10.18632/oncotarget.3544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/16/2015] [Indexed: 01/15/2023] Open
Abstract
Despite recent advances, treatment options for advanced prostate cancer (CaP) remain limited. We are pioneering approaches to treat advanced CaP that employ conditionally replication-competent oncolytic adenoviruses that simultaneously produce a systemically active cancer-specific therapeutic cytokine, mda-7/IL-24, Cancer Terminator Viruses (CTV). A truncated version of the CCN1/CYR61 gene promoter, tCCN1-Prom, was more active than progression elevated gene-3 promoter (PEG-Prom) in regulating transformation-selective transgene expression in CaP and oncogene-transformed rat embryo cells. Accordingly, we developed a new CTV, Ad.tCCN1-CTV-m7, which displayed dose-dependent killing of CaP without harming normal prostate epithelial cells in vitro with significant anti-cancer activity in vivo in both nude mouse CaP xenograft and transgenic Hi-Myc mice (using ultrasound-targeted microbubble (MB)-destruction, UTMD, with decorated MBs). Resistance to mda-7/IL-24-induced cell deathcorrelated with overexpression of Bcl-2 family proteins. Inhibiting Mcl-1 using an enhanced BH3 mimetic, BI-97D6, sensitized CaP cell lines to mda-7/IL-24-induced apoptosis. Combining BI-97D6 with Ads expressing mda-7/IL-24promoted ER stress, decreased anti-apoptotic Mcl-1 expression and enhanced mda-7/IL-24expression through mRNA stabilization selectively in CaP cells. In Hi-myc mice, the combination induced enhanced apoptosis and tumor growth suppression. These studies highlight therapeutic efficacy of combining a BH3 mimetic with a novel CTV, supporting potential clinical applications for treating advanced CaP.
Collapse
|
13
|
Myocardin-Related Transcription Factor A and Yes-Associated Protein Exert Dual Control in G Protein-Coupled Receptor- and RhoA-Mediated Transcriptional Regulation and Cell Proliferation. Mol Cell Biol 2015; 36:39-49. [PMID: 26459764 DOI: 10.1128/mcb.00772-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022] Open
Abstract
The ability of a subset of G protein-coupled receptors (GPCRs) to activate RhoA endows them with unique growth-regulatory properties. Two transcriptional pathways are activated through GPCRs and RhoA, one utilizing the transcriptional coactivator myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) and the other using the transcriptional coactivator Yes-associated protein (YAP) and TEA domain family members (TEAD). These pathways have not been compared for their relative levels of importance and potential interactions in RhoA target gene expression. GPCRs for thrombin and sphingosine-1-phosphate (S1P) on human glioblastoma cells robustly couple to RhoA and induce the matricelluar protein CCN1. Knockdown of either MRTF-A or YAP abrogates S1P-stimulated CCN1 expression, demonstrating that both coactivators are required. MRTF-A and YAP are also both required for transcriptional control of other S1P-regulated genes in various cell types and for S1P-stimulated glioblastoma cell proliferation. Interactions between MRTF-A and YAP are suggested by their synergistic effects on SRE.L- and TEAD-luciferase expression. Moreover, MRTF-A and YAP associate in coimmunoprecipitations from S1P-stimulated cells. Chromatin immunoprecipitation (ChIP) analysis of the CCN1 gene promoter demonstrated that S1P increases coactivator binding at the canonical transcription factor sequences. Unexpectedly, S1P also enhances MRTF-A binding at TEA sites. Our findings reveal that GPCR- and RhoA-regulated gene expression requires dual input and integration of two distinct transcriptional pathways.
Collapse
|
14
|
Yu OM, Brown JH. G Protein-Coupled Receptor and RhoA-Stimulated Transcriptional Responses: Links to Inflammation, Differentiation, and Cell Proliferation. Mol Pharmacol 2015; 88:171-80. [PMID: 25904553 PMCID: PMC4468647 DOI: 10.1124/mol.115.097857] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/22/2015] [Indexed: 01/06/2023] Open
Abstract
The low molecular weight G protein RhoA (rat sarcoma virus homolog family member A) serves as a node for transducing signals through G protein-coupled receptors (GPCRs). Activation of RhoA occurs through coupling of G proteins, most prominently, G12/13, to Rho guanine nucleotide exchange factors. The GPCR ligands that are most efficacious for RhoA activation include thrombin, lysophosphatidic acid, sphingosine-1-phosphate, and thromboxane A2. These ligands also stimulate proliferation, differentiation, and inflammation in a variety of cell and tissues types. The molecular events underlying these responses are the activation of transcription factors, transcriptional coactivators, and downstream gene programs. This review describes the pathways leading from GPCRs and RhoA to the regulation of activator protein-1, NFκB (nuclear factor κ-light-chain-enhancer of activated B cells), myocardin-related transcription factor A, and Yes-associated protein. We also focus on the importance of two prominent downstream transcriptional gene targets, the inflammatory mediator cyclooxygenase 2, and the matricellular protein cysteine-rich angiogenic inducer 61 (CCN1). Finally, we describe the importance of GPCR-induced activation of these pathways in the pathophysiology of cancer, fibrosis, and cardiovascular disease.
Collapse
Affiliation(s)
- Olivia M Yu
- Department of Pharmacology (O.Y., J.H.B.) and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California (O.Y.)
| | - Joan Heller Brown
- Department of Pharmacology (O.Y., J.H.B.) and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California (O.Y.)
| |
Collapse
|
15
|
Chintala H, Krupska I, Yan L, Lau L, Grant M, Chaqour B. The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development 2015; 142:2364-74. [PMID: 26002917 DOI: 10.1242/dev.121913] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endothelial cells (ECs) at the leading front of actively growing vessels in the mouse retina. Endothelial deletion of CCN1 in mice using a Cre-Lox system is associated with EC hyperplasia, loss of pericyte coverage and formation of dense retinal vascular networks lacking the normal hierarchical arrangement of arterioles, capillaries and venules. CCN1 is a product of an immediate-early gene that is transcriptionally induced in ECs in response to stimulation by vascular endothelial growth factor (VEGF). We found that CCN1 activity is integrated with VEGF receptor 2 (VEGF-R2) activation and downstream signaling pathways required for tubular network formation. CCN1-integrin binding increased the expression of and association between Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and VEGF-R2, which leads to rapid dephosphorylation of VEGF-R2 tyrosine, thus preventing EC hyperproliferation. Predictably, CCN1 further brings receptors/signaling molecules into proximity that are otherwise spatially separated. Furthermore, CCN1 induces integrin-dependent Notch activation in cultured ECs, and its targeted gene inactivation in vivo alters Notch-dependent vascular specification and remodeling, suggesting that functional levels of Notch signaling requires CCN1 activity. These data highlight novel functions of CCN1 as a naturally optimized molecule, fine-controlling key processes in physiological angiogenesis and safeguarding against aberrant angiogenic responses.
Collapse
Affiliation(s)
- Hemabindu Chintala
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Izabela Krupska
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Lulu Yan
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Lester Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA
| | - Maria Grant
- Departments of Ophthalmology and Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brahim Chaqour
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
16
|
Bourguignon LYW, Bikle D. Selective Hyaluronan-CD44 Signaling Promotes miRNA-21 Expression and Interacts with Vitamin D Function during Cutaneous Squamous Cell Carcinomas Progression Following UV Irradiation. Front Immunol 2015; 6:224. [PMID: 26029210 PMCID: PMC4429634 DOI: 10.3389/fimmu.2015.00224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/26/2015] [Indexed: 11/13/2022] Open
Abstract
Hyaluronan (HA), the major extracellular matrix component, is often anchored to CD44, a family of structurally/functionally important cell surface receptors. Recent results indicate that UV irradiation (UVR)-induced cutaneous squamous cell carcinomas (SCC) overexpress a variety of CD44 variant isoforms (CD44v), with different CD44v isoforms appear to confer malignant SCC properties. UVR also stimulates HA degradation in epidermal keratinocytes. Both large HA polymers and their UVR-induced catabolic products (small HA) selectively activate CD44-mediated cellular signaling in normal keratinocytes and SCC cells, with all of the downstream processes being mediated by RhoGTPases (e.g., Rac1 and Rho). Importantly, we found that the hormonally active form of vitamin D 1,25(OH)2D3 not only prevents the UVR-induced small HA activation of abnormal keratinocyte behavior and SCC progression, but also enhances large HA stimulation of normal keratinocyte activities and epidermal function(s). The aim of this hypothesis and theory article is to question whether matrix HA and its UVR-induced catabolic products (e.g., large and small HA) can selectively activate CD44-mediated cellular signaling such as GTPase (Rac and RhA) activation. We suggested that large HA-CD44 interaction promotes Rac-signaling and normal keratinocyte differentiation (lipid synthesis), DNA repair, and keratinocyte survival function. Conversely, small HA-CD44 interaction stimulates RhoA activation, NFκB/Stat-3 signaling, and miR-21 production, resulting in inflammation and proliferation as well as SCC progression. We also question whether vitamin D treatment displays any effect on small HA-CD44v-mediated RhoA signaling, inflammation, and SCC progression, as well as large HA-CD44-mediated differentiation, DNA repair, keratinocyte survival, and normal keratinocyte function. In addition, we discussed that the topical application of signaling perturbation agents (e.g., Y27623, a ROK inhibitor) may be used to treat certain skin diseases displaying upregulation of keratinocyte proliferation such as psoriasis and actinic keratoses in order to correct the imbalance between Rac and RhoA signaling during various UV irradiation-induced skin diseases in patients. Finally, we proposed that matrix HA/CD44-signaling strategies and matrix HA (HAS vs. HAL or HAS → HAL)-based therapeutic approaches (together with vitamin D) may be used for the treatment of patients suffering a number of UV irradiation-induced skin diseases (e.g., inflammation, skin cancer, and chronic non-healing wounds).
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California at San Francisco , San Francisco, CA , USA
| | - Daniel Bikle
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California at San Francisco , San Francisco, CA , USA
| |
Collapse
|
17
|
Young K, Tweedie E, Conley B, Ames J, FitzSimons M, Brooks P, Liaw L, Vary CPH. BMP9 Crosstalk with the Hippo Pathway Regulates Endothelial Cell Matricellular and Chemokine Responses. PLoS One 2015; 10:e0122892. [PMID: 25909848 PMCID: PMC4409298 DOI: 10.1371/journal.pone.0122892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/24/2015] [Indexed: 12/26/2022] Open
Abstract
Endoglin is a type III TGFβ auxiliary receptor that is upregulated in endothelial cells during angiogenesis and, when mutated in humans, results in the vascular disease hereditary hemorrhagic telangiectasia (HHT). Though endoglin has been implicated in cell adhesion, the underlying molecular mechanisms are still poorly understood. Here we show endoglin expression in endothelial cells regulates subcellular localization of zyxin in focal adhesions in response to BMP9. RNA knockdown of endoglin resulted in mislocalization of zyxin and altered formation of focal adhesions. The mechanotransduction role of focal adhesions and their ability to transmit regulatory signals through binding of the extracellular matrix are altered by endoglin deficiency. BMP/TGFβ transcription factors, SMADs, and zyxin have recently been implicated in a newly emerging signaling cascade, the Hippo pathway. The Hippo transcription coactivator, YAP1 (yes-associated protein 1), has been suggested to play a crucial role in mechanotransduction and cell-cell contact. Identification of BMP9-dependent nuclear localization of YAP1 in response to endoglin expression suggests a mechanism of crosstalk between the two pathways. Suppression of endoglin and YAP1 alters BMP9-dependent expression of YAP1 target genes CCN1 (cysteine-rich 61, CYR61) and CCN2 (connective tissue growth factor, CTGF) as well as the chemokine CCL2 (monocyte chemotactic protein 1, MCP-1). These results suggest a coordinate effect of endoglin deficiency on cell matrix remodeling and local inflammatory responses. Identification of a direct link between the Hippo pathway and endoglin may reveal novel mechanisms in the etiology of HHT.
Collapse
Affiliation(s)
- Kira Young
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Eric Tweedie
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
| | - Barbara Conley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
| | - Jacquelyn Ames
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - MaryLynn FitzSimons
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Peter Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Calvin P. H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
- * E-mail:
| |
Collapse
|
18
|
Chin LH, Hsu SP, Zhong WB, Liang YC. Involvement of cysteine-rich protein 61 in the epidermal growth factor-induced migration of human anaplastic thyroid cancer cells. Mol Carcinog 2015; 55:622-32. [PMID: 25773758 DOI: 10.1002/mc.22308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022]
Abstract
Anaplastic thyroid cancer (ATC) is among the most aggressive types of malignant cancer. Epidermal growth factor (EGF) plays a crucial role in the pathogenesis of ATC, and patients with thyroid carcinoma typically exhibit increased cysteine-rich protein 61 (Cyr61). In this study, we found that EGF treatment induced cell migration, stress fiber formation, Cyr61 mRNA and protein expressions, and Cyr61 protein secretion in ATC cells. The recombinant Cyr61 protein significantly induced cell migration; however, inhibition of Cyr61 activity by a Cyr61-specific antibody abrogated EGF-induced cell migration. EGF treatment also affected epithelial-to-mesenchymal transition (EMT)-related marker protein expression, as evidenced by an increase in vimentin and a decrease in E-cadherin expression. Inhibition of Cyr61 expression by Cyr61 siRNA decreased cell migration and reversed the EMT-related marker protein expression. EGF treatment increased the phosphorylation of the extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB), and finally activated Cyr61 promoter plasmid activity. Our results suggest that Cyr61 is induced by EGF through the ERK/CREB signal pathway and that it plays a crucial role in the migration and invasion of ATC cells; moreover, Cyr61 might be a therapeutic target for metastatic ATC.
Collapse
Affiliation(s)
- Li-Han Chin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Po Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Zhong
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Chin LH, Hsu SP, Zhong WB, Liang YC. Combined treatment with troglitazone and lovastatin inhibited epidermal growth factor-induced migration through the downregulation of cysteine-rich protein 61 in human anaplastic thyroid cancer cells. PLoS One 2015; 10:e0118674. [PMID: 25742642 PMCID: PMC4351011 DOI: 10.1371/journal.pone.0118674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
Our previous studies have demonstrated that epidermal growth factor (EGF) can induce cell migration through the induction of cysteine-rich protein 61 (Cyr61) in human anaplastic thyroid cancer (ATC) cells. The aim of the present study was to determine the inhibitory effects of combined treatment with the peroxisome proliferator-activated receptor-γ (PPARγ) ligand troglitazone and the cholesterol-lowering drug lovastatin at clinically achievable concentrations on ATC cell migration. Combined treatment with 5 μM troglitazone and 1 μM lovastatin exhibited no cytotoxicity but significantly inhibited EGF-induced migration, as determined using wound healing and Boyden chamber assays. Cotreatment with troglitazone and lovastatin altered the epithelial-to-mesenchymal-transition (EMT) -related marker gene expression of the cells; specifically, E-cadherin expression increased and vimentin expression decreased. In addition, cotreatment reduced the number of filopodia, which are believed to be involved in migration, and significantly inhibited EGF-induced Cyr61 mRNA and protein expression as well as Cyr61 secretion. Moreover, the phosphorylation levels of 2 crucial signal molecules for EGF-induced Cyr61 expression, the cAMP response element-binding protein (CREB) and extracellular signal-regulated kinase (ERK), were decreased in cells cotreated with troglitazone and lovastatin. Performing a transient transfection assay revealed that the combined treatment significantly suppressed Cyr61 promoter activity. These results suggest that combined treatment with low doses of troglitazone and lovastatin effectively inhibits ATC cell migration and may serve as a novel therapeutic strategy for metastatic ATC.
Collapse
Affiliation(s)
- Li-Han Chin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Po Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Zhong
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Qin Z, Robichaud P, He T, Fisher GJ, Voorhees JJ, Quan T. Oxidant exposure induces cysteine-rich protein 61 (CCN1) via c-Jun/AP-1 to reduce collagen expression in human dermal fibroblasts. PLoS One 2014; 9:e115402. [PMID: 25536346 PMCID: PMC4275215 DOI: 10.1371/journal.pone.0115402] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022] Open
Abstract
Human skin is a primary target of oxidative stress from reactive oxygen species (ROS) generated from both extrinsic and intrinsic sources. Oxidative stress inhibits the production of collagen, the most abundant protein in skin, and thus contributes to connective tissue aging. Here we report that cysteine-rich protein 61 (CCN1), a negative regulator of collagen production, is markedly induced by ROS and mediates loss of type I collagen in human dermal fibroblasts. Conversely, antioxidant N-acetyl-L-cysteine significantly reduced CCN1 expression and prevented ROS-induced loss of type I collagen in both human dermal fibroblasts and human skin in vivo. ROS increased c-Jun, a critical member of transcription factor AP-1 complex, and increased c-Jun binding to the AP-1 site of the CCN1 promoter. Functional blocking of c-Jun significantly reduced CCN1 promoter and gene expression and thus prevented ROS-induced loss of type I collagen. Targeting the c-Jun/CCN1 axis may provide clinical benefit for connective tissue aging in human skin.
Collapse
Affiliation(s)
- Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Patrick Robichaud
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Tianyuan He
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gary J. Fisher
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - John J. Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Zhao X, Ding EY, Yu OM, Xiang SY, Tan-Sah VP, Yung BS, Hedgpeth J, Neubig RR, Lau LF, Brown JH, Miyamoto S. Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. J Mol Cell Cardiol 2014; 75:152-61. [PMID: 25106095 PMCID: PMC4157956 DOI: 10.1016/j.yjmcc.2014.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 01/06/2023]
Abstract
Activation of RhoA, a low molecular-weight G-protein, plays an important role in protecting the heart against ischemic stress. Studies using non-cardiac cells demonstrate that the expression and subsequent secretion of the matricellular protein CCN1 is induced by GPCR agonists that activate RhoA. In this study we determined whether and how CCN1 is induced by GPCR agonists in cardiomyocytes and examined the role of CCN1 in ischemic cardioprotection in cardiomyocytes and the isolated perfused heart. In neonatal rat ventricular myocytes (NRVMs), sphingosine 1-phosphate (S1P), lysophosphatidic acid (LPA) and endothelin-1 induced robust increases in CCN1 expression while phenylephrine, isoproterenol and carbachol had little or no effect. The ability of agonists to activate the small G-protein RhoA correlated with their ability to induce CCN1. CCN1 induction by S1P was blocked when RhoA function was inhibited with C3 exoenzyme or a pharmacological RhoA inhibitor. Conversely overexpression of RhoA was sufficient to induce CCN1 expression. To delineate the signals downstream of RhoA we tested the role of MRTF-A (MKL1), a co-activator of SRF, in S1P-mediated CCN1 expression. S1P increased the nuclear accumulation of MRTF-A and this was inhibited by the functional inactivation of RhoA. In addition, pharmacological inhibitors of MRTF-A or knockdown of MRTF-A significantly diminished S1P-mediated CCN1 expression, indicating a requirement for RhoA/MRTF-A signaling. We also present data indicating that CCN1 is secreted following agonist treatment and RhoA activation, and binds to cells where it can serve an autocrine function. To determine the functional significance of CCN1 expression and signaling, simulated ischemia/reperfusion (sI/R)-induced apoptosis was assessed in NRVMs. The ability of S1P to protect against sI/R was significantly reduced by the inhibition of RhoA, ROCK or MRTF-A or by CCN1 knockdown. We also demonstrate that ischemia/reperfusion induces CCN1 expression in the isolated perfused heart and that this functions as a cardioprotective mechanism, evidenced by the significant increase in infarct development in response to I/R in the cardiac specific CCN1 KO relative to control mice. Our findings implicate CCN1 as a mediator of cardioprotection induced by GPCR agonists that activate RhoA/MRTF-A signaling.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Eric Y Ding
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Olivia M Yu
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Sunny Y Xiang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Valerie P Tan-Sah
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Bryan S Yung
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Joe Hedgpeth
- CompleGen, Inc., 1124 Columbia Street, Seattle, WA 98104, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue St./B440 Life Sciences, East Lansing, MI 48824, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 S Ashland, Chicago, IL 60607, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
22
|
The up-regulation of cysteine-rich protein 61 induced by transforming growth factor beta enhances osteosarcoma cell migration. Mol Cell Biochem 2013; 384:269-77. [PMID: 24037310 DOI: 10.1007/s11010-013-1807-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
Overexpressed cysteine-rich protein 61 (Cyr61) is believed to enhance osteosarcoma (OS) cell metastasis, but the mechanism of Cyr61 overexpression in OS is not clear so far. In this study 33 OS samples were analyzed by immunostaining and focused on two parts: the correlation between overexpression of Cyr61 and OS metastasis; the mechanism of regulating Cyr61 expression in OS. Twenty-five out of 33 cases (75.76 %) with metastasis showed high expression of Cyr61. Furthermore, Cyr61 expression in Saos-2 cells was reduced by siRNA, and lower expression of Cyr61 in Saos-2 cell resulted in a cell migration deficiency and had no effect on cell proliferation. Particularly, Cyr61 expression was significantly increased in Saos-2 cells in response to different dosages of transforming growth factor beta (TGF-β), indicating that the expression of Cyr61 is TGF-β dependent. A transwell assay showed that Saos-2 cells stimulated with TGF-β had a greater capacity for migration than the control cells. The p38 MAPK-specific inhibitor SB203580 was able to reduce Cyr61 expression and inhibit the migration of Saos-2 cells stimulated with TGF-β. These results obtained provide new evidence that overexpressed Cyr61 plays a key role in the metastasis of OS cells and Cyr61 is a potential target downstream of TGF-β/p38 MAPK to regulate cell migration.
Collapse
|
23
|
Wang N, Zhang R, Wang SJ, Zhang CL, Mao LB, Zhuang CY, Tang YY, Luo XG, Zhou H, Zhang TC. Vascular endothelial growth factor stimulates endothelial differentiation from mesenchymal stem cells via Rho/myocardin-related transcription factor--a signaling pathway. Int J Biochem Cell Biol 2013; 45:1447-1456. [PMID: 23624342 DOI: 10.1016/j.biocel.2013.04.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/23/2013] [Accepted: 04/15/2013] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) are pluripotent progenitors that can differentiate into a variety of cell types. Vascular endothelial growth factor (VEGF) is one of the major factors of initiating and regulating angiogenesis. It has been reported that VEGF can induce MSCs differentiated into endothelial cells (ECs). However, the mechanism that VEGF-induced MSC differentiation is not completely understood. Here, we showed that VEGF induced human and rat bone marrow-derived MSCs differentiation to ECs. Rho family plays an important role in VEGF-induced endothelial cell migration and angiogenesis. Our results indicated that in MSCs, VEGF activated Rho/ROCK signaling pathway and promoted nuclear translocation of myocardin-related transcription factor-A (MRTF-A), which is controlled by Rho/ROCK signaling. In addition, Rho inhibitor C3 transferase, ROCK inhibitor Y27632 or depletion of endogenous MRTF-A abolished the VEGF-induced differentiation of MSCs into ECs. Furthermore, VEGF also enhanced the expression levels of CYR61/CCN1, as a regulator of vascular development and angiogenesis, and knockdown of endogenous MRTF-A reduced VEGF-induced the upregulation of CYR61/CCN1. Report assays with site-direct mutation analysis of CYR61/CCN1 promoter demonstrated that MRTF-A transactivated CYR61/CCN1 promoter mainly depending on CArG box. In this study, we identify the Rho/MRTF-A signaling pathway as a main actor in controlling VEGF-induced differentiation of human and rat bone marrow-derived MSCs into endothelial cells.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yan L, Chaqour B. Cysteine-rich protein 61 (CCN1) and connective tissue growth factor (CCN2) at the crosshairs of ocular neovascular and fibrovascular disease therapy. J Cell Commun Signal 2013; 7:253-63. [PMID: 23740088 DOI: 10.1007/s12079-013-0206-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022] Open
Abstract
The vasculature forms a highly branched network investing every organ of vertebrate organisms. The retinal circulation, in particular, is supported by a central retinal artery branching into superficial arteries, which dive into the retina to form a dense network of capillaries in the deeper retinal layers. The function of the retina is highly dependent on the integrity and proper functioning of its vascular network and numerous ocular diseases including diabetic retinopathy, age-related macular degeneration and retinopathy of prematurity are caused by vascular abnormalities culminating in total and sometimes irreversible loss of vision. CCN1 and CCN2 are inducible extracellular matrix (ECM) proteins which play a major role in normal and aberrant formation of blood vessels as their expression is associated with developmental and pathological angiogenesis. Both CCN1 and CCN2 achieve disparate cell-type and context-dependent activities through modulation of the angiogenic and synthetic phenotype of vascular and mesenchymal cells respectively. At the molecular level, CCN1 and CCN2 may control capillary growth and vascular cell differentiation by altering the composition or function of the constitutive ECM proteins, potentiating or interfering with the activity of various ligands and/or their receptors, physically interfering with the ECM-cell surface interconnections, and/or reprogramming gene expression driving cells toward new phenotypes. As such, these proteins emerged as important prognostic markers and potential therapeutic targets in neovascular and fibrovascular diseases of the eye. The purpose of this review is to highlight our current knowledge and understanding of the most recent data linking CCN1 and CCN2 signaling to ocular neovascularization bolstering the potential value of targeting these proteins in a therapeutic context.
Collapse
Affiliation(s)
- Lulu Yan
- Department of Cell Biology and Department of Ophthalmology, State University of New York (SUNY) Eye Institute Downstate Medical Center, 450 Clarkson Avenue, Box 5, Brooklyn, NY, 11203, USA
| | | |
Collapse
|
25
|
Correlations Between CCN1 Immunoexpression and Myocardial Histologic Lesions in Sudden Cardiac Death. Am J Forensic Med Pathol 2013; 34:169-76. [DOI: 10.1097/paf.0b013e31828d69b5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Malik AR, Urbanska M, Gozdz A, Swiech LJ, Nagalski A, Perycz M, Blazejczyk M, Jaworski J. Cyr61, a matricellular protein, is needed for dendritic arborization of hippocampal neurons. J Biol Chem 2013; 288:8544-8559. [PMID: 23362279 DOI: 10.1074/jbc.m112.411629] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shape of the dendritic arbor is one of the criteria of neuron classification and reflects functional specialization of particular classes of neurons. The development of a proper dendritic branching pattern strongly relies on interactions between the extracellular environment and intracellular processes responsible for dendrite growth and stability. We previously showed that mammalian target of rapamycin (mTOR) kinase is crucial for this process. In this work, we performed a screen for modifiers of dendritic growth in hippocampal neurons, the expression of which is potentially regulated by mTOR. As a result, we identified Cyr61, an angiogenic factor with unknown neuronal function, as a novel regulator of dendritic growth, which controls dendritic growth in a β1-integrin-dependent manner.
Collapse
Affiliation(s)
- Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Malgorzata Urbanska
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Agata Gozdz
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Lukasz J Swiech
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Andrzej Nagalski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Malgorzata Perycz
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Magdalena Blazejczyk
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, 4 Ks. Trojdena St., 02-109 Warsaw, Poland.
| |
Collapse
|
27
|
Tao L, Chen J, Zhou H, Qin C, Li P, Cao Q, Li J, Ju X, Zhu C, Wang M, Zhang Z, Shao P, Yin C. A functional polymorphism in the CYR61 (IGFBP10) gene is associated with prostate cancer risk. Prostate Cancer Prostatic Dis 2012; 16:95-100. [PMID: 23045290 DOI: 10.1038/pcan.2012.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND CYR61 (cysteine-rich protein 61, also named IGFBP10) is a secreted signaling molecule that promotes angiogenesis and tumor growth. The goal of this study is to determine whether a functional polymorphism in the promoter region of the CYR61 gene (rs3753793) is associated with prostate cancer (PCa) risk and gene expression in Chinese patients. METHODS A total of 665 patients diagnosed with PCa and 703 cancer-free controls were genotyped in this hospital-based case-control study, and 26 PCa tissue samples were evaluated for mRNA expression of CYR61 by real-time quantitative reverse-transcription PCR. RESULTS Men carrying the G allele of rs3753793 (TG+GG) had significantly lower risk of PCa when compared with the TT genotype (odds ratio (OR) = 0.76, 95% confidence interval (CI) = 0.61-0.95). The association was generally more pronounced among subgroups of PCa patients with advanced stage (OR = 0.70, 95% CI = 0.53-0.94), Gleason score >7 (OR = 0.63, 95% CI = 0.46-0.86) and PSA>20 ng ml(-1) (OR = 0.68, 95% CI = 0.53-0.88). Prostate tumors derived from cases with the GT/GG genotypes had significantly lower levels of CYR61 mRNA when compared with cases with the TT genotypes (P = 0.02). CONCLUSIONS Our results indicate that the genetic variation of rs3753793 in the CYR61 promoter may contribute to genetic predisposition to PCa and intra-tumor expression gene expression.
Collapse
Affiliation(s)
- L Tao
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pileri SA, Piccaluga PP. New molecular insights into peripheral T cell lymphomas. J Clin Invest 2012; 122:3448-3455. [PMID: 23023716 PMCID: PMC3461903 DOI: 10.1172/jci61205] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral T cell lymphomas (PTCLs) are heterogeneous neoplasms and represent about 12% of all lymphoid malignancies. They are often regarded as "orphan diseases," a designation that does not reflect their real incidence but rather signifies the difficulties encountered in their classification, diagnosis, and treatment. Here we revise the current understanding of the pathobiological characteristics of the most common nodal PTCLs by focusing on the contribution given by high-throughput technologies and the identification of potential therapeutic targets proposed by translational studies.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Antibodies, Monoclonal/immunology
- Antigens, Neoplasm/immunology
- Antigens, Surface/immunology
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Histone Deacetylase Inhibitors/therapeutic use
- Humans
- Lymphoma, T-Cell, Peripheral/classification
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/pathology
- Lymphoma, T-Cell, Peripheral/physiopathology
- MicroRNAs/genetics
- MicroRNAs/physiology
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/pathology
- Platelet-Derived Growth Factor/physiology
- Prognosis
- Protein Kinase Inhibitors/therapeutic use
- Receptors, Platelet-Derived Growth Factor/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Stefano A Pileri
- Hematopathology Section, Department of Hematology and Oncology L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
29
|
Kim JN, Kim HJ, Jeong SH, Kye YC, Son SW. Cigarette smoke-induced early growth response-1 regulates the expression of the cysteine-rich 61 in human skin dermal fibroblasts. Exp Dermatol 2011; 20:992-7. [PMID: 21995436 DOI: 10.1111/j.1600-0625.2011.01380.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tobacco smoke is known to be an element contributing to accelerate premature skin ageing. Cysteine-rich 61 (Cyr61) is a member of the connective tissue factor CCN (Cyr61, CTGF and Nov) family, and early growth response-1 (Egr-1) is a generally expressed member of the zinc-finger family of transcription factors. To investigate the regulatory potential of Egr-1 on expression of Cyr61 by smoking, this study examined the hypothesis that cigarette smoke-induced Egr-1 induces expression of Cyr61 in human skin dermal fibroblasts (HSDF). HSDF were exposed to different concentrations of cigarette smoke extract (CSE) for 24 h; a cytotoxicity assay was then performed for the detection of cell proliferation. Results of Western blot and reverse transcription-polymerase chain reaction (RT-PCR) showed that CSE induces a transient synthesis of Egr-1 in HSDF. Cyr61 mRNA and protein levels showed a marked increase in a time-dependent manner after CSE exposure. Following transfection with an Egr-1 overexpression vector, HSDF showed increased activity of the Cyr61 promoter in a dose-dependent manner. Using Egr-1 interfering RNA, we confirmed that CSE-induced Cyr61 expression was dependent on Egr-1 expression. Findings of this study indicate that Egr-1-dependent induction of Cyr61 may contribute to premature skin ageing by smoking.
Collapse
Affiliation(s)
- Ji Na Kim
- Laboratory of Cell Signaling and Nanomedicine, Division of Brain Korea 21 Project for Biomedical Science and Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
30
|
A soluble factor from Trypanosoma cruzi inhibits transforming growth factor-ß-induced MAP kinase activation and gene expression in dermal fibroblasts. PLoS One 2011; 6:e23482. [PMID: 21931601 PMCID: PMC3169535 DOI: 10.1371/journal.pone.0023482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/18/2011] [Indexed: 02/04/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi, which causes human Chagas' disease, exerts a variety of effects on host extracellular matrix (ECM) including proteolytic degradation of collagens and dampening of ECM gene expression. Exposure of primary human dermal fibroblasts to live infective T. cruzi trypomastigotes or their shed/secreted products results in a rapid down-regulation of the fibrogenic genes collagenIα1, fibronectin and connective tissue growth factor (CTGF/CCN2). Here we demonstrate the ability of a secreted/released T. cruzi factor to antagonize ctgf/ccn2 expression in dermal fibroblasts in response to TGF-ß, lysophosphatidic acid or serum, where agonist-induced phosphorylation of the mitogen-activated protein (MAP) kinases Erk1/2, p38 and JNK was also inhibited. Global analysis of gene expression in dermal fibroblasts identified a discrete subset of TGF-ß-inducible genes involved in cell proliferation, wound repair, and immune regulation that are inhibited by T. cruzi secreted/released factors, where the genes exhibiting the highest sensitivity to T. cruzi are known to be regulated by MAP kinase-activated transcription factors. Consistent with this observation, the Ets-family transcription factor binding site in the proximal promoter region of the ctgf/ccn2 gene (−91 bp to −84 bp) was shown to be required for T. cruzi-mediated down-regulation of ctgf/ccn2 reporter expression. The cumulative data suggest a model in which T. cruzi-derived molecules secreted/released early in the infective process dampen MAP kinase signaling and the activation of transcription factors that regulate expression of fibroblast genes involved in wound repair and tissue remodelling, including ctgf/ccn2. These findings have broader implications for local modulation of ECM synthesis/remodelling by T. cruzi during the early establishment of infection in the mammalian host and highlight the potential for pathogen-derived molecules to be exploited as tools to modulate the fibrogenic response.
Collapse
|
31
|
Histing T, Marciniak K, Scheuer C, Garcia P, Holstein JH, Klein M, Matthys R, Pohlemann T, Menger MD. Sildenafil accelerates fracture healing in mice. J Orthop Res 2011; 29:867-73. [PMID: 21246617 DOI: 10.1002/jor.21324] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/08/2010] [Indexed: 02/04/2023]
Abstract
Sildenafil, a cyclic guanosine monophosphate (cGMP)-dependent phospodiesterase-5 inhibitor, has been shown to be a potent stimulator of angiogenesis through upregulation of pro-angiogenic factors and control of cGMP concentration. Herein, we determined whether sildenafil also influences angiogenic growth factor expression and bone formation during the process of fracture healing. Bone healing was studied in a murine closed femur fracture model using radiological, biomechanical, histomorphometric, and protein biochemical analysis at 2 and 5 weeks after fracture. Thirty mice received 5 mg/kg body weight sildenafil p.o. daily. Controls (n = 30) received equivalent amounts of vehicle. After 2 weeks of fracture healing sildenafil significantly increased osseous fracture bridging, as determined radiologically and histologically. This resulted in an increased biomechanical stiffness compared to controls. A smaller callus area with a slightly reduced amount of cartilaginous tissue indicated an accelerated healing process. After 5 weeks the differences were found blunted, demonstrating successful healing in both groups. Western blot analysis showed a significantly higher expression of the pro-angiogenic and osteogenic cysteine-rich protein (CYR) 61, confirming the increase of bone formation. We show for the first time that sildenafil treatment accelerates fracture healing by enhancing bone formation, most probably by a CYR61-associated pathway.
Collapse
Affiliation(s)
- Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim YM, Lim SC, Han CY, Kay HY, Cho IJ, Ki SH, Lee MY, Kwon HM, Lee CH, Kim SG. G(alpha)12/13 induction of CYR61 in association with arteriosclerotic intimal hyperplasia: effect of sphingosine-1-phosphate. Arterioscler Thromb Vasc Biol 2011; 31:861-869. [PMID: 21212405 DOI: 10.1161/atvbaha.110.218552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 12/23/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Gα(12/13) play a role in oncogenic transformation and tumor growth. Cysteine-rich protein 61 (CYR61) is a growth-factor-inducible angiogenic factor. In view of potential overlapping functions between Gα(12/13) and CYR61, this study investigated the role of these G proteins in CYR61 induction in association with hyperplastic vascular abnormality. METHODS AND RESULTS Overexpression of activated Gα(12) or Gα(13) induced CYR61 expression in vascular smooth muscle cells (VSMCs). Gene knockdown and knockout experiments revealed that sphingosine-1-phosphate (S1P) treatment induced CYR61 via Gα(12/13). JunD/activator protein-1 (AP-1) was identified as a transcription factor required for CYR61 transactivation by S1P. Deficiencies in Gα(12/13) abrogated AP-1 activation and AP-1-mediated CYR61 induction. c-Jun N-terminal kinase was responsible for CYR61 induction. Moreover, deficiencies of Gα(12/13) abolished c-Jun N-terminal kinase-dependent CYR61 induction by S1P. N-acetyl-l-cysteine or NADPH oxidase inhibitor treatment reversed CYR61 induction by S1P, indicating that reactive oxygen species are responsible for this process. The levels of Gα(12/13) were increased within thickened intimas and medias in wire-injured mouse femoral arteries, which was accompanied by simultaneous CYR61 induction. Moreover, Gα(12/13) and CYR61 were costained in the arteriosclerotic lesions immediately adjacent to human tumor tissues. CONCLUSIONS Gα(12/13) regulate AP-1-dependent CYR61 induction in VSMCs and promote VSMC migration, and they are upregulated with CYR61 in arteriosclerotic lesions.
Collapse
MESH Headings
- Aged
- Animals
- Arteriosclerosis/genetics
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Cell Movement
- Cysteine-Rich Protein 61/genetics
- Cysteine-Rich Protein 61/metabolism
- Disease Models, Animal
- Enzyme Activation
- Female
- GTP-Binding Protein alpha Subunits, G12-G13/deficiency
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- HEK293 Cells
- Humans
- Hyperplasia
- JNK Mitogen-Activated Protein Kinases/metabolism
- Lysophospholipids/metabolism
- Male
- Mice
- Mice, Inbred ICR
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mutation
- NADPH Oxidases/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-jun/metabolism
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Transcription Factor AP-1/metabolism
- Transfection
- Tunica Intima/metabolism
- Tunica Intima/pathology
- Up-Regulation
Collapse
Affiliation(s)
- Young Mi Kim
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of PharmaceuticalSciences, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Arecoline stimulated Cyr61 production in human gingival epithelial cells: inhibition by lovastatin. Oral Oncol 2011; 47:256-61. [PMID: 21317023 DOI: 10.1016/j.oraloncology.2011.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/03/2011] [Accepted: 01/18/2011] [Indexed: 12/29/2022]
Abstract
Cyr61 is associated with growth and progression of many types of tumors and is an independent poor prognostic indicator for oral cancer patients. Areca nut (AN) chewing is the most important etiological factor in the pathogenesis of oral cancer in India and many Southeast Asian countries. Yet, the molecular mechanisms involved in the AN-induced oral cancer remain largely unknown. In this study, we show that arecoline, a main alkaloid found in AN, stimulated Cyr61 synthesis in human gingival epithelial S-G cells. Constitutive overexpression of Cyr61 protein in oral epithelial cells during AN chewing may play a role in the pathogenesis of oral cancer. ERK inhibitor PD98059, N-acetyl-L-cysteine, Rho-associated protein kinase (ROCK) selective inhibitor Y-27632 and a geranylgeranyltransferase inhibitor reduced the arecoline-stimulated levels of Cyr61 protein by ∼31%, 47%, 65% and 100%, respectively. Lovastatin also completely inhibited arecoline-induced Cyr61 synthesis and the inhibition is dose-dependent. Decreased of geranylgeranylated proteins could be the mechanism that lovastatin regulates Cyr61 synthesis and lovastatin could serve as a useful agent in controlling AN-induced oral cancer.
Collapse
|
34
|
Park HJ, Choi YH, Cho YJ, Henson PM, Kang JL. RhoA-mediated signaling up-regulates hepatocyte growth factor gene and protein expression in response to apoptotic cells. J Leukoc Biol 2010; 89:399-411. [PMID: 21148681 DOI: 10.1189/jlb.0710414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clearance of apoptotic cells by macrophages induces HGF secretion. We examined the regulatory mechanisms of HGF mRNA and protein expression in macrophages upon exposure to apoptotic cells. The interaction of RAW 264.7 macrophages with apoptotic Jurkat cells, but not with viable cells, resulted in expression of HGF mRNA and protein. Exposure of RAW 264.7 cells to apoptotic cells induced activation of RhoA, the PI3K/Akt pathway, and MAPKs, including p38 MAPK, ERK, and JNK. Down-regulation of the RhoA/Rho kinase pathway by pharmacological inhibitors or a RhoA-specific siRNA suppressed HGF mRNA and protein expression by macrophages in response to apoptotic cells through the phosphorylation of Akt and the MAPKs. Inhibition of PI3K decreased phosphorylation of Akt and the MAPKs. Inhibition of JNK, but not p38 MAPK and ERK, reduced Akt phosphorylation. The pharmacological inhibitor of PI3K and the MAPKs blocked HGF mRNA and protein expression. Other types of apoptotic cells, such as HeLa cells and murine thymocytes, could also induce HGF mRNA through the RhoA-dependent pathway. Likely, the RhoA-dependent signaling pathway was required for HGF mRNA induction in primary cells of peritoneal macrophages in response to apoptotic cells. An HGFR-blocking antibody did not alter apoptotic cell-induced activation of RhoA, Akt, and the MAPKs, as well as HGF production. Overall, the data provide evidence that activation of the RhoA/Rho kinase pathway up-regulates transcriptional HGF production in response to apoptotic cells.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | | | | | | | | |
Collapse
|
35
|
Yu Y, Gao Y, Qin J, Kuang CY, Song MB, Yu SY, Cui B, Chen JF, Huang L. CCN1 promotes the differentiation of endothelial progenitor cells and reendothelialization in the early phase after vascular injury. Basic Res Cardiol 2010; 105:713-24. [PMID: 20830586 DOI: 10.1007/s00395-010-0117-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 01/26/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to the process of reendothelialization and prevent neointimal formation after vascular injury. The present study was designed to investigate whether the cysteine-rich 61 (CYR61, CCN1), an important matricellular component of local vascular microenvironment, has effect on EPCs differentiation and reendothelialization in response to vascular injury in rat. Following balloon injury, CCN1 was rapidly induced and dynamically changed at vascular lesions. Overexpression of CCN1 by adenovirus (Ad-CCN1) accelerated reendothelialization and inhibited neointimal formation in the early phase (day 14) after vascular injury (p < 0.05), while no effect was shown on day 21. Ad-CCN1 treatment increased the adhering EPCs on the surface of injured vessels on day 7, and the ratio of GFP- and vWF-positive area to the total luminal length on day 14 was 2.3-fold higher in the Ad-CCN1-EPC-transplanted group than in controls. Consistent with these findings, CCN1-stimulated EPC differentiation in vitro and 20 genes were found differentially expressed during CCN1-induced EPC differentiation, including Id1, Vegf-b, Vegf-c, Kdr, Igf-1, Ereg, Tgf, Mdk, Ptn, Timp2, etc. Among them, negative transcriptional regulator Id1 was associated with CCN1 effect on EPC differentiation. Our data suggest that CCN1, from the microenvironment of injured vessels, enhances reendothelialization via a direct action on EPC differentiation, revealing a possible new mechanism underlying the process of vascular repair.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH. Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 2010; 3:330-43. [PMID: 20559774 PMCID: PMC3005405 DOI: 10.1007/s12265-010-9192-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 01/10/2023]
Abstract
The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Dominic P. Del Re
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Sunny Y. Xiang
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Xia Zhao
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Geir Florholmen
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| |
Collapse
|
37
|
Dash R, Su ZZ, Lee SG, Azab B, Boukerche H, Sarkar D, Fisher PB. Inhibition of AP-1 by SARI negatively regulates transformation progression mediated by CCN1. Oncogene 2010; 29:4412-23. [PMID: 20531301 DOI: 10.1038/onc.2010.194] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enhanced expression of the CCN family of secretory integrin-binding proteins correlates with many essential components of the cancerous state, including tumor cell adhesion, proliferation, invasion and migration. Consequently, CCN1 expression is elevated in various cancers, including breast cancer, and its expression directly correlates with poor patient prognosis. Using subtraction-hybridization, combined with induction of cancer cell terminal differentiation, we cloned SARI (suppressor of activator protein (AP)-1, regulated by interferon (IFN)), an IFN-beta-inducible, potent tumor suppressor gene that exerts cancer-selective growth inhibitory effects. Forced expression of SARI using an adenovirus (Ad.SARI) inhibits AP-1 function and downregulates CCN1 expression in multiple cancer lineages, resulting in a profound inhibition in anchorage-independent cell growth and tumor cell invasion. Overexpression of SARI reduces CCN1-promoter activity through inhibition of AP-1 binding. Accordingly, SARI selectively blocks expression of the transformed state in rat embryo fibroblast cells that stably overexpress c-Jun. These results illustrate that SARI inhibits AP-1 transactivating factor binding to the cis-element of the CCN1 promoter, possibly through its interaction with c-Jun. Overall, SARI can directly inhibit CCN1-induced transformation by inhibiting the transcription of CCN1, as well as indirectly by inhibiting the expression of c-Jun (and hence blocking AP-1 activity). In these contexts, transformed cells 'addicted' to AP-1 activity are rendered susceptible to SARI-mediated inhibition of expression of the transformed phenotype.
Collapse
Affiliation(s)
- R Dash
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Kok SH, Hou KL, Hong CY, Wang JS, Liang PC, Chang CC, Hsiao M, Yang H, Lai EHH, Lin SK. Simvastatin inhibits cytokine-stimulated Cyr61 expression in osteoblastic cells: a therapeutic benefit for arthritis. ACTA ACUST UNITED AC 2010; 63:1010-20. [PMID: 20191585 DOI: 10.1002/art.27433] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 02/16/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To examine the effects of proinflammatory cytokines on Cyr61 expression in osteoblastic cells and the modulatory action of simvastatin, to assess the role of CREB in Cyr61 induction, and to investigate the relationship of osteoblastic expression of Cyr61 to disease progression in experimental arthritis. METHODS Cyr61 expression and CREB phosphorylation at serine 133 were examined by Western blotting. Promoter activity of Cyr61 was assessed by luciferase assay with promoter deletion/mutagenesis and forced expression/gene silencing of CREB. Interaction between CREB and the Cyr61 promoter was evaluated by electrophoretic mobility shift assay and chromatin immunoprecipitation. CCL2 expression was examined by Northern blotting and enzyme-linked immunosorbent assay. In rats with collagen-induced arthritis (CIA), osteoblastic expression of Cyr61 was examined by immunohistochemistry, and disease progression was assessed by clinical, radiographic, and histologic examination. RESULTS In primary human osteoblasts and U2OS cells, Cyr61 expression stimulated by tumor necrosis factor α, interleukin-1β (IL-1β), oncostatin M (OSM), and other IL-6-family cytokines was suppressed by simvastatin. In U2OS cells, simvastatin inhibited OSM-induced CREB phosphorylation and CREB-DNA binding. Knockdown of CREB by short hairpin RNA reduced Cyr61 synthesis. OSM-induced Cyr61 promoter activation was dependent on CRE-CREB interaction and inhibited by simvastatin. Cyr61 enhanced CCL2 expression by U2OS cells. Intraarticular injection of simvastatin inhibited CIA progression and diminished the number of Cyr61+ osteoblasts and infiltrating macrophages. CONCLUSION Simvastatin inhibited cytokine-stimulated Cyr61 expression in osteoblastic cells and suppressed disease progression and osteoblastic expression of Cyr61 in inflammatory arthritis. This finding indicates that simvastatin may have potential as a therapeutic agent for inflammatory arthritis.
Collapse
|
39
|
Ultraviolet irradiation induces CYR61/CCN1, a mediator of collagen homeostasis, through activation of transcription factor AP-1 in human skin fibroblasts. J Invest Dermatol 2010; 130:1697-706. [PMID: 20164845 DOI: 10.1038/jid.2010.29] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UV irradiation from the sun elevates the production of collagen-degrading matrix metalloproteinases (MMPs) and reduces the production of new collagen. This imbalance of collagen homeostasis impairs the structure and function of the dermal collagenous extracellular matrix (ECM), thereby promoting premature skin aging (photoaging). We report here that aberrant dermal collagen homeostasis in UV-irradiated human skin is mediated in part by a CCN-family member, cysteine-rich protein-61 (CYR61/CCN1). CYR61 is significantly elevated in acutely UV-irradiated human skin in vivo, and UV-irradiated human skin fibroblasts. Knockdown of CYR61 significantly attenuates UV irradiation-induced inhibition of type-I procollagen and upregulation of MMP-1. Determination of CYR61 mRNA and protein indicates that the primary mechanism of CYR61 induction by UV irradiation is transcriptional. Analysis of CYR61 proximal promoter showed that a sequence conforming to the consensus binding site for transcription factor activator protein-1 (AP-1) is required for promoter activity. UV irradiation increased the binding of AP-1-family members c-Jun and c-Fos to this AP-1 site. Furthermore, functional blockade of c-Jun or knockdown of c-Jun significantly reduced the UV irradiation-induced activation of CYR61 promoter and CYR61 gene expression. These data show that CYR61 is transcriptionally regulated by UV irradiation through transcription factor AP-1, and mediates altered collagen homeostasis that occurs in response to UV irradiation in human skin fibroblasts.
Collapse
|
40
|
Hanna M, Liu H, Amir J, Sun Y, Morris SW, Siddiqui MAQ, Lau LF, Chaqour B. Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 2009; 284:23125-36. [PMID: 19542562 PMCID: PMC2755718 DOI: 10.1074/jbc.m109.019059] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/15/2009] [Indexed: 12/25/2022] Open
Abstract
Smooth muscle-rich tissues respond to mechanical overload by an adaptive hypertrophic growth combined with activation of angiogenesis, which potentiates their mechanical overload-bearing capabilities. Neovascularization is associated with mechanical strain-dependent induction of angiogenic factors such as CCN1, an immediate-early gene-encoded matricellular molecule critical for vascular development and repair. Here we have demonstrated that mechanical strain-dependent induction of the CCN1 gene involves signaling cascades through RhoA-mediated actin remodeling and the p38 stress-activated protein kinase (SAPK). Actin signaling controls serum response factor (SRF) activity via SRF interaction with the myocardin-related transcriptional activator (MRTF)-A and tethering to a single CArG box sequence within the CCN1 promoter. Such activity was abolished in mechanically stimulated mouse MRTF-A(-/-) cells or upon inhibition of CREB-binding protein (CBP) histone acetyltransferase (HAT) either pharmacologically or by siRNAs. Mechanical strain induced CBP-mediated acetylation of histones 3 and 4 at the SRF-binding site and within the CCN1 gene coding region. Inhibition of p38 SAPK reduced CBP HAT activity and its recruitment to the SRF.MRTF-A complex, whereas enforced induction of p38 by upstream activators (e.g. MKK3 and MKK6) enhanced both CBP HAT and CCN1 promoter activities. Similarly, mechanical overload-induced CCN1 gene expression in vivo was associated with nuclear localization of MRTF-A and enrichment of the CCN1 promoter with both MRTF-A and acetylated histone H3. Taken together, these data suggest that signal-controlled activation of SRF, MRTF-A, and CBP provides a novel connection between mechanical stimuli and angiogenic gene expression.
Collapse
Affiliation(s)
- Mary Hanna
- From the Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Haibo Liu
- From the Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Jawaria Amir
- From the Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Yi Sun
- the Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | - Stephan W. Morris
- the Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | - M. A. Q. Siddiqui
- From the Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Lester F. Lau
- the Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Brahim Chaqour
- From the Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
41
|
Kassis JN, Virador VM, Guancial EA, Kimm D, Ho AS, Mishra M, Chuang EY, Cook J, Gius D, Kohn EC. Genomic and phenotypic analysis reveals a key role for CCN1 (CYR61) in BAG3-modulated adhesion and invasion. J Pathol 2009; 218:495-504. [PMID: 19402132 PMCID: PMC7316387 DOI: 10.1002/path.2557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/10/2009] [Indexed: 11/08/2022]
Abstract
Chaperone protein quantity may regulate the balance of proteins involved in invasion and malignancy. BAG3 is a co-chaperone and pro-survival protein that has been implicated in adhesion, migration, and metastasis. We reported that BAG3 overexpression in MDA435 human breast cancer cells results in a significant decrease in migration and adhesion to matrix molecules that is reversed upon deletion of the BAG3 proline-rich domain (dPXXP). We now hypothesize that transcriptional analysis would identify proteins involved in matrix-related processes that are regulated by BAG3 and/or its PXXP domain mutant. Expression array analysis of MDA435 cells overexpressing either wild-type BAG3 (FL) or dPXXP identified CCN1 as a BAG3 target protein. CCN1 is a known AP-1 target. Increased AP-1 transcriptional activity and AP-1 DNA-binding was found in MDA435 dPXXP cells. Consistent with these findings, CCN1 quantity and secretion were increased in dPXXP mutants but suppressed in FL cells; both BAG3 forms resulted in up-regulated CCN1 in HeLa cells. CCN1 silencing in the BAG3 FL overexpressors reduced the already low phospho-integrin beta1 in response to attachment on collagen IV. Matrigel invasion of HeLa cells engineered with the BAG3 constructs was enhanced in FL cells and minimal in dPXXP cells. CCN1 silencing blocked a greater percentage of the serum-induced invasion in FL cells than in dPXXP cells. This implies a context-dependent function of BAG3 on CCN1 and thus mesenchymal behaviour. CCN1 may be necessary for adhesion and matrix-related signalling in FL cells, abrogating a negative signal of the PXXP domain when BAG3 is intact. We propose that BAG3 regulates CCN1 expression to regulate tumour cell adhesion and migration.
Collapse
Affiliation(s)
- Jareer N Kassis
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Victoria M Virador
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Elizabeth A Guancial
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daniel Kimm
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Allen S Ho
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mark Mishra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric Y Chuang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - John Cook
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Gius
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Elise C Kohn
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Marra M, Santini D, Meo G, Vincenzi B, Zappavigna S, Baldi A, Rosolowski M, Tonini G, Loeffler M, Lupu R, Addeo SR, Abbruzzese A, Budillon A, Caraglia M. Cyr61 downmodulation potentiates the anticancer effects of zoledronic acid in androgen‐independent prostate cancer cells. Int J Cancer 2009; 125:2004-13. [DOI: 10.1002/ijc.24648] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Monica Marra
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Daniele Santini
- Department of Medical Oncology, University Campus Bio‐Medico, Rome, Italy
| | - Giuseppina Meo
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, University Campus Bio‐Medico, Rome, Italy
| | - Silvia Zappavigna
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alfonso Baldi
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio‐Medico, Rome, Italy
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Ruth Lupu
- Department of Medicine, Evanston Northwestern Research Institute, Feinberg Medical School, Evanston, IL
| | - Santolo Rosario Addeo
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alberto Abbruzzese
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, National Cancer Institute of Naples “Fondazione G. Pascale”, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
- Experimental Pharmacology Unit, National Cancer Institute of Naples “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
43
|
László CF, Fayad S, Carpenter OL, George KS, Lu W, Abdel-Razak Saad AA, Wu S. The role of translational regulation in ultraviolet C light-induced cyclooxygenase-2 expression. Life Sci 2009; 85:70-6. [PMID: 19422838 PMCID: PMC2718691 DOI: 10.1016/j.lfs.2009.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/15/2009] [Accepted: 04/28/2009] [Indexed: 12/24/2022]
Abstract
AIMS The role of ultraviolet C light (UVC)-induced phosphorylation of the eukaryotic initiation factor 2 (eIF2) in the regulation of cyclooxygenase-2 (COX-2) expression at both transcriptional and translational levels is investigated. MAIN METHODS Western analysis was used to determine COX expressions. Immunoprecipitation after [(35)S]-Met/Cys metabolic labeling was used to determine the rate for COX-2 synthesis and turnover. Quantitative real-time PCR was used to determine COX-2 mRNA levels. Ingenuity Pathways Analysis 6 was used for mapping COX-2 activation network. KEY FINDINGS UVC induces COX-2 expression in wild-type mouse embryo fibroblasts (MEF(S/S)) and that the inducibility is reduced in MEF(A/A) cells in which the phosphorylation site, Ser-51 in the eIF2alpha, is replaced with a nonphosphorylatable Ala (S51A). UVC-induced transcription of COX-2 is delayed in MEF(A/A) cells, which correlates with NF-kappaB activation as previously reported (Wu, S, Tan, M, Hu, Y, Wang, JL, Scheuner, D, Kaufman, RJ, Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis. The Journal of Biological Chemistry, 279, 34898-34902, 2004). The translational efficiency of COX-2 is higher in MEF(A/A) cells than in MEF(S/S) cells at 4 h, but not at 24 h post-UVC. The translation efficiency is correlated to the ratio of activated COX-2 binding protein HuR/TIAR. In addition, the newly synthesized COX-2 protein is more stable in MEF(A/A) cells than in MEF(S/S) cells. The results demonstrated a complex and dynamic regulation of COX-2 expression. SIGNIFICANCE UVC induces a prolonged expression of COX-2. While transcriptional regulation of COX-2 expression is intensively studied, the role of translational regulation of COX-2 synthesis upon UVC-irradiation is not yet clear. This study elucidated a novel eIF2alpha phosphorylation-centered network for the regulation of COX-2 expression after UVC-irradiation.
Collapse
Affiliation(s)
- Csaba F. László
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Sherine Fayad
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
- Department of Bioscience and Technology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
- Desert Research Institute, Cairo, Egypt
| | - Oliver L. Carpenter
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Kimberly S. George
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Wei Lu
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Abir Adel Abdel-Razak Saad
- Department of Bioscience and Technology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Shiyong Wu
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
44
|
Woods A, Pala D, Kennedy L, McLean S, Rockel JS, Wang G, Leask A, Beier F. Rac1 signaling regulates CTGF/CCN2 gene expression via TGFbeta/Smad signaling in chondrocytes. Osteoarthritis Cartilage 2009; 17:406-13. [PMID: 18760941 DOI: 10.1016/j.joca.2008.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/07/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Connective tissue growth factor (CTGF) has been implicated in regulation of chondrocyte differentiation at multiple steps and has been implicated in the progression of diseases such as scleroderma and osteoarthritis. However, the pathways mediating the expression of CTGF/CCN2 and related factors in cartilage are not fully understood. We have previously shown that the Rho family of proteins and the actin cytoskeleton regulate both early and late chondrocyte differentiation. RESULTS Here we demonstrate that several CTGF/Cyr61/Nov (CCN) family members are differentially affected by either inhibition of actin polymerization (cytochalasin D treatment), promotion of actin polymerization (jasplakinolide treatment), inhibition of RhoA/rho kinase (ROCK) signaling (Y27632 treatment) and Rac1 signaling. We also show that the Smad site in the CTGF/CCN2 promoter is responsive to both Rac1 inhibition and cytochalasin D treatment, suggesting a role of TGFbeta/Smad signaling in mediating the effects of actin dynamics and Rac1. CONCLUSION Collectively, these data show that Rac1 and actin pathways control CTGF/CCN2 expression in chondrocytes which might be relevant to both skeletal development and associated diseases such as osteoarthritis.
Collapse
Affiliation(s)
- A Woods
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Estrada R, Wang L, Jala VR, Lee JF, Lin CY, Gray RD, Haribabu B, Lee MJ. Ligand-induced nuclear translocation of S1P(1) receptors mediates Cyr61 and CTGF transcription in endothelial cells. Histochem Cell Biol 2009; 131:239-49. [PMID: 18936953 PMCID: PMC2861785 DOI: 10.1007/s00418-008-0521-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2008] [Indexed: 01/26/2023]
Abstract
Sphingosine-1-phosphate (S1P) receptor subtype 1 (S1P(1)), a G-protein coupled receptor (GPCR), regulates many biological activities of endothelial cells (ECs). In this report, we show that S1P(1) receptors are present in the nuclei of ECs by using various biochemical and microscopic techniques such as cellular fractionation, immunogold labeling, and confocal microscopic analysis. Live cell imaging showed that plasma membrane S1P(1) receptors are rapidly internalized and subsequently translocated to nuclear compartment upon S1P stimulation. Utilizing membrane biotinylation technique further supports the notion that nuclear S1P(1) receptors were internalized from plasma membrane S1P(1) after ligand treatment. Moreover, nuclear S1P(1) is able to regulate the transcription of Cyr61 and CTGF, two growth factors functionally important in the regulation of vasculature. Collectively, these data suggest a novel S1P-S1P(1) signaling axis present in the nuclear compartment of endothelial cells, which may regulate biological responses of endothelium.
Collapse
Affiliation(s)
- Rosendo Estrada
- Department of Microbiology and Immunology, Gheens Center on Aging, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Lichun Wang
- Department of Microbiology and Immunology, Gheens Center on Aging, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Venkatakrishna R. Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Jen-Fu Lee
- Department of Microbiology and Immunology, Gheens Center on Aging, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Cheng-Yon Lin
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Robert D. Gray
- James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Menq-Jer Lee
- Department of Microbiology and Immunology, Gheens Center on Aging, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| |
Collapse
|
46
|
Yang R, Amir J, Liu H, Chaqour B. Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 2008; 36:1-14. [PMID: 18854370 PMCID: PMC2604786 DOI: 10.1152/physiolgenomics.90291.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 10/07/2008] [Indexed: 12/16/2022] Open
Abstract
Studies were performed to examine the extent to which mechanical stimuli mediate control of angiogenesis in bladder cells both in vitro and in vivo. Differential gene expression between control nonstretched and cyclically stretched bladder smooth muscle cells was assessed using oligonucleotide microarrays and pathway analysis by the web tool Fast Assignment and Transference of Information (FatiGO). Data showed that a substantial proportion (33 of 86) of mechanically responsive genes were angiogenesis-related and include cytokines, growth-related factors, adhesion proteins, and matricellular, signal transduction, extracellular matrix (ECM), and inflammatory molecules. Integrative knowledge of protein-protein interactions revealed that 12 mechano-sensitive gene-encoded proteins have interacting partner(s) in the vascular system confirming their potential role in paracrine regulation of angiogenesis. Angiogenic genes include matricellular proteins such as Cyr61/CCN1, CTGF/CCN2 and tenascin C, components of the VEGF and IGF systems, ECM proteins such as type I collagen and proteoglycans, and matrix metalloproteinases. In an in vivo model of bladder overdistension, 5 of 11 mechano-responsive angiogenic genes, independently tested by real-time PCR, were upregulated as a result of pressure overload including Cyr61/CCN1, CTGF/CCN2, MCP-1, VEGF-A, MMP-1, and midkine. Meanwhile, the molecular anatomy of angiogenic gene promoters reveals the presence of GA box-binding for the myc-associated zinc finger protein, MAZ, often found adjacent to binding sites for mechano-responsive transcription factors (e.g., NF-kappaB), suggesting that the coordinated activity of these factors may induce selective angiogenic gene transcription. These data suggest that mechanical control of angiogenic genes is an integral part of the adaptive and plasticity responses to mechanical overload.
Collapse
Affiliation(s)
- Ru Yang
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203-2098, USA
| | | | | | | |
Collapse
|
47
|
Meyuhas R, Pikarsky E, Tavor E, Klar A, Abramovitch R, Hochman J, Lago TG, Honigman A. A Key role for cyclic AMP-responsive element binding protein in hypoxia-mediated activation of the angiogenesis factor CCN1 (CYR61) in Tumor cells. Mol Cancer Res 2008; 6:1397-409. [PMID: 18819928 DOI: 10.1158/1541-7786.mcr-07-2086] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia is a prominent feature of solid tumors known to contribute to malignant progression and therapeutic resistance. Cancer cells adapt to hypoxia using various pathways, allowing tumors to thrive in a low oxygen state. Induction of new blood vessel formation via the secretion of proangiogenic factors is one of the main adaptive responses engaged by tumor cells under hypoxic conditions. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays a pivotal role in mediating such responses. In addition, several other transcription factors have also been implicated in hypoxic gene regulation, either independently or in cooperation with HIF-1. In this work, we show that the expression of the angiogenesis-related, immediate early gene CCN1 (formerly known as CYR61), considered to be involved in tumor growth and invasiveness, is enhanced upon hypoxia stress primarily in a protein kinase A and cyclic AMP-responsive element binding protein (CREB) and CRE-dependent manner in various cell lines. The hypoxia-mediated activation of the CCN1 promoter is independent of HIF-1 and HIF-2, as shown by small interfering RNA knockdown. We identify the cis element in the mouse CCN1 promoter responsible for CREB binding to be one of two partial CRE sites present in the promoter. Moreover, we report for the first time that CREB-mediated CCN1 transcription is enhanced in hypoxic regions of tumors in vivo. Identifying and characterizing the molecular mechanisms that govern the response of tumors to hypoxia may be instrumental to identify the tumors that will respond favorably to inhibition of angiogenesis and thus lead to the development of treatments that could complement hypoxia-inducing treatment modalities.
Collapse
Affiliation(s)
- Ronit Meyuhas
- Department of Virology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Agostinelli C, Piccaluga PP, Went P, Rossi M, Gazzola A, Righi S, Sista T, Campidelli C, Zinzani PL, Falini B, Pileri SA. Peripheral T cell lymphoma, not otherwise specified: the stuff of genes, dreams and therapies. J Clin Pathol 2008; 61:1160-1167. [PMID: 18755717 PMCID: PMC2582342 DOI: 10.1136/jcp.2008.055335] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2008] [Indexed: 11/17/2022]
Abstract
Peripheral T cell lymphomas (PTCL) account for about 12% of lymphoid tumours worldwide. Almost half show such morphological and molecular variability as to hamper any further classification, and to justify their inclusion in a waste-basket category termed "not otherwise specified (NOS)". The latter term is used for neoplasms with aggressive presentation, poor response to therapy and dismal prognosis. In contrast to B cell lymphomas, PTCL have been the subject of only a limited number of studies to elucidate their pathobiology and identify novel pharmacological approaches. Herewith, the authors revise the most recent contributions on the subject based on the experience they have gained in the extensive application of microarray technologies. PTCL/NOS are characterised by erratic expression of T cell associated antigens, including CD4 and CD52, which have recently been proposed as targets for ad hoc immunotherapies. PTCL/NOS also show variable Ki-67 marking, with rates >80% heralding a worse prognosis. Gene expression profiling studies have revealed that PTCL/NOS derive from activated T lymphocytes, more often of the CD4+ type, and bear a signature composed of 155 genes and related products that play a pivotal role in cell signalling transduction, proliferation, apoptosis and matrix remodelling. This observation seems to pave the way for the use of innovative drugs such as tyrosine kinase and histone deacetylase inhibitors whose efficacy has been proven in PTCL primary cell cultures. Gene expression profiling also allows better distinction of PTCL/NOS from angioimmunoblastic T cell lymphoma, the latter being characterised by follicular T helper lymphocyte derivation and CXCL13, PD1 and vascular endothelial growth factor expression.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Diagnosis, Differential
- Gene Expression Profiling
- Humans
- Lymphoma, T-Cell, Peripheral/diagnosis
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/pathology
- Lymphoma, T-Cell, Peripheral/therapy
- Phenotype
- Prognosis
Collapse
Affiliation(s)
- C Agostinelli
- Department of Haematology and Clinical Oncology L and A Seràgnoli, Bologna University School of Medicine, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Rock proteins are Rho GTPase-dependent serine/ threonine kinases with crucial roles in F-actin dynamics and cell transformation. By analogy with other protein kinase families, it can be assumed that Rock proteins act, at least in part, through the regulation of gene expression events. However, with the exception of some singular transcriptional targets recently identified, the actual impact of these kinases on the overall cell transcriptome remains unknown. To address this issue, we have used a microarray approach to compare the transcriptomes of exponentially growing NIH3T3 cells that had been untreated or treated with Y27632, a well known specific inhibitor for Rock kinase activity. We show here that the Rock pathway promotes a weak impact on the fibroblast transcriptome, since its inhibition only results in changes in the expression of 2.3% of all the genes surveyed in the microarrays. Most Y27632-dependent genes are downregulated at moderate levels, indicating that the Rock pathway predominantly induces the upregulation of transcriptionally active genes. Although functionally diverse, a common functional leitmotiv of Y27632-dependent genes is the implication of their protein products in cytoskeletal-dependent processes. Taken together, these results indicate that Rock proteins can modify cytoskeletal dynamics by acting at post-transcriptional and transcriptional levels. In addition, they suggest that the main target of these serine/threonine kinases is the phosphoproteome and not the transcriptome.
Collapse
Affiliation(s)
- Inmaculada M. Berenjeno
- Centro de Investigación del Cáncer and Instituto de Biología, Moleculary Celular del Cáncer (IBMCC), CSIC – University of Salamanca, Campus Unamuno, ES-37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer and Instituto de Biología, Moleculary Celular del Cáncer (IBMCC), CSIC – University of Salamanca, Campus Unamuno, ES-37007 Salamanca, Spain
| |
Collapse
|
50
|
Walsh CT, Radeff-Huang J, Matteo R, Hsiao A, Subramaniam S, Stupack D, Brown JH. Thrombin receptor and RhoA mediate cell proliferation through integrins and cysteine-rich protein 61. FASEB J 2008; 22:4011-21. [PMID: 18687805 DOI: 10.1096/fj.08-113266] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A subset of G-protein coupled receptors (GPCRs), including the thrombin receptor (PAR1), elicits mitogenic responses. Thrombin also activates Ras homolog gene family member A (RhoA) and activating protein (AP-1) -mediated gene expression in 1321N1 astrocytoma cells, whereas the nonmitogenic agonist carbachol does not. Transcriptomic analysis was used to explore differential gene induction by these agonists and revealed that the matricellular protein cysteine-rich 61 (Cyr61/CCN1) is selectively induced by thrombin. The ability of GPCR agonists to induce Cyr61 parallels their ability to activate RhoA; agonist-stimulated Cyr61 expression is inhibited by C3 toxin. When Cyr61 is down-regulated using short interfering RNA (siRNA) or short-hairpin RNA (shRNA), thrombin-induced DNA synthesis is significantly attenuated. When Cyr61 expression is induced, it appears in the extracellular compartment and on the cell surface. Extracellular Cyr61 interacts with alpha(5), alpha(6), and beta(1) integrins on these cells, and monoclonal antibodies directed against alpha(5) and beta(1) integrins inhibit thrombin-induced DNA synthesis. Functional blockade of Cyr61 with soluble heparin or anti-Cyr61 antibodies also inhibits thrombin-induced DNA synthesis. Thus Cyr61 is a highly inducible, secreted extracellular factor through which GPCR and RhoA signaling pathways engage integrins that contribute to GPCR-mediated proliferation.
Collapse
Affiliation(s)
- Colin T Walsh
- Joan Heller Brown, Department of Pharmacology, University of California San Diego, 9500 Gilman Dr.-0636, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|