1
|
Uetz P, Göritzer K, Vergara E, Melnik S, Grünwald-Gruber C, Figl R, Deghmane AE, Groppelli E, Reljic R, Ma JKC, Stöger E, Strasser R. Implications of O-glycan modifications in the hinge region of a plant-produced SARS-CoV-2-IgA antibody on functionality. Front Bioeng Biotechnol 2024; 12:1329018. [PMID: 38511130 PMCID: PMC10953500 DOI: 10.3389/fbioe.2024.1329018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction: Prolyl-4-hydroxylases (P4H) catalyse the irreversible conversion of proline to hydroxyproline, constituting a common posttranslational modification of proteins found in humans, plants, and microbes. Hydroxyproline residues can be further modified in plants to yield glycoproteins containing characteristic O-glycans. It is currently unknown how these plant endogenous modifications impact protein functionality and they cause considerable concerns for the recombinant production of therapeutic proteins in plants. In this study, we carried out host engineering to generate a therapeutic glycoprotein largely devoid of plant-endogenous O-glycans for functional characterization. Methods: Genome editing was used to inactivate two genes coding for enzymes of the P4H10 subfamily in the widely used expression host Nicotiana benthamiana. Using glycoengineering in plants and expression in human HEK293 cells we generated four variants of a potent, SARS-CoV-2 neutralizing antibody, COVA2-15 IgA1. The variants that differed in the number of modified proline residues and O-glycan compositions of their hinge region were assessed regarding their physicochemical properties and functionality. Results: We found that plant endogenous O-glycan formation was strongly reduced on IgA1 when transiently expressed in the P4H10 double mutant N. benthamiana plant line. The IgA1 glycoforms displayed differences in proteolytic stability and minor differences in receptor binding thus highlighting the importance of O-glycosylation in the hinge region of human IgA1. Discussion: This work reports the successful protein O-glycan engineering of an important plant host for recombinant protein expression. While the complete removal of endogenous hydroxyproline residues from the hinge region of plant-produced IgA1 is yet to be achieved, our engineered line is suitable for structure-function studies of O-glycosylated recombinant glycoproteins produced in plants.
Collapse
Affiliation(s)
- Pia Uetz
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Emil Vergara
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Stanislav Melnik
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rudolf Figl
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ala-Eddine Deghmane
- Invasive Bacterial Infections Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Elisabetta Groppelli
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Rajko Reljic
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Julian K.-C. Ma
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
An Evaluation of the Effect of Activation Methods on the Release of Growth Factors from Platelet-Rich Plasma. Plast Reconstr Surg 2022; 149:404-411. [PMID: 35077415 DOI: 10.1097/prs.0000000000008772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Activation of platelets in platelet-rich plasma may improve growth factor release, thus enhancing regenerative properties. The authors investigated whether different methods of platelet-rich plasma activation affected growth factor release kinetics over time. METHODS Platelet-rich plasma from 20 healthy volunteers was processed by six different methods: (1) control (nonactivated); (2) activation with calcium chloride; (3) activation with calcium chloride and ethanol; (4) activation with calcium chloride and ethanol at 4°C; (5) activation with calcium chloride and ethanol with vitamin C; (6) activation with calcium chloride and ethanol with vitamin C at 4°C. Concentration of secreted vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and insulin-like growth factor over 24 hours was measured by immunoassay. RESULTS Calcium chloride-activated platelet-rich plasma produced significantly more insulin-like growth factor at 1 hour compared to cold and vitamin C platelet-rich plasma, and calcium chloride plus ethanol produced significantly more at 24 hours compared to vitamin C platelet-rich plasma. The addition of vitamin C reduced release of PDGF over time. Activation with calcium chloride and ethanol with or without cold temperature produced a gradual PDGF release as opposed to calcium chloride alone, which caused higher PDGF within 4 hours. There were no significant differences between groups for VEGF, although calcium chloride and cooled platelet-rich plasma approached significance for producing more than vitamin C platelet-rich plasma. CONCLUSIONS Activation of platelet-rich plasma does not significantly improve growth factor secretion, which is made worse by the addition of vitamin C, a platelet inhibitor. Ethanol does not negatively impact growth factor production and may offer a more gradual release. CLINICAL RELEVANCE STATEMENT These findings will help guide platelet-rich plasma preparation methods where therapeutic growth factors are used. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
4
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
5
|
Bach LA. Current ideas on the biology of IGFBP-6: More than an IGF-II inhibitor? Growth Horm IGF Res 2016; 30-31:81-86. [PMID: 27681092 DOI: 10.1016/j.ghir.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022]
Abstract
IGFBP-6 binds IGF-II with higher affinity than IGF-I and it is a relatively specific inhibitor of IGF-II actions. More recently, IGFBP-6 has also been reported to have IGF-independent effects on cell proliferation, survival, differentiation and migration. IGFBP-6 binds to several ligands in the extracellular space, cytoplasm and nucleus. These interactions, together with activation of distinct intracellular signaling pathways, may contribute to its IGF-independent actions; for example, IGF-independent migration induced by IGFBP-6 involves interaction with prohibitin-2 and activation of MAP kinase pathways. A major challenge for the future is delineating the relative roles of the IGF-dependent and -independent actions of IGFBP-6, which may lead to the development of therapeutic approaches for diseases including cancer.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne 3004, Australia.
| |
Collapse
|
6
|
Abstract
Insulin-like growth factor binding proteins (IGFBPs) 4-6 have important roles as modulators of IGF actions. IGFBP-4 and IGFBP-6 predominantly inhibit IGF actions, whereas IGFBP-5 may enhance these actions under some circumstances. IGFBP-6 is unique among the IGFBPs for its marked IGF-II binding preference. IGFBPs 4-6 are found in the circulation as binary complexes with IGFs that can enter tissues. Additionally, about half of the circulating IGFBP-5 is found in ternary complexes with IGFs and an acid labile subunit; this high molecular complex cannot leave the circulation and acts as an IGF reservoir. IGFBPs 4-6 also have IGF-independent actions. These IGFBPs are regulated in a cell-specific manner and their dysregulation may play a role in a range of diseases including cancer. However, there is no clear clinical indication for measuring serum levels of these IGFBPs at present.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, 3004, Australia.
| |
Collapse
|
7
|
Bach LA. Recent insights into the actions of IGFBP-6. J Cell Commun Signal 2015; 9:189-200. [PMID: 25808083 DOI: 10.1007/s12079-015-0288-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/16/2015] [Indexed: 12/28/2022] Open
Abstract
IGFBP-6 is an O-linked glycoprotein that preferentially binds IGF-II over IGF-I. It is a relatively selective inhibitor of IGF-II actions including proliferation, survival and differentiation of a wide range of cells. IGFBP-6 has recently been shown to have a number of IGF-independent actions, including promotion of apoptosis in some cells and inhibition of angiogenesis. IGFBP-6 also induces migration of tumour cells including rhabdomyosarcomas by an IGF-independent mechanism. This chemotactic effect is mediated by MAP kinases. IGFBP-6 binds to prohibitin-2 on the cell surface and the latter is required for IGFBP-6-induced migration by a mechanism that is independent of MAP kinases. IGFBP-6 may enter the nucleus and modulate cell survival and differentiation. IGFBP-6 expression is decreased in a number of cancer cells and it has been postulated to act as a tumour suppressor. IGFBP-6 expression is increased in a smaller number of cancers, which may reflect a compensatory mechanism to control IGF-II actions or IGF-independent actions. The relative balance of IGF-dependent and IGF-independent actions of IGFBP-6 in vivo together with the related question regarding the roles of IGFBP-6 binding to IGF and non-IGF ligands are keys to understanding the physiological role of this protein.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia,
| |
Collapse
|
8
|
Thota B, Arimappamagan A, Kandavel T, Shastry AH, Pandey P, Chandramouli BA, Hegde AS, Kondaiah P, Santosh V. STAT-1 expression is regulated by IGFBP-3 in malignant glioma cells and is a strong predictor of poor survival in patients with glioblastoma. J Neurosurg 2014; 121:374-83. [PMID: 24878287 DOI: 10.3171/2014.4.jns131198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECT Insulin-like growth factor binding proteins (IGFBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. METHODS The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. RESULTS IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. CONCLUSIONS IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Collapse
|
9
|
Swami R, Shahiwala A. Impact of physiochemical properties on pharmacokinetics of protein therapeutics. Eur J Drug Metab Pharmacokinet 2013; 38:231-9. [PMID: 23584976 DOI: 10.1007/s13318-013-0126-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/20/2013] [Indexed: 01/15/2023]
Abstract
Physicochemical properties, such as molecular weight, size, partition coefficient, acid dissociation constant and solubility have a great impact on pharmacokinetics of traditional small molecule drugs and substantially used in development of small drugs. However, predicting pharmacokinetic fate (absorption, distribution, metabolism and elimination) of protein therapeutics from their physicochemical parameters is extremely difficult due to the macromolecular nature of therapeutic proteins and peptides. Their structural complexity and immunogenicity are other contributing factors that determine their biological fate. Therefore, to develop generalized strategies concerning development of therapeutic proteins and peptides are highly challenging. However, reviewing the literature, authors found that physiochemical properties, such as molecular weight, charge and structural modification are having great impact on pharmacokinetics of protein therapeutics and an attempt is made to provide the major findings in this manuscript. This manuscript will serve to provide some bases for developing protein therapeutics with desired pharmacokinetic profile.
Collapse
Affiliation(s)
- Rajan Swami
- , House no. 1089, Sector 20 B, Chandigarh, 160020, India,
| | | |
Collapse
|
10
|
Abstract
The IGF (insulin-like growth factor) system is essential for physiological growth and it is also implicated in a number of diseases including cancer. IGF activity is modulated by a family of high-affinity IGF-binding proteins, and IGFBP-6 is distinctive because of its marked binding preference for IGF-II over IGF-I. A principal role for IGFBP-6 is inhibition of IGF-II actions, but recent studies have indicated that IGFBP-6 also has IGF-independent effects, including inhibition of angiogenesis and promotion of cancer cell migration. The present review briefly summarizes the IGF system in physiology and disease before focusing on recent studies on the regulation and actions of IGFBP-6, and its potential roles in cancer cells. Given the widespread interest in IGF inhibition in cancer therapeutics, increasing our understanding of the mechanisms underlying the actions of the IGF ligands, receptors and binding proteins, including IGFBP-6, will enhance our ability to develop optimal treatments that can be targeted to the most appropriate patients.
Collapse
|
11
|
Abstract
Extracellular glycoproteins frequently carry terminal sialic acids on their N-linked and/or O-linked glycan structures. In this chapter a sialic acid specific capture-and-release protocol for the enrichment of N- and O-glycopeptides originating from glycoproteins in complex biological samples is described. The enriched glycopeptides are subjected to reversed phase liquid chromatography (LC) interfaced with electrospray ionization and multistage tandem mass spectrometry (MS(n)). The glycopeptide precursor ions are fragmented by collision-induced dissociation (CID) for analysis of the glycan parts in the MS(2) spectra. Further fragmentation (i.e., MS(3)) of deglycosylated peptide ions results in peptide backbone fragmentation, which is used in protein database searches to identify protein sequences. For O-glycopeptides the use of both CID and electron capture dissociation (ECD) fragmentation of the peptide backbone with intact glycans still attached are used to pinpoint the glycosylation sites of glycopeptides containing several Ser/Thr residues. The step-by-step protocols for fragmentation analyses of O- and N-glycopeptides enriched from human cerebrospinal fluid are described.
Collapse
Affiliation(s)
- Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | | |
Collapse
|
12
|
Trachsel C, Widmer C, Kämpfer U, Bühr C, Baumann T, Kuhn-Nentwig L, Schürch S, Schaller J, Baumann U. Structural and biochemical characterization of native and recombinant single insulin-like growth factor-binding domain protein (SIBD-1) from the Central American Hunting Spider Cupiennius salei (Ctenidae). Proteins 2012; 80:2323-9. [DOI: 10.1002/prot.24119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 11/12/2022]
|
13
|
Ramajayam G, Vignesh RC, Karthikeyan S, Senthil Kumar K, Karthikeyan GD, Veni S, Sridhar M, Arunakaran J, Michael Aruldhas M, Srinivasan N. Regulation of insulin-like growth factors and their binding proteins by thyroid stimulating hormone in human osteoblast-like (SaOS2) cells. Mol Cell Biochem 2012; 368:77-88. [DOI: 10.1007/s11010-012-1345-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/16/2012] [Indexed: 11/25/2022]
|
14
|
Kuhn-Nentwig L, Largiadèr CR, Streitberger K, Chandru S, Baumann T, Kämpfer U, Schaller J, Schürch S, Nentwig W. Purification, cDNA structure and biological significance of a single insulin-like growth factor-binding domain protein (SIBD-1) identified in the hemocytes of the spider Cupiennius salei. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:891-901. [PMID: 21888974 DOI: 10.1016/j.ibmb.2011.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
Cupiennius salei single insulin-like growth factor-binding domain protein (SIBD-1), which exhibits an IGFBP N-terminal domain-like profile, was identified in the hemocytes of the spider C. salei. SIBD-1 was purified by RP-HPLC and the sequence determined by a combination of Edman degradation and 5'-3'- RACE PCR. The peptide (8676.08 Da) is composed of 78 amino acids, contains six intrachain disulphide bridges and carries a modified Thr residue at position 2. SIBD-1 mRNA expression was detected by quantitative real-time PCR mainly in hemocytes, but also in the subesophageal nerve mass and muscle. After infection, the SIBD-1 content in the hemocytes decreases and, simultaneously, the temporal SIBD-1 expression seems to be down-regulated. Two further peptides, SIBD-2 and IGFBP-rP1, also exhibiting IGFBP N-terminal domain variants with unknown functions, were identified on cDNA level in spider hemocytes and venom glands. We conclude that SIBD-1 may play an important role in the immune system of spiders.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Azar WJ, Azar SHX, Higgins S, Hu JF, Hoffman AR, Newgreen DF, Werther GA, Russo VC. IGFBP-2 enhances VEGF gene promoter activity and consequent promotion of angiogenesis by neuroblastoma cells. Endocrinology 2011; 152:3332-42. [PMID: 21750048 DOI: 10.1210/en.2011-1121] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IGF binding protein (IGFBP)-2 is one of the most significant genes in the signature of major aggressive cancers. Previously, we have shown that IGFBP-2 enhances proliferation and invasion of neuroblastoma cells, suggesting that IGFBP-2 activates a protumorigenic gene expression program in these cells. Gene expression profiling in human neuroblastoma SK-N-SHEP (SHEP)-BP-2 cells indicated that IGFBP-2 overexpression activated a gene expression program consistent with enhancement of tumorigenesis. Regulation was significant for genes involved in proliferation/survival, migration/adhesion, and angiogenesis, including the up-regulation of vascular endothelial growth factor (VEGF) mRNA (>2-fold). Specific transcriptional activation of the VEGF gene by IGFBP-2 overexpression was demonstrated via cotransfection of a VEGF promoter Luciferase construct in SHEP-BP-2. Cotransfection of VEGF promoter Luciferase construct with IGFBP-2 protein in wild-type SHEP cells indicated that transactivation of VEGF promoter only occurs in the presence of intracellular IGFBP-2. Cell fractionation and immunofluorescence in SHEP-BP-2 cells demonstrated nuclear localization of IGFBP-2. These findings suggest that transcriptional activation of VEGF promoter is likely to be mediated by nuclear IGFBP-2. The levels of secreted VEGF (up to 400 pg/10(6) cells) suggested that VEGF might elicit angiogenic activity. Hence, SHEP-BP-2 cells and control clones cultured in collagen sponge were xenografted onto chick embryo chorioallantoic membrane. Neomicrovascularization was observed by 72 h, solely in the SHEP-BP-2 cell xenografts. In conclusion, our data indicate that IGFBP-2 is an activator of aggressive behavior in cancer cells, involving nuclear entry and activation of a protumorigenic gene expression program, including transcriptional regulation of the VEGF gene and consequent proangiogenic activity of NB cell xenografts in vivo.
Collapse
Affiliation(s)
- Walid J Azar
- Centre for Hormone Research, Cell Biology, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville 3052, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ahmad W, Shabbiri K, Ijaz B, Asad S, Nazar N, Nazar S, Fouzia K, Kausar H, Gull S, Sarwar MT, Shahid I, Hassan S. Serine 204 phosphorylation and O-β-GlcNAC interplay of IGFBP-6 as therapeutic indicator to regulate IGF-II functions in viral mediated hepatocellular carcinoma. Virol J 2011; 8:208. [PMID: 21548981 PMCID: PMC3108323 DOI: 10.1186/1743-422x-8-208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/08/2011] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma is mainly associated with viral hepatitis B and C. Activation of cell growth stimulator IGF-II gene is observed in tumor formation especially in viral associated hepatocellular carcinoma. Elevated IGF-II levels are indicator of increased risk for cholangiocellular and hepatocellular carcinomas through over saturation of IGF-II binding capacities with IGF receptors leading to cellular dedifferentiation. In HCV, core protein is believed to trans-activate host IGF-II receptor through PKC pathway and the inhibition of tumor cell growth can be achieved by blocking IGF-II pathway either at transcriptional level or increasing its binding with IGFBPs (Insulin like growth factor proteins) at C-terminal, so that it is not available in free form. IGFBP-6 is a specific inhibitor of IGF-II actions. Affinity of IGFBPs with IGFs is controlled by post-translational modifications. Phosphorylation of IGFBPs inhibits IGFs action on target cells while O-glycosylation prevents binding of IGFBP-6 to glycosaminoglycans and cell membranes and resulting in a 10-fold higher affinity for IGF-II. O-glycosylation and phosphorylation operate the functional expression of cellular proteins, this switching on and off the protein expression is difficult to monitor in vivo. By using neural network based prediction methods, we propose that alternate O-β-GlcNAc modification and phosphorylation on Ser 204 control the binding of IGFBP-6 with IGF-II. This information may be used for developing new therapies by regulating IGFBP-6 assembly with IGF-II to minimize the risk of viral associated hepatocellular carcinoma. We can conclude that during HCV/HBV infection, O-β-GlcNAc of IGFBP-6 at Ser 204 diminish their binding with IGF-II, increase IGF-II cellular expression and promote cancer progression which can lead to hepatocellular carcinoma. Furthermore, this site can be used for developing new therapies to control the IGF-II actions during viral infection to minimize the risk of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Waqar Ahmad
- Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Adiponectin is a protein hormone produced by adipose tissue, whose circulating levels are inversely related to adiposity and inflammation. Adiponectin circulates as oligomers, from the low-molecular-weight trimer to the high-molecular-weight octodecamer (18 mer). Each oligomer has distinct biological activities, which include enhancement of insulin sensitivity and metabolic control and suppression of inflammation. Adiponectin occurs in human milk at higher concentrations than leptin. The adiponectin in human milk is almost entirely of the high-molecular-weight form, the form with the highest activity in controlling many types of metabolic processes. Human adiponectin fed to infant mice is transported across the intestinal mucosa into the serum. An inverse relationship between adiponectin levels in milk and adiposity (weight-for-height) of the breast-fed infant was observed and could be due to modulation of infant metabolism by milk adiponectin and may be related to the observed protection against obesity by breast-feeding. Human milk may be a medium whereby the hormonal milieu (in response to internal factors and the environment) of the mother can be used to communicate with the breast-fed infant to modify infant metabolic processes. Transmission of information from mother to infant through milk may allow adaptation to fluctuating environmental conditions.
Collapse
|
18
|
Oy GF, Slipicevic A, Davidson B, Solberg Faye R, Maelandsmo GM, Flørenes VA. Biological effects induced by insulin-like growth factor binding protein 3 (IGFBP-3) in malignant melanoma. Int J Cancer 2010; 126:350-61. [PMID: 19588500 DOI: 10.1002/ijc.24727] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The insulin like growth factor (IGF) signaling pathway has been shown to contribute to melanoma progression, but little is known about the role of the IGF binding protein 3 (IGFBP-3) in melanoma biology. The aim of the present study was to characterize expression, function and regulation of IGFBP-3 in malignant melanomas and study its potential as a biomarker. The expression of IGFBP-3 varied between different human melanoma cell lines and reintroduction of the protein in non-expressing cells led to induction of apoptosis. Interestingly, in cell lines expressing endogenous IGFBP-3, siRNA silencing of the protein led to a cell line-dependent decrease in proliferation, but had no effect on apoptosis and invasion. Examination of patient material showed that IGFBP-3 is unexpressed in benign nevi while a slight increase in protein expression was seen in primary and metastatic melanoma. However, expression of the protein was low and no correlation was found with circulating levels of IGFBP-3 in serum, suggesting that IGFBP-3 has limited potential as a predictive marker in malignant melanoma. We showed that promoter methylation of IGFBP-3 occurred in both melanoma cell lines and patient material, implicating epigenetic silencing as a regulation mechanism. Furthermore, expression of the protein was shown to be regulated by the PI3-kinase/AKT and MAPK/ERK1/2 pathways. In summary, our findings suggest that IGFBP-3 can exert dual functional effects influencing both apoptosis and proliferation. Development of resistance to the antiproliferative effects of IGFBP-3 may be an important step in progression of malignant melanomas.
Collapse
Affiliation(s)
- Geir Frode Oy
- Department of Tumor Biology, Institute for Cancer Research, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
19
|
Woo JG, Guerrero ML, Altaye M, Ruiz-Palacios GM, Martin LJ, Dubert-Ferrandon A, Newburg DS, Morrow AL. Human milk adiponectin is associated with infant growth in two independent cohorts. Breastfeed Med 2009; 4:101-9. [PMID: 19500050 PMCID: PMC2779028 DOI: 10.1089/bfm.2008.0137] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Adiponectin, a circulating adipocyte protein, is associated with lower obesity. We have previously shown that adiponectin is present in human milk. This study determined whether higher milk adiponectin is associated with infant growth and investigated milk adiponectin's oligomeric form. DESIGN AND METHODS This is a study of two parallel longitudinal cohorts of breastfed infants born between 1998 and 2005. Forty-five mother-infant pairs from Cincinnati, OH and 277 mother-infant pairs from Mexico City, Mexico were analyzed. All participants were healthy, term infants breastfed at least 1 month who completed 6 months of follow-up. Monthly milk samples (n = 1,379) up to 6 months were assayed for adiponectin by radioimmunoassay. Infant weight-for-age, length-for-age, and weight-for-length Z-scores up to 6 months of age were calculated using World Health Organization standards. Repeated-measures analysis was conducted. The structural form of human milk adiponectin was assessed by western blot. RESULTS In the population studies, initial milk adiponectin was 24.0 +/- 8.6 microg/L and did not differ by cohort. Over the first 6 months, higher milk adiponectin was associated with lower infant weight-for-age Z-score (-0.20 +/- 0.04, p < 0.0001) and weight-for-length Z-score (-0.29 +/- 0.08, p = 0.0002) but not length-for-age Z-score, adjusted for covariates, with no difference by cohort. By western blot, human milk adiponectin was predominantly in the biologically active high-molecular-weight form. CONCLUSIONS Our data suggest milk adiponectin may play a role in the early growth and development of breastfed infants.
Collapse
Affiliation(s)
- Jessica G. Woo
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Mekibib Altaye
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Lisa J. Martin
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alix Dubert-Ferrandon
- Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - David S. Newburg
- Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ardythe L. Morrow
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
20
|
Shalamanova L, Kübler B, Storch S, Scharf JG, Braulke T. Multiple post-translational modifications of mouse insulin-like growth factor binding protein-6 expressed in epithelial Madin-Darby canine kidney cells. Mol Cell Endocrinol 2008; 295:18-23. [PMID: 18824213 DOI: 10.1016/j.mce.2008.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 08/24/2008] [Accepted: 08/31/2008] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factors (IGFs), IGF receptors and IGF binding proteins (IGFBPs) participate in the regulation of proliferation and differentiation of epithelial cells. Expression of the growth-inhibitory murine IGFBP-6 in epithelial Madin-Darby canine kidney (MDCK) cells followed by 2D analysis revealed the presence of multiple isoforms. Metabolic labelling experiments showed that several IGFBP-6 isoforms are modified by phosphate and sulfate groups. Expression analysis of mutant IGFBP-6 further demonstrated that serine residue 143 is O-glycosylated. Substitution of serine 143 by alanine did slightly reduce the preferential sorting of mIGFBP-6 to the apical site in MDCK cells grown on semipermeable filters. Both the presence of multiple and heterogeneously modified isoforms of murine IGFBP-6 in MDCK cells, and the preferential secretion of non-glycosylated IGFBP-6 mutants to the apical side suggest that the major apical sorting signal is the protein moiety.
Collapse
Affiliation(s)
- L Shalamanova
- University Medical Center Hamburg-Eppendorf, Department Biochemistry, Children's Hospital, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Loignon M, Perret S, Kelly J, Boulais D, Cass B, Bisson L, Afkhamizarreh F, Durocher Y. Stable high volumetric production of glycosylated human recombinant IFNalpha2b in HEK293 cells. BMC Biotechnol 2008; 8:65. [PMID: 18752669 PMCID: PMC2538527 DOI: 10.1186/1472-6750-8-65] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 08/27/2008] [Indexed: 01/25/2023] Open
Abstract
Background Mammalian cells are becoming the prevailing expression system for the production of recombinant proteins because of their capacity for proper protein folding, assembly, and post-translational modifications. These systems currently allow high volumetric production of monoclonal recombinant antibodies in the range of grams per litre. However their use for large-scale expression of cytokines typically results in much lower volumetric productivity. Results We have engineered a HEK293 cell clone for high level production of human recombinant glycosylated IFNα2b and developed a rapid and efficient method for its purification. This clone steadily produces more than 200 mg (up to 333 mg) of human recombinant IFNα2b per liter of serum-free culture, which can be purified by a single-step cation-exchange chromatography following media acidification and clarification. This rapid procedure yields 98% pure IFNα2b with a recovery greater than 70%. Purified IFNα2b migrates on SDS-PAGE as two species, a major 21 kDa band and a minor 19 kDa band. N-terminal sequences of both forms are identical and correspond to the expected mature protein. Purified IFNα2b elutes at neutral pH as a single peak with an apparent molecular weight of 44,000 Da as determined by size-exclusion chromatography. The presence of intramolecular and absence of intermolecular disulfide bridges is evidenced by the fact that non-reduced IFNα2b has a greater electrophoretic mobility than the reduced form. Treatment of purified IFNα2b with neuraminidase followed by O-glycosidase both increases electrophoretic mobility, indicating the presence of sialylated O-linked glycan. A detailed analysis of glycosylation by mass spectroscopy identifies disialylated and monosialylated forms as the major constituents of purified IFNα2b. Electron transfer dissociation (ETD) shows that the glycans are linked to the expected threonine at position 106. Other minor glycosylated forms and non-sialylated species are also detected, similar to IFNα2b produced naturally by lymphocytes. Further, the HEK293-produced IFNα2b is biologically active as shown with reporter gene and antiviral assays. Conclusion These results show that the HEK293 cell line is an efficient and valuable host for the production of biologically active and glycosylated human IFNα2b.
Collapse
Affiliation(s)
- Martin Loignon
- National Research Council Canada, Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu C, Wang Y, Zou M, Shan Y, Yao G, Wei P, Chen G, Wang J, Xu D. Prokaryotic expression, purification, and production of polyclonal antibody against human polypeptide N-acetylgalactosaminyltransferase 14. Protein Expr Purif 2007; 56:1-7. [PMID: 17596962 DOI: 10.1016/j.pep.2007.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 04/18/2007] [Accepted: 04/21/2007] [Indexed: 11/22/2022]
Abstract
Polypeptide N-acetylgalactosaminyltransferase 14 (GalNAc-T14, EC 2.4.1.41) belongs to a large subfamily of glycosyltransferases residing in the Golgi apparatus. N-Acetylgalactosaminyltransferases (GalNAc-Tases) catalyze the first step in the O-glycosylation of mammalian proteins by transferring N-acetyl-D-galactosamine (GalNAc) to peptide substrates. Here, the cloning, expression, purification, and polyclonal antibody preparation of GalNAc-T14 were described. A full-length GalNAc-T14 cDNA was inserted in a prokaryotic expression plasmid pGEX-4T-1 at the EcoRI and XhoI restriction sites. pGEX-4T-T14 was highly expressed in Escherichia coli (E. coli) BL21(DE3) cells after induced by isopropyl-beta-D-thiogalactoside (IPTG). The expressed GST-GalNAc-T14 fusion protein was purified by GSTrap FF chromatography and then used as antigen to immunize rabbits. The obtained antiserum was precipitated by 50% saturated ammonium sulfate and then purified by DEAE-Sepharose FF chromatography. To confirm the activity and specificity of the GalNAc-T14 antibody, we constructed the plasmid pFLAG-GalNAc-T14 to transfect transiently HEK 293T cells. Transiently expressed FLAG-GalNAc-T14 was identified by Western blot analysis with GalNAc-T14 antibody and FLAG monoclonal antibody, respectively. The production of the polyclonal antibody against GalNAc-T14 provides a good tool for studying the biofunctions of GalNAc-T14.
Collapse
Affiliation(s)
- Chen Wu
- Laboratory of Molecular Genetics, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fu P, Thompson JA, Bach LA. Promotion of cancer cell migration: an insulin-like growth factor (IGF)-independent action of IGF-binding protein-6. J Biol Chem 2007; 282:22298-306. [PMID: 17519236 DOI: 10.1074/jbc.m703066200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A family of six high affinity IGF-binding proteins (IGFBPs 1-6) plays an important role in modulating IGF activities. Recent studies suggest that some IGFBPs may have IGF-independent effects, including induction of apoptosis and modulation of cell migration. However, very little is known about possible IGF-independent actions of IGFBP-6. We have generated a non-IGF-binding IGFBP-6 mutant by substituting Ala for four amino acid residues (Pro(93)/Leu(94)/Leu(97)/Leu(98)) in its N-domain IGF-binding site. A >10,000-fold loss of binding affinity for IGF-I and IGF-II was observed using charcoal solution binding assay, BIAcore biosensor, and ligand blotting. Wild-type and mutant IGFBP-6, as well as IGF-II, induced cell migration in RD rhabdomyosarcoma and LIM 1215 colon cancer cells. Cell migration was mediated by the C-domain of IGFBP-6. Transient p38 phosphorylation was observed in RD cells after treatment with IGFBP-6, whereas no change was seen in phospho-ERK1/2 levels. Phospho-JNK was not detected. IGFBP-6-induced cell migration was inhibited by SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of ERK1/2 MAPK activation. In contrast, SP600125, a JNK MAPK inhibitor, had no effect on migration. Knockdown of p38 MAPK using short interfering RNA blocked IGFBP-6-induced migration of RD cells. These results indicate that p38 MAPK is involved in IGFBP-6-induced IGF-independent RD cell migration.
Collapse
Affiliation(s)
- Ping Fu
- Department of Medicine, Central and Eastern Clinical School, Monash University, Prahran Victoria 3181, Australia.
| | | | | |
Collapse
|
24
|
Graham ME, Kilby DM, Firth SM, Robinson PJ, Baxter RC. The in vivo phosphorylation and glycosylation of human insulin-like growth factor-binding protein-5. Mol Cell Proteomics 2007; 6:1392-405. [PMID: 17496250 DOI: 10.1074/mcp.m700027-mcp200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometry is often used to determine post-translational modifications by analysis of tryptic digests of proteins. Here we demonstrate that the analysis of tryptic peptides together with analysis of the full-length protein provided optimal characterization of insulin-like growth factor-binding protein-5 (IGFBP-5) phosphorylation and glycosylation. IGFBP-5 binds insulin-like growth factors with high affinity and has important roles in cell survival, differentiation, and apoptosis. Until now, the primary structure of IGFBP-5 has been incompletely defined. We analyzed human IGFBP-5 from T47D cells by mass spectrometry to determine all of the in vivo post-translational modifications. In full-length IGFBP-5, 31% of the protein was unmodified, 37% was monophosphorylated, and 4% was diphosphorylated with no other modification. The remaining 27% was glycosylated, more than half of which was also monophosphorylated. The major phosphorylation site was Ser(96) in the central domain, and a minor phosphorylation site was Ser(248) near the C terminus. Neither site was phosphorylated in vitro by casein kinase 2, ruling it out as the in vivo kinase. An in vivo phosphorylation site was also found in IGFBP-2 at an analogous position, Ser(106). IGFBP-5 was heterogeneously O-glycosylated mainly by sialylated core 1 type glycans. The most abundant structure contained N-acetylhexosamine, hexose, and two N-acetylneuraminic acid carbohydrates. A small amount of sialylated core 2 type glycan was also present. Phosphorylation and O-glycosylation both affected IGFBP-5 binding to heparin but not insulin-like growth factor binding or ternary complex formation with the acid-labile subunit. The results reveal the first description of the in vivo phosphorylation of IGFBP-5 and its glycan composition.
Collapse
Affiliation(s)
- Mark E Graham
- Cell Signalling Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia
| | | | | | | | | |
Collapse
|
25
|
Miyamoto S, Nakamura M, Yano K, Ishii G, Hasebe T, Endoh Y, Sangai T, Maeda H, Shi-Chuang Z, Chiba T, Ochiai A. Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci 2007; 98:685-91. [PMID: 17359288 PMCID: PMC11158237 DOI: 10.1111/j.1349-7006.2007.00448.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many growth factors and cytokines are immobilized on the extracellular matrix (ECM) by binding to glycosaminoglycans and are stored in an inactive form in the cellular microenvironment. However, the mechanisms of ECM-bound growth factor or cytokine activation have not been well documented. We showed that the insulin-like growth factor type-1 receptor (IGF-1R) was rapidly phosphorylated after the addition of matrix metalloproteinase (MMP)-7 to a serum-starved human colon cancer cell line (HT29) and that phosphorylation was completely inhibited by an IGF-II neutralizing antibody. In the ECM of this cell line, IGF-II and IGF binding protein (BP)-2 coexisted, but IGFBP-2 disappeared from the ECM fraction after treatment with MMP-7 or heparinase III. On the other hand, in a cell line in which IGF-1R was overexpressed, IGF-1R was phosphorylated by supernatant from the MMP-7-treated ECM fraction of HT29 but not by that from a heparinase-III-treated ECM fraction. We also demonstrated that MMP-7 degrades IGFBP-2 in vitro at three cleavage sites (peptide bonds E(151)-L(152), G(175)-L(176) and K(181)-L(182)), which have not been documented previously. Taken together, these results demonstrate that MMP-7 generates bioactive IGF-II by degrading the IGF-II/IGFBP-2 complex binding to heparan sulfate proteoglycan in the ECM, resulting in IGF-II-induced signal transduction. This evidence indicates that some ECM-associated growth factors enhance their ability to bind to their receptors by some proteases in the tumor microenvironment. This mechanism of action ('protease-triggered matricrine') represents an attractive model for understanding ECM-tumor interactions.
Collapse
Affiliation(s)
- Shin'ichi Miyamoto
- Pathology Division, National Cancer Center Research Institute East, Chiba 277-8577, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wu C, Yao G, Zou M, Chen G, Wang M, Liu J, Wang J, Xu D. N-Acetylgalactosaminyltransferase 14, a novel insulin-like growth factor binding protein-3 binding partner. Biochem Biophys Res Commun 2007; 357:360-5. [PMID: 17434446 DOI: 10.1016/j.bbrc.2007.03.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is known to inhibit cell proliferation and induce apoptosis in IGF-dependent and IGF-independent manners, but the mechanism underlying IGF-independent effects is not yet clear. In a yeast two-hybrid assay, IGFBP-3 was used as the bait to screen a human fetal liver cDNA library for it interactors that may potentially mediate IGFBP-3-regulated functions. N-Acetylgalactosaminyltransferase 14 (GalNAc-T14), a member of the GalNAc-Tases family, was identified as a novel IGFBP-3 binding partner. This interaction involved the ricin-type beta-trefoil domain of GalNAc-T14. The interaction between IGFBP-3 and GalNAc-T14 was reconfirmed in vitro and in vivo, using GST pull-down, co-immunoprecipitation and mammalian two-hybrid assays. Our findings may provide new clues for further study on the mechanism behind the IGF-independent effects of IGFBP-3 promoting apoptosis. The role of GalNAc-T14 as an intracellular mediator of the effects of IGFBP-3 need to be verified in future studies.
Collapse
Affiliation(s)
- Chen Wu
- Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, PR China; College of Life Sciences, Hebei University, Baoding, Hebei 100072, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Beattie J, Allan GJ, Lochrie JD, Flint DJ. Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 2006; 395:1-19. [PMID: 16526944 PMCID: PMC1409685 DOI: 10.1042/bj20060086] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/30/2006] [Indexed: 11/17/2022]
Abstract
The six members of the insulin-like growth factor-binding protein family (IGFBP-1-6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells.
Collapse
Key Words
- extracellular matrix (ecm)
- glycosaminoglycan
- insulin-like growth factor-i (igf-i)
- insulin-like growth factor-binding protein 5 (igfbp-5)
- mammary gland
- proteolysis
- adam, adisintegrin and metalloprotease
- ap-2, activator protein 2
- cat, chloramphenicol acetyltransferase
- cbp-4, c-terminus of insulin-like growth factor-binding protein 4 (residues 151–232)
- c/ebp, ccaat/enhancer-binding protein
- ecm, extracellular matrix
- er, oestrogen receptor
- erk1/2, extracellular-signal-regulated protein kinase 1/2
- fhl-2, four-and-a-half lim domain 2
- gag, glycosaminoglycan
- gh, growth hormone
- igf, insulin-like growth factor
- igfbp, igf-binding protein
- igf-ir, igf-i receptor
- igf-iir, igf-ii receptor
- ir, insulin receptor
- irs, ir substrate
- mapk, mitogen-activated protein kinase
- nbp-4, n-terminus of igfbp-4 (residues 3–82)
- oe2, oestradiol
- op-1, osteogenic protein-1
- opn, osteopontin
- pai-1, plasminogen activator inhibitor-1
- papp, pregnancy-associated plasma protease
- pge2, prostaglandin e2
- psmc, porcine smooth-muscle cell
- ra, retinoic acid
- rassf1c, isoform c of the ras association family 1 protein group
- rt, reverse transcription
- spr, surface plasmon resonance
- tpa, tissue plasminogen activator
- tsp-1, thrombospondin-1
- vn, vitronectin
Collapse
Affiliation(s)
- James Beattie
- Hannah Research Institute, Ayr KA6 5HL, Scotland, UK.
| | | | | | | |
Collapse
|
28
|
Silha JV, Murphy LJ. Insulin-like growth factor binding proteins in development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:55-89. [PMID: 16370136 DOI: 10.1007/0-387-26274-1_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IGFBPs regulate growth and development by regulating IGF transport to tissues and IGF bioavailability to IGF receptors at cell membrane level. IGFBP excess leads predominantly to inhibition of IGF action and growth retardation with impaired organogenesis. Absence of human and also mouse ALS leads to decreased IGF-I levels in circulation and causes mild growth retardation. Although IGFBP KO mice demonstrate relatively minor phenotypes, the possibility of compensatory mechanisms that mask the phenotypic manifestation of lack of individual binding proteins needs to be further investigated. Recent studies of hepatic regeneration in IGFBP-1 KO mice and also with mutant IGFBP-3 Tg mice provide some limited support for the existence of IGF-independent mechanism of action in vivo.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
29
|
Russo VC, Schütt BS, Andaloro E, Ymer SI, Hoeflich A, Ranke MB, Bach LA, Werther GA. Insulin-like growth factor binding protein-2 binding to extracellular matrix plays a critical role in neuroblastoma cell proliferation, migration, and invasion. Endocrinology 2005; 146:4445-55. [PMID: 15994346 DOI: 10.1210/en.2005-0467] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IGF binding proteins (IGFBPs) modulate IGF cellular bioavailability and may directly regulate tumor growth and invasion. We have previously shown that IGFBP-2 binds and localizes IGF-I to the pericellular matrix and have provided some evidence suggesting that the heparin binding domain (HBD) or the arginine-glycine-aspartic acid (RGD) integrin binding motif may be involved in these interactions. However, the precise mechanisms involved remain to be elucidated. We therefore mutated the HBD or RGD sequence of IGFBP-2 and investigated consequent effects on extracellular matrix (ECM) binding, IGF-induced proliferation, and migration of neuroblastoma cells. IGFBP-2 and its arginine-glycine-glutamic acid (RGE) mutant similarly bound ECM components, whereas binding of mutant HBD-IGFBP-2 to each of the ECM substrates was markedly reduced by 70-80% (P < 0.05). IGF-I (100 ng/ml) increased incorporation of 3H-thymidine in neuroblastoma SK-N-SHEP cells by approximately 30%, an effect blunted by exogenously added native or either mutant IGFBP-2. Overexpression of IGFBP-2 and its RGE mutant potently promoted SHEP cell proliferation (5-fold), whereas SHEP cell proliferation was negligible when HBD-IGFBP-2 was overexpressed. Addition or overexpression of IGFBP-2 and its RGE mutant potently (P < 0.05) enhanced SHEP cell migration/invasion through the ECM. However, overexpression of the HBD-IGFBP-2 mutant potently inhibited (50-60%) SHEP cell invasion through ECM. Thus, IGFBP-2, which binds to the ECM, enhances proliferation and metastatic behavior of neuroblastoma cells, functions that directly or indirectly use the HBD but not the integrin binding sequence. Our novel findings thus point to a key role for the HBD of IGFBP-2 in the control and regulation of neuroblastoma growth and invasion.
Collapse
Affiliation(s)
- V C Russo
- Murdoch Childrens Research Institute, Centre for Hormone Research and Department of Paediatrics, University of Melbourne, Parkville 3052, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Xie L, Tsaprailis G, Chen QM. Proteomic Identification of Insulin-like Growth Factor-binding Protein-6 Induced by Sublethal H2O2 Stress from Human Diploid Fibroblasts. Mol Cell Proteomics 2005; 4:1273-83. [PMID: 15958393 DOI: 10.1074/mcp.m500032-mcp200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fibroblasts are the most ubiquitous cell types within our body. They produce various factors to maintain the texture and structure of a particular organ or tissue. To identify protein factors secreted by fibroblasts and alteration of these protein factors upon oxidative stress, HCA3 human skin diploid fibroblasts were exposed to a sublethal dose of H2O2, which induces a prematurely senescent phenotype. Conditioned media from prematurely senescent cells versus control cells were analyzed for proteins using an LC-MS/MS-based proteomic technique. Collagen alpha1(VI), collagen alpha2(I), fibronectin, lumican, and matrix metalloproteinase 2 were among the proteins consistently detected from control and H2O2-treated cells. Insulin-like growth factor-binding protein-6 (IGFBP-6) consistently showed up in the conditioned medium of H2O2-treated cells but not from untreated cells. Increased IGFBP-6 production due to H2O2 treatment was confirmed by RT-PCR and Western blot analyses. While H2O2 induced a dose-dependent elevation of IGFBP-6 mRNA, Western blot analyses detected elevated levels of IGFBP-6 protein in the conditioned medium of H2O2-treated cells. In comparison, fibronectin or matrix metalloproteinase 2 did not show changes at the mRNA level in cell lysates or at the protein level in the conditioned medium by H2O2 treatment. Using several types of toxins at sublethal doses, including cis-platin, hydroxyurea, colchicine, L-mimosine, rhodamine, dithiothreitol, or N-ethylmaleimide, we found that these agents induced increases of IGFBP-6 at mRNA and protein levels. An increased level of IGFBP-6 protein was detected in the plasma of aging mice and of young mice treated with doxorubicin. These data suggest that IGFBP-6 may serve as a sensitive biomarker of cell degeneration or injury in vitro and in vivo.
Collapse
Affiliation(s)
- Lifang Xie
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
31
|
Abstract
Insulin-like growth factor binding protein (IGFBP)-6 is unique among IGFBPs for its IGF-II binding specificity. IGFBP-6 inhibits growth of a number of IGF-II-dependent cancers, including rhabdomyosarcoma, neuroblastoma and colon cancer. Although the major action of IGFBP-6 appears to be inhibition of IGF-II actions, a number of studies suggest that it may also have IGF-independent actions. Gene array studies show regulation of IGFBP-6 in many circumstances that are consistent with antiproliferative actions. However, other studies show the opposite, so that IGFBP-6 may be acting as a counter-regulator in these situations or it may have other as yet undetermined actions. Both the N-terminal and C-terminal domains of IGFBP-6 contribute to high affinity IGF binding, and the C-terminal domain appears to confer its IGF-II specificity. The three-dimensional structure of the C-domain of IGFBP-6 contains a thyroglobulin type 1 fold, and the IGF-II binding site is located in the proximal half of this domain adjacent to the glycosaminoglycan binding site. Future studies are needed to further delineate the putative IGF-independent actions of IGFBP-6 and to build on the structural information to enhance our understanding of this IGFBP. This is particularly significant since IGFBP-6 provides an attractive basis for therapy of IGF-II-dependent tumors.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Vic. 3004, Australia.
| |
Collapse
|
32
|
Headey SJ, Keizer DW, Yao S, Brasier G, Kantharidis P, Bach LA, Norton RS. C-terminal domain of insulin-like growth factor (IGF) binding protein-6: structure and interaction with IGF-II. Mol Endocrinol 2004; 18:2740-50. [PMID: 15308688 DOI: 10.1210/me.2004-0248] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
IGFs are important mediators of growth. IGF binding proteins (IGFBPs) 1-6 regulate IGF actions and have IGF-independent actions. The C-terminal domains of IGFBPs contribute to high-affinity IGF binding and modulation of IGF actions and confer some IGF-independent properties, but understanding how they achieve this has been constrained by the lack of a three-dimensional structure. We therefore determined the solution structure of the C-domain of IGFBP-6 using nuclear magnetic resonance (NMR). The domain consists of a thyroglobulin type 1 fold comprising an alpha-helix followed by a loop, a three-stranded antiparallel beta-sheet incorporating a second loop, and finally a disulfide-bonded flexible third loop. The IGF-II binding site on the C-domain was identified by examining NMR spectral changes upon complex formation. It consists of a largely hydrophobic surface patch involving the alpha-helix, the first beta-strand, and the first and second loops. The site was confirmed by mutagenesis of several residues, which resulted in decreased IGF binding affinity. The IGF-II binding site lies adjacent to surfaces likely to be involved in glycosaminoglycan binding of IGFBPs, which might explain their decreased IGF affinity when bound to glycosaminoglycans, and nuclear localization. Our structure provides a framework for understanding the roles of IGFBP C-domains in modulating IGF actions and conferring IGF-independent actions, as well as ultimately for the development of therapeutic IGF inhibitors for diseases including cancer.
Collapse
Affiliation(s)
- Stephen J Headey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Russo VC, Andaloro E, Fornaro SA, Najdovska S, Newgreen DF, Bach LA, Werther GA. Fibroblast growth factor-2 over-rides insulin-like growth factor-I induced proliferation and cell survival in human neuroblastoma cells. J Cell Physiol 2004; 199:371-80. [PMID: 15095284 DOI: 10.1002/jcp.10416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.
Collapse
|
34
|
Kühl NM, Hoekstra D, De Vries H, De Keyser J. Insulin-like growth factor-binding protein 6 inhibits survival and differentiation of rat oligodendrocyte precursor cells. Glia 2003; 44:91-101. [PMID: 14515325 DOI: 10.1002/glia.10263] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a growth and survival factor for oligodendrocyte lineage cells and promotes myelination. We demonstrate that IGF-binding protein 6 (IGFBP-6) is expressed and localized to the Golgi complex in rat oligodendrocyte precursor (O2A) cells. IGFBP-6 mRNA showed a developmentally regulated expression pattern, displaying a transient decrease during early development, and enhanced levels upon cell maturation. IGFBP-6 mRNA expression could be reduced by addition of basic fibroblast growth factor and progesterone while estrogen increased IGFBP-6 mRNA. IGF-1, platelet-derived growth factor, and insulin had no effect. When added exogenously, IGFBP-6 reduced O2A cell survival in the absence of IGF-1 and inhibited IGF-1-stimulated survival in a partially IGF-1-dependent and partially IGF-1-independent fashion. In addition, IGFBP-6 reduced the IGF-stimulated expression of two myelin proteins, CNPase and MAG. Taken together, the data show that IGFBP-6 is a new negative effector of oligodendrocyte survival and differentiation.
Collapse
Affiliation(s)
- Nicole M Kühl
- Department of Neurology, Academic Hospital Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
35
|
Samih N, Hovsepian S, Notel F, Prorok M, Zattara-Cannoni H, Mathieu S, Lombardo D, Fayet G, El-Battari A. The impact of N- and O-glycosylation on the functions of Glut-1 transporter in human thyroid anaplastic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1621:92-101. [PMID: 12667615 DOI: 10.1016/s0304-4165(03)00050-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been previously shown that glucose transporter Glut-1 expression was detectable by immunostaining in tissue sections from anaplastic carcinoma, but not in normal thyroid tissue. Using human thyroid anaplastic carcinoma cells, we studied the mechanism by which Glut-1 molecules are translocated from the endoplasmic reticulum to the cell surface. The contribution of N- and O-linked glycans for the translocation and activity of Glut-1 transporter is emphasized. The inhibition of N-glycosylation with tunicamycin (TM) led to a 50% decrease in glucose transport while glycosylated and unglycosylated forms of Glut-1 were found at the cell surface. However, the inhibition of N-linked oligosaccharide processing with deoxymannojirimycin (dMJ) and swainsonine (SW) influenced neither the intracellular trafficking nor the activity of the transporter. On the other hand, Glut-1 bound to the O-linked glycan-specific lectin jacalin and the O-glycosylation inhibitor benzyl-N-acetylgalactosamine dramatically inhibited glucose transport. These results show that O- and N-linked oligosaccharides arbored by Glut-1 are essential for glucose transport in anaplastic carcinoma cells. The quantitative and qualitative alterations of Glut-1 glycosylation and the increase in glucose transport are associated with the anaplastic phenotype of human thyroid cells.
Collapse
Affiliation(s)
- Nezha Samih
- INSERM U-559, Faculté de Médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Cedex 5, Marseilles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang H, Tachibana K, Zhang Y, Iwasaki H, Kameyama A, Cheng L, Guo JM, Hiruma T, Togayachi A, Kudo T, Kikuchi N, Narimatsu H. Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem Biophys Res Commun 2003; 300:738-44. [PMID: 12507512 DOI: 10.1016/s0006-291x(02)02908-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel member of the human UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase (pp-GalNAc-T) gene family was cloned and designated pp-GalNAc-T14. This type II membrane protein contains all motifs that are conserved in the pp-GalNAc-T family proteins and forms a subfamily with pp-GalNAc-T2 on the phylogenetic tree. Quantitative real time PCR analysis revealed significantly high expression of the pp-GalNAc-T14 transcript in kidney, although the transcripts were ubiquitously expressed in all tissues examined. Furthermore, the recombinant pp-GalNAc-T14 transferred GalNAc to a panel of mucin-derived peptide substrates such as Muc2, Muc5AC, Muc7, and Muc13 (-58). Our results provide evidence that pp-GalNAc-T14 is a new member of the pp-GalNAc-T family and suggest that pp-GalNAc-T14 may be involved in the O-glycosylation in kidney.
Collapse
Affiliation(s)
- Han Wang
- Glycogene Function Team, Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Open Space Laboratory Central-2, 1-1-1 Umezono, Tsukuba, Ibaraki-ken 305-8568, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
In addition to their roles in IGF transport, the six IGF-binding proteins (IGFBPs) regulate cell activity in various ways. By sequestering IGFs away from the type I IGF receptor, they may inhibit mitogenesis, differentiation, survival, and other IGF-stimulated events. IGFBP proteolysis can reverse this inhibition or generate IGFBP fragments with novel bioactivity. Alternatively, IGFBP interaction with cell or matrix components may concentrate IGFs near their receptor, enhancing IGF activity. IGF receptor-independent IGFBP actions are also increasingly recognized. IGFBP-1 interacts with alpha(5)beta(1) integrin, influencing cell adhesion and migration. IGFBP-2, -3, -5, and -6 have heparin-binding domains and can bind glycosaminoglycans. IGFBP-3 and -5 have carboxyl-terminal basic motifs incorporating heparin-binding and additional basic residues that interact with the cell surface and matrix, the nuclear transporter importin-beta, and other proteins. Serine/threonine kinase receptors are proposed for IGFBP-3 and -5, but their signaling functions are poorly understood. Other cell surface IGFBP-interacting proteins are uncharacterized as functional receptors. However, IGFBP-3 binds and modulates the retinoid X receptor-alpha, interacts with TGFbeta signaling through Smad proteins, and influences other signaling pathways. These interactions can modulate cell cycle and apoptosis. Because IGFBPs regulate cell functions by diverse mechanisms, manipulation of IGFBP-regulated pathways is speculated to offer therapeutic opportunities in cancer and other diseases.
Collapse
Affiliation(s)
- Sue M Firth
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | | |
Collapse
|
38
|
Chelius D, Wu SL, Bondarenko PV. Identification of N-linked oligosaccharides of rat insulin-like growth factor binding protein-4. Growth Horm IGF Res 2002; 12:169-177. [PMID: 12162998 DOI: 10.1016/s1096-6374(02)00021-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insulin-like growth factor binding protein-4 (IGFBP-4) is, like the other five IGFBPs, a critical regulator of the activity of insulin-like growth factor (IGF)-I and IGF-II. Whereas IGFBP-1 and IGFBP-2 are not glycosylated, IGFBP-3 and IGFBP-4 are N-glycosylated and IGFBP-5 and IGFBP-6 are O-glycosylated. In this study we identified the glycosylation of IGFBP-4 using a nanoflow LC/MS/MS techniques. Although N-linked oligosaccharides are structurally diverse, their variants are well reported in the literature. Based on the molecular weight of the possible oligosaccharide moieties, we identified five different glycosylation isoforms of the protein. Identified glycans were biantennary and differ in the number of sialic acid terminal residues and/or core modification with fucose.
Collapse
Affiliation(s)
- Dirk Chelius
- Thermo Finnigan, Proteomics Division, 355 River Oaks Parkway, San Jose, CA 95134, USA.
| | | | | |
Collapse
|
39
|
Ten Hagen KG, Bedi GS, Tetaert D, Kingsley PD, Hagen FK, Balys MM, Beres TM, Degand P, Tabak LA. Cloning and characterization of a ninth member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family, ppGaNTase-T9. J Biol Chem 2001; 276:17395-404. [PMID: 11278534 DOI: 10.1074/jbc.m009638200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned, expressed and characterized the gene encoding a ninth member of the mammalian UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (ppGaNTase) family, termed ppGaNTase-T9. This type II membrane protein consists of a 9-amino acid N-terminal cytoplasmic region, a 20-amino acid hydrophobic/transmembrane region, a 94-amino acid stem region, and a 480-amino acid conserved region. Northern blot analysis revealed that the gene encoding this enzyme is expressed in a broadly distributed manner across many adult tissues. Significant levels of 5- and 4.2-kilobase transcripts were found in rat sublingual gland, testis, small intestine, colon, and ovary, with lesser amounts in heart, brain, spleen, lung, stomach, cervix, and uterus. In situ hybridization to mouse embryos (embryonic day 14.5) revealed significant hybridization in the developing mandible, maxilla, intestine, and mesencephalic ventricle. Constructs expressing this gene transiently in COS7 cells resulted in no detectable transferase activity in vitro against a panel of unmodified peptides, including MUC5AC (GTTPSPVPTTSTTSAP) and EA2 (PTTDSTTPAPTTK). However, when incubated with MUC5AC and EA2 glycopeptides (obtained by the prior action of ppGaNTase-T1), additional incorporation of GalNAc was achieved, resulting in new hydroxyamino acid modification. The activity of this glycopeptide transferase is distinguished from that of ppGaNTase-T7 in that it forms a tetra-glycopeptide species from the MUC5AC tri-glycopeptide substrate, whereas ppGaNTase-T7 forms a hexa-glycopeptide species. This isoform thus represents the second example of a glycopeptide transferase and is distinct from the previously identified form in enzymatic activity as well as expression in embryonic and adult tissues. These findings lend further support to the existence of a hierarchical network of differential enzymatic activity within the diversely regulated ppGaNTase family, which may play a role in the various processes governing development.
Collapse
Affiliation(s)
- K G Ten Hagen
- Center for Oral Biology, Aab Institute for Biomedical Sciences, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|