1
|
Wang H, Jiang C, Xu B, Lei D, Fang R, Tang Y. Transcriptomic analysis revealed ferroptosis in ducklings with splenic necrosis induced by NDRV infection. Vet Res 2025; 56:54. [PMID: 40059215 PMCID: PMC11892222 DOI: 10.1186/s13567-025-01479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/23/2025] [Indexed: 05/13/2025] Open
Abstract
Infection with novel duck reovirus (NDRV) results in severe splenic necrosis, leading to immunosuppression, secondary infections with other pathogens, and impairment of the immune effect of the vaccine. However, little is known about NDRV-induced spleen injury and its antagonistic mechanism on the host immune response. In this study, we conducted pathological and comparative transcriptomic analyses of NDRV-infected duck spleens. Our findings elucidated the histopathological progression of splenic necrotic foci formation following NDRV infection and identified splenic macrophages as the primary target cells. RNA-Seq analysis revealed differentially expressed genes that were enriched predominantly in immune system processes, signalling molecules and interactions, and pathways related to cell growth and necrosis. Notably, we observed a significant upregulation of ferroptosis during NDRV infection, characterized by the induction of specific metabolism-related genes such as TfR1, Hmox1, and STEAP3, alongside the downregulation of Fpn expression. Our findings collectively indicate the involvement of ferroptosis in spleen injury induced by NDRV infection. Investigating the mechanism of NDRV-induced ferroptosis in spleen macrophages will contribute to a comprehensive understanding of the pathogenesis associated with NDRV.
Collapse
Affiliation(s)
- Hongzhi Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chenchen Jiang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Boyi Xu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Di Lei
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rendong Fang
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - Yi Tang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Elgendy DI, Othman AA, Eid MM, El-Kowrany SI, Sallam FA, Mohamed DA, Zineldeen DH. The impact of β-glucan on the therapeutic outcome of experimental Trichinella spiralis infection. Parasitol Res 2023; 122:2807-2818. [PMID: 37737322 PMCID: PMC10667415 DOI: 10.1007/s00436-023-07964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
Trichinellosis is a cosmopolitan zoonosis that is caused mainly by Trichinella spiralis infection. The human disease ranges from mild to severe and fatality may occur. The treatment of trichinellosis still presents a challenge for physicians. Anti-inflammatory drugs are usually added to antiparasitic agents to alleviate untoward immuno-inflammatory responses and possible tissue damage but they are not without adverse effects. Thus, there is a need for the discovery of safe and effective compounds with anti-inflammatory properties. This study aimed to evaluate the activity of β-glucan during enteral and muscular phases of experimental T. spiralis infection as well as its therapeutic potential as an adjuvant to albendazole in treating trichinellosis. For this aim, mice were infected with T. spiralis and divided into the following groups: early and late β-glucan treatment, albendazole treatment, and combined treatment groups. Infected mice were subjected to assessment of parasite burden, immunological markers, and histopathological changes in the small intestines and muscles. Immunohistochemical evaluation of NF-κB expression in small intestinal and muscle tissues was carried out in order to investigate the mechanism of action of β-glucan. Interestingly, β-glucan potentiated the efficacy of albendazole as noted by the significant reduction of counts of muscle larvae. The inflammatory responses in the small intestine and skeletal muscles were mitigated with some characteristic qualitative changes. β-glucan also increased the expression of NF-κB in tissues which may account for some of its effects. In conclusion, β-glucan showed a multifaceted beneficial impact on the therapeutic outcome of Trichinella infection and can be regarded as a promising adjuvant in the treatment of trichinellosis.
Collapse
Affiliation(s)
- Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Mohamed M Eid
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Samy I El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fersan A Sallam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dareen A Mohamed
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa H Zineldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- College of Medicine, Sulaiman AlRajhi University, 51942, Albukairiyah, Saudi Arabia
| |
Collapse
|
3
|
Rodríguez JA, Barredo-Vacchelli GR, Iglesias-García LC, Birocco AM, Blachman A, Calabrese GC, Acosta G, Albericio F, Camperi SA. Design and Synthesis of Peptides from Phoneutria nigriventer δ-Ctenitoxin-Pn2a for Antivenom Production. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
Pando A, Schorl C, Fast LD, Reagan JL. Tumor Derived Extracellular Vesicles Modulate Gene Expression in T cells. Gene 2023; 850:146920. [DOI: 10.1016/j.gene.2022.146920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
|
5
|
Zhang J, Wu YJ, Hu XX, Wei W. New insights into the Lck-NF-κB signaling pathway. Front Cell Dev Biol 2023; 11:1120747. [PMID: 36910149 PMCID: PMC9999026 DOI: 10.3389/fcell.2023.1120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Lck is essential for the development, activity, and proliferation of T cells, which may contribute to pathological progression and development of human diseases, such as autoimmune disorders and cancers when functioning aberrantly. Nuclear factor-κB (NF-κB) was initially discovered as a factor bound to the κ light-chain immunoglobulin enhancer in the nuclei of activated B lymphocytes. Activation of the nuclear factor-κB pathway controls expression of several genes that are related to cell survival, apoptosis, and inflammation. Abnormal expression of Lck and nuclear factor-κB has been found in autoimmune diseases and malignancies, including rheumatoid arthritis, systemic lupus erythematosus, acute T cell lymphocytic leukemia, and human chronic lymphocytic leukemia, etc. Nuclear factor-κB inhibition is effective against autoimmune diseases and malignancies through blocking inflammatory responses, although it may lead to serious adverse reactions that are unexpected and unwanted. Further investigation of the biochemical and functional interactions between nuclear factor-κB and other signaling pathways may be helpful to prevent side-effects. This review aims to clarify the Lck-nuclear factor-κB signaling pathway, and provide a basis for identification of new targets and therapeutic approaches against autoimmune diseases and malignancies.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu-Jing Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiao-Xi Hu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Wang SY, Shih YH, Shieh TM, Tseng YH. Proteasome Inhibitors Interrupt the Activation of Non-Canonical NF-κB Signaling Pathway and Induce Cell Apoptosis in Cytarabine-Resistant HL60 Cells. Int J Mol Sci 2021; 23:ijms23010361. [PMID: 35008789 PMCID: PMC8745175 DOI: 10.3390/ijms23010361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Over half of older patients with acute myeloid leukemia (AML) do not respond to cytotoxic chemotherapy, and most responders relapse because of drug resistance. Cytarabine is the main drug used for the treatment of AML. Intensive treatment with high-dose cytarabine can increase the overall survival rate and reduce the relapse rate, but it also increases the likelihood of drug-related side effects. To optimize cytarabine treatment, understanding the mechanism underlying cytarabine resistance in leukemia is necessary. In this study, the gene expression profiles of parental HL60 cells and cytarabine-resistant HL60 (R-HL60) cells were compared through gene expression arrays. Then, the differential gene expression between parental HL60 and R-HL60 cells was measured using KEGG software. The expression of numerous genes associated with the nuclear factor κB (NF-κB) signaling pathway changed during the development of cytarabine resistance. Proteasome inhibitors inhibited the activity of non-canonical NF-κB signaling pathway and induced the apoptosis of R-HL60 cells. The study results support the application and possible mechanism of proteasome inhibitors in patients with relapsed or refractory leukemia.
Collapse
Affiliation(s)
- Shuo-Yu Wang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan
| | - Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +88-673-121-101 (ext. 6356)
| |
Collapse
|
7
|
Espinosa L, Marruecos L. NF-κB-Dependent and -Independent (Moonlighting) IκBα Functions in Differentiation and Cancer. Biomedicines 2021; 9:1278. [PMID: 34572464 PMCID: PMC8468488 DOI: 10.3390/biomedicines9091278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
IκBα is considered to play an almost exclusive role as inhibitor of the NF-κB signaling pathway. However, previous results have demonstrated that SUMOylation imposes a distinct subcellular distribution, regulation, NF-κB-binding affinity and function to the IκBα protein. In this review we discuss the main alterations of IκBα found in cancer and whether they are (most likely) associated with NF-κB-dependent or NF-κB-independent (moonlighting) activities of the protein.
Collapse
Affiliation(s)
- Lluís Espinosa
- Cancer Research Program, Institut Mar d’Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain;
| | | |
Collapse
|
8
|
Qiu Y, Batool Z, Liu R, Sui G, Sheng B, Zheng X, Xu D. Characterization and immunological activity of polysaccharides from Potentilla chinensis. Int J Biol Macromol 2020; 165:683-690. [DOI: 10.1016/j.ijbiomac.2020.09.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
|
9
|
Pan Y, Cheng A, Zhang X, Wang M, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Huang J, Zhang S, Mao S, Ou X, Gao Q, Yu Y, Liu Y, Zhang L, Yin Z, Jing B, Tian B, Pan L, Rehman MU, Chen X, Jia R. Transcriptome analysis of duck embryo fibroblasts for the dynamic response to duck tembusu virus infection and dual regulation of apoptosis genes. Aging (Albany NY) 2020; 12:17503-17527. [PMID: 32897243 PMCID: PMC7521532 DOI: 10.18632/aging.103759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023]
Abstract
Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that has caused enormous economic losses in Southeast Asia. However, the pathogenic mechanism and host's responses after DTMUV infection remain poorly understood. During this study, total mRNA sequencing (RNA-Seq) analysis was used to detect the global gene expression in DEFs at various time points after DTMUV infection. We identified 326 genes altered significantly at all time points, and these genes were dynamically enriched in multifarious biological processes, including apoptosis, innate immune response, DNA replication, cell cycle arrest and DNA repair. Next, the results showed that apoptosis was induced and the proportion of apoptosis increased with time, and pro-apoptotic molecules caspases were activated. The RNA-seq data analysis further revealed that most pro-apoptosis and anti-apoptosis genes were early continually responsive, and the genes involved in both intrinsic and extrinsic apoptotic pathways were initiated. Further, the considerably enriched immune-relevant pathways were involved in apoptosis process, and protein-protein interactions (PPIs) analysis showed that IL6, STAT1, TNFAIP3, CFLAR and PTGS2 may be key regulators of DEFs apoptosis. In conclusion, this study not only contributes to understanding the underlying mechanism of DEFs infection with DTMUV, but also provides new insights into targets screening for antiviral therapy.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| |
Collapse
|
10
|
Puscz F, Dadras M, Dermietzel A, Jacobsen F, Lehnhardt M, Behr B, Hirsch T, Kueckelhaus M. A chronic rejection model and potential biomarkers for vascularized composite allotransplantation. PLoS One 2020; 15:e0235266. [PMID: 32589662 PMCID: PMC7319338 DOI: 10.1371/journal.pone.0235266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic rejection remains the Achilles heel in vascularized composite allotransplantation. Animal models to specifically study chronic rejection in vascularized composite allotransplantation do not exist so far. However, there are established rat models to study chronic rejection in solid organ transplantation such as allogeneic transplantation between the rat strains Lewis and Fischer344. Thus, we initiated this study to investigate the applicability of hindlimb transplantation between these strains to imitate chronic rejection in vascularized composite allotransplantation and identify potential markers. METHODS Allogeneic hindlimb transplantation were performed between Lewis (recipient) and Fischer344 (donor) rats with either constant immunosuppression or a high dose immunosuppressive bolus only in case of acute skin rejections. Histology, immunohistochemistry, microarray and qPCR analysis were used to detect changes in skin and muscle at postoperative day 100. RESULTS We were able to demonstrate significant intimal proliferation, infiltration of CD68 and CD4 positive cells, up-regulation of inflammatory cytokines and initiation of muscular fibrosis in the chronic rejection group. Microarray analysis and subsequent qPCR identified CXC ligands 9-11 as potential markers of chronic rejection. CONCLUSIONS The Fischer344 to Lewis hindlimb transplantation model may represent a new option to study chronic rejection in vascularized composite allotransplantation in an experimental setting. CXC ligands 9-11 deserve further research to investigate their role as chronic rejection markers.
Collapse
Affiliation(s)
- Flemming Puscz
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Alexander Dermietzel
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Muenster, Germany
| | - Frank Jacobsen
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Tobias Hirsch
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Muenster, Germany
| | - Maximilian Kueckelhaus
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Muenster, Germany
| |
Collapse
|
11
|
Kim DH, Park JW, Jeong HO, Lee B, Chung KW, Lee Y, Jung HJ, Hyun MK, Lee AK, Kim BM, Yu BP, Chung HY. Novel Role of Lck in Leptin-Induced Inflammation and Implications for Renal Aging. Aging Dis 2019; 10:1174-1186. [PMID: 31788330 PMCID: PMC6844581 DOI: 10.14336/ad.2019.0218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 12/25/2022] Open
Abstract
Aging is associated with increased fat mass and elevated serum leptin levels (hyperleptinemia), causing proinflammation in the kidneys where it plays a primary role in the removal of endogenous leptin from the circulation. Lymphocyte-specific kinase (Lck) is a positive regulator of inflammatory signaling and a potential treatment target for age-related diseases, but its role in leptin signaling is unknown. Here, we investigated how Lck influences hyperleptinemia-induced inflammation in kidney tissues from 6- and 21-month-old rats. Results indicate that Lck expression and activation increased significantly in aged rat kidneys, especially at renal tubules. Furthermore, we identified interactions between Lck and short leptin-receptor isoforms, suggesting that Lck is a protein tyrosine kinase regulating leptin signaling. We further investigated whether increased Lck expression in renal tubular epithelial cells and macrophage infiltration are associated with leptin-induced inflammation. We then demonstrated that leptin activates Lck and proinflammatory transcription factors (STAT3 and NF-κB), while Lck knockdown modulates the expression of both transcription factors. Collectively, these data implicate that Lck leads to development of leptin-induced renal inflammation during aging. Inhibition of this protein tyrosine kinase may therefore be an appropriate therapeutic option for protection against age-related hyperleptinemia.
Collapse
Affiliation(s)
- Dae Hyun Kim
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - June Whoun Park
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Hyoung Oh Jeong
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Bonggi Lee
- 2Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Korea
| | - Ki Wung Chung
- 3Department of Pharmacy, College of Pharmacy, Kyungsung University, Nam-gu, Busan 48434, Korea
| | - Yujeong Lee
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Hee Jin Jung
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Min Kyung Hyun
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - A Kyoung Lee
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Byeong Moo Kim
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Byung Pal Yu
- 4Department of Physiology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Hae Young Chung
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| |
Collapse
|
12
|
Prevention and relaxation effects of Liriope platyphylla on bronchial asthma in vitro model by suppressing the activities of MAPK/NF-κB pathway. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Taskan MM, Balci Yuce H, Karatas O, Gevrek F, Toker H. Evaluation of the effect of oleuropein on alveolar bone loss, inflammation, and apoptosis in experimental periodontitis. J Periodontal Res 2019; 54:624-632. [PMID: 31032945 DOI: 10.1111/jre.12662] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 12/13/2022]
Abstract
THE OBJECTIVE The present study aimed to evaluate the effects of oleuropein on ligature-induced alveolar bone loss. In this respect, osteoblastic activity, osteoclastic activity, inflammatory markers, and apoptosis were evaluated. BACKGROUND Oleuropein is a flavonoid, which has potent anti-inflammatory and bone-protective effects. METHODS Thirty-two Wistar rats were divided into four experimental groups as following: control (C, n = 8) group; periodontitis (P, n = 8) group; periodontitis and low-dose oleuropein group (12 mg/kg/day oleuropein, LDO group, n = 8); and periodontitis and high-dose oleuropein group (24 mg/kg/day oleuropein, HDO group, n = 8). Periodontitis was induced via ligatures. Study period was 14 days, and animals were sacrificed at end of this period. Mandibles were examined via a stereomicroscope and underwent histological procedures. Osteoblast, tartrate-resistant acid phosphatase (TRAP)-positive osteoclast, and inflammatory cell counts were determined in hematoxylin-eosin stained sections. Inducible nitric oxide synthase (iNOS), bone morphogenetic protein-4, the cluster of differentiation (CD)-68, cysteine-aspartic proteases-3 (Caspase 3), and B-cell lymphoma-2 (Bcl-2) expressions were evaluated via immunohistochemistry. RESULTS Periodontitis group had highest alveolar bone loss, and these levels significantly decreased in LDO and HDO groups. Both 12 and 24 mg/kg oleuropein groups significantly increased osteoblast cell counts and decreased TRAP-positive osteoclast and inflammatory cell counts. BMP-4 and bcl-2 expressions were elevated in oleuropein groups while caspase-3 expressions decreased. iNOS and CD68 were higher in periodontitis group compared to control group, but there was no significant difference between other groups. CONCLUSION Oleuropein successfully decreased alveolar bone loss as a result of decreased osteoclastic activity, inflammation, and apoptosis and increased osteoblastic activity.
Collapse
Affiliation(s)
- Mehmet Murat Taskan
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Balci Yuce
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Ozkan Karatas
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hülya Toker
- Department of Periodontology, Gulhane Faculty of Dentistry, University of Medical Sciences, Ankara, Turkey
| |
Collapse
|
14
|
Hakim R, Covacu R, Zachariadis V, Frostell A, Sankavaram SR, Brundin L, Svensson M. Mesenchymal stem cells transplanted into spinal cord injury adopt immune cell-like characteristics. Stem Cell Res Ther 2019; 10:115. [PMID: 30944028 PMCID: PMC6448247 DOI: 10.1186/s13287-019-1218-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) and their cellular response to various stimuli have been characterized in great detail in culture conditions. In contrast, the cellular response of MSCs in an in vivo setting is still uncharted territory. In this study, we investigated the cellular response of MSCs following transplantation into spinal cord injury (SCI). Methods Mouse bone marrow-derived MSCs were transplanted 24 h following severe contusion SCI in mice. As controls, MSCs transplanted to the uninjured spinal cord and non-transplanted MSCs were used. At 7 days post transplantation, the MSCs were isolated from the SCI, and their global transcriptional changes, survival, differentiation, proliferation, apoptosis, and phenotypes were investigated using RNA sequencing, immunohistochemistry, and flow cytometry. Results MSCs transplanted into SCI downregulated genes related to cell-cycle regulation/progression, DNA metabolic/biosynthetic process, and DNA repair and upregulated genes related to immune system response, cytokine production/response, response to stress/stimuli, signal transduction and signaling pathways, apoptosis, and phagocytosis/endocytosis. MSCs maintained their surface expression of Sca1 and CD29 but upregulated expression of CD45 following transplantation. Transplanted MSCs maintained their surface expression of MHC-I but upregulated surface expression of MHC-II. Transplanted MSCs survived and proliferated to a low extent, did not express Caspase-3, and did not differentiate into neurons or astrocytes. Conclusion MSCs transplanted into SCI upregulate expression of CD45 and MHC-II and expression of genes related to cytokine production, phagocytosis/endocytosis, and immune cells/response and thereby adopt immune cell-like characteristics within the recipient. Electronic supplementary material The online version of this article (10.1186/s13287-019-1218-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ramil Hakim
- Department of Neurology, Karolinska University Hospital, 17176, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden.,BioClinicum, Karolinska University Hospital, Solnavägen 30, Solna, 171 64, Stockholm, Sweden
| | - Ruxandra Covacu
- Department of Neurology, Karolinska University Hospital, 17176, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Oncology and Pathology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden.,BioClinicum, Karolinska University Hospital, Solnavägen 30, Solna, 171 64, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Sreenivasa Raghavan Sankavaram
- Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Lou Brundin
- Department of Neurology, Karolinska University Hospital, 17176, Stockholm, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden. .,BioClinicum, Karolinska University Hospital, Solnavägen 30, Solna, 171 64, Stockholm, Sweden.
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden.,BioClinicum, Karolinska University Hospital, Solnavägen 30, Solna, 171 64, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| |
Collapse
|
15
|
Activation of NF-κB in B cell receptor signaling through Bruton's tyrosine kinase-dependent phosphorylation of IκB-α. J Mol Med (Berl) 2019; 97:675-690. [PMID: 30887112 DOI: 10.1007/s00109-019-01777-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023]
Abstract
The antigen-mediated triggering of B cell receptor (BCR) activates the transcription factor NF-κB that regulates the expression of genes involved in B cell differentiation, proliferation, and survival. The tyrosine kinase Btk is essentially required for the activation of NF-κB in BCR signaling through the canonical pathway of IKK-dependent phosphorylation and proteasomal degradation of IκB-α, the main repressor of NF-κB. Here, we provide the evidence of an additional mechanism of NF-κB activation in BCR signaling that is Btk-dependent and IKK-independent. In DeFew B lymphoma cells, the anti-IgM stimulation of BCR activated Btk and NF-κB p50/p65 within 0.5 min in absence of IKK activation and IκB-α degradation. IKK silencing did not affect the rapid activation of NF-κB. Within this short time, Btk associated and phosphorylated IκB-α at Y289 and Y305, and, concomitantly, p65 translocated from cytosol to nucleus. The mutant IκB-α Y289/305A inhibited the NF-κB activation after BCR triggering, suggesting that the phosphorylation of IκB-α at tyrosines 289 and 305 was required for NF-κB activation. In primary chronic lymphocytic leukemia cells, Btk was constitutively active and associated with IκB-α, which correlated with Y305-phosphorylation of IκB-α and increased NF-κB activity compared with healthy B cells. Altogether, these results describe a novel mechanism of NF-κB activation in BCR signaling that could be relevant for Btk-targeted therapy in B-lymphoproliferative disorders. KEY MESSAGES: Anti-IgM stimulation of BCR activates NF-κB p50/p65 within 30 s by a Btk-dependent and IKK-independent mechanism. Btk associates and phosphorylates IκB-α at Y289 and Y305, promoting NF-κB activation. In primary CLLs, the binding of Btk to IκB-α correlates with tyrosine phosphorylation of IκB-α and increased NF-κB activity.
Collapse
|
16
|
Yu G, Lin Y, Tang Y, Diao Y. Comparative Transcriptomic Analysis of Immune-Related Gene Expression in Duck Embryo Fibroblasts Following Duck Tembusu Virus Infection. Int J Mol Sci 2018; 19:ijms19082328. [PMID: 30096804 PMCID: PMC6121397 DOI: 10.3390/ijms19082328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Duck is a major waterfowl species in China, providing high-economic benefit with a population of up to 20–30 billion per year. Ducks are commonly affected by severe diseases, including egg-drop syndrome caused by duck Tembusu virus (DTMUV). The immune mechanisms against DTMUV invasion and infection remain poorly understood. In this study, duck embryo fibroblasts (DEFs) were infected with DTMUV and harvested at 12 and 24 h post-infection (hpi), and their genomes were sequenced. In total, 911 (764 upregulated and 147 downregulated genes) and 3008 (1791 upregulated and 1217 downregulated) differentially expressed genes (DEGs) were identified at 12 and 24 hpi, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that DEGs were considerably enriched in immune-relevant pathways, including Toll-like receptor signaling pathway, Cytosolic DNA-sensing pathway, RIG-I-like receptor signaling pathway, Chemokine signaling pathway, NOD-like receptor signaling pathway, and Hematopoietic cell lineage at both time points. The key DEGs in immune system included those of the cytokines (IFN α2, IL-6, IL-8L, IL-12B, CCR7, CCL19, and CCL20), transcription factors or signaling molecules (IRF7, NF-κB, STAT1, TMEM173, and TNFAIP3), pattern recognition receptors (RIG-I and MDA5), and antigen-presenting proteins (CD44 and CD70). This suggests DTMUV infection induces strong proinflammatory/antiviral effects with enormous production of cytokines. However, these cytokines could not protect DEFs against viral attack. Our data revealed valuable transcriptional information regarding DTMUV-infected DEFs, thereby broadening our understanding of the immune response against DTMUV infection; this information might contribute in developing strategies for controlling the prevalence of DTMUV infection.
Collapse
Affiliation(s)
- Guanliu Yu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
| | - Yun Lin
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, Shandong, China.
| |
Collapse
|
17
|
Song L, Liu D, Zhao Y, He J, Kang H, Dai Z, Wang X, Zhang S, Zan Y, Xue X. Sinomenine reduces growth and metastasis of breast cancer cells and improves the survival of tumor-bearing mice through suppressing the SHh pathway. Biomed Pharmacother 2018; 98:687-693. [PMID: 29304494 DOI: 10.1016/j.biopha.2017.12.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
In this study, the suppressive effect of sinomenine on the activation of SHh and the progression of breast cancer metastasis in vitro and in vivo was investigated. MDA-MB-231 breast cancer cells were treated with sinomenine and/or cyclopamine a proven SHh inhibitor. Sinomenine and cyclopamine both suppressed cell proliferation and migration, but sinomenine had a stronger suppressive effect in MDA-MB-231. In addition, sinomenine could suppress the activation of NF-κB and SHh signaling pathways, but cyclopamine could not suppress the activation of NF-κB. Subsequently, a mouse breast cancer-lung metastasis model was established. Our data on tissue examination and gene detection showed that SHh signaling was markedly activated in the metastatic model mice. The progression of lung metastasis was suppressed when mice were fed sinomenine and/or cyclopamine, while sinomenine had a stronger suppressive effect than cyclopamine in the model mice. In conclusion, sinomenine has a better effect than cyclopamine on the inhibition of breast cancer metastasis to lung in vivo and vitro, and inhibits NF-κB activation and NF-κB-mediated activation of SHh signaling pathway.
Collapse
Affiliation(s)
- Lingqin Song
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Di Liu
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yang Zhao
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jianjun He
- Department of Surgical Oncology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xijing Wang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ying Zan
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xinghuan Xue
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
18
|
Ogada PA, Kiirika LM, Lorenz C, Senkler J, Braun HP, Poehling HM. Differential proteomics analysis of Frankliniella occidentalis immune response after infection with Tomato spotted wilt virus (Tospovirus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:1-7. [PMID: 27810283 DOI: 10.1016/j.dci.2016.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Tomato spotted wilt virus (TSWV) is mainly vectored by Frankliniella occidentalis Pergande, and it potentially activates the vector's immune response. However, molecular background of the altered immune response is not clearly understood. Therefore, using a proteomic approach, we investigated the immune pathways that are activated in F. occidentalis larvae after 24 h exposure to TSWV. Two-dimensional isoelectric focusing/sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D-IEF/SDS/PAGE) combined with mass spectrometry (MS), were used to identify proteins that were differentially expressed upon viral infection. High numbers of proteins were abundantly expressed in F. occidentalis exposed to TSWV (73%) compared to the non-exposed (27%), with the majority functionally linked to the innate immune system such as: signaling, stress response, defense response, translation, cellular lipids and nucleotide metabolism. Key proteins included: 70 kDa heat shock proteins, Ubiquitin and Dermcidin, among others, indicative of a responsive pattern of the vector's innate immune system to viral infection.
Collapse
Affiliation(s)
- Pamella Akoth Ogada
- Department of Phytomedicine, Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany.
| | - Leonard Muriithi Kiirika
- Department of Plant Molecular Biology, Institute of Plant Genetics, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Christin Lorenz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany; Department of Plant Proteomics, Institute of Plant Genetics, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Jennifer Senkler
- Department of Plant Proteomics, Institute of Plant Genetics, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Hans-Michael Poehling
- Department of Phytomedicine, Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
19
|
Anti-Inflammatory Effects of Ginsenoside Rg3 via NF- κB Pathway in A549 Cells and Human Asthmatic Lung Tissue. J Immunol Res 2016; 2016:7521601. [PMID: 28116321 PMCID: PMC5223042 DOI: 10.1155/2016/7521601] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 12/04/2016] [Indexed: 01/20/2023] Open
Abstract
Objective. There is limited information of the anti-inflammatory effects of Rg3 on inflamed lung cells and tissues. Therefore, we confirmed the anti-inflammatory mechanism of ginsenoside Rg3 in inflamed human airway epithelial cells (A549) and tissues whether Rg3 regulates nuclear factor kappa B (NF-κB) activity. Methods. To induce the inflammation, IL-1β (10 ng/ml) was treated to A549 cells for 4 h. The effects of Rg3 on NF-κB activity and COX-2 expression were evaluated by western blotting analysis in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. Using multiplex cytokines assay, the secretion levels of NF-κB-mediated cytokines/chemokines were measured. Result. Rg3 showed the significant inhibition of NF-κB activity thereby reduced COX-2 expression was determined in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. In addition, among NF-κB-mediated cytokines, the secretion levels of IL-4, TNF-α, and eotaxin were significantly decreased by Rg3 in asthma tissues. Even though there was no significant difference, IL-6, IL-9, and IL-13 secretion showed a lower tendency compared to saline-treated human asthmatic airway epithelial tissues. Conclusion. The results from this study demonstrate the potential of Rg3 as an anti-inflammatory agent through regulating NF-κB activity and reducing the secretion of NF-κB-mediated cytokines/chemokines.
Collapse
|
20
|
Prieto-Moure B, Lloris-Carsí JM, Belda-Antolí M, Toledo-Pereyra LH, Cejalvo-Lapeña D. Allopurinol Protective Effect of Renal Ischemia by Downregulating TNF-α, IL-1β, and IL-6 Response. J INVEST SURG 2016; 30:143-151. [PMID: 27690698 DOI: 10.1080/08941939.2016.1230658] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allopurinol is a well-known antioxidant that protects tissue against ischemia and reperfusion injury, blocking purine catabolism, and possibly reducing TNF-α and other cytokines. It also plays a significant role in reducing the inflammatory processes by inhibiting chemotaxis and other inflammatory mediators. The objective of this study was to define the role of allopurinol regarding kidney ischemic injury particularly as to its effect on inflammatory molecules such as TNF-α, IL-1β, and IL-6 response. One hundred and twenty five rats were subjected to warm renal ischemia. Five more animals were included as sham. Animal survival and plasma levels of lipid peroxidation, myeloperoxidase, lactate dehydrogenase, glutathione, urea, creatinine, and cytokines were determined. Inflammatory parameters (TNF-α, IL-1β, and IL-6) were measured in all groups by quantitative immunosorbent assay. Further, immunohistological and histopathological studies were carried out on animals treated prior to, or following reperfusion with 10 and 50 mg/kg of Allopurinol. The statistical analysis included ANOVA and Fisher test as well as χ2 test. Significance was reached at a p < 0.05. The results of this study indicated that Allopurinol protected against kidney ischemia-reperfusion injury since significantly better results of survival, biochemical analysis, and histopathological testing were observed in treated animals as compared to ischemic controls. In conclusion, Allopurinol protected ischemic kidneys through a mechanism associated with downregulation of TNF-α, IL-1 β, and IL-6, in addition to other well-known effects such as decreased lipid peroxidation and neutrophil activity. It also increased antioxidant capacity and diminished endogenous peroxidase stain in renal ischemic tissue. Therefore, this experiment showed an effectiveness of allopurinol protection against proteomic and morphological damage.
Collapse
Affiliation(s)
| | | | | | - Luis H Toledo-Pereyra
- c Western Michigan University , Homer Stryker MD School of Medicine and Michigan State University, College of Human and Osteopathic Medicine , Kalamazoo , Michigan , USA
| | | |
Collapse
|
21
|
Chen S, Luo G, Yang Z, Lin S, Chen S, Wang S, Goraya MU, Chi X, Zeng X, Chen JL. Avian Tembusu virus infection effectively triggers host innate immune response through MDA5 and TLR3-dependent signaling pathways. Vet Res 2016; 47:74. [PMID: 27449021 PMCID: PMC4957414 DOI: 10.1186/s13567-016-0358-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/17/2016] [Indexed: 01/22/2023] Open
Abstract
Avian Tembusu virus (ATMUV) is a newly emerged flavivirus that belongs to the Ntaya virus group. ATMUV is a highly pathogenic virus causing significant economic loss to the Chinese poultry industry. However, little is known about the role of host innate immune mechanism in defending against ATMUV infection. In this study, we found that ATMUV infection significantly up-regulated the expression of type I and type III interferons (IFN) and some critical IFN-stimulated genes (ISG) in vivo and in vitro. This innate immune response was induced by genomic RNA of ATMUV. Furthermore, we observed that ATMUV infection triggered IFN response mainly through MDA5 and TLR3-dependent signaling pathways. Strikingly, shRNA-based disruption of IPS-1, IRF3 or IRF7 expression significantly reduced the production of IFN in the 293T cell model. Moreover, NF-κB was shown to be activated in both chicken and human cells during the ATMUV infection. Inhibition of NF-κB signaling also resulted in a clear decrease in expression of IFN. Importantly, experiments revealed that treatment with IFN significantly impaired ATMUV replication in the chicken cell. Consistently, type I IFN also exhibited promising antiviral activity against ATMUV replication in the human cell. Together, these data indicate that ATMUV infection triggers host innate immune response through MDA5 and TLR3-dependent signaling that controls IFN production, and thereby induces an effective antiviral immunity.
Collapse
Affiliation(s)
- Shilong Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350002, China
| | - Guifeng Luo
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhou Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuncheng Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350002, China
| | - Song Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohsan Ullah Goraya
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaojuan Chi
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiancheng Zeng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
| |
Collapse
|
22
|
ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proc Natl Acad Sci U S A 2016; 113:5993-8. [PMID: 27162350 DOI: 10.1073/pnas.1522512113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hair cells of the inner ear, the mechanosensory receptors, convert sound waves into neural signals that are passed to the brain via the auditory nerve. Little is known about the molecular mechanisms that govern the development of hair cell-neuronal connections. We ascertained a family with autosomal recessive deafness associated with a common cavity inner ear malformation and auditory neuropathy. Via whole-exome sequencing, we identified a variant (c.2207G>C, p.R736T) in ROR1 (receptor tyrosine kinase-like orphan receptor 1), cosegregating with deafness in the family and absent in ethnicity-matched controls. ROR1 is a tyrosine kinase-like receptor localized at the plasma membrane. At the cellular level, the mutation prevents the protein from reaching the cellular membrane. In the presence of WNT5A, a known ROR1 ligand, the mutated ROR1 fails to activate NF-κB. Ror1 is expressed in the inner ear during development at embryonic and postnatal stages. We demonstrate that Ror1 mutant mice are severely deaf, with preserved otoacoustic emissions. Anatomically, mutant mice display malformed cochleae. Axons of spiral ganglion neurons show fasciculation defects. Type I neurons show impaired synapses with inner hair cells, and type II neurons display aberrant projections through the cochlear sensory epithelium. We conclude that Ror1 is crucial for spiral ganglion neurons to innervate auditory hair cells. Impairment of ROR1 function largely affects development of the inner ear and hearing in humans and mice.
Collapse
|
23
|
Molecular mechanisms of curcumins suppressing effects on tumorigenesis, angiogenesis and metastasis, focusing on NF-κB pathway. Cytokine Growth Factor Rev 2016; 28:21-9. [DOI: 10.1016/j.cytogfr.2015.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/29/2015] [Accepted: 12/07/2015] [Indexed: 12/18/2022]
|
24
|
Low CF, Mariana NS, Maha A, Chee HY, Fatimah MY. Identification of immune response-related genes and signalling pathways in spleen of Vibrio parahaemolyticus-infected Epinephelus fuscoguttatus (Forskal) by next-generation sequencing. JOURNAL OF FISH DISEASES 2016; 39:389-394. [PMID: 25786532 DOI: 10.1111/jfd.12359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Affiliation(s)
- C-F Low
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - N S Mariana
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - A Maha
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - H-Y Chee
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M Y Fatimah
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
25
|
Profilin-PTEN interaction suppresses NF-κB activation via inhibition of IKK phosphorylation. Biochem J 2016; 473:859-72. [PMID: 26787927 DOI: 10.1042/bj20150624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023]
Abstract
The molecular mechanism of Profilin for its tumour suppressor activity is still unknown. Nuclear transcription factor κB (NF-κB) is known to activate many target genes involved in cell proliferation. In the present study, we provide evidence that supports the involvement of Profilin in regulation of NF-κB, which might repress the tumorigenic response. Profilin overexpressing cells show low basal activity of IκBα kinase (IKK), high amounts of cytoplasmic inhibitory subunit of NF-κB (IκBα) and p65, and low nuclear NF-κB DNA binding activity. Co-localization and co-immunoprecipitation (Co-IP) studies suggest that Profilin interacts with a protein phosphatase, phosphatase and tension homologue (PTEN), and protects it from degradation. In turn, PTEN interacts physically and maintains a low phosphorylated state of the IKK complex and thereby suppresses NF-κB signalling. Thus, Profilin overexpressing cells show a decrease in NF-κB activation mediated by most of the inducers and potentiate cell death by repressing NF-κB-dependent genes involved in cell cycle progression. For the first time, we provide evidence, which suggests that Profilin increases tumour suppressor activity by regulating NF-κB.
Collapse
|
26
|
Song L, Liu D, Zhao Y, He J, Kang H, Dai Z, Wang X, Zhang S, Zan Y. Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis. Biochem Biophys Res Commun 2015; 464:705-710. [PMID: 26166821 DOI: 10.1016/j.bbrc.2015.07.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a vital transcription factor that regulates multiple important biological processes, including the epithelial-mesenchymal transition (EMT) and metastasis of breast cancer. Sinomenine is an isoquinoline well known for its remarkable curative effect on rheumatic and arthritic diseases and can induce apoptosis of several cancer cell types. Recently, sinomenine was reported as a tumor suppressor via inhibiting cell proliferation and inducing apoptosis. However, the role and mechanism of sinomenine in invasion and metastasis of breast cancer are largely unknown. Here, we report that sinomenine suppressed the invasion and migration of MDA-MB-231 and 4T1 breast cancer cells in a dose-dependent manner. We detected binding of NF-κB to the inhibitor of NF-κB (IκB) after the MDA-MB-231 cells were treated with 0.25, 0.5, and 1 mM sinomenine. Co-IP analysis revealed that sinomenine enhanced the binding of NF-κB and IκB in a dose-dependent manner, suggesting that sinomenine had an effect on inactivation of NF-κB. Western blotting and ELISA approaches indicated that the suppression effect was closely associated with the phosphorylation of IκB kinase (IKK) and its negative regulator CUEDC2. Sinomenine treatment decreased miR-324-5p expression, thus increased the level of its target gene CUEDC2, and then blocked the phosphorylation of IKK through altering the upstream axis. Finally, transfection of a miR-324-5p mimic inhibited the suppression of invasion and metastasis of MDA-MB-231 and 4T1 cell by sinomenine, providing evidence that sinomenine treatment suppressed breast cancer cell invasion and metastasis via regulation of the IL4/miR-324-5p/CUEDC2 axis. Our findings reveal a novel mechanism by which sinomenine suppresses cancer cell invasion and metastasis, i.e., blocking NF-κB activation.
Collapse
Affiliation(s)
- Lingqin Song
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Di Liu
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yang Zhao
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jianjun He
- Department of Surgical Oncology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xijing Wang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Zan
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
27
|
Cullen S, Ponnappan S, Ponnappan U. Redox-regulated pathway of tyrosine phosphorylation underlies NF-κB induction by an atypical pathway independent of the 26S proteasome. Biomolecules 2015; 5:95-112. [PMID: 25671697 PMCID: PMC4384113 DOI: 10.3390/biom5010095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/25/2014] [Accepted: 01/28/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative redox stimuli such as pervanadate or hypoxia/reoxygenation, induce transcription factor NF-κB by phospho-tyrosine-dependent and proteasome-independent mechanisms. While considerable attention has been paid to the absence of proteasomal regulation of tyrosine phosphorylated IκBα, there is a paucity of information regarding proteasomal regulation of signaling events distinct from tyrosine phosphorylation of IκBα. To delineate roles for the ubiquitin-proteasome pathway in the phospho-tyrosine dependent mechanism of NF-κB induction, we employed the proteasome inhibitor, Aclacinomycin, and the phosphotyrosine phosphatase inhibitor, pervanadate (PV). Results from these studies demonstrate that phospho-IκBα (Tyr-42) is not subject to proteasomal degradation in a murine stromal epithelial cell line, confirming results previously reported. Correspondingly, proteasome inhibition had no discernable effect on the key signaling intermediaries, Src and ERK1/2, involved in the phospho-tyrosine mechanisms regulating PV-mediated activation of NF-κB. Consistent with previous reports, a significant redox imbalance leading to the activation of tyrosine kinases, as occurs with pervanadate, is required for the induction of NF-κB. Strikingly, our studies demonstrate that proteasome inhibition can potentiate oxidative stress associated with PV-stimulation without impacting kinase activation, however, other cellular implications for this increase in intracellular oxidation remain to be fully delineated.
Collapse
Affiliation(s)
- Sarah Cullen
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Usha Ponnappan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
28
|
Tang Y, Han Y, Liu L, Shen W, Zhang H, Wang Y, Cui X, Wang Y, Liu G, Qi R. Protective effects and mechanisms of G5 PAMAM dendrimers against acute pancreatitis induced by caerulein in mice. Biomacromolecules 2014; 16:174-82. [PMID: 25479110 DOI: 10.1021/bm501390d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, generation 5 (G5) polyamidoamine (PAMAM) dendrimers with two different surface groups, G4.5-COOH and G5-OH, were investigated for their protective effects on pancreas injury in a caerulein-induced acute pancreatitis (AP) mouse model. Both dendrimers significantly decreased pathological changes in the pancreas and reduced the inflammatory infiltration of macrophages in pancreatic tissues. In addition, the expression of pro-inflammatory cytokines was significantly inhibited by the two dendrimers, not only in pancreatic tissues from AP mice but also in vitro in mouse peritoneal macrophages with LPS-induced inflammation. G4.5-COOH, which had better in vivo protective effects for AP than G5-OH, led to a significant reduction in the total number of plasma white blood cells (WBCs) and monocytes in AP mice, and its anti-inflammatory mechanism was related to inhibition of the nuclear translocation of NF-κB in macrophages.
Collapse
Affiliation(s)
- Yin Tang
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center , Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Alasandagutti ML, Ponnana M, Sivangala R, Thada S, Joshi L, Hussain H, Ansari SS, Valluri V, Gaddam SL. Role of IFN-γ and IL-6 Cytokines and Their Association in Determining Susceptibility to Chronic Idiopathic Urticaria. Genet Test Mol Biomarkers 2014; 18:804-9. [DOI: 10.1089/gtmb.2014.0193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Meenakshi Ponnana
- Immunology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Andhra Pradesh, India
| | - Ramya Sivangala
- Immunology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Andhra Pradesh, India
| | - Shruthi Thada
- Immunology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Andhra Pradesh, India
| | - Lavanya Joshi
- Immunology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Andhra Pradesh, India
| | - Hidayath Hussain
- Immunology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Andhra Pradesh, India
| | - Soheb Sadath Ansari
- Immunology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Andhra Pradesh, India
| | - Vijayalakshmi Valluri
- LEPRA India—Blue Peter Public Health and Research Centre, Cherlapally, Hyderabad, Andhra Pradesh, India
| | - Suman Latha Gaddam
- Immunology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
30
|
Low-molecular-weight heparin and unfractionated heparin decrease Th-1, 2, and 17 expressions. PLoS One 2014; 9:e109996. [PMID: 25364825 PMCID: PMC4217718 DOI: 10.1371/journal.pone.0109996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/03/2014] [Indexed: 01/22/2023] Open
Abstract
Background We evaluated the effects of T helper cell differentiation in a mite-allergic animal model treated with inhaled heparins of different molecular weight. Method BALB/c mice were divided into four groups: 1. Control, 2. Mite intratracheal (mIT), 3. Inhaled heparin (hIN), 4. Inhaled low-molecular-weight heparin (lmwhIN). Groups 2, 3, and 4 were sensitized twice with Der p allergen subcutaneously on day 1 and day 8. Der p allergen was administered intratracheally on day 15. Groups 3 and 4 were treated with heparin or low-molecular-weight (lmw) heparin intranasally from day 1 to 22. Splenocytes from sacrificed mice stimulated with 16 µg/ml of Der p were cultured for 72 hours. Supernatants of splenocyte were collected to analyze the effect of Interleukin (IL)17-A/F, Interferon(IFN)-γ, IL-4, IL-13, and IL-10. Serum was also collected for Der P-specific IgE level on day 23. Total RNA was extracted from spleen tissue for mRNA expression. Gene expression of Foxp3, IL-10 IFN-γ, GATA3, IL-5, and RORγt were analyzed. Results Both hIN and lmwhIN groups had lower serum IgE level than that of the mIT group (both p<0.0001). Both hIN and lmwhIN groups showed significantly decreased transcripts of GATA-3, IFN-γ, IL-5, and RORγt mRNA in their spleen. Regarding the supernatant of splenocyte culture stimulated with Der p, compared with the mIT group, there were significant decreases in IL-17A/F, IFN-γ, IL-4, IL-13, and IL-10 secretion in inhaled hIN and lmwhIN groups. Conclusions From this balb/c mice study, the analyses of mRNA and cytokines revealed that both intranasal heparin and lmw heparin treatment decreased the expression of Th1, Th2, and Th17 in spleen. The underlying mechanism(s) warrant further studies.
Collapse
|
31
|
Han Y, Yu H, Wang J, Ren Y, Su X, Shi Y. Quercetin alleviates myocyte toxic and sensitizes anti-leukemic effect of adriamycin. Hematology 2014; 20:276-83. [PMID: 25201038 DOI: 10.1179/1607845414y.0000000198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Yanqiu Han
- Clinical LaboratoryThe Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of HematologyThe Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong Yu
- Department of HematologyThe Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Junrui Wang
- Clinical LaboratoryThe Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yanzhen Ren
- Department of HematologyThe Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiulan Su
- Clinical LaboratoryThe Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Clinical Research CenterThe Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yingxu Shi
- Clinical LaboratoryThe Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
32
|
Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem 2014; 395:203-30. [PMID: 24127541 DOI: 10.1515/hsz-2013-0241] [Citation(s) in RCA: 493] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022]
Abstract
Abstract The production of various reactive oxidant species in excess of endogenous antioxidant defense mechanisms promotes the development of a state of oxidative stress, with significant biological consequences. In recent years, evidence has emerged that oxidative stress plays a crucial role in the development and perpetuation of inflammation, and thus contributes to the pathophysiology of a number of debilitating illnesses, such as cardiovascular diseases, diabetes, cancer, or neurodegenerative processes. Oxidants affect all stages of the inflammatory response, including the release by damaged tissues of molecules acting as endogenous danger signals, their sensing by innate immune receptors from the Toll-like (TLRs) and the NOD-like (NLRs) families, and the activation of signaling pathways initiating the adaptive cellular response to such signals. In this article, after summarizing the basic aspects of redox biology and inflammation, we review in detail the current knowledge on the fundamental connections between oxidative stress and inflammatory processes, with a special emphasis on the danger molecule high-mobility group box-1, the TLRs, the NLRP-3 receptor, and the inflammasome, as well as the transcription factor nuclear factor-κB.
Collapse
|
33
|
Jiang J, Miyata M, Chan C, Ngoh SY, Liew WC, Saju JM, Ng KS, Wong FS, Lee YS, Chang SF, Orbán L. Differential transcriptomic response in the spleen and head kidney following vaccination and infection of Asian seabass with Streptococcus iniae. PLoS One 2014; 9:e99128. [PMID: 24992587 PMCID: PMC4081116 DOI: 10.1371/journal.pone.0099128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
Vaccination is an important strategy in the protection of aquaculture species from major diseases. However, we still do not have a good understanding of the mechanisms underlying vaccine-induced disease resistance. This is further complicated by the presence of several lymphoid organs that play different roles when mounting an immune response. In this study, we attempt to elucidate some of these mechanisms using a microarray-based approach. Asian seabass (Lates calcarifer) were vaccinated against Streptococcus iniae and the transcriptomic changes within the spleen and head kidney at one and seven days post-vaccination were profiled. We subsequently challenged the seabass at three weeks post-vaccination with live S. iniae and similarly profiled the transcriptomes of the two organs after the challenge. We found that vaccination induced an early, but transient transcriptomic change in the spleens and a delayed response in the head kidneys, which became more similar to one another compared to un-vaccinated ones. When challenged with the pathogen, the spleen, but not the head kidneys, responded transcriptomically at 25-29 hours post-challenge. A unique set of genes, in particular those involved in the activation of NF-κB signaling, was up-regulated in the vaccinated spleens upon pathogen challenge but not in the un-vaccinated spleens. A semi-quantitative PCR detection of S. iniae using metagenomic DNA extracted from the water containing the seabass also revealed that vaccination resulted in reduction of pathogen shedding. This result indicated that vaccination not only led to a successful immune defense against the infection, but also reduced the chances for horizontal transmission of the pathogen. In conclusion, we have provided a transcriptomic analysis of how the teleost spleen and head kidneys responded to vaccination and subsequent infection. The different responses from the two organs are suggestive of their unique roles in establishing a vaccine-induced disease resistance.
Collapse
Affiliation(s)
- Junhui Jiang
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- Agri-Food and Veterinary Authority of Singapore, Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Masato Miyata
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Candy Chan
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Si Yan Ngoh
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Jolly M. Saju
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Kah Sing Ng
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Fong Sian Wong
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Yeng Sheng Lee
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Siow Foong Chang
- MSD Animal Health Innovation, Singapore, Republic of Singapore
- * E-mail: (SFC); (LO)
| | - László Orbán
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- Department of Animal Sciences and Animal Husbandry, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
- Centre for Comparative Genomics, Murdoch University, Murdoch, Australia
- * E-mail: (SFC); (LO)
| |
Collapse
|
34
|
Nakajima S, Kitamura M. Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med 2013; 65:162-174. [PMID: 23792277 DOI: 10.1016/j.freeradbiomed.2013.06.020] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022]
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in coordinating innate and adaptive immunity, inflammation, and apoptotic cell death. NF-κB is activated by various inflammatory stimuli including peptide factors and infectious microbes. It is also known as a redox-sensitive transcription factor activated by reactive oxygen species (ROS). Over the past decades, various investigators focused on the role of ROS in the activation of NF-κB by cytokines and lipopolysaccharides. However, recent studies also suggested that ROS have the potential to repress NF-κB activity. Currently, it is not well addressed how ROS regulate activity of NF-κB in a bidirectional fashion. In this paper, we summarize evidence for positive and negative regulation of NF-κB by ROS, possible redox-sensitive targets for NF-κB signaling, and mechanisms underlying biphasic and bidirectional influences of ROS on NF-κB, especially focusing on a role of ROS-mediated induction of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan
| | - Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
35
|
Kamiński MM, Röth D, Krammer PH, Gülow K. Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Arch Immunol Ther Exp (Warsz) 2013; 61:367-84. [PMID: 23749029 DOI: 10.1007/s00005-013-0235-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/13/2013] [Indexed: 12/22/2022]
Abstract
Early scientific reports limited the cell biological role of reactive oxygen species (ROS) to the cause of pathological damage. However, extensive research performed over the last decade led to a wide recognition of intracellular oxidative/redox signaling as a crucial mechanism of homeostatic regulation. Amongst different cellular processes known to be influenced by redox signaling, T-cell activation is one of the most established. Numerous studies reported an indispensible role for ROS as modulators of T-cell receptor-induced transcription. Nevertheless, mechanistic details regarding signaling pathways triggered by ROS are far from being delineated. The nature and interplay between enzymatic sources involved in the generation of "oxidative signals" are also a matter of ongoing research. In particular, active participation of the mitochondrial respiratory chain as ROS producer constitutes an intriguing issue with various implications for bioenergetics of activated T cells as well as for T-cell-mediated pathologies. The aim of the current review is to address these interesting concepts.
Collapse
Affiliation(s)
- Marcin M Kamiński
- Tumour Immunology Program, Division of Immunogenetics (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany,
| | | | | | | |
Collapse
|
36
|
[Genome-wide selective sweep analysis on Large White and Tongcheng pigs]. YI CHUAN = HEREDITAS 2013; 34:1271-81. [PMID: 23099783 DOI: 10.3724/sp.j.1005.2012.01271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The production performance of pigs has been significantly improved due to long-term artificial selection, and the specific variation characterizations (selection signatures) emerged from the selected genome regions. Different types of breeds are subjected to different selection intensities and had different selection signatures. Selective sweep analysis is one of major methods to detect the selection signatures. In this study, based on the 60K BeadChip genotyping data of both commercial Large White (n=45) and local Tongcheng pigs (n=45), genetic differentiation coefficient Fst was applied to detect the selection signatures. Using gPLINK software to set quality control standards, a total of 34 304 SNPs were selected for statistical analysis. Fst values between two breeds were estimated with Genepop package and the average Fst value was 0.3209. Setting Fst>0.7036 (1% of total number of Fst values) as selection threshold, 344 SNPs were obtained and SNP location annotation indicated that there were 79 candidate genes (Sus scrofa Build 9). Furthermore, network analysis was performed using Ingenuity Pathway Analysis and the preliminary results suggested that most genes were involved in growth, reproduction, and immune response, such as NCOA6, ERBB4, RUNX2, and APOB genes. The findings from this study will contribute to further identification of candidate genes and causal mutations implying for meat production and disease resistance in pig.
Collapse
|
37
|
Roescher N, Vosters JL, Lai Z, Uede T, Tak PP, Chiorini JA. Local administration of soluble CD40:Fc to the salivary glands of non-obese diabetic mice does not ameliorate autoimmune inflammation. PLoS One 2012; 7:e51375. [PMID: 23300544 PMCID: PMC3530540 DOI: 10.1371/journal.pone.0051375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/07/2012] [Indexed: 01/08/2023] Open
Abstract
Objective CD40–CD154 (CD40 ligand) interaction in the co-stimulatory pathway is involved in many (auto)immune processes and both molecules are upregulated in salivary glands of Sjögren’s syndrome (SS) patients. Interference within the CD40 pathway has ameliorated (auto)inflammation in a number of disease models. To test the potential role of the CD40 pathway in loss of gland function and inflammation in SS, an inhibitor of CD40-CD154 interaction was overexpressed in the salivary glands (SGs) of a spontaneous murine model of SS; the Non-Obese Diabetic (NOD) mouse. Materials and Methods At different disease stages an adeno associated viral vector encoding CD40 coupled to a human Fc domain (CD40:Fc) was injected locally into the SGs of NOD mice. Delivery was confirmed by PCR. The overall effect on local inflammation was determined by assessment of the focus score (FS), quantification of infiltrating cell types, immunoglobulin levels, and microarray analysis. The effect on SG function was determined by measuring stimulated salivary flow. Results CD40:Fc was stably expressed in the SG of NOD mice, and the protein was secreted into the blood stream. Microarray analysis revealed that expression of CD40:Fc affected the expression of many genes involved in regulation of the immune response. However, FS, infiltrating cell types, immunoglobulin levels, and salivary gland output were similar for treated and control mice. Discussion Although endogenous CD40 is expressed in SG inflammatory foci in the SG of NOD mice, the expression of soluble CD40:Fc did not lead to reduced overall inflammation and/or improved salivary gland function. These data indicate possible redundancy of the CD40 pathway in the SG and suggests that targeting CD40 alone may not be sufficient to alter the disease phenotype.
Collapse
Affiliation(s)
- Nienke Roescher
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Clinical Immunology & Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Jelle L. Vosters
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Clinical Immunology & Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Zhenan Lai
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Toshimitsu Uede
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Paul P. Tak
- Division of Clinical Immunology & Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
- GlaxoSmithKline, London, United Kingdom
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
The nuclear factor-kappa B (NF-κB) pathways play important roles in innate immune responses. IκB is the main cytoplasmic inhibitor of NF-κB. In this study, we identified the LvCactus gene from Litopenaeus vannamei, which is the first cloned IκB homologue in subphylum Crustacea. LvCactus contains six predicted ankyrin repeats, which show similarities to those of Cactus proteins from insects. LvCactus localizes in cytoplasm and interacts with LvDorsal, an L. vannamei homologue to Drosophila melanogaster Dorsal belonging to class II NF-κB family, to prevent its nuclear translocation. Contrary to that of LvDorsal, over-expression of LvCactus down-regulates the activities of shrimp antimicrobial peptides promoters, suggesting LvCactus is an inhibitor of LvDorsal. The promoter of LvCactus was predicted to contain five putative NF-κB binding motifs, among which four were proved to be bound by LvDorsal by chromatin immunoprecipitation assays. Dual-luciferase reporter assays also showed that transcription of LvCactus was promoted by LvDorsal but inhibited by LvCactus itself, indicating a feedback regulatory pathway between LvCactus and LvDorsal. Expression of LvCactus was up-regulated after Lipopolysaccharides, poly (I:C), Vibrio parahaemolyticus, and Staphylococcus aureus injections, suggesting an activation response of LvCactus to bacterial and immune stimulant challenges. Differently, the LvCactus expression levels obviously decreased during white spot syndrome virus (WSSV) infection, indicating the feedback regulatory pathway of LvCactus/LvDorsal could be modified by WSSV.
Collapse
|
39
|
Zhou Y, Fang L, Jiang L, Wen P, Cao H, He W, Dai C, Yang J. Uric acid induces renal inflammation via activating tubular NF-κB signaling pathway. PLoS One 2012; 7:e39738. [PMID: 22761883 PMCID: PMC3382585 DOI: 10.1371/journal.pone.0039738] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/25/2012] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling.
Collapse
Affiliation(s)
- Yang Zhou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Fang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Jiang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ping Wen
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongdi Cao
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weichun He
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
40
|
|
41
|
Kozyrovska NO, Reva OM, Goginyan VB, de Vera JP. Kombucha microbiome as a probiotic: a view from the perspective of post-genomics and synthetic ecology. ACTA ACUST UNITED AC 2012. [DOI: 10.7124/bc.000034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- N. O. Kozyrovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - O. M. Reva
- D. K. Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine
- Bioinformatics and Computational Biology Unit, University of Pretoria, South Africa
| | - V. B. Goginyan
- SPC "Armbiotechnology", National Academy of Sciences of Republic of Armenia
| | | |
Collapse
|
42
|
Romoser AA, Figueroa DE, Sooresh A, Scribner K, Chen PL, Porter W, Criscitiello MF, Sayes CM. Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicol Lett 2012; 210:293-301. [PMID: 22342292 DOI: 10.1016/j.toxlet.2012.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/25/2022]
Abstract
There are many efforts in understanding the effects of nanoparticles on cell viability and metabolism, however, not much is known regarding the distinct molecular mechanisms of inflammation and cellular stress using low dosing concentrations. To address this gap in the literature, we utilized a novel experimental design that specifically probes the effects of a panel of commonly studied engineered nanomaterials along immunomodulatory pathways, including NF-κB. The panel of particles selected for this study included quantum dot nanocrystals, titanium dioxide, hydroxylated fullerenes, and silver nanoparticles. Cell viability, antioxidant activity, select messenger RNA, and protein modulation were studied in primary human dermal fibroblasts (HDF) and NF-κB knockdown HDF cells. Inflammatory and non-inflammatory immune responses were measured using protein and real-time PCR array analysis from HDF cells exposed to sub-lethal concentrations of nanoparticles. Differences in cellular response to nanoparticles in protein and antioxidant experiments were evident in NF-κB knockdown cells. The methods used in the study, along with the resultant data sets, serve as a potential model for studying the complex pathway-specific biochemical responses in cell and tissue systems associated with nanoparticle exposures.
Collapse
Affiliation(s)
- Amelia A Romoser
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, TX 77843, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Calbindin-D28K inhibits apoptosis in dopaminergic neurons by activation of the PI3-kinase-Akt signaling pathway. Neuroscience 2011; 199:359-67. [PMID: 22020319 DOI: 10.1016/j.neuroscience.2011.09.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/13/2011] [Accepted: 09/26/2011] [Indexed: 11/22/2022]
Abstract
Calbindin-D28k (CaBP) has a neuroprotective effect on dopaminergic (DA) neurons in several models of Parkinson's disease. We used the DA cell line MN9D to explore the mechanisms underlying CaBP-mediated protection against the neurotoxin 6-hydroxydopamine (6-OHDA) of DA neurons. In MN9D cells that were transfected with the expression vector pcDNA3-CB containing CaBP cDNA, the expression level of CaBP was significantly increased. After treating with 6-OHDA, a significant decrease in the apoptosis rate of the transfected MN9D cells was noted, as well as an obvious increase in the expression of phosphorylation of Akt (p-Akt); however, no significant change in the expression of total Akt or phospho-p100 (p-p100) occurred after this treatment. After treatment with wortmannin, an inhibitor of the PI3-kinase-Akt (PI-3K/Akt) signal pathway, an increase in the expression level of CaBP was observed, but there were no other obvious changes of the experimental index mentioned previously in the groups transfected with pcDNA3-CB. These studies suggest that CaBP has a significant role in protecting DA cells against the apoptosis induced by 6-OHDA--through PI-3K/Akt signaling pathway--where the non-canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway might have no relevance.
Collapse
|
44
|
Poulose SM, Bielinski DF, Carrihill-Knoll K, Rabin BM, Shukitt-Hale B. Exposure to 16O-particle radiation causes aging-like decrements in rats through increased oxidative stress, inflammation and loss of autophagy. Radiat Res 2011; 176:761-9. [PMID: 21962006 DOI: 10.1667/rr2605.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposing young rats to particles of high energy and charge (HZE particles), a ground-based model for exposure to cosmic rays, enhances indices of oxidative stress and inflammation, disrupts the functioning of neuronal communication, and alters cognitive behaviors. Even though exposure to HZE particles occurs at low fluence rates, the cumulative effects of long-term exposure result in molecular changes similar to those seen in aged animals. In the present study, we assessed markers of autophagy, a dynamic process for intracellular degradation and recycling of toxic proteins and organelles, as well as stress and inflammatory responses, in the brains of Sprague-Dawley rats irradiated at 2 months of age with 5 and 50 cGy and 1 Gy of ionizing oxygen particles ((16)O) (1000 MeV/n). Compared to nonirradiated controls, exposure to (16)O particles significantly inhibited autophagy function in the hippocampus as measured by accumulation of ubiquitin inclusion bodies such as P62/SQSTM1, autophagosome marker microtubule-associated protein 1 beta light chain 3 (MAP1B-LC3), beclin1 and proteins such as mammalian target of rapamycin (mTOR). The molecular changes measured at short (36 h) and long (75 days) intervals after (16)O-particle exposure indicate that the loss of autophagy function occurred shortly after exposure but was recovered via inhibition of mTOR. However, HZE-particle radiation caused significant sustained loss of protein kinase C alpha (PKC-α), a key G protein modulator involved in neuronal survival and functions of neuronal trophic factors. Exposure to (16)O particles also caused substantial increases in the levels of nuclear factor kappa B (NF-κB) and glial fibrillary acidic protein (GFAP), indicating glial cell activation 75 days after exposure. This is the first report to show the molecular effects of (16)O-particle radiation on oxidative stress, inflammation and loss of autophagy in the brain of young rats.
Collapse
Affiliation(s)
- Shibu M Poulose
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
45
|
Romoser AA, Chen PL, Berg JM, Seabury C, Ivanov I, Criscitiello MF, Sayes CM. Quantum dots trigger immunomodulation of the NFκB pathway in human skin cells. Mol Immunol 2011; 48:1349-59. [PMID: 21481475 PMCID: PMC3109195 DOI: 10.1016/j.molimm.2011.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 11/21/2022]
Abstract
The immunological effects of quantum dots are dependent on a variety of factors including, but not limited to, exposure time and dosing concentrations. In this study, we investigated the influence of 15 nm CdSe/ZnS-COOH quantum dot nanocrystals (QDs) on cell density, viability, and morphology in human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF). Furthermore, inflammatory and non-inflammatory immune responses were measured using protein and real time PCR array analysis from HDF cells exposed to predetermined sub-lethal concentrations of QDs. CdSe/ZnS-COOH QDs caused concentration-dependent (1-120 nM exposure concentrations) and time-dependent (8 h or 48 h) cell death, as evidenced by metabolic activity and morphological changes. QD exposure induced upregulation of apoptotic, inflammatory and immunoregulatory proteins such as TNF-α, IL-1B and IL-10. HMOX1, an indicator of stress due to reactive oxygen intermediates (ROIs) and/or metals, was upregulated at the later time point as well. QDs also caused modulation of genes known to be associated with inflammatory (IL1-β, CCL2, IRAK-2), immune (IL-1, IL-6, PGLYRP1, SERPINA1, IL-10), stress due to ROIs and/or heavy metals (HMOX1), and apoptotic (CASP1, ADORA2A) responses. Cellular effects from QD exposure were found to primarily follow the NFκB pathway. In addition, QDs induced a differential cytotoxicity in keratinocytes and fibroblasts at different exposure concentrations and time points, even at physiologically relevant dosing concentrations, thus emphasizing the need to investigate potential mechanisms of action among different cell types within the same target organ.
Collapse
Affiliation(s)
- Amelia A. Romoser
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, TX 77843
| | - Patricia L. Chen
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - J. Michael Berg
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, TX 77843
| | - Christopher Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Ivan Ivanov
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, TX 77843
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843
| | | | - Christie M. Sayes
- Interdisciplinary Program of Toxicology, Texas A&M University, College Station, TX 77843
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
46
|
Haddad JJ, Abdel-Karim NE. NF-κB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol 2011; 271:5-14. [PMID: 21777910 DOI: 10.1016/j.cellimm.2011.06.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 01/08/2023]
Abstract
As fascinating a molecule as it can potentially get, nuclear factor-κB (NF-κB), a regulatory transcription factor, is as intriguing. NF-κB is a dimeric complex that controls the transcription of essential genes. NF-κB is involved in a variety of responses that play a pivotal role in regulating the immune response to inflammation, infection, and nociception. Aberrant regulation of NF-κB has been linked to certain conditions such as cancer, inflammatory and autoimmune diseases, septic shock, viral infection, and improper immune responses. Cellular and molecular regulatory mechanisms and pathways involving the regulation of this transcription factor are being unraveled. Therapeutic approaches have emerged underlying the regulatory impact of oligonucleotides/decoys and other non-decoy inhibitors on NF-κB modulation. In this synopsis, we emphasize the role of decoy therapy in understanding the crucial influence of this transcription factor, and further weigh not only the efficacy of this therapeutic approach but also its necessity and contraindications.
Collapse
Affiliation(s)
- John J Haddad
- Cellular and Molecular Signaling Research Group, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| | | |
Collapse
|
47
|
White KL, Rider DN, Kalli KR, Knutson KL, Jarvik GP, Goode EL. Genomics of the NF-κB signaling pathway: hypothesized role in ovarian cancer. Cancer Causes Control 2011; 22:785-801. [PMID: 21359843 PMCID: PMC3119514 DOI: 10.1007/s10552-011-9745-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 02/09/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We sought to review evidence linking nuclear factor-kappa B (NF-κB) to ovarian cancer and to identify genetic variants involved in NF-κB signaling. METHODS PubMed was reviewed to inform on ovarian cancer biology and NF-κB signaling and to identify key genes. Public linkage disequilibrium (LD) data were analyzed to identify informative inherited variants (tagSNPs) using ldSelect. RESULTS We identified 319 key NF-κB genes including five NF-κB subunits, 167 activating genes, and 55 inhibiting genes. We found that the 1000 Genomes Project was the most informative LD source for most genes (92.8%), and we identified 13,027 LD bins (r (2) ≥ 0.9, minor allele frequency ≥ 0.05) and 1,018 putative-functional variants worthy of investigation. We also report that reliance on a commonly used genome-wide SNP array and genotype imputation with HapMap Phase II data provides data on only 74% of the common inherited NF-κB SNPs of interest. CONCLUSIONS Compelling evidence suggests that NF-κB plays a critical role in ovarian cancer, yet inherited variation in these genes has not been thoroughly assessed in relation to disease risk or outcome. We present a collection of variants in key genes and suggest creation of a custom genotyping array as an optimal approach.
Collapse
Affiliation(s)
- Kristin L. White
- Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - David N. Rider
- Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Kimberly R. Kalli
- Department of Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Keith L. Knutson
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Ellen L. Goode
- Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
48
|
Ho JQ, Asagiri M, Hoffmann A, Ghosh G. NF-κB potentiates caspase independent hydrogen peroxide induced cell death. PLoS One 2011; 6:e16815. [PMID: 21347231 PMCID: PMC3039651 DOI: 10.1371/journal.pone.0016815] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/11/2011] [Indexed: 12/15/2022] Open
Abstract
Background The pro-survival activity of NF-κB in response to a variety of stimuli has been extensively characterized. Although there have been a few reports addressing the pro-cell death role of NF-κB, the precise mechanism of NF-κB's pro-cell death function still remains elusive. Methodology/Principal Findings In the present study, we investigated the role of NF-κB in cell death induced by chronic insult with hydrogen peroxide (H2O2). Here, we show that NF-κB promotes H2O2 induced caspase independent but PARP dependent fibroblast cell death. The pro-death activity of NF-κB is due to the DNA binding activity of RelA, which is induced through IKK- mediated IκBα degradation. NF-κB dependent pro-survival genes, Bcl-2 and XIAP, were significantly repressed, while NF-κB dependent pro-death genes, TNFα and Fas Ligand, were induced in response to H2O2. Conclusions/Significance We discovered an unexpected function of NF-κB, in that it potentiates chronic H2O2 exposure induced cell death, and suggest that NF-κB mediates cell death through the repression of pro-survival genes and induction of pro-death genes. Since unremitting exposure of tissues to H2O2 and other reactive oxygen species can lead to several degenerative disorders and diseases, our results have important implications for the use of NF-κB inhibitors in therapeutic drug design.
Collapse
Affiliation(s)
- Jessica Q. Ho
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Masataka Asagiri
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Dos Santos NR, Ghezzo MN, da Silva RC, Fernandes MT. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells. Cancers (Basel) 2010; 2:1838-60. [PMID: 24281204 PMCID: PMC3840450 DOI: 10.3390/cancers2041838] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 01/04/2023] Open
Abstract
Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL.
Collapse
Affiliation(s)
- Nuno R Dos Santos
- IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
50
|
Gavaldà N, Gutierrez H, Davies AM. Developmental switch in NF-kappaB signalling required for neurite growth. Development 2009; 136:3405-12. [PMID: 19762427 DOI: 10.1242/dev.035295] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For a given cell type, particular extracellular signals generate characteristic patterns of activity in intracellular signalling networks that lead to distinctive cell-type specific responses. Here, we report the first known occurrence of a developmental switch in the intracellular signalling network required for an identical cellular response to the same extracellular signal in the same cell type. We show that although NF-kappaB signalling is required for BDNF-promoted neurite growth from both foetal and postnatal mouse sensory neurons, there is a developmental switch between these stages in the NF-kappaB activation mechanism and the phosphorylation status of the p65 NF-kappaB subunit required for neurite growth. Shortly before birth, BDNF activates NF-kappaB by an atypical mechanism that involves tyrosine phosphorylation of IkappaBalpha by Src family kinases, and dephosphorylates p65 at serine 536. Immediately after birth, BDNF-independent constitutive activation of NF-kappaB signalling by serine phosphorylation of IkappaBalpha and constitutive dephosphorylation of p65 at serine 536 are required for BDNF-promoted neurite growth. This abrupt developmental switch in NF-kappaB signalling in a highly differentiated cell type illustrates an unsuspected plasticity in signalling networks in the generation of identical cellular responses to the same extracellular signal.
Collapse
Affiliation(s)
- Núria Gavaldà
- Cardiff School of Biosciences, Biomedical Building, Wales, UK
| | | | | |
Collapse
|