1
|
Li R, Zhang K, Xu Z, Yu Y, Wang D, Li K, Liu W, Pan J. Liraglutide ameliorates TAC-induced cardiac hypertrophy and heart failure by upregulating expression level of ANP expression. Heliyon 2024; 10:e32229. [PMID: 38868006 PMCID: PMC11168427 DOI: 10.1016/j.heliyon.2024.e32229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Recent studies have underscored the cardioprotective properties of liraglutide. This research explores its impact on cardiac hypertrophy and heart failure following transverse aortic constriction (TAC). We found that liraglutide administration markedly ameliorated cardiac hypertrophy, fibrosis, and function. These benefits correlated with increased ANP expression and reduced activity in the calcineurin A/NFATc3 signaling pathway. Moreover, liraglutide mitigated ER stress and cardiomyocyte apoptosis, and enhanced autophagy. Notably, the positive effects of liraglutide diminished when co-administered with A71915, an ANP inhibitor, suggesting that ANP upregulation is critical to its cardioprotective mechanism.
Collapse
Affiliation(s)
- Ruisha Li
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Keyin Zhang
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhenjun Xu
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yanrong Yu
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongjin Wang
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Kai Li
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxue Liu
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jun Pan
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Giovou AE, Gladka MM, Christoffels VM. The Impact of Natriuretic Peptides on Heart Development, Homeostasis, and Disease. Cells 2024; 13:931. [PMID: 38891063 PMCID: PMC11172276 DOI: 10.3390/cells13110931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
During mammalian heart development, the clustered genes encoding peptide hormones, Natriuretic Peptide A (NPPA; ANP) and B (NPPB; BNP), are transcriptionally co-regulated and co-expressed predominately in the atrial and ventricular trabecular cardiomyocytes. After birth, expression of NPPA and a natural antisense transcript NPPA-AS1 becomes restricted to the atrial cardiomyocytes. Both NPPA and NPPB are induced by cardiac stress and serve as markers for cardiovascular dysfunction or injury. NPPB gene products are extensively used as diagnostic and prognostic biomarkers for various cardiovascular disorders. Membrane-localized guanylyl cyclase receptors on many cell types throughout the body mediate the signaling of the natriuretic peptide ligands through the generation of intracellular cGMP, which interacts with and modulates the activity of cGMP-activated kinase and other enzymes and ion channels. The natriuretic peptide system plays a fundamental role in cardio-renal homeostasis, and its potent diuretic and vasodilatory effects provide compensatory mechanisms in cardiac pathophysiological conditions and heart failure. In addition, both peptides, but also CNP, have important intracardiac actions during heart development and homeostasis independent of the systemic functions. Exploration of the intracardiac functions may provide new leads for the therapeutic utility of natriuretic peptide-mediated signaling in heart diseases and rhythm disorders. Here, we review recent insights into the regulation of expression and intracardiac functions of NPPA and NPPB during heart development, homeostasis, and disease.
Collapse
Affiliation(s)
| | | | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands; (A.E.G.); (M.M.G.)
| |
Collapse
|
3
|
Niu Y, Zhou T, Zhang S, Li W, Wang K, Dong N, Wu Q. Corin deficiency impairs cardiac function in mouse models of heart failure. Front Cardiovasc Med 2023; 10:1164524. [PMID: 37636304 PMCID: PMC10450958 DOI: 10.3389/fcvm.2023.1164524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Corin is a protease in the natriuretic peptide system. Deleterious CORIN variants are associated with hypertension and heart disease. It remains unclear if and to what extent corin deficiency may contribute to heart failure (HF). Methods Corin knockout (KO) mice were used as a model. Cardiac function was assessed by echocardiography and tissue analysis in Corin KO mice at different ages or subjected to transverse aortic constriction (TAC), which increased pressure overload. Heart and lung tissues were analyzed for cardiac hypertrophy and lung edema using wheat germ agglutinin, Sirius red, Masson's trichrome, and Prussian blue staining. Recombinant corin was tested for its effect on cardiac function in the TAC-operated Corin KO mice. Selected gene expression in the heart was examined by RT-PCR. ELISA was used to analyze factors in plasma. Results Corin KO mice had progressive cardiac dysfunction with cardiac hypertrophy and fibrosis after 9 months of age, likely due to chronic hypertension. When Corin KO mice were subjected to TAC at 10-12 weeks of age, cardiac function decreased more rapidly than in similarly treated wild-type mice. When the TAC-operated Corin KO mice were treated with recombinant corin protein, cardiac dysfunction, hypertrophy, and fibrosis were ameliorated. The corin treatment also decreased the gene expression associated with cardiac hypertrophy and fibrosis, increased plasma cGMP levels, lowered plasma levels of N-terminal pro-atrial natriuretic peptide, angiotensin II, and aldosterone, and lessened lung edema in the Corin KO mice subjected to TAC. Conclusion Corin deficiency impairs cardiac function and exacerbates HF development in mice. Corin protein may be used to reduce cardiac hypertrophy and fibrosis, suppress the renin-angiotensin-aldosterone system, and improve cardiac function in HF.
Collapse
Affiliation(s)
- Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Samidurai A, Saravanan M, Ockaili R, Kraskauskas D, Lau SYV, Kodali V, Ramasamy S, Bhoopathi K, Nair M, Roh SK, Kukreja RC, Das A. Single-Dose Treatment with Rapamycin Preserves Post-Ischemic Cardiac Function through Attenuation of Fibrosis and Inflammation in Diabetic Rabbit. Int J Mol Sci 2023; 24:8998. [PMID: 37240345 PMCID: PMC10218967 DOI: 10.3390/ijms24108998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Robust activation of mTOR (mammalian target of rapamycin) signaling in diabetes exacerbates myocardial injury following lethal ischemia due to accelerated cardiomyocyte death with cardiac remodeling and inflammatory responses. We examined the effect of rapamycin (RAPA, mTOR inhibitor) on cardiac remodeling and inflammation following myocardial ischemia/reperfusion (I/R) injury in diabetic rabbits. Diabetic rabbits (DM) were subjected to 45 min of ischemia and 10 days of reperfusion by inflating/deflating a previously implanted hydraulic balloon occluder. RAPA (0.25 mg/kg, i.v.) or DMSO (vehicle) was infused 5 min before the onset of reperfusion. Post-I/R left ventricular (LV) function was assessed by echocardiography and fibrosis was evaluated by picrosirius red staining. Treatment with RAPA preserved LV ejection fraction and reduced fibrosis. Immunoblot and real-time PCR revealed that RAPA treatment inhibited several fibrosis markers (TGF-β, Galectin-3, MYH, p-SMAD). Furthermore, immunofluorescence staining revealed the attenuation of post-I/R NLRP3-inflammasome formation with RAPA treatment as shown by reduced aggregation of apoptosis speck-like protein with a caspase recruitment domain and active-form of caspase-1 in cardiomyocytes. In conclusion, our study suggests that acute reperfusion therapy with RAPA may be a viable strategy to preserve cardiac function with the alleviation of adverse post-infarct myocardial remodeling and inflammation in diabetic patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.)
| |
Collapse
|
5
|
Forte M, Marchitti S, Di Nonno F, Stanzione R, Schirone L, Cotugno M, Bianchi F, Schiavon S, Raffa S, Ranieri D, Fioriniello S, Della Ragione F, Torrisi MR, Carnevale R, Valenti V, Versaci F, Frati G, Vecchione C, Volpe M, Rubattu S, Sciarretta S. NPPA/atrial natriuretic peptide is an extracellular modulator of autophagy in the heart. Autophagy 2023; 19:1087-1099. [PMID: 35998113 PMCID: PMC10012953 DOI: 10.1080/15548627.2022.2115675] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/09/2022] Open
Abstract
NPPA/atrial natriuretic peptide (natriuretic peptide type A) exerts critical pleiotropic effects in the cardiovascular system, limiting cardiomyocyte hypertrophy and death, reducing cardiac fibrosis and promoting vascular integrity. However, the molecular mechanisms underlying these beneficial effects still need to be clarified. We demonstrated for the first time that macroautophagy/autophagy is involved in the local protective effects of NPPA in cardiomyocytes (CMs), both in vitro and in vivo. Exogenous NPPA rapidly activates autophagy in CMs through NPR1/type A natriuretic peptide receptor and PRKG/protein kinase G signaling and also increases cardiac autophagy in mice. Remarkably, endogenous NPPA is secreted by CMs in response to glucose deprivation or hypoxia, thereby stimulating autophagy through autocrine/paracrine mechanisms. NPPA preserves cell viability and reduces hypertrophy in response to stress through autophagy activation. In vivo, we found that Nppa knockout mice undergoing ischemia-reperfusion (I/R) show increased infarct size and reduced autophagy. Reactivation of autophagy by Tat-Beclin D11 limits I/R injury. We also found that the protective effects of NPPA in reducing infarct size are abrogated in the presence of autophagy inhibition. Mechanistically, we found that NPPA stimulates autophagy through the activation of TFEB (transcription factor EB). Our data suggest that NPPA is a novel extracellular regulator of autophagy in the heart.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Simona Marchitti
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Flavio Di Nonno
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Rosita Stanzione
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Internal, Anesthetic and Cardiovascular Clinical Sciences, “La Sapienza” University of Rome, Rome, Italy
| | - Maria Cotugno
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Franca Bianchi
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics (IGB), Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics (IGB), Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, via Orazio, Naples, Italy
| | - Valentina Valenti
- Department of Cardiology, Ospedale Santa Maria Goretti, Latina, Italy
| | - Francesco Versaci
- Department of Cardiology, Ospedale Santa Maria Goretti, Latina, Italy
| | - Giacomo Frati
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Carmine Vecchione
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi (SA), Italy
| | - Massimo Volpe
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Speranza Rubattu
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Sebastiano Sciarretta
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
6
|
Salt-Sensitive Ileal Microbiota Plays a Role in Atrial Natriuretic Peptide Deficiency-Induced Cardiac Injury. Nutrients 2022; 14:nu14153129. [PMID: 35956306 PMCID: PMC9370783 DOI: 10.3390/nu14153129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Atrial natriuretic peptide (ANP) activity deficiency contributes to salt-sensitive hypertension in humans and mice. However, the role of ileal microbiota in salt sensitivity in ANP deficiency-related cardiac injury has not been investigated yet. This study used ANP−/− mice to analyze the role of the salt-sensitive ileal microbiome on cardiac injury. ANP−/− mice showed an increase in blood pressure (BP), the heart weight/body weight (HW/BW) ratio, and cardiac hypertrophy compared with wild-type (WT) mice. ANP deficiency did not impact the histological structure but reduced occludin expression in the ileum. Antibiotics significantly relieved BP and cardiac hypertrophy in ANP−/− mice. A high-salt diet (HSD) increased BP, the HW/BW ratio, and cardiac hypertrophy/fibrosis in WT and ANP−/− mice, and an HSD treatment in ANP−/− mice exacerbated these cardiac parameters. The HSD markedly decreased muscularis layer thickening, villus length, and numbers of Paneth and goblet cells in the ileum of WT and ANP−/− mice. Furthermore, the HSD increased the level of TLR4 and IL-1β in ANP−/− mice ileum compared with WT mice. Antibiotics reduced the HW/BW ratio, cardiac hypertrophy/fibrosis, and the level of TLR4 and IL-1β in the ileum, and rescued the muscularis layer thickening, villus length, and numbers of Paneth and goblet cells in the ileum of HSD-ANP−/− mice. Importantly, ANP deficiency induced the colonization of Burkholderiales bacterium YL45, Lactobacillus johnsonii, and Lactobacillus reuteri in the ileum on the NSD diet, which was only observed in HSD-induced WT mice but not in WT mice on the NSD. Besides, the HSD significantly enhanced the sum of the percentage of the colonization of Burkholderiales bacterium YL45, Lactobacillus johnsonii, and Lactobacillus reuteri in the ileum of ANP−/− mice. Ileal microbiota transfer (IMT) from ANP−/− mice to healthy C57BL/6J mice drove Lactobacillus johnsonii and Lactobacillus reuteri colonization in the ileum, which manifested an increase in BP, the HW/BW ratio, cardiac hypertrophy, and ileal pathology compared with IMT from WT mice. The HSD in C57BL/6J mice with IMT from ANP−/− mice drove the colonization of Burkholderiales bacterium YL45, Lactobacillus johnsonii, and Lactobacillus reuteri in the ileum and further exacerbated the cardiac and ileal pathology. Our results suggest that salt-sensitive ileal microbiota is probably related to ANP deficiency-induced cardiac injury.
Collapse
|
7
|
Laggner M, Oberndorfer F, Golabi B, Bauer J, Zuckermann A, Hacker P, Lang I, Skoro-Sajer N, Gerges C, Taghavi S, Jaksch P, Mildner M, Ankersmit HJ, Moser B. EGR1 Is Implicated in Right Ventricular Cardiac Remodeling Associated with Pulmonary Hypertension. BIOLOGY 2022; 11:biology11050677. [PMID: 35625405 PMCID: PMC9138384 DOI: 10.3390/biology11050677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Background: Pulmonary hypertension (PH) is a vasoconstrictive disease characterized by elevated mean pulmonary arterial pressure (mPAP) at rest. Idiopathic pulmonary arterial hypertension (iPAH) and chronic thromboembolic pulmonary hypertension (CTEPH) represent two distinct subtypes of PH. Persisting PH leads to right ventricular (RV) hypertrophy, heart failure, and death. RV performance predicts survival and surgical interventions re-establishing physiological mPAP reverse cardiac remodeling. Nonetheless, a considerable number of PH patients are deemed inoperable. The underlying mechanism(s) governing cardiac regeneration, however, remain largely elusive. Methods: In a longitudinal approach, we profiled the transcriptional landscapes of hypertrophic RVs and recovered hearts 3 months after surgery of iPAH and CTEPH patients. Results: Genes associated with cellular responses to inflammatory stimuli and metal ions were downregulated, and cardiac muscle tissue development was induced in iPAH after recovery. In CTEPH patients, genes related to muscle cell development were decreased, and genes governing cardiac conduction were upregulated in RVs following regeneration. Intriguingly, early growth response 1 (EGR1), a profibrotic regulator, was identified as a major transcription factor of hypertrophic RVs in iPAH and CTEPH. A histological assessment confirmed our biocomputational results, and suggested a pivotal role for EGR1 in RV vasculopathy. Conclusion: Our findings improved our understanding of the molecular events driving reverse cardiac remodeling following surgery. EGR1 might represent a promising candidate for targeted therapy of PH patients not eligible for surgical treatment.
Collapse
Affiliation(s)
- Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
- Applied Immunology Laboratory, Medical University of Vienna, 1090 Vienna, Austria
| | - Felicitas Oberndorfer
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (B.G.); (M.M.)
| | - Jonas Bauer
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
| | - Andreas Zuckermann
- Department of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Philipp Hacker
- Department of Oral and Maxillofacial Surgery, University Hospital St. Poelten, 3100 St. Poelten, Austria;
| | - Irene Lang
- Department of Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (I.L.); (N.S.-S.); (C.G.)
| | - Nika Skoro-Sajer
- Department of Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (I.L.); (N.S.-S.); (C.G.)
| | - Christian Gerges
- Department of Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (I.L.); (N.S.-S.); (C.G.)
| | - Shahrokh Taghavi
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (B.G.); (M.M.)
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
- Applied Immunology Laboratory, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Moser
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (J.B.); (S.T.); (P.J.); (H.J.A.)
- Correspondence:
| |
Collapse
|
8
|
Ma X, Mo C, Huang L, Cao P, Shen L, Gui C. An Robust Rank Aggregation and Least Absolute Shrinkage and Selection Operator Analysis of Novel Gene Signatures in Dilated Cardiomyopathy. Front Cardiovasc Med 2022; 8:747803. [PMID: 34970603 PMCID: PMC8713643 DOI: 10.3389/fcvm.2021.747803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Objective: Dilated cardiomyopathy (DCM) is a heart disease with high mortality characterized by progressive cardiac dilation and myocardial contractility reduction. The molecular signature of dilated cardiomyopathy remains to be defined. Hence, seeking potential biomarkers and therapeutic of DCM is urgent and necessary. Methods: In this study, we utilized the Robust Rank Aggregation (RRA) method to integrate four eligible DCM microarray datasets from the GEO and identified a set of significant differentially expressed genes (DEGs) between dilated cardiomyopathy and non-heart failure. Moreover, LASSO analysis was carried out to clarify the diagnostic and DCM clinical features of these genes and identify dilated cardiomyopathy derived diagnostic signatures (DCMDDS). Results: A total of 117 DEGs were identified across the four microarrays. Furthermore, GO analysis demonstrated that these DEGs were mainly enriched in the regulation of inflammatory response, the humoral immune response, the regulation of blood pressure and collagen–containing extracellular matrix. In addition, KEGG analysis revealed that DEGs were mainly enriched in diverse infected signaling pathways. Moreover, Gene set enrichment analysis revealed that immune and inflammatory biological processes such as adaptive immune response, cellular response to interferon and cardiac muscle contraction, dilated cardiomyopathy are significantly enriched in DCM. Moreover, Least absolute shrinkage and selection operator (LASSO) analyses of the 18 DCM-related genes developed a 7-gene signature predictive of DCM. This signature included ANKRD1, COL1A1, MYH6, PERELP, PRKACA, CDKN1A, and OMD. Interestingly, five of these seven genes have a correlation with left ventricular ejection fraction (LVEF) in DCM patients. Conclusion: Our present study demonstrated that the signatures could be robust tools for predicting DCM in clinical practice. And may also be potential treatment targets for clinical implication in the future.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Changhua Mo
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liangzhao Huang
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peidong Cao
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Louyi Shen
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Gui
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Hall EJ, Pal S, Glennon MS, Shridhar P, Satterfield SL, Weber B, Zhang Q, Salama G, Lal H, Becker JR. Cardiac natriuretic peptide deficiency sensitizes the heart to stress induced ventricular arrhythmias via impaired CREB signaling. Cardiovasc Res 2021; 118:2124-2138. [PMID: 34329394 DOI: 10.1093/cvr/cvab257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The cardiac natriuretic peptides (atrial natriuretic peptide [ANP] and B-type natriuretic peptide [BNP]) are important regulators of cardiovascular physiology, with reduced natriuretic peptide (NP) activity linked to multiple human cardiovascular diseases. We hypothesized that deficiency of either ANP or BNP would lead to similar changes in left ventricular structure and function given their shared receptor affinities. METHODS AND RESULTS We directly compared murine models deficient of ANP or BNP in the same genetic backgrounds (C57BL6/J) and environments. We evaluated control, ANP deficient (Nppa-/-) or BNP deficient (Nppb-/-) mice under unstressed conditions and multiple forms of pathological myocardial stress. Survival, myocardial structure, function and electrophysiology, tissue histology, and biochemical analyses were evaluated in the groups. In vitro validation of our findings was performed using human derived induced pluripotent stem cell cardiomyocytes (iPS-CM). In the unstressed state, both ANP and BNP deficient mice displayed mild ventricular hypertrophy which did not increase up to 1 year of life. NP-deficient mice exposed to acute myocardial stress secondary to thoracic aortic constriction (TAC) had similar pathological myocardial remodeling but a significant increase in sudden death. We discovered that the NP-deficient mice are more susceptible to stress induced ventricular arrhythmias using both in vivo and ex vivo models. Mechanistically, deficiency of either ANP or BNP led to reduced myocardial cGMP levels and reduced phosphorylation of the cAMP response element-binding protein (CREBS133) transcriptional regulator. Selective CREB inhibition sensitized wild type hearts to stress induced ventricular arrhythmias. ANP and BNP regulate cardiomyocyte CREBS133 phosphorylation through a cGMP-dependent protein kinase 1 (PKG1) and p38 mitogen activated protein kinase (p38 MAPK) signaling cascade. CONCLUSIONS Our data show that ANP and BNP act in a non-redundant fashion to maintain myocardial cGMP levels to regulate cardiomyocyte p38 MAPK and CREB activity. Cardiac natriuretic peptide deficiency leads to a reduction in CREB signaling which sensitizes the heart to stress induced ventricular arrhythmias. TRANSLATIONAL PERSPECTIVE Our study found that ANP or BNP deficiency leads to increased sudden death and ventricular arrhythmias after acute myocardial stress in murine models. We discovered that ANP and BNP act in a non-redundant fashion to maintain myocardial cGMP levels and uncovered a unique role for these peptides in regulating cardiomyocyte p38 MAPK and CREB signaling through a cGMP-PKG1 pathway. Importantly, this signaling pathway was conserved in human cardiomyocytes. This study provides mechanistic insight into how modulating natriuretic peptide levels in human heart failure patients reduces sudden death and mortality.
Collapse
Affiliation(s)
- Eric J Hall
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Soumojit Pal
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael S Glennon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Puneeth Shridhar
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sidney L Satterfield
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Beth Weber
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qinkun Zhang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - Guy Salama
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - Jason R Becker
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Kato J. Natriuretic peptides and neprilysin inhibition in hypertension and hypertensive organ damage. Peptides 2020; 132:170352. [PMID: 32610060 DOI: 10.1016/j.peptides.2020.170352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023]
Abstract
The family of natriuretic peptides (NPs) discovered in mammalian tissues including cardiac atrium and brain consists of three members, namely, atrial, B- and C-type natriuretic peptides (ANP, BNP, CNP). Since the discovery, basic and clinical studies have been vigorously performed to explore the biological functions and pathophysiological roles of NPs in a wide range of diseases including hypertension and heart failure. These studies revealed that ANP and BNP are hormones secreted from the heart into the blood stream in response to pre- or after-load, counteracting blood pressure (BP) elevation and fluid retention through specific receptors. Meanwhile, CNP was found to be produced by the vascular endothelium, acting as a local mediator potentially serving protective functions for the blood vessels. Because NPs not only exert blood pressure lowering actions but also alleviate hypertensive organ damage, attempts have been made to develop therapeutic agents for hypertension by utilizing this family of NPs. One strategy is to inhibit neprilysin, an enzyme degrading NPs, thereby enhancing the actions of endogenous peptides. Recently, a dual inhibitor of angiotensin receptor-neprilysin was approved for heart failure, and neprilysin inhibition has also been shown to be beneficial in treating patients with hypertension. This review summarizes the roles of NPs in regulating BP, with special references to hypertension and hypertensive organ damage, and discusses the therapeutic implications of neprilysin inhibition.
Collapse
Affiliation(s)
- Johji Kato
- Frontier Science Research Center, University of Miyazaki Faculty of Medicine, Cardiovascular Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
11
|
Grilo GA, Shaver PR, Stoffel HJ, Morrow CA, Johnson OT, Iyer RP, de Castro Brás LE. Age- and sex-dependent differences in extracellular matrix metabolism associate with cardiac functional and structural changes. J Mol Cell Cardiol 2020; 139:62-74. [PMID: 31978395 PMCID: PMC11017332 DOI: 10.1016/j.yjmcc.2020.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023]
Abstract
Age-related remodeling of the heart causes structural and functional changes in the left ventricle (LV) that are associated with a high index of morbidities and mortality worldwide. Some cardiac pathologies in the elderly population vary between genders revealing that cardiac remodeling during aging may be sex-dependent. Herein, we analyzed the effects of cardiac aging in male and female C57Bl/6 mice in four age groups, 3, 6, 12, and 18 month old (n = 6-12 animals/sex/age), to elucidate which age-related characteristics of LV remodeling are sex-specific. We focused particularly in parameters associated with age-dependent remodeling of the LV extracellular matrix (ECM) that are involved in collagen metabolism. LV function and anatomical structure were assessed both by conventional echocardiography and speckle tracking echocardiography (STE). We then measured ECM proteins that directly affect LV contractility and remodeling. All data were analyzed across ages and between sexes and were directly linked to LV functional changes. Echocardiography confirmed an age-dependent decrease in chamber volumes and LV internal diameters, indicative of concentric remodeling. As in humans, animals displayed preserved ejection fraction with age. Notably, changes to chamber dimensions and volumes were temporally distinct between sexes. Complementary to the traditional echocardiography, STE revealed that circumferential strain rate declined in 18 month old females, compared to younger animals, but not in males, suggesting STE as an earlier indicator for changes in cardiac function between sexes. Age-dependent collagen deposition and expression in the endocardium did not differ between sexes; however, other factors involved in collagen metabolism were sex-specific. Specifically, while decorin, osteopontin, Cthrc1, and Ddr1 expression were age-dependent but sex-independent, periostin, lysyl oxidase, and Mrc2 displayed age-dependent and sex-specific differences. Moreover, our data also suggest that with age males and females have distinct TGFβ signaling pathways. Overall, our results give evidence of sex-specific molecular changes during physiological cardiac remodeling that associate with age-dependent structural and functional dysfunction. These data highlight the importance of including sex-differences analysis when studying cardiac aging.
Collapse
Affiliation(s)
- Gabriel A Grilo
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Patti R Shaver
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Hamilton J Stoffel
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Caleb Anthony Morrow
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Octavious T Johnson
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Rugmani P Iyer
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America; Department of Cardiovascular Sciences, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America.
| |
Collapse
|
12
|
Forte M, Madonna M, Schiavon S, Valenti V, Versaci F, Zoccai GB, Frati G, Sciarretta S. Cardiovascular Pleiotropic Effects of Natriuretic Peptides. Int J Mol Sci 2019; 20:3874. [PMID: 31398927 PMCID: PMC6719167 DOI: 10.3390/ijms20163874] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone belonging to the family of natriuretic peptides (NPs). ANP exerts diuretic, natriuretic, and vasodilatory effects that contribute to maintain water-salt balance and regulate blood pressure. Besides these systemic properties, ANP displays important pleiotropic effects in the heart and in the vascular system that are independent of blood pressure regulation. These functions occur through autocrine and paracrine mechanisms. Previous works examining the cardiac phenotype of loss-of-function mouse models of ANP signaling showed that both mice with gene deletion of ANP or its receptor natriuretic peptide receptor A (NPR-A) developed cardiac hypertrophy and dysfunction in response to pressure overload and chronic ischemic remodeling. Conversely, ANP administration has been shown to improve cardiac function in response to remodeling and reduces ischemia-reperfusion (I/R) injury. ANP also acts as a pro-angiogenetic, anti-inflammatory, and anti-atherosclerotic factor in the vascular system. Pleiotropic effects regarding brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were also reported. In this review, we discuss the current evidence underlying the pleiotropic effects of NPs, underlying their importance in cardiovascular homeostasis.
Collapse
Affiliation(s)
| | | | - Sonia Schiavon
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Francesco Versaci
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Giacomo Frati
- IRCCS NEUROMED, 86077 Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS NEUROMED, 86077 Pozzilli, Italy.
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| |
Collapse
|
13
|
Pregnancy-Associated Cardiac Hypertrophy in Corin-Deficient Mice: Observations in a Transgenic Model of Preeclampsia. Can J Cardiol 2018; 35:68-76. [PMID: 30595185 DOI: 10.1016/j.cjca.2018.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Preeclampsia increases the risk of heart disease. Defects in the protease corin, including the variant T555I/Q568P found in approximately 12% of blacks, have been associated with preeclampsia and cardiac hypertrophy. The objective of this study was to investigate the role of corin and the T555I/Q568P variant in preeclampsia-associated cardiac alterations using genetically modified mouse models. METHODS Virgin wild-type (WT) and corin knockout mice with or without a cardiac WT corin or T555I/Q568P variant transgene were mated at 3 or 6 months of age. Age- and genotype-matched virgin mice were used as controls. Cardiac morphology and function were assessed at gestational day 18.5 or 28 days postpartum by histologic and echocardiographic analyses. RESULTS Pregnant corin knockout mice at gestational day 18.5 developed cardiac hypertrophy. Such a pregnancy-associated phenotype was not found in WT or corin knockout mice with a cardiac WT corin transgene. Pregnant corin knockout mice with a cardiac T555I/Q568P variant transgene developed cardiac hypertrophy similar to that in pregnant corin knockout mice. The cardiac hypertrophy persisted postpartum in corin knockout mice and was worse if the mice were mated at 6 instead of 3 months of age. There was no hypertrophy-associated decrease in cardiac function in pregnant corin knockout mice. CONCLUSIONS In mice, corin deficiency causes cardiac hypertrophy during pregnancy. Replacement of cardiac WT corin, but not the T555I/Q568P variant found in blacks, rescues this phenotype, indicating a local antihypertrophic function of corin in the heart. Corin deficiency may represent an underlying mechanism in preeclampsia-associated cardiomyopathies.
Collapse
|
14
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Ventura NM, Li TY, Tse MY, Richard L, Tayade C, Jin AY, Andrew RD, Pang SC. Developmental origins of pregnancy-induced cardiac changes: establishment of a novel model using the atrial natriuretic peptide gene-disrupted mice. Mol Cell Biochem 2018; 449:227-236. [PMID: 29802597 DOI: 10.1007/s11010-018-3359-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Pregnancy evokes many challenges on the maternal cardiovascular system that may unmask predispositions for future disease. This is particularly evident for women who develop pregnancy-related disorders, for example, pre-eclampsia and gestational diabetes or hypertension. Such pregnancy-related syndromes increase the risk for cardiovascular disease (CVD) postpartum. As a result, pregnancy has been termed as a cardiovascular stress test and an indicator or marker to predict the development of CVD later in life. In addition, pregnancy-related disorders impact the development of offspring also placing them at a higher risk for disease. Utilizing pregnancy as a physiological stressor, the current investigation sought to determine whether the cardiovascular system of offspring exposed to gestational hypertension in utero would respond adversely to the stress of pregnancy. Heterozygous atrial natriuretic peptide gene-disrupted (ANP+/-) offspring were generated by either crossing male wildtype ANP+/+ with female knockout ANP-/- to produce ANP+/-KO mice or crossing female wildtype ANP+/+ with male knockout ANP-/- to produce ANP+/-WT mice. To study the cardiovascular stress induced by pregnancy, female ANP+/-WT and ANP+/-KO mice were mated with male wildtype ANP+/+ mice to initiate pregnancy. Cardiac size and molecular expression of the renin-angiotensin (RAS) and natriuretic peptide systems (NPS) were compared between offspring groups. Our data demonstrate that gestational hypertension and lack of maternal ANP did not significantly impact the progression and regression of pregnancy-induced cardiac hypertrophy over gestation and postpartum in ANP+/- offspring. Additionally, the molecular cardiac expression of the RAS and NPS did not differ between offspring groups. Future investigation should assess potential differences in cardiac function and the impact of fetal-programming on offspring cardiovascular adaptations during pregnancy in more severe models of pregnancy-related hypertensive syndrome such as angiotensin II or isoproterenol infusion.
Collapse
Affiliation(s)
- Nicole M Ventura
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall - 18 Stuart St., Kingston, ON, K7L 3N6, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Room 1/54 Strathcona Anatomy Building, 3640 University St., Montreal, QC, H3A 0C7, Canada
| | - Terry Y Li
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall - 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - M Yat Tse
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall - 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Logan Richard
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall - 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall - 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Albert Y Jin
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall - 18 Stuart St., Kingston, ON, K7L 3N6, Canada
- Department of Medicine (Neurology), Kingston General Hospital, 76 Stuart St. Kingston, Kingston, ON, K7L 2V7, Canada
| | - R David Andrew
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall - 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall - 18 Stuart St., Kingston, ON, K7L 3N6, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Rm 850 Botterell Hall, 18 Stuart St., Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
16
|
Evolving Role of Natriuretic Peptides from Diagnostic Tool to Therapeutic Modality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:109-131. [PMID: 29411335 DOI: 10.1007/5584_2018_143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natriuretic peptides (NP) are widely recognized as key regulators of blood pressure, water and salt homeostasis. In addition, they play a critical role in physiological cardiac growth and mediate a variety of biological effects including antiproliferative and anti-inflammatory effects in other organs and tissues. The cardiac release of NPs ANP and BNP represents an important compensatory mechanism during acute and chronic cardiac overload and during the pathogenesis of heart failure where their actions counteract the sustained activation of renin-angiotensin-aldosterone and other neurohormonal systems. Elevated circulating plasma NP levels correlate with the severity of heart failure and particularly BNP and the pro-peptide, NT-proBNP have been established as biomarkers for the diagnosis of heart failure as well as prognostic markers for cardiovascular risk. Despite activation of the NP system in heart failure it is inadequate to prevent progressive fluid and sodium retention and cardiac remodeling. Therapeutic approaches included administration of synthetic peptide analogs and the inhibition of NP-degrading enzyme neutral endopeptidase (NEP). Of all strategies only the combined NEP/ARB inhibition with sacubitril/valsartan had shown clinical success in reducing cardiovascular mortality and morbidity in patients with heart failure.
Collapse
|
17
|
Mishra S, Ingole S, Jain R. Salt sensitivity and its implication in clinical practice. Indian Heart J 2017; 70:556-564. [PMID: 30170653 PMCID: PMC6116721 DOI: 10.1016/j.ihj.2017.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/01/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Hypertension (HTN) is a complex multi-factorial disease and is considered one of the foremost modifiable risk factors for stroke, heart failure, ischemic heart disease and renal dysfunction. Over the past century, salt and its linkage to HTN and cardiovascular (CV) mortality has been the subject of intense scientific scrutiny. There is now consensus that different individuals have different susceptibilities to blood pressure (BP)-raising effects of salt and this susceptiveness is called as salt sensitivity. Several renal and extra-renal mechanisms are believed to play a role. Blunted activity of the renin–angiotensin–aldosterone system (RAAS), adrenal Rac1-MR-Sgk1-NCC/ENaC pathway, renal SNS-GR-WNK4-NCC pathway, defect of membrane ion transportation, inflammation and abnormalities of Na+/Ca2+ exchange have all been implicated as pathophysiological basis for salt sensitive HTN. While salt restriction is definitely beneficial recent observation suggests that treatment with Azilsartan may improve salt sensitivity by selectively reducing renal proximal tubule Na+/H+ exchange. This encourages the future potential benefits of recognizing and therapeutically addressing the salt sensitive phenotype in humans.
Collapse
|
18
|
Xu X, Si L, Xu J, Yi C, Wang F, Gu W, Zhang Y, Wang X. Asiatic acid inhibits cardiac hypertrophy by blocking interleukin-1β-activated nuclear factor-κB signaling in vitro and in vivo. J Thorac Dis 2015; 7:1787-97. [PMID: 26623102 DOI: 10.3978/j.issn.2072-1439.2015.10.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Activated interleukin (IL)-1β signaling pathway is closely associated with pathological cardiac hypertrophy. This study investigated whether asiatic acid (AA) could inhibit IL-1β-related hypertrophic signaling, and thus suppressing the development of cardiac hypertrophy. METHODS Transverse aortic constriction (TAC) induced cardiac hypertrophy in C57BL/6 mice and cultured neonatal cardiac myocytes stimulated with IL-1β were used to evaluate the role of AA in cardiac hypertrophy. The expression of atrial natriuretic peptide (ANP) was evaluated by quantitative polymerase chain reaction (qPCR) and the nuclear factor (NF)-κB binding activity was measured by electrophoretic mobility shift assays (EMSA). RESULTS AA pretreatment significantly attenuated the IL-1β-induced hypertrophic response of cardiomyocytes as reflected by reduction in the cardiomyocyte surface area and the inhibition of ANP mRNA expression. The protective effect of AA on IL-1β-stimulated cardiomyocytes was associated with the reduction of NF-κB binding activity. In addition, AA prevented TAC-induced cardiac hypertrophy in vivo. It was found that AA markedly reduced the excessive expression of IL-1β and ANP, and inhibited the activation of NF-κB in the hypertrophic myocardium. CONCLUSIONS Our data suggest that AA may be a novel therapeutic agent for cardiac hypertrophy. The inhibition of IL-1β-activated NF-κB signaling may be the mechanism through which AA prevents cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaohan Xu
- 1 Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Institute of Integrated Medicine, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng 224005, China ; 4 Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 5 Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Linjie Si
- 1 Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Institute of Integrated Medicine, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng 224005, China ; 4 Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 5 Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Jing Xu
- 1 Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Institute of Integrated Medicine, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng 224005, China ; 4 Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 5 Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Chenlong Yi
- 1 Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Institute of Integrated Medicine, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng 224005, China ; 4 Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 5 Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Fang Wang
- 1 Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Institute of Integrated Medicine, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng 224005, China ; 4 Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 5 Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Weijuan Gu
- 1 Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Institute of Integrated Medicine, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng 224005, China ; 4 Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 5 Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Yuqing Zhang
- 1 Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Institute of Integrated Medicine, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng 224005, China ; 4 Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 5 Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Xiaowei Wang
- 1 Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Institute of Integrated Medicine, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Intensive Care Medicine, The First People's Hospital of Yancheng, Yancheng 224005, China ; 4 Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 5 Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
19
|
Ventura NM, Li TY, Tse MY, Andrew RD, Tayade C, Jin AY, Pang SC. Onset and Regression of Pregnancy-Induced Cardiac Alterations in Gestationally Hypertensive Mice: The Role of the Natriuretic Peptide System1. Biol Reprod 2015; 93:142. [DOI: 10.1095/biolreprod.115.132696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/27/2015] [Indexed: 11/01/2022] Open
|
20
|
Ventura NM, Jin AY, Tse MY, Peterson NT, Andrew RD, Mewburn JD, Pang SC. Maternal hypertension programs increased cerebral tissue damage following stroke in adult offspring. Mol Cell Biochem 2015; 408:223-33. [PMID: 26169981 DOI: 10.1007/s11010-015-2498-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/19/2015] [Indexed: 12/01/2022]
Abstract
The maternal system is challenged with many physiological changes throughout pregnancy to prepare the body to meet the metabolic needs of the fetus and for delivery. Many pregnancies, however, are faced with pathological stressors or complications that significantly impact maternal health. A shift in this paradigm is now beginning to investigate the implication of pregnancy complications on the fetus and their continued influence on offspring disease risk into adulthood. In this investigation, we sought to determine whether maternal hypertension during pregnancy alters the cerebral response of adult offspring to acute ischemic stroke. Atrial natriuretic peptide gene-disrupted (ANP(-/-)) mothers exhibit chronic hypertension that escalates during pregnancy. Through comparison of heterozygote offspring born from either normotensive (ANP(+/-WT)) or hypertensive (ANP(+/-KO)) mothers, we have demonstrated that offspring exposed to maternal hypertension exhibit larger cerebral infarct volumes following middle cerebral artery occlusion. Observation of equal baseline cardiovascular measures, cerebrovascular structure, and cerebral blood volumes between heterozygote offspring suggests no added influences on offspring that would contribute to adverse cerebral response post-stroke. Cerebral mRNA expression of endothelin and nitric oxide synthase vasoactive systems demonstrated up-regulation of Et-1 and Nos3 in ANP(+/-KO) mice and thus an enhanced acute vascular response compared to ANP(+/-WT) counterparts. Gene expression of Na(+)/K(+) ATPase channel isoforms, Atp1a1, Atp1a3, and Atp1b1, displayed no significant differences. These investigations are the first to demonstrate a fetal programming effect between maternal hypertension and adult offspring stroke outcome. Further mechanistic studies are required to complement epidemiological evidence of this phenomenon in the literature.
Collapse
Affiliation(s)
- Nicole M Ventura
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| | - Albert Y Jin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Department of Medicine (Neurology), Kingston General Hospital, Kingston, ON, Canada.
| | - M Yat Tse
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| | - Nichole T Peterson
- Department of Medicine (Neurology), Kingston General Hospital, Kingston, ON, Canada.
| | - R David Andrew
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Centre for Neuroscience, Queen's University, Kingston, ON, Canada.
| | | | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
21
|
Song W, Wang H, Wu Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene 2015; 569:1-6. [PMID: 26074089 DOI: 10.1016/j.gene.2015.06.029] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates salt-water balance and blood pressure by promoting renal sodium and water excretion and stimulating vasodilation. ANP also has an anti-hypertrophic function in the heart, which is independent of its systemic blood pressure-lowering effect. In mice, ANP deficiency causes salt-sensitive hypertension and cardiac hypertrophy. Recent studies have shown that ANP plays an important role in regulating vascular remodeling and energy metabolism. Variants in the human NPPA gene, encoding the ANP precursor, are associated with hypertension, stroke, coronary artery disease, heart failure (HF) and obesity. ANP and related peptides are used as biomarkers for heart disease. Recombinant proteins and small molecules that enhance the ANP pathway have been developed to treat patients with HF. In this review, we discuss the role of ANP in cardiovascular biology and disease.
Collapse
Affiliation(s)
- Wei Song
- Departments of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hao Wang
- Departments of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Chemistry, Cleveland State University, Cleveland, OH 44155, USA
| | - Qingyu Wu
- Departments of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Chemistry, Cleveland State University, Cleveland, OH 44155, USA; Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China.
| |
Collapse
|
22
|
Holditch SJ, Schreiber CA, Nini R, Tonne JM, Peng KW, Geurts A, Jacob HJ, Burnett JC, Cataliotti A, Ikeda Y. B-Type Natriuretic Peptide Deletion Leads to Progressive Hypertension, Associated Organ Damage, and Reduced Survival: Novel Model for Human Hypertension. Hypertension 2015; 66:199-210. [PMID: 26063669 DOI: 10.1161/hypertensionaha.115.05610] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022]
Abstract
Altered myocardial structure and function, secondary to chronically elevated blood pressure, are leading causes of heart failure and death. B-type natriuretic peptide (BNP), a guanylyl cyclase A agonist, is a cardiac hormone integral to cardiovascular regulation. Studies have demonstrated a causal relationship between reduced production or impaired BNP release and the development of human hypertension. However, the consequences of BNP insufficiency on blood pressure and hypertension-associated complications remain poorly understood. Therefore, the goal of this study was to create and characterize a novel model of BNP deficiency to investigate the effects of BNP absence on cardiac and renal structure, function, and survival. Genetic BNP deletion was generated in Dahl salt-sensitive rats. Compared with age-matched controls, BNP knockout rats demonstrated adult-onset hypertension. Increased left ventricular mass with hypertrophy and substantially augmented hypertrophy signaling pathway genes, developed in young adult knockout rats, which preceded hypertension. Prolonged hypertension led to increased cardiac stiffness, cardiac fibrosis, and thrombi formation. Significant elongation of the QT interval was detected at 9 months in knockout rats. Progressive nephropathy was also noted with proteinuria, fibrosis, and glomerular alterations in BNP knockout rats. End-organ damage contributed to a significant decline in overall survival. Systemic BNP overexpression reversed the phenotype of genetic BNP deletion. Our results demonstrate the critical role of BNP defect in the development of systemic hypertension and associated end-organ damage in adulthood.
Collapse
Affiliation(s)
- Sara J Holditch
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.)
| | - Claire A Schreiber
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.)
| | - Ryan Nini
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.)
| | - Jason M Tonne
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.)
| | - Kah-Whye Peng
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.)
| | - Aron Geurts
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.)
| | - Howard J Jacob
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.)
| | - John C Burnett
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.)
| | - Alessandro Cataliotti
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.)
| | - Yasuhiro Ikeda
- From the Department of Molecular Medicine (S.J.H., C.A.S., R.N., J.M.T., K.-W.P., Y.I.) and Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Departments of Medicine and Physiology (J.C.B., A.C.), Mayo Clinic, College of Medicine, Rochester, MN; Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (A.G., H.J.J.); and Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway (A.C.).
| |
Collapse
|
23
|
Si L, Xu J, Yi C, Xu X, Wang F, Gu W, Zhang Y, Wang X. Asiatic acid attenuates cardiac hypertrophy by blocking transforming growth factor-β1-mediated hypertrophic signaling in vitro and in vivo. Int J Mol Med 2014; 34:499-506. [PMID: 24827470 DOI: 10.3892/ijmm.2014.1781] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/30/2014] [Indexed: 11/06/2022] Open
Abstract
Cardiac hypertrophy is a major cause of morbidity and mortality worldwide. Transforming growth factor-β1 (TGF-β1) signaling has been considered as a trigger causally contributing to pathological cardiac hypertrophy. Asiatic acid (AA) is a triterpenoid compound extracted from Centella asiatica and exhibits a variety of pharmacological effects. In this study, we investigated the anti-hypertrophic effects and mechanisms of action of AA in a TGF-β1-stimulated hypertrophic response using cultured neonatal cardiomyocytes in vitro and in a mouse model of cardiac hypertrophy induced by pressure overload in vivo. Treatment with AA markedly attenuated the TGF-β1-induced hypertrophic responses of cardiomyocytes as reflected by reduction in the cardiomyocyte surface area and the inhibition of atrial natriuretic peptide (ANP) mRNA expression. The protective effects of AA on hypertrophic cardiomyocytes were associated with the blocking of p38 and extracellular signal‑regulated kinase (ERK)1/2 phosphorylation and the reduction of nuclear factor-κB (NF-κB) binding activity. In vivo experiments indicated that the administration of AA prevented cardiac hypertrophy and dysfunction induced by pressure overload. It was found that AA markedly reduced the excessive production of TGF-β1 in the hypertrophic myocardium, blocked the phosphorylation of p38 and ERK1/2 and inhibited the activation of NF-κB. Our data suggest that AA may be a novel therapeutic agent for cardiac hypertrophy. The inhibition of TGF-β1‑mediated hypertrophic signaling may be the mechanism through which AA prevents cardiac hypertrophy.
Collapse
Affiliation(s)
- Linjie Si
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenlong Yi
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaohan Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weijuan Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuqing Zhang
- Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Xiaowei Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
24
|
Gestational hypertension and the developmental origins of cardiac hypertrophy and diastolic dysfunction. Mol Cell Biochem 2014; 391:201-9. [DOI: 10.1007/s11010-014-2003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/21/2014] [Indexed: 01/15/2023]
|
25
|
|
26
|
Armstrong DWJ, Tse MY, O'Tierney-Ginn PF, Wong PG, Ventura NM, Janzen-Pang JJ, Matangi MF, Johri AM, Croy BA, Adams MA, Pang SC. Gestational hypertension in atrial natriuretic peptide knockout mice and the developmental origins of salt-sensitivity and cardiac hypertrophy. ACTA ACUST UNITED AC 2013; 186:108-15. [PMID: 23981445 DOI: 10.1016/j.regpep.2013.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 07/24/2013] [Accepted: 08/13/2013] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine the effect of gestational hypertension on the developmental origins of blood pressure (BP), altered kidney gene expression, salt-sensitivity and cardiac hypertrophy (CH) in adult offspring. METHODS Female mice lacking atrial natriuretic peptide (ANP-/-) were used as a model of gestational hypertension. Heterozygous ANP+/- offspring was bred from crossing either ANP+/+ females with ANP-/- males yielding ANP+/-(WT) offspring, or from ANP-/- females with ANP+/+ males yielding ANP+/-(KO) offspring. Maternal BP during pregnancy was measured using radiotelemetry. At 14weeks of age, offspring BP, gene and protein expression were measured in the kidney with real-time quantitative PCR, receptor binding assay and ELISA. RESULTS ANP+/-(KO) offspring exhibited normal BP at 14weeks of age, but displayed significant CH (P<0.001) as compared to ANP+/-(WT) offspring. ANP+/-(KO) offspring exhibited significantly increased gene expression of natriuretic peptide receptor A (NPR-A) (P<0.001) and radioligand binding studies demonstrated significantly reduced NPR-C binding (P=0.01) in the kidney. Treatment with high salt diet increased BP (P<0.01) and caused LV hypertrophy (P<0.001) and interstitial myocardial fibrosis only in ANP+/-(WT) and not ANP+/-(KO) offspring, suggesting gestational hypertension programs the offspring to show resistance to salt-induced hypertension and LV remodeling. Our data demonstrate that altered maternal environments can determine the salt-sensitive phenotype of offspring.
Collapse
Affiliation(s)
- David W J Armstrong
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; The Kingston Heart Clinic, 460 Princess Street, Kingston, ON K7L 1C2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao X, Zhang W, Xing D, Li P, Fu J, Gong K, Hage FG, Oparil S, Chen YF. Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 2013; 305:H590-8. [PMID: 23771691 PMCID: PMC3891247 DOI: 10.1152/ajpheart.00571.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 06/13/2013] [Indexed: 02/03/2023]
Abstract
The endothelium is a dynamic component of the cardiovascular system that plays an important role in health and disease. This study tested the hypothesis that targeted delivery of endothelial cells (ECs) overexpressing neutrophil membrane IL-8 receptors IL8RA and IL8RB reduces acute myocardial infarction (MI)-induced left ventricular (LV) remodeling and dysfunction and increases neovascularization in the area at risk surrounding the infarcted tissue. MI was created by ligating the left anterior descending coronary artery in 12-wk-old male Sprague-Dawley rats. Four groups of rats were studied: group 1: sham-operated rats without MI or EC transfusion; group 2: MI rats with intravenous vehicle; group 3: MI rats with transfused ECs transduced with empty adenoviral vector (Null-EC); and group 4: MI rats with transfused ECs overexpressing IL8RA/RB (1.5 × 10⁶ cells post-MI). Two weeks after MI, LV function was assessed by echocardiography; infarct size was assessed by triphenyltetrazolium chloride (live tissue) and picrosirus red (collagen) staining, and capillary density and neutrophil infiltration in the area at risk were measured by CD31 and MPO immunohistochemical staining, respectively. When compared with the MI + vehicle and MI-Null-EC groups, transfusion of IL8RA/RB-ECs decreased neutrophil infiltration and pro-inflammatory cytokine expression and increased capillary density in the area at risk, decreased infarct size, and reduced MI-induced LV dysfunction. These findings provide proof of principle that targeted delivery of ECs is effective in repairing injured cardiac tissue. Targeted delivery of ECs to infarcted hearts provides a potential novel strategy for the treatment of acute MI in humans.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/transplantation
- Genetic Therapy/methods
- Genetic Vectors
- Immunohistochemistry
- Inflammation Mediators/metabolism
- Male
- Myocardial Infarction/genetics
- Myocardial Infarction/immunology
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/therapy
- Myocardium/immunology
- Myocardium/metabolism
- Myocardium/pathology
- Neovascularization, Physiologic
- Neutrophil Infiltration
- Rats
- Rats, Sprague-Dawley
- Receptors, Interleukin-8/biosynthesis
- Receptors, Interleukin-8/genetics
- Recombinant Fusion Proteins/biosynthesis
- Time Factors
- Transduction, Genetic
- Transfection
- Up-Regulation
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/immunology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Xiangmin Zhao
- Vascular Biology and Hypertension Program, Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Korostyshevskaya IM, Maksimov VF. Age-related structural and functional characteristics of cardiac myoendocrine cells of rats in a normal state and with hereditary hypertension. Russ J Dev Biol 2013. [DOI: 10.1134/s1062360413020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Korostyshevskaya IM, Maksimov VF, Markel AL, Shmerling MD, Buzueva II, Filyushina YY, Yakobson GS. Cardiac natriuretic peptides and development of hereditary hypertension in rats. Bull Exp Biol Med 2012; 153:771-4. [PMID: 23113282 DOI: 10.1007/s10517-012-1823-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ultrastructure of the right atrial cardiomyocytes of suckling ISIAH rats was studied to clarify the role of cardiac natriuretic peptides in hypertension development during the period when blood pressure is not yet elevated. Cardiomyocytes diameter was significantly greater, Golgi complex was more developed, and granules in the sarcoplasm were more abundant in ISIAH rats as soon as on postnatal day 12 in comparison with age-matched normotensive animals. The smaller diameter of granules and their qualitative composition (ratio of forming, mature, and dissolving forms) attest to active synthesis and release of secretory product. In 21-day-old ISIAH rats, granule size and qualitative composition reflected increased accumulation of hormones in the cells. Thus, morphological features of increased production of natriuretic peptides in the right atrial myocytes were revealed in rats during the first postnatal month before manifestation of hereditary hypertension.
Collapse
Affiliation(s)
- I M Korostyshevskaya
- Institute of Physiology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Korostyshevskaya IM, Maksimov VF. Where and when natriuretic peptides are secreted in the heart. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360412030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kishimoto I, Tokudome T, Horio T, Garbers DL, Nakao K, Kangawa K. Natriuretic Peptide Signaling via Guanylyl Cyclase (GC)-A: An Endogenous Protective Mechanism of the Heart. Curr Cardiol Rev 2011; 5:45-51. [PMID: 20066148 PMCID: PMC2803288 DOI: 10.2174/157340309787048068] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 07/28/2008] [Accepted: 07/28/2008] [Indexed: 11/22/2022] Open
Abstract
Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones, secretions of which are markedly upregulated during cardiac failure, making their plasma levels clinically useful diagnostic markers. ANP and BNP exert potent diuretic, natriuretic and vasorelaxant effects, which are mediated via their common receptor, guanylyl cyclase (GC)-A (also called natriuretic peptide receptor (NPR)-A). Mice deficient for GC-A are mildly hypertensive and show marked cardiac hypertrophy and fibrosis that is disproportionately severe, given their modestly higher blood pressure. Indeed, the cardiac hypertrophy seen in these mice is enhanced in a blood pressure-independent manner and is suppressed by cardiomyocyte-specific overexpression of GC-A. These results suggest that the actions of a local cardiac ANP/BNP-GC-A system are essential for maintenance of normal cardiac architecture. In addition, GC-A was shown to exert its cardioprotective effects by inhibiting angiotensin II-induced hypertrophic signaling, and recent evidence suggests that regulator of G protein signaling (RGS) subtype 4 is involved in the GC-A-mediated inhibition of Gαq-coupled hypertrophic signal transduction. Furthermore, several different groups have reported that functional mutations in the promoter region of the human GC-A gene are associated with essential hypertension and ventricular hypertrophy. These findings suggest that endogenous GC-A protects the heart from pathological hypertrophic stimuli, and that humans who express only low levels of GC-A are genetically predisposed to cardiac remodeling and hypertension.
Collapse
Affiliation(s)
- Ichiro Kishimoto
- National Cardiovascular Center, Research Institute 5-7-1 Fujishiro-dai Suita City Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Zhu Y, Li T, Song J, Liu C, Hu Y, Que L, Ha T, Kelley J, Chen Q, Li C, Li Y. The TIR/BB-loop mimetic AS-1 prevents cardiac hypertrophy by inhibiting IL-1R-mediated MyD88-dependent signaling. Basic Res Cardiol 2011; 106:787-99. [PMID: 21533832 DOI: 10.1007/s00395-011-0182-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 03/29/2011] [Accepted: 04/15/2011] [Indexed: 11/25/2022]
Abstract
Activation of NF-κB contributes to cardiac hypertrophy and the interleukin-1 receptor (IL-1R)-mediated MyD88-dependent signaling pathway predominately activates NF-κB. Recent studies have shown that the TIR/BB-Loop mimetic (AS-1) disrupted the interaction of MyD88 with the IL-1R, resulting in blunting of NF-κB activation. We have examined the effects of AS-1 on the IL-1β-induced hypertrophic response using cultured neonatal cardiac myocytes in vitro and transverse aortic constriction (TAC) pressure overload-induced cardiac hypertrophy in vivo. Neonatal cardiac myocytes were treated with AS-1 15 min prior to IL-1β stimulation for 24 h. AS-1 treatment significantly attenuated IL-1β-induced hypertrophic responses of cardiac myocytes. In vivo experiments showed that AS-1 administration prevented cardiac hypertrophy and dysfunction induced by pressure overload. AS-1 administration disrupted the interaction of IL-1R with MyD88 in the pressure overloaded hearts and prevented activation of NF-κB. In addition, AS-1 prevented increases in activation of the MAPK pathway (p38 and p-ERK) in TAC-induced hypertrophic hearts. Our data suggest that the IL-1R-mediated MyD88-dependent signaling pathway plays a role in the development of cardiac hypertrophy and AS-1 attenuation of cardiac hypertrophy is mediated by blocking the interaction between IL-1R and MyD88, resulting in decreased NF-κB binding activity and decreased MAPK activation.
Collapse
Affiliation(s)
- Yun Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Barry SP, Townsend PA. What causes a broken heart--molecular insights into heart failure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 284:113-79. [PMID: 20875630 DOI: 10.1016/s1937-6448(10)84003-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our understanding of the molecular processes which regulate cardiac function has grown immeasurably in recent years. Even with the advent of β-blockers, angiotensin inhibitors and calcium modulating agents, heart failure (HF) still remains a seriously debilitating and life-threatening condition. Here, we review the molecular changes which occur in the heart in response to increased load and the pathways which control cardiac hypertrophy, calcium homeostasis, and immune activation during HF. These can occur as a result of genetic mutation in the case of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) or as a result of ischemic or hypertensive heart disease. In the majority of cases, calcineurin and CaMK respond to dysregulated calcium signaling and adrenergic drive is increased, each of which has a role to play in controlling blood pressure, heart rate, and left ventricular function. Many major pathways for pathological remodeling converge on a set of transcriptional regulators such as myocyte enhancer factor 2 (MEF2), nuclear factors of activated T cells (NFAT), and GATA4 and these are opposed by the action of the natriuretic peptides ANP and BNP. Epigenetic modification has emerged in recent years as a major influence cardiac physiology and histone acetyl transferases (HATs) and histone deacetylases (HDACs) are now known to both induce and antagonize hypertrophic growth. The newly emerging roles of microRNAs in regulating left ventricular dysfunction and fibrosis also has great potential for novel therapeutic intervention. Finally, we discuss the role of the immune system in mediating left ventricular dysfunction and fibrosis and ways this can be targeted in the setting of viral myocarditis.
Collapse
Affiliation(s)
- Seán P Barry
- Institute of Molecular Medicine, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | | |
Collapse
|
34
|
Affiliation(s)
- Izhak Kehat
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Jeffery D. Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
- Howard Hughes Medical Institute, Medical Center, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| |
Collapse
|
35
|
Altered expression of the natriuretic peptide system in genetically modified heme oxygenase-1 mice treated with high dietary salt. Mol Cell Biochem 2010; 346:57-67. [PMID: 20872048 DOI: 10.1007/s11010-010-0591-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 09/08/2010] [Indexed: 12/17/2022]
Abstract
Heme oxygenase-1 (HO-1) has been well established as a cytoprotective molecule, and has been shown to exert cardioprotective effects in both hypertension and cardiac hypertrophy. However, the precise mechanism of the cardioprotective effect of HO-1 has yet to be fully elucidated. With the natriuretic peptide system (NPS) as a key player in cardiovascular homeostasis and tissue dynamics, we sought to examine the effect of high dietary salt treatment in genetic models of HO-1 expression, and assessed the expression of the NPS in the left ventricle (LV), to determine if the effects of altered HO-1 expression may be due to modified levels of the NPS. Age-matched 12-week old male HO-1 knockout (HO-1(-/-)) and HO-1 cardiomyocyte-specific transgenic overexpressing (HO-1(Tg)) mice were treated with either normal salt (NS; 0.8%) or high salt (HS; 8.0%) chow for 5 weeks. LV mRNA expression was determined using quantitative real-time PCR. ANP peptide level was measured in the LV and plasma using radioimmunoassay, and LV cyclic 3'-5' guanosine monophosphate level was measured using an enzyme immunoassay kit. HO-1(-/-) fed HS diet had significantly higher left ventricle-to-body weight ratio (LV/BW) compared to HO-1(+/+) mice fed NS diet. HO-1(-/-) mice had significantly reduced expression of the NPS compared to controls, and these mice did not exhibit a salt-induced increase in ANP expression. HS treatment had no noticeable effect on LV/BW in HO-1(Tg) mice compared to controls. HO-1(Tg) mice had significantly higher ANP and BNP expression compared to controls. There were no differences in LV cGMP levels among all genotypes and dietary treatments. HO-1 ablation resulted in significantly lower mRNA expression of the NPS, whereas HO-1 overexpression resulted in higher mRNA expression of the NPS. Both were substantiated by peptide levels as measured by RIA. These data indicate that the detrimental effect of reduced HO-1 expression and the cardioprotective effect of increased HO-1 expression may be due, in part, to altered expression of the NPS.
Collapse
|
36
|
Lucas JA, Zhang Y, Li P, Gong K, Miller AP, Hassan E, Hage F, Xing D, Wells B, Oparil S, Chen YF. Inhibition of transforming growth factor-beta signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart. Am J Physiol Heart Circ Physiol 2009; 298:H424-32. [PMID: 19933419 DOI: 10.1152/ajpheart.00529.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study utilized a transgenic mouse model that expresses an inducible dominant-negative mutation of the transforming growth factor (TGF)-beta type II receptor (DnTGFbetaRII) to define the structural and functional responses of the left ventricle (LV) to pressure-overload stress in the absence of an intact TGF-beta signaling cascade. DnTGFbetaRII and nontransgenic (NTG) control mice (male, 8-10 wk) were randomized to receive Zn(2+) (25 mM ZnSO(4) in drinking H(2)O to induce DnTGFbetaRII gene expression) or control tap H(2)O and then further randomized to undergo transverse aortic constriction (TAC) or sham surgery. At 7 days post-TAC, interstitial nonmyocyte proliferation (Ki67 staining) was greatly reduced in LV of DnTGFbetaRII+Zn(2+) mice compared with the other TAC groups. At 28 and 120 days post-TAC, collagen deposition (picrosirius-red staining) in LV was attenuated in DnTGFbetaRII+Zn(2+) mice compared with the other TAC groups. LV end systolic diameter and end systolic and end diastolic volumes were markedly increased, while ejection fraction and fractional shortening were significantly decreased in TAC-DnTGFbetaRII+Zn(2+) mice compared with the other groups at 120 days post-TAC. These data indicate that interruption of TGF-beta signaling attenuates pressure-overload-induced interstitial nonmyocyte proliferation and collagen deposition and promotes LV dilation and dysfunction in the pressure-overloaded heart, thus creating a novel model of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jason A Lucas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mascareno E, Beckles D, Dhar-Mascareno M, Siddiqui MAQ. Enhanced hypertrophy in ob/ob mice due to an impairment in expression of atrial natriuretic peptide. Vascul Pharmacol 2009; 51:198-204. [PMID: 19560554 PMCID: PMC2747368 DOI: 10.1016/j.vph.2009.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/23/2009] [Accepted: 06/18/2009] [Indexed: 12/22/2022]
Abstract
RATIONALE We investigated the molecular mechanism(s) that play a role in leptin signaling during the development of left ventricular hypertrophy (LVH) due to pressure overload. To this end, ob/ob leptin deficient and C57BL/6J control mice were subjected transverse aortic constriction (TAC). METHODS Control sham C57BL/6J and ob/ob mice, along with C57BL/6J and ob/ob leptin deficient mice were subjected transverse aortic constriction (TAC) for 15 days and then evaluated for morphological, physiological, and molecular changes associated with pressure overload hypertrophy. RESULTS Evaluation by echocardiography revealed a significant increase in left ventricular mass (LVmass) and wall thickness in ob/ob mice subjected to transverse aortic constriction (TAC) as compared to C57BL/6J. Analysis of the expression of molecular markers of LVH, such as atrial natriuretic peptide (ANP), revealed a blunted increase in the level of ANP in ob/ob mice as compared to C57BL/6J mice. We observed that leptin plays a role in modulating the transcriptional activity of the promoter of the ANP gene. Leptin acts by regulating NFATc4, a member of the nuclear factor activated T cell (NFAT) family of transcription factors in cardiomyocytes. Our in vivo studies revealed that ob/ob mice subjected to TAC failed to activate the NFATc4 in the heart, however, intraperitoneal injection of leptin in ob/ob mice restored the NFATc4 DNA-binding activity and induced expression of the ANP gene. CONCLUSION This study establishes the role of leptin as an anti-hypertrophic agent during pressure overload hypertrophy, and suggests that a key molecular event is the leptin mediated activation of NFATc4 that regulates the transcriptional activation of the ANP gene promoter.
Collapse
Affiliation(s)
- Eduardo Mascareno
- Center for Cardiovascular and Muscle Research, Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
38
|
Shan X, Wang H, Margulies KB. Apoptosis signal-regulating kinase 1 attenuates atrial natriuretic peptide secretion. Biochemistry 2008; 47:10041-8. [PMID: 18759454 DOI: 10.1021/bi800972z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atrial natriuretic peptide (ANP) is an endogenous peptide hormone that is synthesized and secreted by the myocardium in health and disease. Although the bioactivity of this molecule has been studied extensively, cellular mechanisms governing its processing and secretion are not fully understood. Through a yeast two-hybrid screen of a cDNA library made from tissue of a failing human heart, we have discovered that the precursor of ANP, natriuretic peptide precursor (NPPA), physically interacts with the N-terminus of apoptosis signal-regulating kinase 1 (ASK1), a kinase believed to be involved in the pathogenesis of heart failure. We demonstrated that NPPA is a substrate of ASK1 in an in vitro kinase assay. Indirect immunofluorescence microscopy shows that, when expressed in Hela cells, ASK1 and NPPA exhibit distinct, but overlapping, staining patterns, suggesting partial colocalization in cells. Additionally, coexpressing wild-type ASK1 with NPPA in Hela cells led to reduced levels of NPPA in the culture medium, suggesting that ASK1 negatively impacts NPPA processing and/or secretion. This negative effect was less pronounced when a dominant-negative allele of ASK1 with deficient kinase activity was coexpressed with NPPA. Because both ASK1 and ANP are associated with pathologic cardiac hypertrophy, their interaction may have pathophysiological and therapeutic relevance.
Collapse
Affiliation(s)
- Xiaoyin Shan
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
39
|
Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 2008; 40:2023-39. [PMID: 18407781 DOI: 10.1016/j.biocel.2008.02.020] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/13/2008] [Accepted: 02/15/2008] [Indexed: 01/05/2023]
Abstract
Heart failure is one of the leading causes of mortality in the western world and encompasses a wide spectrum of cardiac pathologies. When the heart experiences extended periods of elevated workload, it undergoes hypertrophic enlargement in response to the increased demand. Cardiovascular disease, such as that caused by myocardial infarction, obesity or drug abuse promotes cardiac myocyte hypertrophy and subsequent heart failure. A number of signalling modulators in the vasculature milieu are known to regulate heart mass including those that influence gene expression, apoptosis, cytokine release and growth factor signalling. Recent evidence using genetic and cellular models of cardiac hypertrophy suggests that pathological hypertrophy can be prevented or reversed and has promoted an enormous drive in drug discovery research aiming to identify novel and specific regulators of hypertrophy. In this review we describe the molecular characteristics of cardiac hypertrophy such as the aberrant re-expression of the fetal gene program. We discuss the various molecular pathways responsible for the co-ordinated control of the hypertrophic program including: natriuretic peptides, the adrenergic system, adhesion and cytoskeletal proteins, IL-6 cytokine family, MEK-ERK1/2 signalling, histone acetylation, calcium-mediated modulation and the exciting recent discovery of the role of microRNAs in controlling cardiac hypertrophy. Characterisation of the signalling pathways leading to cardiac hypertrophy has led to a wealth of knowledge about this condition both physiological and pathological. The challenge will be translating this knowledge into potential pharmacological therapies for the treatment of cardiac pathologies.
Collapse
Affiliation(s)
- Sean P Barry
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N IEH, United Kingdom.
| | | | | |
Collapse
|
40
|
Affiliation(s)
- David G Gardner
- Diabetes Center, University of California at San Francisco, San Francisco, CA 94143-0540, USA.
| | | | | | | |
Collapse
|
41
|
Franco V, Oparil S. Salt sensitivity, a determinant of blood pressure, cardiovascular disease and survival. J Am Coll Nutr 2006; 25:247S-255S. [PMID: 16772636 DOI: 10.1080/07315724.2006.10719574] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
High dietary sodium has been adduced as a cause of hypertension and its target organ damage for millennia; yet careful observations using sophisticated techniques have revealed only a weak relationship between sodium intake/excretion and blood pressure in the general population. Further, studies of the effects of dietary sodium reduction on blood pressure have revealed minimal achieved reductions in blood pressure, no relationship between the magnitude of reduction in sodium intake/excretion and the blood pressure effect, and no evidence of an effect of sodium reduction on death or cardiovascular events. While blood pressure in the population as a whole is only modestly responsive to alterations in sodium intake, some individuals manifest large blood pressure changes in response to acute or chronic salt depletion or repletion, and are termed "salt sensitive". Salt sensitivity and resistance have a large variety of determinants, including genetic factors, race/ethnicity, age, body mass and diet (overall diet quality, macro- and micronutrient content), as well as associated disease states, e.g. hypertension, diabetes and renal dysfunction. Salt sensitivity can be modulated by improving the quality of the diet, e.g. the DASH diet reduced salt sensitivity by increasing the slope of the pressure-natriuresis curve. Mechanisms that appear to contribute to salt sensitivity include blunted activity of the renin-angiotensin-aldosterone system, deficiency in atrial natriuretic peptide expression, and blunted arterial baroreflex sensitivity. Salt sensitivity in both normotensive and hypertensive persons has been associated with increased cardiovascular disease events and reduced survival. Increased attention to strategies that reduce salt sensitivity, i.e. improvement in diet quality and weight loss, particularly in high risk persons, is urgently needed.
Collapse
Affiliation(s)
- Veronica Franco
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | |
Collapse
|
42
|
Franco V, Chen YF, Feng JA, Li P, Wang D, Hasan E, Oparil S, Perry GJ. EPLERENONE PREVENTS ADVERSE CARDIAC REMODELLING INDUCED BY PRESSURE OVERLOAD IN ATRIAL NATRIURETIC PEPTIDE-NULL MICE. Clin Exp Pharmacol Physiol 2006; 33:773-9. [PMID: 16922805 DOI: 10.1111/j.1440-1681.2006.04434.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Atrial natriuretic peptide (ANP)-null mice (Nppa(-/-)) exhibit cardiac hypertrophy at baseline and adverse cardiac remodelling in response to transverse aortic constriction (TAC)-induced pressure overload stress. Previous studies have suggested that natriuretic peptides could potentially oppose mineralocorticoid signalling at several levels, including suppression of adrenal aldosterone production, inhibition of mineralocorticoid receptor (MR) activation or suppression of MR-mediated production of pro-inflammatory factors. Thus, we hypothesized that the MR blocker eplerenone would prevent the exaggerated left ventricular (LV) remodelling/fibrosis and dysfunction after TAC in Nppa(-/-). 2. In the present study, Nppa(-/-) and wild-type Nppa(+/+) mice fed eplerenone- or vehicle (oatmeal)-supplemented chow since weaning were subjected to TAC or sham operation. The daily dose of eplerenone administered was approximately 200 mg/kg. At 1 week after TAC, LV size and function were evaluated by echocardiogram and LV cross-sections were stained with picrosirius red for collagen volume measurement. Total RNA was extracted from the LV for real-time polymerase chain reaction analysis of osteopontin. 3. Eplerenone had no effect on baseline hypertrophy observed in sham-operated Nppa(-/-) compared with Nppa(+/+) mice. Eplerenone attenuated the TAC-induced increase in LV weight in both genotypes and completely prevented LV dilation, systolic dysfunction and interstitial collagen deposition seen in Nppa(-/-) mice after TAC. However, serum aldosterone levels were lower in Nppa(-/-) compared with Nppa(+/+) wild types. No interaction between eplerenone and genotype in osteopontin mRNA levels was observed. 4. Eplerenone prevents adverse cardiac remodelling related to pressure overload in ANP-deficient mice, mainly due to an antifibrotic effect. The mechanism whereby ANP deficiency leads to excess hypertrophy, fibrosis and early failure following TAC is increased profibrotic signals resulting from excess or unopposed MR activation, rather than increased levels of aldosterone.
Collapse
Affiliation(s)
- Veronica Franco
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, University of Alabama at Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Takle H, Baeverfjord G, Helland S, Kjorsvik E, Andersen O. Hyperthermia induced atrial natriuretic peptide expression and deviant heart development in Atlantic salmon Salmo salar embryos. Gen Comp Endocrinol 2006; 147:118-25. [PMID: 16466726 DOI: 10.1016/j.ygcen.2005.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/19/2005] [Accepted: 12/13/2005] [Indexed: 11/28/2022]
Abstract
Heart abnormalities are increasingly recognized as a problem in salmon aquaculture. Fish in early life-stages are particularly susceptible to teratogens, including elevated water temperature. Recently, heat-induced mRNA expression of the cardiac hormone atrial natriuretic peptide (ANP), which is known to be involved in modulation of cardiac growth and regulation of cardiac homeostasis, was demonstrated in Atlantic salmon (Salmo salar) embryos by RAP-PCR. The relation between heat sensitive ANP expression and heart abnormalities was explored in two experiments. In an experiment with short-term exposure, salmon eggs were heat shocked at 16 degrees C at eight different embryonic stages from gastrulation till completion of somitogenesis. The RT-PCR results showed that the ANP mRNA expression was down-regulated at the onset of heart formation at the gastrula stage, while the transcription became heat inducible from the fusioning of the heart tube around the 15th-20th somite stage and onwards. This was confirmed by whole-mount in situ hybridization, which also showed that ANP is exclusively expressed in the heart of Atlantic salmon embryos. In a second long-term experiment, salmon embryos were incubated at either 10 degrees C (high temperature) or 8 degrees C (controls) from fertilization till first feeding, and subsequently reared within normal conditions to an average size of 52 g. The long-term hyperthermic embryos showed up-regulated ANP transcription at the approximately 9th and approximately 20th somite stage and at the completion of somitogenesis. The cardiosomatic index [CSI; (ventricle weight/body weight) *100] demonstrated a significant decrease in the relative heart weight of fish incubated at 10 degrees C during the embryogenesis compared with controls. In these fish, aplasia of septum transversum was observed in 2 of 25 fish, resulting in abnormally shaped hearts situated partly within the abdominal cavity. Altogether, our results demonstrate that hyperthermia both induce deviant development of heart and associated structures and up-regulation of ANP transcription during embryogenesis. A possible role of ANP in development of heart malformations is thus suggested.
Collapse
Affiliation(s)
- Harald Takle
- AKVAFORSK, Institute of Aquaculture Research, P.O. Box 5010, N-1432 Aas, Norway.
| | | | | | | | | |
Collapse
|
44
|
Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M. Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci U S A 2006; 103:4735-40. [PMID: 16537417 PMCID: PMC1450239 DOI: 10.1073/pnas.0510019103] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Natriuretic peptides (NP) mediate their effects by activating membrane-bound guanylyl cyclase-coupled receptors A (NPR-A) or B (NPR-B). Whereas the pathophysiological role of NPR-A has been widely studied, only limited knowledge on the cardiovascular function of NPR-B is available. In vitro studies suggest antiproliferative and antihypertrophic actions of the NPR-B ligand C-type NP (CNP). Because of the lack of a specific pharmacological inhibitor, these effects could not clearly be attributed to impaired NPR-B signaling. Recently, gene deletion revealed a predominant role of NPR-B in endochondral ossification and development of female reproductive organs. However, morphological abnormalities and premature death of NPR-B-deficient mice preclude detailed cardiovascular phenotyping. In the present study, a dominant-negative mutant (NPR-BDeltaKC) was used to characterize CNP-dependent NPR-B signaling in vitro and in transgenic rats. Here we demonstrate that reduced CNP- but not atrial NP-dependent cGMP response attenuates antihypertrophic potency of CNP in vitro. In transgenic rats, NPR-BDeltaKC expression selectively reduced NPR-B but not NPR-A signaling. NPR-BDeltaKC transgenic rats display progressive, blood pressure-independent cardiac hypertrophy and elevated heart rate. The hypertrophic phenotype is further enhanced in chronic volume overload-induced congestive heart failure. Thus, this study provides evidence linking NPR-B signaling to the control of cardiac growth.
Collapse
Affiliation(s)
- Thomas H. Langenickel
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
- To whom correspondence may be sent at the † address. E-mail:
| | - Jens Buttgereit
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, D-14195 Berlin-Dahlem, Germany; and
| | - Ines Pagel-Langenickel
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Maren Lindner
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | - Jan Monti
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Knut Beuerlein
- **Rudolf Buchheim Institute for Pharmacology, University Clinics, D-35392 Giessen, Germany
| | - Nidal Al-Saadi
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Ralph Plehm
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | - Elena Popova
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | - Jens Tank
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Rainer Dietz
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Roland Willenbrock
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Michael Bader
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
45
|
Angelis E, Tse MY, Pang SC. Interactions between atrial natriuretic peptide and the renin–angiotensin system during salt-sensitivity exhibited by the proANP gene-disrupted mouse. Mol Cell Biochem 2005; 276:121-31. [PMID: 16132693 DOI: 10.1007/s11010-005-3672-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
To understand the involvement of the systemic and cardiac components of the renin-angiotensin system (RAS) in the development of cardiac hypertrophy induced by salt intake, the present study analyzed the effect of high dietary salt (8.0% NaCl) in mice possessing a full complement (+/+) or ablation (-/-) of atrial natriuretic peptide (ANP). A 3 week treatment of 8.0% NaCl was able to induce cardiac hypertrophy in both genotypes, though exaggerated hypertrophy was noted in the ANP -/- mouse. Although a marked decrease in angiotensin II (Ang II) plasma levels in both genotypes fed a high salt diet was observed, systemic RAS mRNA components were altered only in the ANP-/- animals and remained unchanged in ANP+/+ mice. Decreased Ang II plasma levels were better correlated with decreases in angiotensinogen protein expression observed in both genotypes. High salt had no effect on cardiac RAS mRNA components in the ANP-/- animals, but did cause a significant decrease in some cardiac RAS mRNA components in ANP+/+ mice. As expected, high salt was able to increase plasma ANP levels and ventricular mRNA expression of ANP (ANP+/+ mice only) and B-type NP in both genotypes. The latter peptides are key cardiac markers of hypertrophy whose increased expression correlate well with the physical salt-induced cardiac alterations observed in this study. These findings suggest that although the RAS does not play a key role in salt-induced cardiac hypertrophy, ANP is an important determinant of the degree of salt-sensitivity observed in the proANP gene-disrupted animal.
Collapse
Affiliation(s)
- Ekaterini Angelis
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
46
|
Kuhn M. Cardiac and intestinal natriuretic peptides: insights from genetically modified mice. Peptides 2005; 26:1078-85. [PMID: 15911075 DOI: 10.1016/j.peptides.2004.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 08/12/2004] [Indexed: 12/19/2022]
Abstract
Since the original discovery of atrial natriuretic peptide (ANP) more than two decades ago, the application of gene targeting technology in mice has provided new insights into the diverse physiological functions of natriuretic peptides and their membrane guanylyl cyclase (GC) receptors. Disruption of the genes for ANP or its receptor, GC-A, demonstrated that this system is not only essential for the maintenance of normal blood pressure and volume, but in addition exerts local antihypertrophic effects in the heart. Disruption of the genes encoding B-type (BNP) or C-type natriuretic peptides (CNP) or the CNP-receptor, GC-B, demonstrated that these "natriuretic" peptides are in fact unlikely to physiologically regulate renal sodium excretion but instead exert important autocrine/paracrine cGMP-mediated effects on cellular proliferation and differentiation in various tissues. Notably, the intestinal peptide uroguanylin, which activates a third guanylyl cyclase receptor (GC-C), exerts diuretic/natriuretic activity and links the intestine and kidney in an endocrine way to modulate renal function in response to oral salt load. Reviewed here is the physiology of cardiac and intestinal natriuretic peptides and their guanylyl cyclase receptors, with special focus on the information gained to date from genetically modified mice.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany.
| |
Collapse
|
47
|
Anker SD, Jankowska EA, Okonko DO. Therapeutic patents for chronic heart failure: a review of patent applications from 1996 to 2002. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.5.639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Chan JCY, Knudson O, Wu F, Morser J, Dole WP, Wu Q. Hypertension in mice lacking the proatrial natriuretic peptide convertase corin. Proc Natl Acad Sci U S A 2005; 102:785-90. [PMID: 15637153 PMCID: PMC545541 DOI: 10.1073/pnas.0407234102] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood pressure. In cardiomyocytes, the hormone is synthesized as a precursor, proatrial natriuretic peptide (pro-ANP), which is proteolytically converted to active ANP. Corin is a cardiac transmembrane serine protease that has been shown to process pro-ANP in vitro, but its physiological importance had not been established. Here, we show that corin-deficient (Cor-/-) mice develop normally during embryogenesis and survive to postnatal life. Cor-/- mice have elevated levels of pro-ANP but no detectable levels of ANP as compared with WT littermates. Infusion of an active recombinant soluble corin transiently restores pro-ANP conversion, resulting in the release of circulating biologically active ANP. Using radiotelemetry to assess blood pressure, we find that Cor-/- mice have spontaneous hypertension as compared with WT mice, and it is enhanced after dietary salt loading. Pregnant Cor-/- mice demonstrate late-gestation proteinuria and enhanced high blood pressure during pregnancy. In addition, Cor-/- mice exhibit cardiac hypertrophy resulting in a mild decline in cardiac function later in life. Thus, our data establish corin as the physiological pro-ANP convertase and indicate that corin deficiency may contribute to hypertensive heart disease.
Collapse
|
49
|
Franco V, Chen YF, Oparil S, Feng JA, Wang D, Hage F, Perry G. Atrial Natriuretic Peptide Dose-Dependently Inhibits Pressure Overload-Induced Cardiac Remodeling. Hypertension 2004; 44:746-50. [PMID: 15452027 DOI: 10.1161/01.hyp.0000144801.09557.4c] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We hypothesized that a single copy of the proatrial natriuretic peptide gene (
Nppa
+/−
) would not be adequate to protect heterozygous mice against exaggerated cardiac hypertrophy and remodeling after pressure-overload stress.
Nppa
+/+
,
Nppa
+/−
, and
Nppa
−/−
mice were subjected to sham surgery or transverse aortic constriction and fed a basal salt diet. Heart weight varied inversely with
Nppa
gene load by 1 week after either surgery. Fractional shortening did not differ among genotypes at baseline and fell in
Nppa
−/−
mice only after transverse aortic constriction. There was a graded response in collagen deposition related to atrial natriuretic peptide (ANP) expression after either surgery. A robust interstitial and perivascular fibrosis was noted in
Nppa
−/−
and
Nppa
+/−
but not in
Nppa
+/+
mice after transverse aortic constriction. Our findings are consistent with a growing body of evidence that ANP is an important modulator of cardiac hypertrophy and remodeling in response to hemodynamic stress. The observation that partial ANP deficiency results in exaggerated hypertrophy and remodeling after pressure overload suggests that genetic or environmental variation in ANP levels may play a role in the development of cardiac hypertrophy, remodeling, and failure in humans.
Collapse
Affiliation(s)
- Veronica Franco
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, University of Alabama at Birmingham, ZRB 1024, 703 19th St S, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Maksimov VF, Korostyshevskaya IM, Markel’ AL, Shmerling MD, Yakobson GS. Structural characteristics of cardiomyocytes in the right atrium of NISAG rats. Bull Exp Biol Med 2004. [DOI: 10.1007/bf02694458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|