1
|
Restricted TET2 Expression in Germinal Center Type B Cells Promotes Stringent Epstein-Barr Virus Latency. J Virol 2017; 91:JVI.01987-16. [PMID: 28003489 DOI: 10.1128/jvi.01987-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) latently infects normal B cells and contributes to the development of certain human lymphomas. Newly infected B cells support a highly transforming form (type III) of viral latency; however, long-term EBV infection in immunocompetent hosts is limited to B cells with a more restricted form of latency (type I) in which most viral gene expression is silenced by promoter DNA methylation. How EBV converts latency type is unclear, although it is known that type I latency is associated with a germinal center (GC) B cell phenotype, and type III latency with an activated B cell (ABC) phenotype. In this study, we have examined whether expression of TET2, a cellular enzyme that initiates DNA demethylation by converting 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), regulates EBV latency type in B cells. We found that TET2 expression is inhibited in normal GC cells and GC type lymphomas. In contrast, TET2 is expressed in normal naive B cells and ABC type lymphomas. We also demonstrate that GC type cell lines have increased 5mC levels and reduced 5hmC levels in comparison to those of ABC type lines. Finally, we show that TET2 promotes the ability of the EBV transcription factor EBNA2 to convert EBV-infected cells from type I to type III latency. These findings demonstrate that TET2 expression is repressed in GC cells independent of EBV infection and suggest that TET2 promotes type III EBV latency in B cells with an ABC or naive phenotype by enhancing EBNA2 activation of methylated EBV promoters.IMPORTANCE EBV establishes several different types of viral latency in B cells. However, cellular factors that determine whether EBV enters the highly transforming type III latency, versus the more restricted type I latency, have not been well characterized. Here we show that TET2, a cellular enzyme that initiates DNA demethylation by converting 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), regulates EBV latency type in B cells by enhancing the ability of the viral transcription factor EBNA2 to activate methylated viral promoters that are expressed in type III (but not type I) latency. Furthermore, we demonstrate that (independent of EBV) TET2 is turned off in normal and malignant germinal center (GC) B cells but expressed in other B cell types. Thus, restricted TET2 expression in GC cells may promote type I EBV latency.
Collapse
|
2
|
Chen Z, Eder MD, Elos MT, Viboolsittiseri SS, Chen X, Wang JH. Interplay between Target Sequences and Repair Pathways Determines Distinct Outcomes of AID-Initiated Lesions. THE JOURNAL OF IMMUNOLOGY 2016; 196:2335-47. [PMID: 26810227 DOI: 10.4049/jimmunol.1502184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022]
Abstract
Activation-induced deaminase (AID) functions by deaminating cytosines and causing U:G mismatches, a rate-limiting step of Ab gene diversification. However, precise mechanisms regulating AID deamination frequency remain incompletely understood. Moreover, it is not known whether different sequence contexts influence the preferential access of mismatch repair or uracil glycosylase (UNG) to AID-initiated U:G mismatches. In this study, we employed two knock-in models to directly compare the mutability of core Sμ and VDJ exon sequences and their ability to regulate AID deamination and subsequent repair process. We find that the switch (S) region is a much more efficient AID deamination target than the V region. Igh locus AID-initiated lesions are processed by error-free and error-prone repair. S region U:G mismatches are preferentially accessed by UNG, leading to more UNG-dependent deletions, enhanced by mismatch repair deficiency. V region mutation hotspots are largely determined by AID deamination. Recurrent and conserved S region motifs potentially function as spacers between AID deamination hotspots. We conclude that the pattern of mutation hotspots and DNA break generation is influenced by sequence-intrinsic properties, which regulate AID deamination and affect the preferential access of downstream repair. Our studies reveal an evolutionarily conserved role for substrate sequences in regulating Ab gene diversity and AID targeting specificity.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Maxwell D Eder
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Mihret T Elos
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Sawanee S Viboolsittiseri
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Xiaomi Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
3
|
Abstract
Systemic lupus erythematosus is a prototypic autoimmune disease characterized by the production of an array of pathogenic autoantibodies, including high-affinity anti-dsDNA IgG antibodies, which play an important role in disease development and progression. Lupus preferentially affects women during their reproductive years. The pathogenesis of lupus is contributed by both genetic factors and epigenetic modifications that arise from exposure to the environment. Epigenetic marks, including DNA methylation, histone post-translational modifications and microRNAs (miRNAs), interact with genetic programs to regulate immune responses. Epigenetic modifications influence gene expression and modulate B cell functions, such as class-switch DNA recombination, somatic hypermutation and plasma cell differentiation, thereby informing the antibody response. Epigenetic dysregulation can result in aberrant antibody responses to exogenous antigens or self-antigens, such as chromatin, histones and dsDNA in lupus. miRNAs play key roles in the post-transcriptional regulation of most gene-regulatory pathways and regulate both the innate and adaptive immune responses. In mice, dysregulation of miRNAs leads to aberrant immune responses and development of systemic autoimmunity. Altered miRNA expression has been reported in human autoimmune diseases, including lupus. The dysregulation of miRNAs in lupus could be the result of multiple environmental factors, such as sex hormones and viral or bacterial infection. Modulation of miRNA is a potential therapeutic strategy for lupus.
Collapse
Affiliation(s)
- Hong Zan
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center , San Antonio, TX , USA
| | | | | |
Collapse
|
4
|
Dominguez PM, Shaknovich R. Epigenetic function of activation-induced cytidine deaminase and its link to lymphomagenesis. Front Immunol 2014; 5:642. [PMID: 25566255 PMCID: PMC4270259 DOI: 10.3389/fimmu.2014.00642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation and class switch recombination of immunoglobulin (Ig) genes during B cell maturation and immune response. Expression of AID is tightly regulated due to its mutagenic and recombinogenic potential, which is known to target not only Ig genes, but also non-Ig genes, contributing to lymphomagenesis. In recent years, a new epigenetic function of AID and its link to DNA demethylation came to light in several developmental systems. In this review, we summarize existing evidence linking deamination of unmodified and modified cytidine by AID to base-excision repair and mismatch repair machinery resulting in passive or active removal of DNA methylation mark, with the focus on B cell biology. We also discuss potential contribution of AID-dependent DNA hypomethylation to lymphomagenesis.
Collapse
Affiliation(s)
- Pilar M Dominguez
- Division of Hematology and Oncology, Weill Cornell Medical College , New York, NY , USA
| | - Rita Shaknovich
- Division of Hematology and Oncology, Weill Cornell Medical College , New York, NY , USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College , New York, NY , USA
| |
Collapse
|
5
|
Processive DNA demethylation via DNA deaminase-induced lesion resolution. PLoS One 2014; 9:e97754. [PMID: 25025377 PMCID: PMC4098905 DOI: 10.1371/journal.pone.0097754] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022] Open
Abstract
Base modifications of cytosine are an important aspect of chromatin biology, as they can directly regulate gene expression, while DNA repair ensures that those modifications retain genome integrity. Here we characterize how cytosine DNA deaminase AID can initiate DNA demethylation. In vitro, AID initiated targeted DNA demethylation of methyl CpGs when in combination with DNA repair competent extracts. Mechanistically, this is achieved by inducing base alterations at or near methyl-cytosine, with the lesion being resolved either via single base substitution or a more efficient processive polymerase dependent repair. The biochemical findings are recapitulated in an in vivo transgenic targeting assay, and provide the genetic support of the molecular insight into DNA demethylation. This targeting approach supports the hypothesis that mCpG DNA demethylation can proceed via various pathways and mCpGs do not have to be targeted to be demethylated.
Collapse
|
6
|
Chen Z, Wang JH. Generation and repair of AID-initiated DNA lesions in B lymphocytes. Front Med 2014; 8:201-16. [PMID: 24748462 PMCID: PMC4039616 DOI: 10.1007/s11684-014-0324-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/30/2013] [Indexed: 01/12/2023]
Abstract
Activation-induced deaminase (AID) initiates the secondary antibody diversification process in B lymphocytes. In mammalian B cells, this process includes somatic hypermutation (SHM) and class switch recombination (CSR), both of which require AID. AID induces U:G mismatch lesions in DNA that are subsequently converted into point mutations or DNA double stranded breaks during SHM/CSR. In a physiological context, AID targets immunoglobulin (Ig) loci to mediate SHM/CSR. However, recent studies reveal genome-wide access of AID to numerous non-Ig loci. Thus, AID poses a threat to the genome of B cells if AID-initiated DNA lesions cannot be properly repaired. In this review, we focus on the molecular mechanisms that regulate the specificity of AID targeting and the repair pathways responsible for processing AID-initiated DNA lesions.
Collapse
Affiliation(s)
- Zhangguo Chen
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus and National Jewish Health, Denver, CO 80206
| | - Jing H. Wang
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus and National Jewish Health, Denver, CO 80206
| |
Collapse
|
7
|
Chaikind B, Ostermeier M. Directed evolution of improved zinc finger methyltransferases. PLoS One 2014; 9:e96931. [PMID: 24810747 PMCID: PMC4014571 DOI: 10.1371/journal.pone.0096931] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/14/2014] [Indexed: 01/09/2023] Open
Abstract
The ability to target DNA methylation toward a single, user-designated CpG site in vivo may have wide applicability for basic biological and biomedical research. A tool for targeting methylation toward single sites could be used to study the effects of individual methylation events on transcription, protein recruitment to DNA, and the dynamics of such epigenetic alterations. Although various tools for directing methylation to promoters exist, none offers the ability to localize methylation solely to a single CpG site. In our ongoing research to create such a tool, we have pursued a strategy employing artificially bifurcated DNA methyltransferases; each methyltransferase fragment is fused to zinc finger proteins with affinity for sequences flanking a targeted CpG site for methylation. We sought to improve the targeting of these enzymes by reducing the methyltransferase activity at non-targeted sites while maintaining high levels of activity at a targeted site. Here we demonstrate an in vitro directed evolution selection strategy to improve methyltransferase specificity and use it to optimize an engineered zinc finger methyltransferase derived from M.SssI. The unusual restriction enzyme McrBC is a key component of this strategy and is used to select against methyltransferases that methylate multiple sites on a plasmid. This strategy allowed us to quickly identify mutants with high levels of methylation at the target site (up to ∼80%) and nearly unobservable levels of methylation at a off-target sites (<1%), as assessed in E. coli. We also demonstrate that replacing the zinc finger domains with new zinc fingers redirects the methylation to a new target CpG site flanked by the corresponding zinc finger binding sequences.
Collapse
Affiliation(s)
- Brian Chaikind
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Erratum to: The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res 2013. [DOI: 10.1007/s12026-013-8432-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Wang JH. The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res 2013; 55:287-97. [PMID: 22956489 DOI: 10.1007/s12026-012-8369-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than a decade ago, activation-induced deaminase (AID) was identified as the initiator for somatic hypermutation (SHM) and class switch recombination (CSR). Since then, tremendous progress has been achieved toward elucidating how AID functions. AID targets the highly repetitive switch regions of the immunoglobulin heavy chain (IgH) locus to induce DNA double-strand breaks (DSBs), which can be rejoined, leading to switch of constant regions of antibody. When targeting to variable region exons of IgH and IgL loci, AID predominantly induces point mutations, termed SHM, resulting in increased affinity of antibody for antigen. While SHM and CSR enhance antibody diversity, AID-initiated DSBs and mutations may predispose B cells to carcinogenesis. This review focuses on the mechanisms that provide the specificity of AID targeting to Ig loci and the role of AID in genomic instability.
Collapse
Affiliation(s)
- Jing H Wang
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
10
|
Abstract
Activation-induced cytidine deaminase (AID) is expressed in a B cell differentiation stage-specific fashion and is essential for immunoglobulin (Ig) gene class switch DNA recombination (CSR) and somatic hypermutation (SHM). CSR and SHM play a central role in the maturation of antibody and autoantibody responses. AID displays a mutagenic activity by catalyzing targeted deamination of deoxycytidine (dC) residues in DNA resulting in dU:dG mismatches, which are processed into point-mutations in SHM or double-strand breaks (DSBs) in CSR. Although AID specifically targets the Ig gene loci (IgH, Igκ and Igλ), it can also home into a wide array of non-Ig genes in B-and non-B-cell backgrounds. Aberrant expression of AID is associated with multiple diseases such as allergy, inflammation, autoimmunity and cancer. In autoimmune systemic lupus erythematosus, dysregulated AID expression underpins increased CSR, SHM and autoantibody production. As a potent mutator, AID is under stringent transcriptional, post-transcriptional and post-translational regulation. AID is also regulated in its targeting and enzymatic function. In resting naïve or memory B cells, AID transcripts and protein are undetectable. These, however, are readily and significantly up-regulated in B cells induced to undergo CSR and/or SHM. Transcription factors, such as HoxC4 and NF-κB, which are up-regulated in a B cell lineage-and/or differentiation stage-specific manner, regulate the induction of AID. HoxC4 induces AID expression by directly binding to the AID gene promoter through an evolutionarily conserved 5'-ATTT-3' motif. HoxC4 is induced by the same stimuli that induce AID and CSR. It is further up-regulated by estrogen through three estrogen responsive elements in its promoter region. The targeting of AID to switch (S) regions is mediated by 14-3-3 adaptor proteins, which specifically bind to 5'-AGCT-3' repeats that are exist at high frequency in S region cores. Like HoxC4, 14-3-3 adaptors are induced by the same stimuli that induce AID. These include "primary" inducing stimuli, that is, those that play a major role in inducing AID, i.e., engagement of CD40 by CD154, engagement of Toll-like receptors (TLRs) by microbial-associated molecular patterns (MAMPs) and cross-linking of the BCR, as synergized by "secondary" inducing stimuli, that is, those that synergize for AID induction and specify CSR to different isotypes, i.e., switch-directing cytokines IL-4, TGF-β or IFN-γ. In this review, we focus on the multi-levels regulation of AID expression and activity. We also discuss the dysregulation or misexpression of AID in autoimmunity and tumorigenesis.
Collapse
Affiliation(s)
- Hong Zan
- Institute for Immunology and School of Medicine, University of California, Irvine, CA 92697-4120, USA.
| | | |
Collapse
|
11
|
Chen Z, Viboolsittiseri SS, O'Connor BP, Wang JH. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations. THE JOURNAL OF IMMUNOLOGY 2012; 189:3970-82. [PMID: 22962683 DOI: 10.4049/jimmunol.1200416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation-induced deaminase (AID) catalyses class switch recombination (CSR) and somatic hypermutation (SHM) in B lymphocytes to enhance Ab diversity. CSR involves breaking and rejoining highly repetitive switch (S) regions in the IgH (Igh) locus. S regions appear to be preferential targets of AID. To determine whether S region sequence per se, independent of Igh cis regulatory elements, can influence AID targeting efficiency and mutation frequency, we established a knock-in mouse model by inserting a core Sγ1 region into the first intron of proto-oncogene Bcl6, which is a non-Ig target of SHM. We found that the mutation frequency of the inserted Sγ1 region was dramatically higher than that of the adjacent Bcl6 endogenous sequence. Mechanistically, S region-enhanced SHM was associated with increased recruitment of AID and RNA polymerase II, together with Spt5, albeit to a lesser extent. Our studies demonstrate that target DNA sequences influence mutation frequency via regulating AID recruitment. We propose that the nucleotide sequence preference may serve as an additional layer of AID regulation by restricting its mutagenic activity to specific sequences despite the observation that AID has the potential to access the genome widely.
Collapse
Affiliation(s)
- Zhangguo Chen
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
12
|
Jiang SW, Li J, Podratz K, Dowdy S. Application of DNA methylation biomarkers for endometrial cancer management. Expert Rev Mol Diagn 2009; 8:607-16. [PMID: 18785809 DOI: 10.1586/14737159.8.5.607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has become clear that aberrant gene expression, via alterations in promoter methylation or histone acetylation, is a contributing factor for carcinogenesis, perhaps as important as genetic mutation. This is particularly evident in endometrial cancer, in which multiple genes are silenced through hypermethylation. In this review, we discuss the field of epigenetics and relevant techniques to characterize methylation and acetylation alterations. The CpG island methylator phenotype, epimutations and the effects of aging on methylation are also discussed. In endometrial cancer there is evidence that hypermethylation of relevant genes can be reversed using epigenetic inhibitors, resulting in re-expression of silenced genes. Preliminary data also suggest that a panel of methylation biomarkers could be useful for diagnosis and even screening in selected populations at high risk. This disease is particularly well suited for such a strategy given that the endometrium is readily accessible for testing and endometrial cancer precursors are well defined.
Collapse
Affiliation(s)
- Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine at Savannah, 4700, Waters Avenue, Savannah, GA 31404, USA.
| | | | | | | |
Collapse
|
13
|
|
14
|
Fraenkel S, Mostoslavsky R, Novobrantseva TI, Pelanda R, Chaudhuri J, Esposito G, Jung S, Alt FW, Rajewsky K, Cedar H, Bergman Y. Allelic 'choice' governs somatic hypermutation in vivo at the immunoglobulin kappa-chain locus. Nat Immunol 2007; 8:715-22. [PMID: 17546032 DOI: 10.1038/ni1476] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 05/02/2007] [Indexed: 12/29/2022]
Abstract
Monoallelic demethylation and rearrangement control allelic exclusion of the immunoglobulin kappa-chain locus (Igk locus) in B cells. Here, through the introduction of pre-rearranged Igk genes into their physiological position, the critical rearrangement step was bypassed, thereby generating mice producing B cells simultaneously expressing two different immunoglobulin-kappa light chains. Such 'double-expressing' B cells still underwent monoallelic demethylation at the Igk locus, and the demethylated allele was the 'preferred' substrate for somatic hypermutation in each cell. However, methylation itself did not directly inhibit the activation-induced cytidine-deaminase reaction in vitro. Thus, it seems that the epigenetic mechanisms that initially bring about monoallelic variable-(diversity)-joining rearrangement continue to be involved in the control of antibody diversity at later stages of B cell development.
Collapse
Affiliation(s)
- Shira Fraenkel
- The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Somatic hypermutation (SHM) introduces mutations in the variable region of immunoglobulin genes at a rate of approximately 10(-3) mutations per base pair per cell division, which is 10(6)-fold higher than the spontaneous mutation rate in somatic cells. To ensure genomic integrity, SHM needs to be targeted specifically to immunoglobulin genes. The rare mistargeting of SHM can result in mutations and translocations in oncogenes, and is thought to contribute to the development of B-cell malignancies. Despite years of intensive investigation, the mechanism of SHM targeting is still unclear. We review and attempt to reconcile the numerous and sometimes conflicting studies on the targeting of SHM to immunoglobulin loci, and highlight areas that hold promise for further investigation.
Collapse
Affiliation(s)
- Valerie H Odegard
- VaxInnate Corporation, 300 George Street, Suite 311, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
16
|
Honjo T, Muramatsu M, Nagaoka H, Kinoshita K, Shinkura R. AID to overcome the limitations of genomic information by introducing somatic DNA alterations. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2006; 82:104-20. [PMID: 25873751 PMCID: PMC4323042 DOI: 10.2183/pjab.82.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 03/13/2006] [Indexed: 06/04/2023]
Abstract
The immune system has adopted somatic DNA alterations to overcome the limitations of the genomic information. Activation induced cytidine deaminase (AID) is an essential enzyme to regulate class switch recombination (CSR), somatic hypermutation (SHM) and gene conversion (GC) of the immunoglobulin gene. AID is known to be required for DNA cleavage of S regions in CSR and V regions in SHM. However, its molecular mechanism is a focus of extensive debate. RNA editing hypothesis postulates that AID edits yet unknown mRNA, to generate specific endonucleases for CSR and SHM. By contrast, DNA deamination hypothesis assumes that AID deaminates cytosine in DNA, followed by DNA cleavage by base excision repair enzymes. We summarize the basic knowledge for molecular mechanisms for CSR and SHM and then discuss the importance of AID not only in the immune regulation but also in the genome instability.
Collapse
Affiliation(s)
- Tasuku Honjo
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Masamichi Muramatsu
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Hitoshi Nagaoka
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Kazuo Kinoshita
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Reiko Shinkura
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| |
Collapse
|
17
|
Conlon TM, Meyer KB. The chicken Ig light chain 3′-enhancer is essential for gene expression and regulates gene conversionvia the transcription factor E2A. Eur J Immunol 2006; 36:139-48. [PMID: 16342328 DOI: 10.1002/eji.200535219] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of the rearranged chicken immunoglobulin light chain (IgL) gene is regulated by a V gene promoter, a matrix attachment region (MAR) in the J-C intron and an enhancer downstream of the Ig constant region. Using knockout analysis, we demonstrate that the 3'-enhancer is not only required for gene activation but is also essential for the maintenance of gene expression. Deletion of the MAR on the other hand increases IgL transcription, indicating that the MAR acts as negative regulator. We demonstrate that Id1 and Id3, dominant-negative regulators of basic-region helix-loop-helix (bHLH) transcription factors, are able to reduce chicken IgL 3'-enhancer activity in transient assays and strongly reduce the rate of gene conversion (GC) in DT40 clone 18 cells. Conversely, overexpression of avian E47, a bHLH transcription factor, leads to a dramatic increase in GC rates independent of IgL or activation-induced cytidine deaminase RNA levels. Thus, E47 is the first transcription factor to activate GC without an apparent increase in transcription.
Collapse
Affiliation(s)
- Thomas M Conlon
- Cambridge Institute for Medical Research and Department of Pathology, Cambridge University, Cambridge, UK
| | | |
Collapse
|
18
|
Franklin A, Blanden RV. Hypothesis: biological role for J-C intronic matrix attachment regions in the molecular mechanism of antigen-driven somatic hypermutation. Immunol Cell Biol 2005; 83:383-91. [PMID: 16033533 DOI: 10.1111/j.1440-1711.2005.01327.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A major function of J-C intronic matrix attachment regions (MAR) during immune diversification via somatic hypermutation (SHM) at immunoglobulin loci may be to manipulate the topology of DNA within the upstream target domain. The suggestion that SHM induction requires MAR-induced torsional strain, in conjunction with DNA remodelling at the J-C intron, completes the definition of a cogent paradigm within which all extant molecular data on the issue may be interpreted. Moreover, the suggestion that a mutagenic mechanism relieves MAR-generated superhelicity could provide an indication as to the evolutionary basis of SHM.
Collapse
Affiliation(s)
- Andrew Franklin
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | |
Collapse
|
19
|
Odegard VH, Kim ST, Anderson SM, Shlomchik MJ, Schatz DG. Histone modifications associated with somatic hypermutation. Immunity 2005; 23:101-10. [PMID: 16039583 DOI: 10.1016/j.immuni.2005.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/05/2005] [Accepted: 05/13/2005] [Indexed: 01/02/2023]
Abstract
A number of modified histones, including acetylated H3 and H4 and phosphorylated H2AX (gammaH2AX), are associated with V(D)J recombination and class switch recombination (CSR). In contrast, little is known concerning the chromatin modifications associated with somatic hypermutation (SHM) in vivo. Here, we report that several modifications--including histone acetylation and H3-lysine 4 methylation--fail to demarcate an actively hypermutating immunoglobulin (Ig) locus or to correlate spatially with SHM within Ig loci. Furthermore, no obvious association between SHM and gammaH2AX could be detected. Instead, we find that the phosphorylated form of histone H2B (H2B(Ser14P)) correlates tightly with SHM and CSR. Phosphorylation of H2B within Ig variable and switch regions requires AID and may be mediated by the histone kinase Mst1. These findings indicate that SHM and CSR trigger distinct DNA damage responses and identify a novel histone modification pattern for SHM consisting of H2B(Ser14P) in the absence of gammaH2AX.
Collapse
Affiliation(s)
- Valerie H Odegard
- Section of Immunobiology, Yale University School of Medicine, Box 208011, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
A functional immune system is one of the prerequisites for the survival of a species. Humans have one of the most complicated immune systems, with the ability to learn from and adapt to pathogens. At first, a primary repertoire of antibodies is generated, which, upon antigen encounter, will diversify and adapt to produce a highly specific and potent secondary response, part of which is kept in memory to fight off future infections. In this review, the mechanism as well as the specificities of the key protein in the secondary immune response, activation-induced cytidine deaminase (AID), are highlighted, as well as its role in the DNA deamination model of immunoglobulin diversification. The review also highlights aspects of AID's regulation on both the transcriptional as well as post-translational level and its potential molecular mechanism and specificity. Furthermore, it expands outside the involvement of AID in somatic hypermutation, class switching, and gene conversion to discuss the implications of DNA deamination in epigenetic modifications of DNA (as a potential demethylase), the induction of mutations during oncogenesis, and includes an evolutionary comparison to the DNA deaminase family member APOBEC3G, a key protein in human immunodeficiency virus pathogenesis.
Collapse
Affiliation(s)
- Svend Petersen-Mahrt
- DNA Editing Laboratory, Cancer Research UK, Clare Hall Laboratories, South Mimms Hert, UK.
| |
Collapse
|
21
|
Niculescu MD, Craciunescu CN, Zeisel SH. Gene expression profiling of choline-deprived neural precursor cells isolated from mouse brain. ACTA ACUST UNITED AC 2004; 134:309-22. [PMID: 15836926 DOI: 10.1016/j.molbrainres.2004.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 11/01/2004] [Accepted: 11/04/2004] [Indexed: 12/16/2022]
Abstract
Choline is an essential nutrient and an important methyl donor. Choline deficiency alters fetal development of the hippocampus in rodents and these changes are associated with decreased memory function lasting throughout life. Also, choline deficiency alters global and gene-specific DNA methylation in several models. This gene expression profiling study describes changes in cortical neural precursor cells from embryonic day 14 mice, after 48 h of exposure to a choline-deficient medium. Using Significance Analysis of Microarrays, we found the expression of 1003 genes to be significantly changed (from a total of 16,000 total genes spotted on the array), with a false discovery rate below 5%. A total of 846 genes were overexpressed while 157 were underexpressed. Classification by gene ontology revealed that 331 of these genes modulate cell proliferation, apoptosis, neuronal and glial differentiation, methyl metabolism, and calcium-binding protein classes. Twenty-seven genes that had changed expression have previously been reported to be regulated by promoter or intron methylation. These findings support our previous work suggesting that choline deficiency decreases the proliferation of neural precursors and possibly increases premature neuronal differentiation and apoptosis.
Collapse
Affiliation(s)
- Mihai D Niculescu
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, 2212 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7461, USA
| | | | | |
Collapse
|
22
|
Delpy L, Sirac C, Le Morvan C, Cogné M. Transcription-dependent somatic hypermutation occurs at similar levels on functional and nonfunctional rearranged IgH alleles. THE JOURNAL OF IMMUNOLOGY 2004; 173:1842-8. [PMID: 15265916 DOI: 10.4049/jimmunol.173.3.1842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allelic exclusion of IgH chain expression is stringently established before or during early B cell maturation. It likely relies both on cellular mechanisms, selecting those cells in which a single receptor allows the best possible Ag response, and on molecular restrictions of gene accessibility to rearrangement. The extent to which transcriptional control may be involved is unclear. Transcripts arising from nonfunctional alleles would undergo nonsense-mediated degradation and their virtual absence in mature cells cannot ensure that transcription per se is down-regulated. By contrast, somatic hypermutation may provide an estimate of primary transcription in Ag-activated cells since both processes are directly correlated. For coding regions, the rate and nature of mutations also depend upon Ag binding constraints. By sequencing intronic sequence downstream mouse VDJ genes, we could show in the absence of such constraints that somatic hypermutation intrinsically targets nonfunctional rearranged alleles at a frequency approaching that of functional alleles, suggesting that transcription also proceeds on both alleles at a similar rate. By contrast and confirming the strong dependency of somatic hypermutation upon transcription, we show that artificial blockade of transcription on the nonfunctional allele by a knock-in neomycin resistance cassette keeps the VDJ region unmutated even when its promoter is intact and when it is fully rearranged.
Collapse
Affiliation(s)
- Laurent Delpy
- Laboratoire d'Immunologie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6101, Equipe labellisée La Ligue, Faculté de Médecine, Limoges, France
| | | | | | | |
Collapse
|
23
|
Jena PK, Smith DS, Zhang X, Aviszus K, Durdik JM, Wysocki LJ. Somatic translocation and differential expression of Ig mu transgene copies implicate a role for the Igh locus in memory B cell development. Mol Immunol 2003; 39:885-97. [PMID: 12686505 DOI: 10.1016/s0161-5890(03)00006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Memory B cells of mice with Ig mu transgenes often carry transgene copies that have moved into the Igh locus via somatic translocation. This phenomenon has been attributed to a selection pressure for somatic hypermutations, which generally are observed at much higher frequencies in translocated copies than in ectopic copies. We tested this idea by immunizing Ig-mu transgenic mice in a manner designed to select B cells that required only one V(H) mutation for a switch in antigenic specificity and recruitment into the memory pool. Despite the minimal mutation requirement, hybridomas carrying somatic translocations to the Igh locus were obtained. Importantly, this occurred despite the fact that translocated and untranslocated mu-transgenes were mutated comparably. Evidently, a strong selection advantage was conferred upon B cells by the somatic translocations. Among the hybridomas, translocated mu-transgenes were active, while ectopic mu-transgenes were uniformly silent. The translocated copy that had conferred an affinity-based selection advantage was expressed at the highest level. Moreover, translocated copies were differentially expressed among hybridoma members, which belonged to a common post-mutational lineage. This suggests that adjustments in transgene expression levels had occurred during memory cell development. These results indicate that, apart from their potential influences on somatic hypermutagenesis and class switch recombination, elements in the Igh locus promote the selection of memory B cells in another way, possibly by regulating the level of Ig expression at various stages of antigen-driven differentiation.
Collapse
Affiliation(s)
- Prasanna K Jena
- Department of Immunology, National Jewish Medical and Research Center, University of Colorado Health Sciences Center, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
24
|
Goldmit M, Schlissel M, Cedar H, Bergman Y. Differential accessibility at the kappa chain locus plays a role in allelic exclusion. EMBO J 2002; 21:5255-61. [PMID: 12356741 PMCID: PMC129040 DOI: 10.1093/emboj/cdf518] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Gene rearrangement in the immune system is always preceded by DNA demethylation and increased chromatin accessibility. Using a model system in which rearrangement of the endogenous immunoglobulin kappa locus is prevented, we demonstrate that these epigenetic and chromatin changes actually occur on one allele with a higher probability than the other. It may be this process that, together with feedback inhibition, serves as the basis for allelic exclusion.
Collapse
Affiliation(s)
- Maya Goldmit
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| | - Mark Schlissel
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| | - Howard Cedar
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| | - Yehudit Bergman
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| |
Collapse
|
25
|
Affiliation(s)
- Alberto Martin
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 403, Bronx, New York 10461, USA.
| | | |
Collapse
|
26
|
Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 2002; 20:165-96. [PMID: 11861601 DOI: 10.1146/annurev.immunol.20.090501.112049] [Citation(s) in RCA: 464] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Class switch recombination (CSR) and somatic hypermutation (SHM) have been considered to be mediated by different molecular mechanisms because both target DNAs and DNA modification products are quite distinct. However, involvement of activation-induced cytidine deaminase (AID) in both CSR and SHM has revealed that the two genetic alteration mechanisms are surprisingly similar. Accumulating data led us to propose the following scenario: AID is likely to be an RNA editing enzyme that modifies an unknown pre-mRNA to generate mRNA encoding a nicking endonuclease specific to the stem-loop structure. Transcription of the S and V regions, which contain palindromic sequences, leads to transient denaturation, forming the stem-loop structure that is cleaved by the AID-regulated endonuclease. Cleaved single-strand tails will be processed by error-prone DNA polymerase-mediated gap-filling or exonuclease-mediated resection. Mismatched bases will be corrected or fixed by mismatch repair enzymes. CSR ends are then ligated by the NHEJ system while SHM nicks are repaired by another ligation system.
Collapse
Affiliation(s)
- Tasuku Honjo
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
27
|
Mostoslavsky R, Singh N, Tenzen T, Goldmit M, Gabay C, Elizur S, Qi P, Reubinoff BE, Chess A, Cedar H, Bergman Y. Asynchronous replication and allelic exclusion in the immune system. Nature 2001; 414:221-5. [PMID: 11700561 DOI: 10.1038/35102606] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of mature B cells involves a series of molecular decisions which culminate in the expression of a single light-chain and heavy-chain antigen receptor on the cell surface. There are two alleles for each receptor locus, so the ultimate choice of one receptor type must involve a process of allelic exclusion. One way to do this is with a feedback mechanism that downregulates rearrangement after the generation of a productive receptor molecule, but recent work suggests that monoallelic epigenetic changes may also take place even before rearrangement. To better understand the basis for distinguishing between alleles, we have analysed DNA replication timing. Here we show that all of the B-cell-receptor loci (mu, kappa and lambda) and the TCRbeta locus replicate asynchronously. This pattern, which is established randomly in each cell early in development and maintained by cloning, represents an epigenetic mark for allelic exclusion, because it is almost always the early-replicating allele which is initially selected to undergo rearrangement in B cells. These results indicate that allelic exclusion in the immune system may be very similar to the process of X chromosome inactivation.
Collapse
Affiliation(s)
- R Mostoslavsky
- Department of Cellular Biochemistry & Human Genetics, and Experimental Medicine & Cancer Research, PO Box 12272, Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|