1
|
Zhen D, Wang S, Liu Z, Xi Y, Du H, Wang N, Gao X, Lin Z, Wu F. Fibroblast Growth Factor 20 Attenuates Colitis by Restoring Impaired Intestinal Epithelial Barrier Integrity and Modulating Macrophage Polarization via S100A9 in an NF-κB-Dependent Manner. Cell Mol Gastroenterol Hepatol 2025; 19:101486. [PMID: 40024533 PMCID: PMC12018106 DOI: 10.1016/j.jcmgh.2025.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND & AIMS Exogenous recombinant fibroblast growth factor 20 (FGF20) protein has been proved to treat ulcerative colitis; however, its mechanism of action remains unclear. This study aimed to explore the role and mechanism of action of FGF20 in ulcerative colitis. METHODS Data from patients with ulcerative colitis were analyzed using the Gene Expression Omnibus dataset. A murine colitis model was established by administering 2% dextran sodium sulfate. FGF20 knockout mice and Adenoassociated viruses (AAV)-FGF20-treated mice were used to elucidate the specific mechanisms. Proteomic analysis was conducted to identify differentially expressed genes. RESULTS FGF20 levels were significantly elevated in the colonic tissues of subjects and mice with colitis. FGF20 deficiency exacerbated dextran sodium sulfate-induced colitis; in contrast, FGF20 replenishment alleviated colitis through 2 principal mechanisms: restoration of impaired intestinal epithelial barrier integrity, and inhibition of M1 macrophage polarization. Notably, S100A9 was identified as a pivotal downstream target of FGF20, which was further demonstrated by pharmacologic inhibition and overexpression experiments of S100A9 using paquinimod (a specific inhibitor of S100A9) and AAV-S100A9 in FGF20 knockout and AAV-FGF20 mice with colitis, respectively. Additionally, the nuclear factor-κB pathway was found to be involved in the process by which FGF20 regulates S100A9 to counteract colitis. CONCLUSIONS These results suggest that FGF20 acts as a negative regulator of S100A9 and nuclear factor-κB, thereby inhibiting M1 macrophage polarization and restoring intestinal epithelial barrier integrity in mice with dextran sodium sulfate-induced colitis. FGF20 may serve as a potential therapeutic target for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Dong Zhen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhen Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiyuan Xi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanlin Du
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ningrui Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaotang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The Affiliated Songshan Lake Center Hospital, Guangdong Medical University, Dongguan, China.
| | - Fan Wu
- The Affiliated Songshan Lake Center Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
2
|
Liu YQ, Li ZZ, Han YL, Wang QB. The role of efferocytosis in inflammatory bowel disease. Front Immunol 2025; 16:1524058. [PMID: 40040696 PMCID: PMC11876057 DOI: 10.3389/fimmu.2025.1524058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 03/06/2025] Open
Abstract
Efferocytosis is the process by which various phagocytes clear apoptotic cells. In recent years, an increasing body of evidence has emphasized the importance of efferocytosis in maintaining internal homeostasis. Intestinal macrophages play a crucial role in modulating intestinal inflammation and promoting tissue repair. Inflammatory bowel disease (IBD) is a chronic, progressive, and relapsing condition, primarily marked by the presence of ulcers in the digestive tract. The exact mechanisms underlying IBD are not yet fully understood, and current treatment approaches mainly aim at repairing the damaged intestinal mucosa and reducing inflammatory responses to ease symptoms.This article provides new perspectives on IBD treatment and clinical management by examining the expression of macrophage efferocytosis-related molecules, the effects of efferocytosis on IBD development, the various roles of macrophage efferocytosis in IBD, and treatment strategies for IBD that focus on efferocytosis.
Collapse
Affiliation(s)
- Yi-Qian Liu
- Institute of Acupuncture and Moxibustion, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhan-Zhan Li
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yong-Li Han
- Acupuncture Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qing-Bo Wang
- Acupuncture Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Giammona A, Galuzzi BG, Imperia E, Gervasoni C, Remedia S, Restaneo L, Nespoli M, De Gara L, Tani F, Cicala M, Guarino MPL, Porro D, Cerasa A, Lo Dico A, Altomare A, Bertoli G. Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date. Int J Mol Sci 2025; 26:413. [PMID: 39796266 PMCID: PMC11720538 DOI: 10.3390/ijms26010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic gastrointestinal disorders such as inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS) impose significant health burdens globally. IBDs, encompassing Crohn's disease and ulcerative colitis, are multifactorial disorders characterized by chronic inflammation of the gastrointestinal tract. On the other hand, IBS is one of the principal gastrointestinal tract functional disorders and is characterized by abdominal pain and altered bowel habits. Although the precise etiopathogenesis of these disorders remains unclear, mounting evidence suggests that non-coding RNA molecules play crucial roles in regulating gene expression associated with inflammation, apoptosis, oxidative stress, and tissue permeability, thus influencing disease progression. miRNAs have emerged as possible reliable biomarkers, as they can be analyzed in the biological fluids of patients at a low cost. This review explores the roles of miRNAs in IBDs and IBS, focusing on their involvement in the control of disease hallmarks. By an extensive literature review and employing bioinformatics tools, we identified the miRNAs frequently studied concerning these diseases. Ultimately, specific miRNAs could be proposed as diagnostic biomarkers for IBDs and IBS. Their ability to be secreted into biofluids makes them promising candidates for non-invasive diagnostic tools. Therefore, understanding molecular mechanisms through the ways in which they regulate gastrointestinal inflammation and immune responses could provide new insights into the pathogenesis of IBDs and IBS and open avenues for miRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Giammona
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Bruno Giovanni Galuzzi
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Elena Imperia
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Clarissa Gervasoni
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sofia Remedia
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, Via Archirafi, 22, 90123 Palermo, Italy
| | - Laura Restaneo
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Martina Nespoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Laura De Gara
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
| | - Flaminia Tani
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Michele Cicala
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
- Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Danilo Porro
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca, 20126 Milan, Italy
| | - Antonio Cerasa
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Alessia Lo Dico
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Annamaria Altomare
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.R.); (L.D.G.); (A.A.)
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.C.); (M.P.L.G.)
| | - Gloria Bertoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, 20054 Milan, Italy; (A.G.); (B.G.G.); (C.G.); (S.R.); (M.N.); (F.T.); (D.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
4
|
Wang Y, Jiang Y, Li M, Xiao Y, Zhao Q, Zeng J, Wei S, Chen S, Zhao Y, Du F, Chen Y, Deng S, Shen J, Li X, Li W, Wang F, Sun Y, Gu L, Xiao Z, Wang S, Wu X. Rosavin derived from Rhodiola alleviates colitis in mice through modulation of Th17 differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156318. [PMID: 39647466 DOI: 10.1016/j.phymed.2024.156318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/25/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Rosavin (RSV) is a naturally occurring compound isolated from Rhodiola species. While RSV has been reported with pharmacological activities of anti-oxidation, anti-inflammation, anti-stress and immunomodulation, its effect on colitis and the underlying mechanisms remain unclear. PURPOSE This study aims to investigate whether and how RSV alleviated colitis in mice. STUDY DESIGN AND METHODS The protective effect of RSV (50, 100, 200 mg/kg, p.o.) was investigated in dextran sulfate sodium (DSS) mediated mouse models of acute and chronic colitis. Alterations in fecal microbiota were evaluated by 16S rRNA sequencing. Pseudo germ-free mice achieved by antibiotics treatment were applied to assess the RSV-mediated functional role of gut microbiota in colitis. RNA sequencing was performed to determine RSV-induced colonic response. Primary T cell culture was conducted to examine the effect of RSV on Th17 and Treg differentiation. Whole blood assay, dual luciferase reporter assay, and molecular docking methods were applied to investigate the mechanisms and targets of RSV in Th17 regulation. RESULTS Oral RSV significantly relieved DSS-mediated acute and chronic colitis in mice, which recovered body weight loss, reduced disease activity index, alleviated colon injury, inhibited inflammation, suppressed the apoptosis of intestinal epithelia, and maintained intestinal barrier function. Moreover, RSV specifically regulated intestinal microbiota by recovering DSS-mediated microbial changes and elevating beneficial microbes such as Lactobacillus and Akkermansia. Antibiotics treatment experiment showed that the protective role of RSV was at least partially dependent on gut microbiota; however, in vitro incubation showed that RSV did not directly promote the growth of Lactobacillus and Akkermansia strains. Further analysis showed that RSV-mediated genetic alterations in colon were enriched in pathways related to lymphocyte regulation. Additionally, RSV regulated the balance of Th17/Treg in colitis mice. Importantly, RSV inhibited the differentiation of Th17 cell in vitro, suppressed the production of IL-17 by Th17 cells, and downregulated Rorc encoding RORγt and its downstream Il17. RSV significantly inhibited the RORγt transcription activity and bound to its ligand binding domain. CONCLUSION RSV alleviates murine colitis through regulating intestinal immunity. Notably, RSV is identified as a novel regulator of Th17 cells that inhibits RORγt-mediated Th17 differentiation. These findings potentiate the Rhodiola-derived natural chemicals as novel anti-colitis agents.
Collapse
Affiliation(s)
- Yi Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; Sichuan Fifth People's Hospital, Chengdu, Sichuan 610015, China
| | - Yu Jiang
- Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646100, China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Yaqin Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Qianyun Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Jiuping Zeng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | | | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Fang Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China; Gulin County Hospital of Traditional Chinese Medicine, Luzhou 646500, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; Department of Paediatric Care, Luzhou People's Hospital, Luzhou, Sichuan 646000, China.
| |
Collapse
|
5
|
Su J, Wang H, Wang Z. The Multiple Roles of Heat Shock Proteins in the Development of Inflammatory Bowel Disease. Curr Mol Med 2025; 25:132-145. [PMID: 38465431 DOI: 10.2174/0115665240286793240306053111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Inflammatory bowel disease (IBD), a chronic inflammatory condition of the human intestine, comprises Crohn's disease (CD) and ulcerative colitis (UC). IBD causes severe gastrointestinal symptoms and increases the risk of developing colorectal carcinoma. Although the etiology of IBD remains ambiguous, complex interactions between genetic predisposition, microbiota, epithelial barrier, and immune factors have been implicated. The disruption of intestinal homeostasis is a cardinal characteristic of IBD. Patients with IBD exhibit intestinal microbiota dysbiosis, impaired epithelial tight junctions, and immune dysregulation; however, the relationship between them is not completely understood. As the largest body surface is exposed to the external environment, the gastrointestinal tract epithelium is continuously subjected to environmental and endogenous stressors that can disrupt cellular homeostasis and survival. Heat shock proteins (HSPs) are endogenous factors that play crucial roles in various physiological processes, such as maintaining intestinal homeostasis and influencing IBD progression. Specifically, HSPs share an intricate association with microbes, intestinal epithelium, and the immune system. In this review, we aim to elucidate the impact of HSPs on IBD development by examining their involvement in the interactions between the intestinal microbiota, epithelial barrier, and immune system. The recent clinical and animal models and cellular research delineating the relationship between HSPs and IBD are summarized. Additionally, new perspectives on IBD treatment approaches have been proposed.
Collapse
Affiliation(s)
- Jinfeng Su
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| | - Haiyan Wang
- Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| | - Zun Wang
- Department of Breast and Thyroid Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| |
Collapse
|
6
|
Kunst C, Elger T, Loibl J, Huss M, Kandulski A, Krautbauer S, Müller M, Liebisch G, Tews HC, Buechler C. Fecal Nervonic Acid as a Biomarker for Diagnosing and Monitoring Inflammatory Bowel Disease. Biomedicines 2024; 12:2764. [PMID: 39767671 PMCID: PMC11673069 DOI: 10.3390/biomedicines12122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Inflammatory bowel disease (IBD) is a chronic immune-mediated pathology associated with the dysregulation of lipid metabolism. The administration of nervonic acid, a very long-chain fatty acid, has been shown to improve colonic inflammation in a mouse model of colitis. Our study aimed to quantify fecal levels of nervonic acid, as well as the very long-chain fatty acids, lignoceric acid, and pentacosanoic acid, to identify associations with IBD activity. METHODS Stool samples were collected from 62 patients with IBD and 17 healthy controls. Nervonic acid, lignoceric acid, and pentacosanoic acid were quantified by gas chromatography coupled with mass spectrometry (GC-MS). Lipid levels, normalized to the dry weight of fecal homogenates, were used for calculations. RESULTS Patients with IBD exhibited elevated fecal nervonic acid levels compared to healthy controls, with no significant differences observed between ulcerative colitis and Crohn's disease. A fecal nervonic acid concentration of 0.49 µmol/g distinguished IBD patients from controls, achieving a sensitivity of 71% and a specificity of 82%. Fecal nervonic acid levels showed a positive correlation with both C-reactive protein and fecal calprotectin and increased proportionally with rising fecal calprotectin levels. IBD patients treated with corticosteroids or interleukin-12/23 antibodies had higher levels of fecal nervonic acid than those in other therapies, with no difference in serum C-reactive protein and calprotectin levels between these groups. CONCLUSIONS In summary, this analysis indicates that fecal nervonic acid may emerge as a novel specific biomarker for IBD diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| |
Collapse
|
7
|
Wang D, Zhu L, Liu H, Feng X, Zhang C, Li T, Liu B, Liu L, Sun J, Chang H, Chen S, Guo S, Yang W. Huangqin tang alleviates colitis-associated colorectal cancer via amino acids homeostasisand PI3K/AKT/mtor pathway modulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118597. [PMID: 39034016 DOI: 10.1016/j.jep.2024.118597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqin Tang (HQT), a traditional Chinese medicine formula, is commonly used in clinical practice for the treatment of inflammatory bowel diseases. It has been reported that HQT exerts antitumor effects on colitis-associated colorectal cancer (CAC). However, the mechanism by which HQT interferes with the inflammation-to-cancer transformation remains unclear. AIMS OF THE STUDY The purpose of this study was to dynamically evaluate the efficacy of HQT in alleviating or delaying CAC and to reveal the underlying mechanism. METHODS We established a mouse model of CAC using azoxymethane combined with 1.5% dextran sodium sulphate. The efficacy of HQT was evaluated based on pathological sections and serum biochemical indices. Subsequently, amino acids (AAs) metabolism analyses were performed using ultra-performance liquid chromatography-tandem mass spectrometry, and the phosphatidylinositol 3 kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) pathway was detected by western blotting. RESULTS The data demonstrated that HQT could alleviate the development of CAC in the animal model. HQT effectively reduced the inflammatory response, particularly interleukin-6 (IL-6), in the inflammation induction stage, as well as in the stages of proliferation initiation and tumorigenesis. During the proliferation initiation and tumorigenesis stages, immunohistochemistry staining showed that the expression of the proliferation marker Ki67 was reduced, while apoptosis was increased in the HQT group. Accordingly, HQT substantially decreased the levels of specific AAs in the colon with CAC, including glutamic acid, glutamine, arginine, and isoleucine. Furthermore, HQT significantly inhibited the activated PI3K/AKT/mTOR pathway, which may contribute to suppression of cell proliferation and enhancement of apoptosis. CONCLUSION HQT is effective in alleviating and delaying the colon "inflammation-to-cancer". The mechanism of action may involve HQT maintained AAs metabolism homeostasis and regulated PI3K/AKT/mTOR pathway, so as to maintain the balance between proliferation and apoptosis, and then interfere in the occurrence and development of CAC.
Collapse
Affiliation(s)
- Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hao Chang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Siyuan Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Luo H, Guo M, Li M, Zhao Y, Shen J, Du F, Chen Y, Deng S, Sun Y, Gu L, Li W, Li X, Chen M, Xiao Z, Wang S, Wu X. Protective Effect of Rosavin Against Intestinal Epithelial Injury in Colitis Mice and Intestinal Organoids. J Inflamm Res 2024; 17:6023-6038. [PMID: 39247835 PMCID: PMC11380858 DOI: 10.2147/jir.s474368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Rhodiola species have been utilized as functional foods in Asia and Europe for promoting health. Research has demonstrated that Rhodiola has the potential to alleviate inflammatory bowel disease (IBD) in animal models. However, the specific active components and the underlying mechanism for ameliorating intestinal damage remain unclear. This study aims to explore the relieving effect of Rosavin (Rov), a known active constituent of Rhodiola, in IBD and the regulatory mechanisms. Methods The therapeutic effect of Rov was evaluated using a murine model of acute colitis induced by dextran sulfate sodium salt (DSS). Inflammatory cytokines and neutrophil activation markers were measured by corresponding kits. Immunohistochemistry, immunofluorescence, TUNEL, and EdU assays were applied to investigate the tight conjunction proteins expression, epithelial marker expression, number of apoptotic cells, and epithelial proliferation, respectively. The protection effect of Rov on gut epithelial injury was assessed using TNF-α-induced intestinal organoids. Additinally, RNA sequencing was applied to observe the genetic alteration profile in these intestinal organoids. Results Oral administration of Rov significantly attenuated weight loss and restored colon length in mice. Notably, Rov treatment led to decreased levels of pro-inflammatory cytokines and neutrophil activation markers while increasing anti-inflammatory factors. Importantly, Rov restored intestinal despair by increasing the number of Lgr5+ stem cells, Lyz1+ Paneth cells and Muc2+ goblet cells in intestines of colitis mice, displaying reduced epithelial apoptosis and recovered barrier function. In TNF-α-induced intestinal organoids, Rov facilitated epithelial cell differentiation and protected against TNF-α-induced damage. RNA sequencing revealed upregulation in the gene expression associated with epithelial cells (including Lgr5+, Lyz1+ and Muc2+ cells) proliferation and defensin secretion, unveiling the protective mechanisms of Rov on the intestinal epithelial barrier. Discussion Rov holds potential as a natural prophylactic agent against IBD, with its protective action on the intestinal epithelium being crucial for its therapeutic efficacy.
Collapse
Affiliation(s)
- Haoming Luo
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
- Department of Pharmacy, Three Gorges University Hospital of Traditional Chinese Medicine & Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei, 443003, People's Republic of China
| | - Miao Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
- Department of Pharmacy, Gulin County Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, 646500, People's Republic of China
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, 621000, People's Republic of China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
- Department of Paediatric Care, Luzhou People's Hospital, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
9
|
Zhang H, Wang X, Zhao L, Zhang K, Cui J, Xu G. Biochanin a ameliorates DSS-induced ulcerative colitis by improving colonic barrier function and protects against the development of spontaneous colitis in the Muc2 deficient mice. Chem Biol Interact 2024; 395:111014. [PMID: 38648921 DOI: 10.1016/j.cbi.2024.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
There is an increasing appreciation that colonic barrier function is closely related to the development and progression of colitis. The mucus layer is a crucial component of the colonic barrier, responsible for preventing harmful bacteria from invading the intestinal epithelium and causing inflammation. Furthermore, a defective mucus barrier is also a significant characteristic of ulcerative colitis (UC). Biochanin A (BCA), an isoflavonoid, has garnered increasing interest due to its significant biological activities. However, the impact of BCA on UC has not been reported yet. In this study, we used a dextran sodium sulfate (DSS)-induced ulcerative colitis model and the Muc2 deficient (Muc2-/-) mice spontaneous colitis model to explore the mechanisms of BCA in the treatment of UC. Here, we verified that DSS-induced UC was observably attenuated and spontaneous colitis in Muc2-/- mice was relieved by BCA. Treatment with BCA improved colitis-related symptoms and reduced intestinal permeability by upregulating the levels of goblet cells and tight junction (TJ) proteins. In addition, we confirmed that BCA promotes autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway, thereby alleviating DSS-induced UC. In addition, the administration of BCA was able to reduce apoptosis and promote proliferation by suppressing Cleaved Caspase-3 (Cleaved Cas-3) expression, and increasing PCNA and Ki67 levels. Further research revealed that BCA treatment ameliorated spontaneous colitis and alleviated epithelial damage in Muc2-/- mice by restoring the intestinal barrier and promoting autophagy. Our results demonstrated that BCA alleviated UC by enhancing intestinal barrier function and promoting autophagy. These findings indicate that BCA may be a novel treatment alternative for UC.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Rehabilitation, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Xueqi Wang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, PR China
| | - Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Jiaming Cui
- Changchun University of Chinese Medicine, Jilin University, Changchun, 130000, PR China
| | - Guangmeng Xu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
10
|
Sun HW, Zhang X, Shen CC. The shared circulating diagnostic biomarkers and molecular mechanisms of systemic lupus erythematosus and inflammatory bowel disease. Front Immunol 2024; 15:1354348. [PMID: 38774864 PMCID: PMC11106441 DOI: 10.3389/fimmu.2024.1354348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a multi-organ chronic autoimmune disease. Inflammatory bowel disease (IBD) is a common chronic inflammatory disease of the gastrointestinal tract. Previous studies have shown that SLE and IBD share common pathogenic pathways and genetic susceptibility, but the specific pathogenic mechanisms remain unclear. Methods The datasets of SLE and IBD were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified using the Limma package. Weighted gene coexpression network analysis (WGCNA) was used to determine co-expression modules related to SLE and IBD. Pathway enrichment was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for co-driver genes. Using the Least AbsoluteShrinkage and Selection Operator (Lasso) regressionand Support Vector Machine-Recursive Feature Elimination (SVM-RFE), common diagnostic markers for both diseases were further evaluated. Then, we utilizedthe CIBERSORT method to assess the abundance of immune cell infiltration. Finally,we used the single-cell analysis to obtain the location of common diagnostic markers. Results 71 common driver genes were identified in the SLE and IBD cohorts based on the DEGs and module genes. KEGG and GO enrichment results showed that these genes were closely associated with positive regulation of programmed cell death and inflammatory responses. By using LASSO regression and SVM, five hub genes (KLRF1, GZMK, KLRB1, CD40LG, and IL-7R) were ultimately determined as common diagnostic markers for SLE and IBD. ROC curve analysis also showed good diagnostic performance. The outcomes of immune cell infiltration demonstrated that SLE and IBD shared almost identical immune infiltration patterns. Furthermore, the majority of the hub genes were commonly expressed in NK cells by single-cell analysis. Conclusion This study demonstrates that SLE and IBD share common diagnostic markers and pathogenic pathways. In addition, SLE and IBD show similar immune cellinfiltration microenvironments which provides newperspectives for future treatment.
Collapse
Affiliation(s)
- Hao-Wen Sun
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xin Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Cong-Cong Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
11
|
Cui H, Li X, Que J, Li S, Shi X, Yuan T. A water-soluble arabinoxylan from Chinese liquor distillers' grains: Structural characterization and anti-colitic properties. Int J Biol Macromol 2024; 266:131186. [PMID: 38554909 DOI: 10.1016/j.ijbiomac.2024.131186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Chinese liquor distillers' grain (CLDG) is a valuable and abundant by-product from traditional Chinese baijiu production, containing a diverse array of bioactive components that have attracted significant interest. Herein, a water-soluble polysaccharide, DGPS-2B, with a weight-average molecular weight of 37.3 kDa, was isolated from the alkali-extract fraction of CLDG. Methylation and NMR analysis identified that the primary constituents of DGPS-2B are arabinoxylans, with an arabinose-to-xylose ratio of 0.66. In an animal model of colitis, DGPS-2B treatment significantly altered the gut microbiota composition by increasing the SCFA-producing bacteria (e.g., Butyricicoccus) and reducing the mucin-degrading bacteria such as Muribaculaceae. This microbial shift resulted in elevated production of butyrate, acetate, and propionate, which subsequently suppressed NF-κB signaling, decreased the levels of IL-1β, IL-6, and TNFα, and potentially inactivated Notch signaling. These multifaceted effects stimulated mucin 2 production, reduced inflammation and apoptosis in the gut epithelium, and ultimately alleviated colitis symptoms. Collectively, this study not only elucidates the purification and characterization of DGPS-2B from CLDG but also illuminates its anti-colitic properties and the underlying molecular mechanisms. These findings underscore the potential of DGPS-2B as a therapeutic intervention for managing inflammatory bowel disease and emphasize CLDG as a promising source for developing value-added products.
Collapse
Affiliation(s)
- Hao Cui
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xia Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiayi Que
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shuyue Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaodan Shi
- School of Health, Jiangxi Normal University, Nanchang 330022, China.
| | - Tao Yuan
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China; School of Health, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
12
|
Tak J, An Q, Lee SG, Lee CH, Kim SG. Gα12 and endoplasmic reticulum stress-mediated pyroptosis in a single cycle of dextran sulfate-induced mouse colitis. Sci Rep 2024; 14:6335. [PMID: 38491049 PMCID: PMC10943197 DOI: 10.1038/s41598-024-56685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis involves complex inflammatory events and cell death. Although IBD involves mainly necrosis in the digestive tract, pyroptosis has also been recognized. Nonetheless, the underlying basis is elusive. Gα12/13 overexpression may affect endoplasmic reticulum (ER) stress. This study examined how Gα12/13 and ER stress affect pyroptosis using dextran sulfate sodium (DSS)-induced colitis models. Gα12/13 levels were increased in the distal and proximal colons of mice exposed to a single cycle of DSS, as accompanied by increases of IRE1α, ATF6, and p-PERK. Moreover, Il-6, Il-1β, Ym1, and Arg1 mRNA levels were increased with caspase-1 and IL-1β activation, supportive of pyroptosis. In the distal colon, RIPK1/3 levels were enhanced to a greater degree, confirming necroptosis. By contrast, the mice subjected to three cycles of DSS treatments showed decreases of Gα12/13, as accompanied by IRE1α and ATF6 suppression, but increases of RIPK1/3 and c-Cas3. AZ2 treatment, which inhibited Gα12, has an anti-pyroptotic effect against a single cycle of colitis. These results show that a single cycle of DSS-induced colitis may cause ER stress-induced pyroptosis as mediated by Gα12 overexpression in addition to necroptosis, but three cycles model induces only necroptosis, and that AZ2 may have an anti-pyroptotic effect.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Quanxi An
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sang Gil Lee
- Research and Development Institute, A Pharma Inc, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
13
|
Gowd V, Kass JD, Sarkar N, Ramakrishnan P. Role of Sam68 as an adaptor protein in inflammatory signaling. Cell Mol Life Sci 2024; 81:89. [PMID: 38351330 PMCID: PMC10864426 DOI: 10.1007/s00018-023-05108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 02/16/2024]
Abstract
Sam68 is a ubiquitously expressed KH-domain containing RNA-binding protein highly studied for its involvement in regulating multiple steps of RNA metabolism. Sam68 also contains multiple protein-protein interaction regions such as proline-rich regions, tyrosine phosphorylation sites, and arginine methylation sites, all of which facilitate its participation as an adaptor protein in multiple signaling pathways, likely independent of its RNA-binding role. This review focuses on providing a comprehensive report on the adaptor roles of Sam68 in inflammatory signaling and inflammatory diseases. The insights presented here have the potential to open new avenues in inflammation research and justify targeting Sam68 to control aberrant inflammatory responses.
Collapse
Affiliation(s)
- Vemana Gowd
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Joseph D'Amato Kass
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Nandini Sarkar
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA.
- The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
14
|
Ahmad R, Kumar B, Thapa I, Tamang RL, Yadav SK, Washington MK, Talmon GA, Yu AS, Bastola DK, Dhawan P, Singh AB. Claudin-2 protects against colitis-associated cancer by promoting colitis-associated mucosal healing. J Clin Invest 2023; 133:e170771. [PMID: 37815870 PMCID: PMC10688979 DOI: 10.1172/jci170771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) are susceptible to colitis-associated cancer (CAC). Chronic inflammation promotes the risk for CAC. In contrast, mucosal healing predicts improved prognosis in IBD and reduced risk of CAC. However, the molecular integration among colitis, mucosal healing, and CAC remains poorly understood. Claudin-2 (CLDN2) expression is upregulated in IBD; however, its role in CAC is not known. The current study was undertaken to examine the role for CLDN2 in CAC. The AOM/DSS-induced CAC model was used with WT and CLDN2-modified mice. High-throughput expression analyses, murine models of colitis/recovery, chronic colitis, ex vivo crypt culture, and pharmacological manipulations were employed in order to increase our mechanistic understanding. The Cldn2KO mice showed significant inhibition of CAC despite severe colitis compared with WT littermates. Cldn2 loss also resulted in impaired recovery from colitis and increased injury when mice were subjected to intestinal injury by other methods. Mechanistic studies demonstrated a possibly novel role of CLDN2 in promotion of mucosal healing downstream of EGFR signaling and by regulation of Survivin expression. An upregulated CLDN2 expression protected from CAC and associated positively with crypt regeneration and Survivin expression in patients with IBD. We demonstrate a potentially novel role of CLDN2 in promotion of mucosal healing in patients with IBD and thus regulation of vulnerability to colitis severity and CAC, which can be exploited for improved clinical management.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Santosh K. Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mary K. Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Alan S. Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dhundy K. Bastola
- School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
15
|
Zhang Z, Kong L, Lv M, Yao Y, Gao L, Zhou R, Ma W, Li J. PVA enema ameliorates DSS-induced acute colitis in mice. BMC Gastroenterol 2023; 23:368. [PMID: 37904100 PMCID: PMC10617076 DOI: 10.1186/s12876-023-03005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) represents a clinically challenging condition characterized by persistent damage to the colonic epithelial mucosa as the principal pathological feature. Polyvinyl alcohol (PVA) solution, primarily composed of glue, is a biodegradable polymer material that has found utility in the medical field. This research endeavors to investigate the therapeutic potential of PVA water solution in ameliorating UC in mice. METHODS UC was induced in 48 C57BL/6 mice by administering 2.5% DSS in their diet for 6 days. Mice were treated with different concentrations of PVA (0.1 mg/ml PVA, 0.3 mg/ml PVA, 1 mg/ml PVA, 3 mg/ml PVA, 10 mg/ml PVA) enemas (n = 6). Disease Activity Index (DAI) and histologic score were evaluated for inflammation degree. Furthermore, mouse colon organoids were cultured, which were used to assess the effects of PVA on expansion in vitro. RESULTS PVA aqueous solutions (1 mg/ml and 3 mg/ml) were able to alleviate the DAI in mice. By DAY 6, there was a significant 3/5-fold decrease in DAI within the 1 mg/ml PVA group (p = 0.02). Histopathology scores demonstrated improvements, while the levels of inflammatory factors in the intestinal mucosal tissue were reduced. Additionally, it was confirmed that PVA could promote the expansion of colonic organoids in vitro. CONCLUSIONS In summary, our investigation has yielded findings indicating that PVA holds the potential to ameliorate symptoms associated with colitis in murine subjects afflicted by DSS-induced colitis, primarily through its facilitation of intestinal stem cell expansion. This study might provide a new candidate for the clinical treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Zhiyong Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Pathology, Zibo Central Hospital, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China
| | - Lingnan Kong
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Pathology, Zibo Central Hospital, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China
| | - Ming Lv
- Zibo Central Hospital, Zibo, China
| | - Yukuan Yao
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Pathology, Zibo Central Hospital, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China
| | - Li Gao
- Department of Outpatient, Zibo Central Hospital, Zibo, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenlong Ma
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Li
- Department of Pathology, Zibo Central Hospital, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China.
| |
Collapse
|
16
|
Peters DE, Norris LD, Tenora L, Šnajdr I, Ponti AK, Zhu X, Sakamoto S, Veeravalli V, Pradhan M, Alt J, Thomas AG, Majer P, Rais R, McDonald C, Slusher BS. A gut-restricted glutamate carboxypeptidase II inhibitor reduces monocytic inflammation and improves preclinical colitis. Sci Transl Med 2023; 15:eabn7491. [PMID: 37556558 PMCID: PMC10661206 DOI: 10.1126/scitranslmed.abn7491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
There is an urgent need to develop therapeutics for inflammatory bowel disease (IBD) because up to 40% of patients with moderate-to-severe IBD are not adequately controlled with existing drugs. Glutamate carboxypeptidase II (GCPII) has emerged as a promising therapeutic target. This enzyme is minimally expressed in normal ileum and colon, but it is markedly up-regulated in biopsies from patients with IBD and preclinical colitis models. Here, we generated a class of GCPII inhibitors designed to be gut-restricted for oral administration, and we interrogated efficacy and mechanism using in vitro and in vivo models. The lead inhibitor, (S)-IBD3540, was potent (half maximal inhibitory concentration = 4 nanomolar), selective, gut-restricted (AUCcolon/plasma > 50 in mice with colitis), and efficacious in acute and chronic rodent colitis models. In dextran sulfate sodium-induced colitis, oral (S)-IBD3540 inhibited >75% of colon GCPII activity, dose-dependently improved gross and histologic disease, and markedly attenuated monocytic inflammation. In spontaneous colitis in interleukin-10 (IL-10) knockout mice, once-daily oral (S)-IBD3540 initiated after disease onset improved disease, normalized colon histology, and attenuated inflammation as evidenced by reduced fecal lipocalin 2 and colon pro-inflammatory cytokines/chemokines, including tumor necrosis factor-α and IL-17. Using primary human colon epithelial air-liquid interface monolayers to interrogate the mechanism, we further found that (S)-IBD3540 protected against submersion-induced oxidative stress injury by decreasing barrier permeability, normalizing tight junction protein expression, and reducing procaspase-3 activation. Together, this work demonstrated that local inhibition of dysregulated gastrointestinal GCPII using the gut-restricted, orally active, small-molecule (S)-IBD3540 is a promising approach for IBD treatment.
Collapse
Affiliation(s)
- Diane E. Peters
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren D. Norris
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lukáš Tenora
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 160 00 Prague, Czechia
| | - Ivan Šnajdr
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 160 00 Prague, Czechia
| | - András K. Ponti
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shinji Sakamoto
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vijayabhaskar Veeravalli
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manisha Pradhan
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 160 00 Prague, Czechia
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christine McDonald
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
m6A modification in inflammatory bowel disease provides new insights into clinical applications. Biomed Pharmacother 2023; 159:114298. [PMID: 36706633 DOI: 10.1016/j.biopha.2023.114298] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex interplay between genetic predisposition, environmental factors, and gut microbes. The role of N6-methyladenosine (m6A) methylation in the pathogenesis of IBD has attracted increasing attention. m6A modification not only regulates intestinal mucosal immunity and intestinal barrier function, but also affects apoptosis and autophagy in intestinal epithelial cells. Additionally, m6A modification participated in the interaction between gut microbes and the host, providing a novel direction to explore the molecular mechanisms of IBD and the theoretical basis for specific microorganism-oriented prevention and treatment measures. m6A regulators are expected to be biomarkers for predicting the prognosis of IBD patients. m6A methylation may be utilized as a novel target in the management of IBD. This review focused on the recent advances in how m6A modification causes the initiation and development of IBD, and provided new insights into optimal prevention and treatment measures for IBD.
Collapse
|
18
|
Dodd J, Jordan R, Makhlina M, Barnett K, Roffel A, Spana C, Obr A, Dhingra P, Kayne PS. A novel oral formulation of the melanocortin-1 receptor agonist PL8177 resolves inflammation in preclinical studies of inflammatory bowel disease and is gut restricted in rats, dogs, and humans. Front Immunol 2023; 14:1083333. [PMID: 36891301 PMCID: PMC9986545 DOI: 10.3389/fimmu.2023.1083333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction PL8177 is a potent and selective agonist of the melanocortin 1 receptor (MC1R). PL8177 has shown efficacy in reversing intestinal inflammation in a cannulated rat ulcerative colitis model. To facilitate oral delivery, a novel, polymer-encapsulated formulation of PL8177 was developed. This formulation was tested in 2 rat ulcerative colitis models and evaluated for distribution, in vivo, in rats, dogs, and humans. Methods The rat models of colitis were induced by treatment with 2,4-dinitrobenzenesulfonic acid or dextran sulfate sodium. Single nuclei RNA sequencing of colon tissues was performed to characterize the mechanism of action. The distribution and concentration of PL8177 and the main metabolite within the GI tract after a single oral dose of PL8177 was investigated in rats and dogs. A phase 0 clinical study using a single microdose (70 µg) of [14C]-labeled PL8177 investigated the release of PL8177 in the colon of healthy men after oral administration. Results Rats treated with 50 µg oral PL8177 demonstrated significantly lower macroscopic colon damage scores and improvement in colon weight, stool consistency, and fecal occult blood vs the vehicle without active drug. Histopathology analysis resulted in the maintenance of intact colon structure and barrier, reduced immune cell infiltration, and increased enterocytes with PL8177 treatment. Transcriptome data show that oral PL8177 50 µg treatment causes relative cell populations and key gene expressions levels to move closer to healthy controls. Compared with vehicle, treated colon samples show negative enrichment of immune marker genes and diverse immune-related pathways. In rats and dogs, orally administered PL8177 was detected at higher amounts in the colon vs upper GI tract. [14C]-PL8177 and the main metabolite were detected in the feces but not in the plasma and urine in humans. This suggests that the parent drug [14C]-PL8177 was released from the polymer formulation and metabolized within the GI tract, where it would be expected to exert its effect. Conclusion Collectively, these findings support further research into the oral formulation of PL8177 as a possible therapeutic for GI inflammatory diseases in humans.
Collapse
Affiliation(s)
- John Dodd
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Robert Jordan
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | | | - Keith Barnett
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Ad Roffel
- Consulting & Advisory Services – Clinical Pharmacology, ICON plc, Groningen, Netherlands
| | - Carl Spana
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Alison Obr
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | | | - Paul S. Kayne
- Palatin Technologies, Inc., Cranbury, NJ, United States
| |
Collapse
|
19
|
The Effect of Necrosis Inhibitor on Dextran Sulfate Sodium Induced Chronic Colitis Model in Mice. Pharmaceutics 2023; 15:pharmaceutics15010222. [PMID: 36678851 PMCID: PMC9862178 DOI: 10.3390/pharmaceutics15010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Uncontrolled chronic inflammation and necrosis is characteristic of inflammatory bowel disease (IBD). This study aimed to investigate the effect of necrosis inhibitor (NI, NecroX-7) on a dextran sulfate sodium (DSS) induced chronic colitis model of mice. DSS was administered on days 1-5, and the NI was administered intraperitoneally (3 mg/kg, 30 mg/kg) on days 1, 3, and 5 as well as every other day during the first five days of a three-week cycle. Three cycles of administration were performed. Colitis was evaluated based on the disease activity index (DAI) score, colon length, and histological score. Reverse transcription polymerase chain reaction testing, the Western blot assay, and immunohistochemical staining were performed to determine inflammatory cytokine levels. The NI reduced body weight change and the DAI score. Colon length and the histological score were longer and lower in the NI-treated groups, respectively. The NI decreased the expression of pro-inflammatory cytokines, particularly in tumor necrosis factor alpha (TNF-α) and phosphorylated nuclear factor kappa B (p-NF-κB). Immunohistochemical staining revealed decreased inducible nitric oxide synthase (iNOS) and high mobility group box 1 (HMGB1) levels. Overall, the NI improved DSS induced chronic colitis by attenuating the mRNA expression of pro-inflammatory cytokines such as TNF-α. Therefore, NI use is a potential, novel treatment approach for IBD.
Collapse
|
20
|
Li Y, Yang X, Yuan JN, Lin R, Tian YY, Li YX, Zhang Y, Wang XF, Xie YH, Wang SW, Zheng XH. Ilex rotunda Thunb Protects Against Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Restoring the Intestinal Mucosal Barrier and Modulating the Oncostatin M/Oncostatin M Receptor Pathway. Front Pharmacol 2022; 13:819826. [PMID: 35645824 PMCID: PMC9140055 DOI: 10.3389/fphar.2022.819826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ilex rotunda Thunb (IR) is a traditional Chinese medicine used for the clinical treatment of gastric ulcers and duodenal ulcers; however, the effect of IR on ulcerative colitis (UC) and its underlying mechanism remains unclear. This study investigated the therapeutic effect of IR on UC mice induced by dextran sulfate sodium (DSS) as well as the potential underlying mechanism. The main components of IR were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Then we established a model of UC mice by administering 2.0% DSS for 7 days followed by 2 weeks of tap water for three cycles and administered IR. On day 56, the disease activity index (DAI), colon length, pathological changes, and inflammatory response of the colon tissue of mice were assessed. The oxidative stress and apoptosis of colon tissue were detected, and the integrity of the intestinal mucosal barrier was evaluated to assess the effect of IR. Furthermore, the relationship between oncostatin M (OSM) and its receptor (OSMR) in addition to the IR treatment of UC were evaluated using a mouse model and Caco2 cell model. The results showed that IR significantly alleviated the symptoms of UC including rescuing the shortened colon length; reducing DAI scores, serum myeloperoxidase and lipopolysaccharide levels, pathological damage, inflammatory cell infiltration and mRNA levels of interleukin one beta, tumor necrosis factor alpha, and interleukin six in colon tissue; alleviating oxidative stress and apoptosis by decreasing kelch-like ECH-associated protein 1 expression and increasing nuclear factor-erythroid factor 2-related factor 2 and heme oxygenase-1 protein expression; and promoting the regeneration of epithelial cells. IR also promoted the restoration of the intestinal mucosal barrier and modulated the OSM/OSMR pathway to alleviate UC. It was found that IR exerted therapeutic effects on UC by restoring the intestinal mucosal barrier and regulating the OSM/OSMR pathway.
Collapse
Affiliation(s)
- Yao Li
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Xu Yang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Jia-ni Yuan
- Air Force Hospital of Western Theater Command, Chengdu, China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Xi’an, China
| | - Yun-yuan Tian
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, Xi’an, China
| | - Yu-xin Li
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Yan Zhang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Xu-fang Wang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Yan-hua Xie
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Si-wang Wang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Xiao-hui Zheng
- The College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
21
|
Ngo PA, Neurath MF, López-Posadas R. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. Int J Mol Sci 2022; 23:ijms23084160. [PMID: 35456978 PMCID: PMC9027054 DOI: 10.3390/ijms23084160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.
Collapse
Affiliation(s)
- Phuong A. Ngo
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
22
|
Hu MD, Golovchenko NB, Burns GL, Nair PM, Kelly TJ, Agos J, Irani MZ, Soh WS, Zeglinski MR, Lemenze A, Bonder EM, Sandrock I, Prinz I, Granville DJ, Keely S, Watson AJ, Edelblum KL. γδ Intraepithelial Lymphocytes Facilitate Pathological Epithelial Cell Shedding Via CD103-Mediated Granzyme Release. Gastroenterology 2022; 162:877-889.e7. [PMID: 34861219 PMCID: PMC8881348 DOI: 10.1053/j.gastro.2021.11.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Excessive shedding of apoptotic enterocytes into the intestinal lumen is observed in inflammatory bowel disease and is correlated with disease relapse. Based on their cytolytic capacity and surveillance behavior, we investigated whether intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) are actively involved in the shedding of enterocytes into the lumen. METHODS Intravital microscopy was performed on GFP γδ T cell reporter mice treated with intraperitoneal lipopolysaccharide (10 mg/kg) for 90 minutes to induce tumor necrosis factor-mediated apoptosis. Cell shedding in various knockout or transgenic mice in the presence or absence of blocking antibody was quantified by immunostaining for ZO-1 funnels and cleaved caspase-3 (CC3). Granzyme A and granzyme B release from ex vivo-stimulated γδ IELs was quantified by enzyme-linked immunosorbent assay. Immunostaining for γδ T cell receptor and CC3 was performed on duodenal and ileal biopsies from controls and patients with Crohn's disease. RESULTS Intravital microscopy of lipopolysaccharide-treated mice revealed that γδ IELs make extended contact with shedding enterocytes. These prolonged interactions require CD103 engagement by E-cadherin, and CD103 knockout or blockade significantly reduced lipopolysaccharide-induced shedding. Furthermore, we found that granzymes A and B, but not perforin, are required for cell shedding. These extracellular granzymes are released by γδ IELs both constitutively and after CD103/E-cadherin ligation. Moreover, we found that the frequency of γδ IEL localization to CC3-positive enterocytes is increased in Crohn's disease biopsies compared with healthy controls. CONCLUSIONS Our results uncover a previously unrecognized role for γδ IELs in facilitating tumor necrosis factor-mediated shedding of apoptotic enterocytes via CD103-mediated extracellular granzyme release.
Collapse
Affiliation(s)
- Madeleine D. Hu
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Grace L. Burns
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Prema M. Nair
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Thomas J. Kelly
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jonathan Agos
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Mudar Zand Irani
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Wai Sinn Soh
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Matthew R. Zeglinski
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers University – The State University of New Jersey, Newark, NJ, 07102, USA
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - David J. Granville
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Alastair J.M. Watson
- Department of Gastroenterology and Gut Biology, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| |
Collapse
|
23
|
Liu C, Zeng Y, Wen Y, Huang X, Liu Y. Natural Products Modulate Cell Apoptosis: A Promising Way for the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:806148. [PMID: 35173617 PMCID: PMC8841338 DOI: 10.3389/fphar.2022.806148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease impacting patients’ quality of life and imposing heavy societal and economic burdens. Apoptosis of intestinal epithelial cells (IECs) has been considered an early event during the onset of UC and plays a crucial role in disease development. Thus, effectively inhibiting apoptosis of IECs is of critical significance for the clinical management of UC, presenting a potential direction for the research and development of pharmacotherapeutic agents. In recent years, research on the ameliorative effects of natural products on UC through inhibiting IECs apoptosis has attracted increasing attention and made remarkable achievements in ameliorating UC. In this review, we summarized the currently available research about the anti-apoptotic effects of natural products on UC and its mechanisms involving the death-receptor mediated pathway, mitochondrial-dependent pathway, ERS-mediated pathway, MAPK-mediated pathway, NF-κB mediated pathway, P13k/Akt pathway, JAK/STAT3 pathway, and NLRP3/ASC/Caspase-1 pathway. Hopefully, this review may yield useful information about the anti-apoptotic effects of natural products on UC and their potential molecular mechanisms and provide helpful insights for further investigations.
Collapse
Affiliation(s)
- Chenhao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinggui Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yi Liu,
| |
Collapse
|
24
|
Rusu I, Mennillo E, Bain JL, Li Z, Sun X, Ly KM, Rosli YY, Naser M, Wang Z, Advincula R, Achacoso P, Shao L, Razani B, Klein OD, Marson A, Turnbaugh JA, Turnbaugh PJ, Malynn BA, Ma A, Kattah MG. Microbial signals, MyD88, and lymphotoxin drive TNF-independent intestinal epithelial tissue damage. J Clin Invest 2022; 132:154993. [PMID: 35077396 PMCID: PMC8884902 DOI: 10.1172/jci154993] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Anti-TNF antibodies are effective for treating patients with inflammatory bowel disease (IBD), but many patients fail to respond to anti-TNF therapy, highlighting the importance of TNF-independent disease. We previously demonstrated that acute deletion of 2 IBD susceptibility genes, A20 (Tnfaip3) and Abin-1 (Tnip1), in intestinal epithelial cells (IECs) sensitized mice to both TNF-dependent and TNF-independent death. Here we show that TNF-independent IEC death after A20 and Abin-1 deletion was rescued by germ-free derivation or deletion of MyD88, while deletion of Trif provided only partial protection. Combined deletion of Ripk3 and Casp8, which inhibits both apoptotic and necroptotic death, completely protected against death after acute deletion of A20 and Abin-1 in IECs. A20- and Abin-1–deficient IECs were sensitized to TNF-independent, TNFR1-mediated death in response to lymphotoxin α (LTα) homotrimers. Blockade of LTα in vivo reduced weight loss and improved survival when combined with partial deletion of MyD88. Biopsies of inflamed colon mucosa from patients with IBD exhibited increased LTA and IL1B expression, including a subset of patients with active colitis on anti-TNF therapy. These data show that microbial signals, MyD88, and LTα all contribute to TNF-independent intestinal injury.
Collapse
Affiliation(s)
- Iulia Rusu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Elvira Mennillo
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Jared L. Bain
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Zhongmei Li
- Department of Medicine, UCSF, San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Xiaofei Sun
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Yenny Y. Rosli
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mohammad Naser
- Biological Imaging Development CoLab, UCSF, San Francisco, California, USA
| | - Zunqiu Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Philip Achacoso
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Ling Shao
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Ophir D. Klein
- Departments of Orofacial Sciences and Pediatrics, Program in Craniofacial Biology, and
| | - Alexander Marson
- Department of Medicine, UCSF, San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology and
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | | | | | | | - Averil Ma
- Department of Medicine, UCSF, San Francisco, California, USA
| | | |
Collapse
|
25
|
Wang X, Ge X, Liao W, Cao Y, Li R, Zhang F, Zhao B, Du J. ZFP36 promotes VDR mRNA degradation to facilitate cell death in oral and colonic epithelial cells. Cell Commun Signal 2021; 19:85. [PMID: 34380509 PMCID: PMC8355874 DOI: 10.1186/s12964-021-00765-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vitamin D receptor (VDR) plays a vital protective role in oral and colonic epithelial cells. Albeit we know that VDR expression is reduced in the mucosal epithelial layers of autoimmune diseases, the mechanism by which VDR is decreased remains elusive. METHODS VDR and zinc finger protein 36 (ZFP36) levels in human samples and cell lines were detected by real-time PCR, western blot and immunostaining. Luciferase report assay was used to test cis-elements in VDR gene promoter, real-time PCR was applied to measure mRNA decay and western blot was performed to evaluate protein degradation. RNA affinity chromatography assay was used to test protein-mRNA interaction. Co-immunoprecipitation was used to detect protein-protein interaction. The role of ZFP36 in AU-rich elements (AREs) in the 3' untranslated region (UTR) of VDR mRNA was also measured by luciferase report assay. RESULTS We identify ZFP36 can bind with the AREs in the 3'UTR of VDR mRNA, leading to mRNA degradation in oral and colonic epithelial cells under inflammatory circumstance. Either ZFP36 protein or AREs of VDR mRNA mutation abolishes this protein-mRNA binding process. After the key amino acid's mutation, ZFP36 fails to decrease VDR mRNA expression. We also find that VDR physically binds with Y box-binding protein 1 (YBX-1) to block YBX-1's nuclear translocation and ameliorate cell death in the presence of inflammation. CONCLUSION These findings provide insights into the cause of VDR decrease in oral and colonic epithelial cells under inflammatory condition and explain how VDR maintains cell viability in these cells. Video abstract.
Collapse
Affiliation(s)
- Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Child Dental and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Hainan Clinical Medicine Research Institution, Haikou, China
| | - Yong Cao
- Division of Gastroenterology, Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Child Dental and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
26
|
Hou S, Yang X, Yang Y, Tong Y, Chen Q, Wan B, Wei R, Lu T, Chen Y, Hu Q. Design, synthesis and biological evaluation of 1H-indazole derivatives as novel ASK1 inhibitors. Eur J Med Chem 2021; 220:113482. [PMID: 33906048 DOI: 10.1016/j.ejmech.2021.113482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1, MAP3K5), a member of the mitogen-activated protein kinase (MAPK) signaling pathway, is involved in cell survival, differentiation, stress response, and apoptosis. ASK1 kinase inhibition has emerged as a promising therapeutic strategy for inflammatory disease. A series of novel ASK1 inhibitors with 1H-indazole scaffold were designed, synthesized and evaluated for their ASK1 kinase activity and AP1-HEK293 cell inhibitory effect. Systematic structure-activity relationship (SAR) efforts led to the discovery of promising compound 15, which showed excellent in vitro ASK1 kinase activity and potent inhibitory effects on ASK1 in AP1-HEK293 cells. In a tumor necrosis factor-α (TNF-α)-induced HT-29 intestinal epithelial cell model, compound 15 exhibited a significantly protective effect on cell viability comparable to that of GS-4997; moreover, compound 15 exhibited no obvious cytotoxicity against HT-29 cells at concentrations up to 25 μM. Mechanistic research demonstrated that compound 15 suppresses phosphorylation in the ASK1-p38/JNK signaling pathway in HT-29 cells, and regulates the expression levels of apoptosis-related proteins. Altogether, these results show that compound 15 may serve as a potential candidate compound for the treatment of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Shaohua Hou
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Xiping Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yuejing Yang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yu Tong
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Quanwei Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Boheng Wan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Ran Wei
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| |
Collapse
|
27
|
Wang Y, Tao H, Huang H, Xiao Y, Wu X, Li M, Shen J, Xiao Z, Zhao Y, Du F, Ji H, Chen Y, Cho CH, Wang Y, Wang S, Wu X. The dietary supplement Rhodiola crenulata extract alleviates dextran sulfate sodium-induced colitis in mice through anti-inflammation, mediating gut barrier integrity and reshaping the gut microbiome. Food Funct 2021; 12:3142-3158. [PMID: 33729231 DOI: 10.1039/d0fo03061a] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodiola species are edible medicinal plants, which have been traditionally used in both Asia and Europe as an adaptogen, a tonic, an anti-depressant and anti-inflammatory supplement. However, whether it presents a therapeutic effect on colitis or not remains unknown. The aim of this study is to investigate the protective effect of a Rhodiola crenulata extract (RCE) on mice with DSS-induced colitis. RCE significantly alleviated the pathological abnormalities in colitic mice, including the correspondingly increased colon length, ameliorated colonic injury and reduced pro-inflammatory factors. The protective effect was similar to that of the positive control, 5-aminosalicylic acid. The DSS-induced epithelial apoptosis and maintained intestinal barrier function were attenuated by RCE through the upregulation of the level of tight junction proteins such as ZO-1 and occludin. Notably, RCE prevented gut dysbiosis in colitic mice by restoring the microbial richness and diversity, and decreasing the abundance of Proteobacteria phylum and opportunistic pathogenic Parasutterella and Staphylococcus, as well as increasing the abundance of beneficial microbes in Lactobacillus and Bifidobacterium, which were closely correlated with its protective effect against colitis. Meanwhile, chemical characterization of RCE was performed by UPLC-HR-MS to explain its material basis. A total of 63 compounds were identified, while the content of two bioactive ingredients (salidroside, 1.81%; rosavin, 0.034%) was determined.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pagnini C, Picchianti-Diamanti A, Bruzzese V, Lorenzetti R, Luchetti MM, Martin Martin LS, Pica R, Scolieri P, Scribano ML, Zampaletta C, Chimenti MS, Lagana B. Vitamin D Signaling in Gastro-Rheumatology: From Immuno-Modulation to Potential Clinical Applications. Int J Mol Sci 2021; 22:ijms22052456. [PMID: 33671090 PMCID: PMC7957646 DOI: 10.3390/ijms22052456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
In the last decades, the comprehension of the pathophysiology of bone metabolism and its interconnections with multiple homeostatic processes has been consistently expanded. The branch of osteoimmunology specifically investigating the link between bone and immune system has been developed. Among molecular mediators potentially relevant in this field, vitamin D has been recently pointed out, and abnormalities of the vitamin D axis have been described in both in vitro and in vivo models of inflammatory bowel diseases (IBD) and arthritis. Furthermore, vitamin D deficiency has been reported in patients affected by IBD and chronic inflammatory arthritis, thus suggesting the intriguing possibility of impacting the disease activity by the administration vitamin D supplements. In the present review, the complex interwoven link between vitamin D signaling, gut barrier integrity, microbiota composition, and the immune system was examined. Potential clinical application exploiting vitamin D pathway in the context of IBD and arthritis is presented and critically discussed. A more detailed comprehension of the vitamin D effects and interactions at molecular level would allow one to achieve a novel therapeutic approach in gastro-rheumatologic inflammatory diseases through the design of specific trials and the optimization of treatment protocols.
Collapse
Affiliation(s)
- Cristiano Pagnini
- Department of Gastroenterology and Digestive Endoscopy, S. Giovanni Addolorata Hospital, 00184 Rome, Italy;
| | - Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Sapienza University, 00189 Rome, Italy;
- Correspondence:
| | - Vincenzo Bruzzese
- Department of Internal Medicine, Rheumatology and Gastroenterology, Nuovo Regina Margherita Hospital, 00153 Rome, Italy; (V.B.); (R.L.); (P.S.)
| | - Roberto Lorenzetti
- Department of Internal Medicine, Rheumatology and Gastroenterology, Nuovo Regina Margherita Hospital, 00153 Rome, Italy; (V.B.); (R.L.); (P.S.)
| | - Michele Maria Luchetti
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | | | - Roberta Pica
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, 00157 Rome, Italy;
| | - Palma Scolieri
- Department of Internal Medicine, Rheumatology and Gastroenterology, Nuovo Regina Margherita Hospital, 00153 Rome, Italy; (V.B.); (R.L.); (P.S.)
| | | | | | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Medicina dei Sistemi, University of Rome Tor Vergata, 00187 Rome, Italy;
| | - Bruno Lagana
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Sapienza University, 00189 Rome, Italy;
| |
Collapse
|
29
|
Liu H, Li T, Zhong S, Yu M, Huang W. Intestinal epithelial cells related lncRNA and mRNA expression profiles in dextran sulphate sodium-induced colitis. J Cell Mol Med 2021; 25:1060-1073. [PMID: 33300279 PMCID: PMC7812259 DOI: 10.1111/jcmm.16174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
Intestinal epithelial barrier damage caused by intestinal epithelial cells (IECs) dysfunction plays a crucial role in the pathogenesis and development of inflammatory bowel disease (IBD). Recently, some studies have suggested the emerging role of long non-coding RNAs (lncRNAs) in IBD. The aim of this study was to reveal lncRNAs and mRNA expression profiles in IECs from a mouse model of colitis and to expand our understanding in the intestinal epithelial barrier regulation. IECs from the colons of wild-type mice and dextran sulphate sodium (DSS)-induced mice were isolated for high-throughput RNA-sequencing. A total of 254 up-regulated and 1013 down-regulated mRNAs and 542 up-regulated and 766 down-regulated lncRNAs were detected in the DSS group compared with the Control group. Four mRNAs and six lncRNAs were validated by real-time quantitative PCR. Function analysis showed that dysregulated mRNAs participated in TLR7 signalling pathway, IL-1 receptor activity, BMP receptor binding and IL-17 signalling pathway. Furthermore, the possibility of indirect interactions between differentially expressed mRNAs and lncRNAs was illustrated by the competing endogenous RNA (ceRNA) network. LncRNA ENSMUST00000128026 was predicted to bind to mmu-miR-6899-3p, regulating Dnmbp expression. LncRNA NONMMUT143162.1 was predicted to competitively bind to mmu-miR-6899-3p, regulating Tnip3 expression. Finally, the protein-protein interaction (PPI) network analysis was constructed with 311 nodes and 563 edges. And the highest connectivity degrees were Mmp9, Fpr2 and Ccl3. These results provide novel insights into the functions of lncRNAs and mRNAs involved in the regulation of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Huan Liu
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Teming Li
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shizhen Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Min Yu
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Wenhua Huang
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Pathological Diagnosis and Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
30
|
Roca J, Camacho H, Aguilera A, Guillen I, Delgado Y, Bermudez Y, Bacardí D, Suarez Alba J, Palenzuela D.. mRNA level of genes related to apoptosis in a colitis model in rats treated with epidermal growth factor. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.04.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The deregulation of cell death pathways in intestinal epithelial cells could involve the pathogenesis of Inflammatory Bowel Diseases. An increase in apoptosis has been observed in patients who have Ulcerative Colitis. Previous experiments have demonstrated the efficacy of EGF in the healing of ulcerative Colitis and other gastrointestinal mucosa lesions. However, there are not many reports on the molecular characterization of EGF's positive effect on the gastrointestinal mucosa. This work aims to deepen the transcriptional changes induced by EGF in the intestinal epithelium in a colitis model in rats. Samples from the distal colon of an EGF-treated colitis model were collect, followed by an analysis by quantitative PCR of the mRNA of 23 genes related to apoptosis. 57% of the genes analyzed presented statistically significant changes in their mRNA level. Of these, two anti-apoptotic genes increased their mRNA level, while the genes that decreased their mRNA level were pro-apoptotic genes and genes related to the TNFα signal transmission path. Changes in the transcription profile of the genes analyzed could suggest a reduction of apoptosis, which could favor the integrity of the Intestinal Epithelium
Collapse
Affiliation(s)
- Juan Roca
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Hanlet Camacho
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Ana Aguilera
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Isabel Guillen
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Yuneisy Delgado
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Yiliam Bermudez
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Dania Bacardí
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | | | | |
Collapse
|
31
|
Sato N, Garcia-Castillo V, Yuzawa M, Islam MA, Albarracin L, Tomokiyo M, Ikeda-Ohtsubo W, Garcia-Cancino A, Takahashi H, Villena J, Kitazawa H. Immunobiotic Lactobacillus jensenii TL2937 Alleviates Dextran Sodium Sulfate-Induced Colitis by Differentially Modulating the Transcriptomic Response of Intestinal Epithelial Cells. Front Immunol 2020; 11:2174. [PMID: 33042131 PMCID: PMC7527445 DOI: 10.3389/fimmu.2020.02174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Immunobiotics have emerged as a promising intervention to alleviate intestinal damage in inflammatory bowel disease (IBD). However, the beneficial properties of immunobiotics are strain dependent and, therefore, each strain has to be evaluated in order to demonstrate its potential application in IBD. Our previous in vitro and in vivo studies demonstrated that Lactobacillus jensenii TL2937 attenuates gut acute inflammatory response triggered by Toll-like receptor 4 activation. However, its effect on colitis has not been evaluated before. In this work, we studied whether the TL2937 strain was able to protect against the development of colitis in a dextran sodium sulfate (DSS)-induced mouse model and we delved into the mechanisms of action by evaluating the effect of the immunobiotic bacteria on the transcriptomic response of DSS-challenged intestinal epithelial cells. L. jensenii TL2937 was administered to adult BALB/c mice before the induction of colitis by the administration of DSS. Colitis and the associated inflammatory response were evaluated for 14 days. Mice fed with L. jensenii TL2937 had lower disease activity index and alterations of colon length when compared to control mice. Reduced myeloperoxidase activity, lower production of pro-inflammatory (TNF-α, IL-1, CXCL1, MCP-1, IL-15, and IL-17), and higher levels of immunoregulatory (IL-10 and IL-27) cytokines were found in the colon of TL2937-treated mice. In addition, the treatment of porcine intestinal epithelial (PIE) cells with L. jensenii TL2937 before the challenge with DSS differentially regulated the activation of the JNK pathway, leading to an increase in epithelial cell integrity and to a differential immunotranscriptomic response. TL2937-treated PIE cells had a significant reduction in the expression of inflammatory cytokines (TNF-α, IL-1α, IL-1β, IL-6, IL-15), chemokines (CCL2, CCL4, CCL8, CXCL4, CXCL5, CXCL9, CXCL10), adhesion molecules (SELE, SELL, EPCAM), and other immune factors (NCF1, NCF2, NOS2, SAA2) when compared to control cells after the challenge with DSS. The findings of this work indicate that (a) L. jensenii TL2937 is able to alleviate DSS-induced colitis suggesting a potential novel application for this immunobiotic strain, (b) the modulation of the transcriptomic response of intestinal epithelial cells would play a key role in the beneficial effects of the TL2937 strain on colitis, and (c) the in vitro PIE cell immunoassay system could be of value for the screening and selection of new immunobiotic strains for their application in IBD.
Collapse
Affiliation(s)
- Nana Sato
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Valeria Garcia-Castillo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Mao Yuzawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Md. Aminul Islam
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Immunobiotechnology, Reference Center for Lactobacilli (CERELA-National Council for Scientific and Technological Research), San Miguel de Tucumán, Argentina
- Laboratory of Computing Science, Faculty of Exact Sciences and Technology, Tucuman University, San Miguel de Tucumán, Argentina
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Apolinaria Garcia-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
32
|
Kellermann L, Jensen KB, Bergenheim F, Gubatan J, Chou ND, Moss A, Nielsen OH. Mucosal vitamin D signaling in inflammatory bowel disease. Autoimmun Rev 2020; 19:102672. [PMID: 32942038 DOI: 10.1016/j.autrev.2020.102672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Epidemiological studies have identified vitamin D (25(OH)D) deficiency to be highly prevalent among patients with inflammatory bowel disease (IBD), and low serum levels correlate with a higher disease activity and a more complicated disease course. The link to IBD pathogenesis has been subject of investigations, primarily due to the distinct immunological functions of vitamin D signaling, including anti-inflammatory and anti-fibrotic actions. Vitamin D is a pleiotropic hormone that executes its actions on cells through the vitamin D receptor (VDR). A leaky gut, i.e. an insufficient intestinal epithelial barrier, is thought to be central for the pathogenesis of IBD, and emerging data support the concept that vitamin D/VDR signaling in intestinal epithelial cells (IECs) has an important role in controlling barrier integrity. Here we review the latest evidence on how vitamin D promotes the interplay between IECs, the gut microbiome, and immune cells and thereby regulate the intestinal immune response. On the cellular level, vitamin D signaling regulates tight junctional complexes, apoptosis, and autophagy, leading to increased epithelial barrier integrity, and promotes expression of antimicrobial peptides as part of its immunomodulating functions. Further, intestinal VDR expression is inversely correlated with the severity of inflammation in patients with IBD, which might compromise the positive effects of vitamin D signaling in patients with flaring disease. Efforts to reveal the role of vitamin D in the pathophysiology of IBD will pave the road for the invention of more rational treatment strategies of this debilitating disease in the future.
Collapse
Affiliation(s)
- Lauge Kellermann
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark.
| | - Kim Bak Jensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Fredrik Bergenheim
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Dept. of Medicine, Stanford University School of Medicine, Redwood City, CA, USA
| | - Naomi D Chou
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alan Moss
- Boston Medical Center & Boston University, Boston, MA, USA
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
33
|
Cell death in the gut epithelium and implications for chronic inflammation. Nat Rev Gastroenterol Hepatol 2020; 17:543-556. [PMID: 32651553 DOI: 10.1038/s41575-020-0326-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. As the transit-amplifying progenitors of the intestinal epithelium generate ~300 cells per crypt every day, regulated cell death and sloughing at the apical surface keeps the overall cell number in check. An aberrant increase in the rate of intestinal epithelial cell (IEC) death underlies instances of extensive epithelial erosion, which is characteristic of several intestinal diseases such as inflammatory bowel disease and infectious colitis. Emerging evidence points to a crucial role of necroptosis, autophagy and pyroptosis as important modes of programmed cell death in the intestine in addition to apoptosis. The mode of cell death affects tissue restitution responses and ultimately the long-term risks of intestinal fibrosis and colorectal cancer. A vicious cycle of intestinal barrier breach, misregulated cell death and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. This Review discusses the underlying molecular and cellular underpinnings that control programmed cell death in IECs, which emerge during intestinal diseases. Translational aspects of cell death modulation for the development of novel therapeutic alternatives for inflammatory bowel diseases and colorectal cancer are also discussed.
Collapse
|
34
|
Sato N, Yuzawa M, Aminul MI, Tomokiyo M, Albarracin L, Garcia-Castillo V, Ideka-Ohtsubo W, Iwabuchi N, Xiao JZ, Garcia-Cancino A, Villena J, Kitazawa H. Evaluation of Porcine Intestinal Epitheliocytes as an In vitro Immunoassay System for the Selection of Probiotic Bifidobacteria to Alleviate Inflammatory Bowel Disease. Probiotics Antimicrob Proteins 2020; 13:824-836. [PMID: 32779098 DOI: 10.1007/s12602-020-09694-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of in vitro systems that allow efficient selection of probiotic candidates with immunomodulatory properties could significantly minimize the use of experimental animals. In this work, we generated an in vitro immunoassay system based on porcine intestinal epithelial (PIE) cells and dextran sodium sulfate (DSS) administration that could be useful for the selection and characterization of potential probiotic strains to be used in inflammatory bowel disease (IBD) patients. Our strategy was based on two fundamental pillars: on the one hand, the capacity of PIE cells to create a monolayer by attaching to neighboring cells and efficiently mount inflammatory responses and, on the other hand, the use of two probiotic bifidobacteria strains that have been characterized in terms of their immunomodulatory capacities, particularly in mouse IBD models and patients. Our results demonstrated that DSS administration can alter the epithelial barrier created in vitro by PIE cells and induce a potent inflammatory response, characterized by increases in the expression levels of several inflammatory factors including TNF-α, IL-1α, CCL4, CCL8, CCL11, CXCL5, CXCL9, CXCL10, SELL, SELE, EPCAM, VCAM, NCF2, and SAA2. In addition, we demonstrated that Bifidobacterium breve M-16V and B. longum BB536 are able to regulate the C-jun N-terminal kinase (JNK) intracellular signalling pathway, reducing the DSS-induced alterations of the in vitro epithelial barrier and differentially regulating the inflammatory response in a strain-dependent fashion. The good correlation between our in vitro findings in PIE cells and previous studies in animal models and IBD patients shows the potential value of our system to select new probiotic candidates in an efficient way.
Collapse
Affiliation(s)
- Nana Sato
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mao Yuzawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Md Islam Aminul
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina.,Laboratory of Computing Science, Faculty of Exact Sciences and Technology, Tucuman University, San Miguel de Tucuman, Tucuman, Argentina
| | - Valeria Garcia-Castillo
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Wakako Ideka-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Noriyuki Iwabuchi
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Jin-Zhong Xiao
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Apolinaria Garcia-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan. .,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina.
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan. .,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
35
|
Ozkul C, Ruiz VE, Battaglia T, Xu J, Roubaud-Baudron C, Cadwell K, Perez-Perez GI, Blaser MJ. A single early-in-life antibiotic course increases susceptibility to DSS-induced colitis. Genome Med 2020; 12:65. [PMID: 32711559 PMCID: PMC7382806 DOI: 10.1186/s13073-020-00764-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background There is increasing evidence that the intestinal microbiota plays a crucial role in the maturation of the immune system and the prevention of diseases during childhood. Early-life short-course antibiotic use may affect the progression of subsequent disease conditions by changing both host microbiota and immunologic development. Epidemiologic studies provide evidence that early-life antibiotic exposures predispose to inflammatory bowel disease (IBD). Methods By using a murine model of dextran sodium sulfate (DSS)-induced colitis, we evaluated the effect on disease outcomes of early-life pulsed antibiotic treatment (PAT) using tylosin, a macrolide and amoxicillin, a beta-lactam. We evaluated microbiota effects at the 16S rRNA gene level, and intestinal T cells by flow cytometry. Antibiotic-perturbed or control microbiota were transferred to pups that then were challenged with DSS. Results A single PAT course early-in-life exacerbated later DSS-induced colitis by both perturbing the microbial community and altering mucosal immune cell composition. By conventionalizing germ-free mice with either antibiotic-perturbed or control microbiota obtained 40 days after the challenge ended, we showed the transferrable and direct effect of the still-perturbed microbiota on colitis severity in the DSS model. Conclusions The findings in this experimental model provide evidence that early-life microbiota perturbation may increase risk of colitis later in life.
Collapse
Affiliation(s)
- Ceren Ozkul
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey.,Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Victoria E Ruiz
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA.,Department of Biology, St. Francis College, Brooklyn, New York, USA
| | - Thomas Battaglia
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Joseph Xu
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Claire Roubaud-Baudron
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA.,CHU Bordeaux, Pôle de Gérontologie Clinique, Bordeaux, France.,INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, F-33000, Bordeaux, France
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY, 10016, USA
| | - Guillermo I Perez-Perez
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Martin J Blaser
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA. .,Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
36
|
Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat Rev Rheumatol 2020; 16:496-513. [PMID: 32641743 DOI: 10.1038/s41584-020-0455-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
Cell death is a vital process that occurs in billions of cells in the human body every day. This process helps maintain tissue homeostasis, supports recovery from acute injury, deals with infection and regulates immunity. Cell death can also provoke inflammatory responses, and lytic forms of cell death can incite inflammation. Loss of cell membrane integrity leads to the uncontrolled release of damage-associated molecular patterns (DAMPs), which are normally sequestered inside cells. Such DAMPs increase local inflammation and promote the production of cytokines and chemokines that modulate the innate immune response. Cell death can be both a consequence and a cause of inflammation, which can be difficult to distinguish in chronic diseases. Despite this caveat, excessive or poorly regulated cell death is increasingly recognized as a contributor to chronic inflammation in rheumatic disease and other inflammatory conditions. Drugs that inhibit cell death could, therefore, be used therapeutically for the treatment of these diseases, and programmes to develop such inhibitors are already underway. In this Review, we outline pathways for the major cell death programmes (apoptosis, necroptosis, pyroptosis and NETosis) and their potential roles in chronic inflammation. We also discuss current and developing therapies that target the cell death machinery.
Collapse
|
37
|
Wang W, Zhang F, Li X, Luo J, Sun Y, Wu J, Li M, Wen Y, Liang H, Wang K, Niu J, Miao Y. Heat shock transcription factor 2 inhibits intestinal epithelial cell apoptosis through the mitochondrial pathway in ulcerative colitis. Biochem Biophys Res Commun 2020; 527:173-179. [PMID: 32446363 DOI: 10.1016/j.bbrc.2020.04.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022]
Abstract
UC is a chronic inflammatory disease of the colonic mucosa and lacks effective treatments because of unclear pathogenesis. Excessive apoptosis of IECs damages the intestinal epithelial barrier and is involved in the progression of UC, but the mechanism is unknown. HSPs are important in maintaining homeostasis and regulate apoptosis through the mitochondrial pathway. In our previous studies, HSF2, an important regulator of HSPs, was highly expressed in UC patients and negatively correlated with inflammation in mice and IECs. Therefore, we hypothesized that HSF2 may protect against intestinal mucositis by regulating the apoptosis of IECs. In this study, a DSS-induced colitis model of hsf2-/- mice was used to explore the relationship between HSF2 and apoptosis in IECs for the first time. The expression of HSF2 increased in the WT + DSS group compared with that in the WT + H2O group. Moreover, the extent of apoptosis was more severe in the KO + DSS group than in the WT + DSS group. The results showed that HSF2 was negatively correlated with apoptosis in vivo. The expression of HSF2 in Caco-2 cells was changed by lentiviral transfection, and the expression of Bax, cytoplasmic Cyto-C, Cleaved Caspase-9 and Cleaved Caspase-3 were negatively correlated with the different levels of HSF2. These results suggest that HSF2 negatively regulates apoptosis of IECs through the mitochondrial pathway. This may be one of the potential mechanisms to explain the protective role of HSF2 in UC.
Collapse
Affiliation(s)
- Wen Wang
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China
| | - Fengrui Zhang
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China
| | - Xiaoyu Li
- Department of Respiration, The First Hospital of Changsha, Changsha, Hunan, 410005, China
| | - Juan Luo
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China
| | - Yang Sun
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China
| | - Jing Wu
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China
| | - Maojuan Li
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China
| | - Yunling Wen
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China
| | - Hao Liang
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China
| | - Kunhua Wang
- Department of General Surgery, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China
| | - Junkun Niu
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China.
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Diseases, Kunming, Yunnan, 650032, China.
| |
Collapse
|
38
|
Selenium-Enriched Yeast Alleviates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5490743. [PMID: 32256952 PMCID: PMC7106930 DOI: 10.1155/2020/5490743] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
To explore the effect of selenium-enriched yeast (SeY) on intestinal barrier functions in weaned pigs upon oxidative stress, a 2 × 2 factorial design was utilized and thirty-two pigs were randomly assigned into four groups. Pigs with or without exposure to oxidative stress (diquat challenge) were fed with a basal diet or a SeY-containing diet. The trial lasted for 21 days, and result showed that SeY supplementation attenuated body-weight reduction and significantly decreased the serum concentrations of diamine oxidase (DAO) and D-lactic acid in pigs upon diquat challenge (P < 0.05). Diquat challenge decreased the villus height and the ratio of villus height to crypt depth (V/C) in the jejunum and ileum (P < 0.05). However, SeY supplementation not only elevated the villus height and the ratio of V/C (P < 0.05) but also improved the distribution and abundance of tight-junction protein ZO-1 in the jejunum epithelium. Interestingly, SeY supplementation acutely decreased the total apoptosis rate of intestinal epithelial cells in pigs upon diquat challenge (P < 0.05). Moreover, SeY elevated the content of antioxidant molecules such as glutathione peroxidase (GSH-Px) and catalase (CAT) but significantly decreased the content of malondialdehyde (MDA) in the intestinal mucosa (P < 0.05). Importantly, SeY elevated the expression levels of critical functional genes such as the nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), sodium/glucose cotransporter 1 (SGLT1), and B-cell lymphoma-2 (BCL-2) in the intestinal mucosa upon diquat challenge (P < 0.05). Moreover, the expression of caspase-3 was downregulated by SeY in the duodenum and jejunum mucosa (P < 0.05). These results indicated that SeY attenuated oxidative stress-induced intestinal mucosa disruption, which was associated with elevated mucosal antioxidative capacity and improved intestinal barrier functions.
Collapse
|
39
|
Inflammatory bowel disease-associated ubiquitin ligase RNF183 promotes lysosomal degradation of DR5 and TRAIL-induced caspase activation. Sci Rep 2019; 9:20301. [PMID: 31889078 PMCID: PMC6937276 DOI: 10.1038/s41598-019-56748-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
RNF183 is a ubiquitin ligase containing RING-finger and transmembrane domains, and its expression levels are increased in patients with inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, and in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Here, we further demonstrate that RNF183 was induced to a greater degree in the dextran sulfate sodium (DSS)-treated IBD model at a very early stage than were inflammatory cytokines. In addition, fluorescence-activated cell sorting and polymerase chain reaction analysis revealed that RNF183 was specifically expressed in epithelial cells of DSS-treated mice, which suggested that increased levels of RNF183 do not result from the accumulation of immune cells. Furthermore, we identified death receptor 5 (DR5), a member of tumour necrosis factor (TNF)-receptor superfamily, as a substrate of RNF183. RNF183 mediated K63-linked ubiquitination and lysosomal degradation of DR5. DR5 promotes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis signal through interaction with caspase-8. Inhibition of RNF183 expression was found to suppress TRAIL-induced activation of caspase-8 and caspase-3. Thus, RNF183 promoted not only DR5 transport to lysosomes but also TRAIL-induced caspase activation and apoptosis. Together, our results provide new insights into potential roles of RNF183 in DR5-mediated caspase activation in IBD pathogenesis.
Collapse
|
40
|
Shin SA, Moon SY, Park D, Park JB, Lee CS. Apoptotic cell clearance in the tumor microenvironment: a potential cancer therapeutic target. Arch Pharm Res 2019; 42:658-671. [PMID: 31243646 DOI: 10.1007/s12272-019-01169-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Millions of cells in the human body undergo apoptosis not only under normal physiological conditions but also under pathological conditions such as infection or other diseases related to acute tissue injury. Swift apoptotic cell clearance is essential for tissue homeostasis. Defective clearance of dead cells is linked to pathogenesis of diseases such as inflammatory diseases, atherosclerosis, neurological disease, and cancer. Significance of apoptotic cell clearance has been emerging as an interesting field for disease treatment. Efficient apoptotic cell clearance plays an important role in reducing inflammation through the suppression of inappropriate inflammatory responses under healthy and diseased conditions. However, apoptotic cell clearance related to cancer pathogenesis is more complex in tumor microenvironments. Chronic inflammation resulting from the failure of apoptotic cell clearance can contribute to tumor progression. Conversely, tumor cells can exploit the anti-inflammatory effect of apoptotic cell clearance to generate an immunosuppressive tumor microenvironment. In this review, focus is on the current understanding of apoptotic cell clearance in the tumor microenvironment. Furthermore, we discuss how signaling molecules (PtdSer and PtdSer recognition receptor) mediating apoptotic cell clearance are aberrantly expressed in the tumor microenvironment and their current development state as potential therapeutic targets for clinical cancer therapy.
Collapse
Affiliation(s)
- Seong-Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sun Young Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Daeho Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jong Bae Park
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.,Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
41
|
Jozawa H, Inoue-Yamauchi A, Arimura S, Yamanashi Y. Loss of C/EBPδ enhances apoptosis of intestinal epithelial cells and exacerbates experimental colitis in mice. Genes Cells 2019; 24:619-626. [PMID: 31233664 DOI: 10.1111/gtc.12711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/08/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic inflammation involving intestinal tissue damage, which include ulcerative colitis and Crohn's disease as major entities. Accumulating evidence suggests that excessive apoptosis of intestinal epithelial cells (IECs) contributes to the development of IBD. It was recently reported that the transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) is involved in inflammation; however, its role in colitis remains unclear. Here, we found that C/EBPδ knockout mice showed enhanced susceptibility to dextran sodium sulfate (DSS)-induced colitis, a mouse model of IBD, which was associated with severe colonic inflammation and mucosal damage with increased IEC apoptosis. Additionally, DSS stimulation induced increased expression of pro-apoptotic BH3-only protein Bim in the colon of C/EBPδ knockout mice. Collectively, our findings demonstrate that C/EBPδ plays an essential role in suppressing DSS-induced colitis, likely by attenuating IEC apoptosis.
Collapse
Affiliation(s)
- Hiroki Jozawa
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akane Inoue-Yamauchi
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sumimasa Arimura
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Yamanashi
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Garcia-Carbonell R, Yao SJ, Das S, Guma M. Dysregulation of Intestinal Epithelial Cell RIPK Pathways Promotes Chronic Inflammation in the IBD Gut. Front Immunol 2019; 10:1094. [PMID: 31164887 PMCID: PMC6536010 DOI: 10.3389/fimmu.2019.01094] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are common intestinal bowel diseases (IBD) characterized by intestinal epithelial injury including extensive epithelial cell death, mucosal erosion, ulceration, and crypt abscess formation. Several factors including activated signaling pathways, microbial dysbiosis, and immune deregulation contribute to disease progression. Although most research efforts to date have focused on immune cells, it is becoming increasingly clear that intestinal epithelial cells (IEC) are important players in IBD pathogenesis. Aberrant or exacerbated responses to how IEC sense IBD-associated microbes, respond to TNF stimulation, and regenerate and heal the injured mucosa are critical to the integrity of the intestinal barrier. The role of several genes and pathways in which single nucleotide polymorphisms (SNP) showed strong association with IBD has recently been studied in the context of IEC. In patients with IBD, it has been shown that the expression of specific dysregulated genes in IECs plays an important role in TNF-induced cell death and microbial sensing. Among them, the NF-κB pathway and its target gene TNFAIP3 promote TNF-induced and receptor interacting protein kinase (RIPK1)-dependent intestinal epithelial cell death. On the other hand, RIPK2 functions as a key signaling protein in host defense responses induced by activation of the cytosolic microbial sensors nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1 and NOD2). The RIPK2-mediated signaling pathway leads to the activation of NF-κB and MAP kinases that induce autophagy following infection. This article will review these dysregulated RIPK pathways in IEC and their role in promoting chronic inflammation. It will also highlight future research directions and therapeutic approaches involving RIPKs in IBD.
Collapse
Affiliation(s)
| | - Shih-Jing Yao
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
43
|
Chae JM, Chang MH, Heo W, Cho HT, Lee DH, Hwang BB, Kim JW, Yoon SM, Yang S, Lee JH, Kim YJ. LB-9, Novel Probiotic Lactic Acid Bacteria, Ameliorates Dextran Sodium Sulfate-Induced Colitis in Mice by Inhibiting TNF-α-Mediated Apoptosis of Intestinal Epithelial Cells. J Med Food 2019; 22:271-276. [DOI: 10.1089/jmf.2018.4236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jung Min Chae
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Moon Han Chang
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Wan Heo
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Hyung Taek Cho
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Dong Hun Lee
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Bo Byeol Hwang
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Jin Woo Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | | | | | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Both apoptotic and nonapoptotic cell extrusion preserve the barrier functions of epithelia. Live cell extrusion is the paradigm for homeostatic renewal of intestinal epithelial cells (IEC). By extension, as extruded cells are not apoptotic, this form of cell shedding is thought to be largely ignored by lamina propria phagocytes and without immune consequence. RECENT FINDINGS Visualization of apoptotic IEC inside distinct subsets of intestinal phagocytes during homeostasis has highlighted apoptosis as a normal component of the natural turnover of the intestinal epithelium. Analysis of phagocytes with or without apoptotic IEC corpses has shown how apoptotic IEC constrain inflammatory pathways within phagocytes and induce immunosuppressive regulatory CD4 T-cell differentiation. Many of the genes involved overlap with susceptibility genes for inflammatory bowel disease (IBD). SUMMARY Excessive IEC death and loss-of-barrier function is characteristic of IBD. As regulatory and tolerogenic mechanisms are broken in IBD, a molecular understanding of the precise triggers and modes of IEC death as well as their consequences on intestinal inflammation is necessary. This characterization should guide new therapies that restore homeostatic apoptosis, along with its associated programs of immune tolerance and immunosuppression, to achieve mucosal healing and long-term remission.
Collapse
Affiliation(s)
- J. Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
45
|
Cardiotrophin-1 attenuates experimental colitis in mice. Clin Sci (Lond) 2018; 132:985-1001. [PMID: 29572384 DOI: 10.1042/cs20171513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Cardiotrophin-1 (CT-1) holds potent anti-inflammatory, cytoprotective, and anti-apoptotic effects in the liver, kidneys, and heart. In the present study, the role of endogenous CT-1 and the effect of exogenous CT-1 were evaluated in experimental ulcerative colitis. Colitis was induced in CT-1 knockout and wild-type (WT) mice by administration of dextran sulphate sodium (DSS) in the drinking water during 7 days. CT-1 knockout mice showed higher colon damage and disease severity than WT mice. In addition, CT-1 (200 µg/kg/day, iv) or vehicle (as control) was administered during 3 days to WT, colitic mice, starting on day 4 after initiation of DSS. Disease activity index (DAI), inflammatory markers (tumor necrosis factor α (TNF-α), INFγ, IL-17, IL-10, inducible nitric oxide synthase (iNOS)), colon damage, apoptosis (cleaved caspase 3), nuclear factor κB (NFκB) and STAT-3 activation, and bacterial translocation were measured. Compared with mice treated with DSS, mice also treated with exogenous CT-1 showed lower colon damage, DAI, plasma levels of TNFα, colon expression of TNF-α, INFγ, IL-17, iNOS and cleaved caspase 3, higher NFκB and signal transducer and activator of transcription 3 (STAT3) pathways activation, and absence of bacterial translocation. We conclude that endogenous CT-1 plays a role in the defense and repair response of the colon against ulcerative lesions through an anti-inflammatory and anti-apoptotic effect. Supplementation with exogenous CT-1 ameliorates disease symptoms, which opens a potentially new therapeutic strategy for ulcerative colitis.
Collapse
|
46
|
He L, Liu T, Shi Y, Tian F, Hu H, Deb DK, Chen Y, Bissonnette M, Li YC. Gut Epithelial Vitamin D Receptor Regulates Microbiota-Dependent Mucosal Inflammation by Suppressing Intestinal Epithelial Cell Apoptosis. Endocrinology 2018; 159:967-979. [PMID: 29228157 PMCID: PMC5788002 DOI: 10.1210/en.2017-00748] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
Recent studies show that colonic vitamin D receptor (VDR) signaling protects the mucosal epithelial barrier and suppresses colonic inflammation, but the underlying molecular mechanism remains to be fully understood. To investigate the implication of colonic VDR downregulation seen in patients with inflammatory bowel disease, we assessed the effect of gut epithelial VDR deletion on colonic inflammatory responses in an experimental colitis model. In a 2,4,6-trinitrobenzenesulfonic acid-induced colitis model, mice carrying VDR deletion in gut epithelial cells [VDRflox/flox (VDRf/f);Villin-Cre or VDRΔIEC] or in colonic epithelial cells (VDRf/f;CDX2-Cre or VDRΔCEC) developed more severe clinical colitis than VDRf/f control mice, characterized by more robust T-helper (TH)1 and TH17 responses, with greater increases in mucosal interferon (IFN)-γ+, interleukin (IL)-17+, and IFN-γ+IL-17+ T cells. Accompanying the severe mucosal inflammation was more profound colonic epithelial cell apoptosis in the mutant mice. Treatment with caspase inhibitor Q-VD-OPh dramatically reduced colitis severity and attenuated TH1 and TH17 responses in VDRΔCEC mice. The blockade of cell apoptosis also prevented the increase in mucosal CD11b+CD103+ dendritic cells (DCs), known to be critical for TH17-cell activation. Moreover, depletion of gut commensal bacteria with antibiotics eliminated the robust TH1 and TH17 responses and CD11b+CD103+ DC induction. Taken together, these observations demonstrate that gut epithelial VDR deletion aggravates epithelial cell apoptosis, resulting in increases in mucosal barrier permeability. Consequently, invading luminal bacteria activate CD11b+CD103+ DCs, which promote mucosal TH1 and TH17 responses. Therefore, gut epithelial VDR signaling controls mucosal inflammation by suppressing epithelial cell apoptosis.
Collapse
Affiliation(s)
- Lei He
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
| | - Tianjing Liu
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- Department of Pediatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Yongyan Shi
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- Department of Pediatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Feng Tian
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- Department of Gastroenterology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Huiyuan Hu
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- College of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Dilip K. Deb
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
| | - Yinyin Chen
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
- Department of Nephrology, Hunan Provincial People’s Hospital, Changsha, Hunan 410005, China
| | - Marc Bissonnette
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
47
|
Chen WY, Wang M, Zhang J, Barve SS, McClain CJ, Joshi-Barve S. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2686-2697. [PMID: 28935573 PMCID: PMC5818631 DOI: 10.1016/j.ajpath.2017.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/20/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease.
Collapse
Affiliation(s)
- Wei-Yang Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky
| | - Min Wang
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky
| | - Jingwen Zhang
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky
| | - Shirish S Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky
| | - Craig J McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky; Department of Medicine, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - Swati Joshi-Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
48
|
Loganes C, Lega S, Bramuzzo M, Vecchi Brumatti L, Piscianz E, Valencic E, Tommasini A, Marcuzzi A. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage. Nutrients 2017; 9:578. [PMID: 28587282 PMCID: PMC5490557 DOI: 10.3390/nu9060578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Claudia Loganes
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Sara Lega
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| | - Matteo Bramuzzo
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Liza Vecchi Brumatti
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Elisa Piscianz
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| | - Erica Valencic
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Alberto Tommasini
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Annalisa Marcuzzi
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| |
Collapse
|
49
|
Cha H, Lee S, Hwan Kim S, Kim H, Lee DS, Lee HS, Lee JH, Park JW. Increased susceptibility of IDH2-deficient mice to dextran sodium sulfate-induced colitis. Redox Biol 2017; 13:32-38. [PMID: 28554049 PMCID: PMC5447514 DOI: 10.1016/j.redox.2017.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic, relapsing, immunological, inflammatory disorders of the gastrointestinal tract including ulcerative colitis (UC) and Crohn's disease (CD). It has been reported that UC, which is studied using a dextran sodium sulfate (DSS)-induced colitis model, is associated with the production of reactive oxygen species (ROS) and the apoptosis of intestine epithelial cells (IEC). Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) has been reported as an essential enzyme in the mitochondrial antioxidant system via generation of NADPH. Therefore, we evaluated the role of IDH2 in DSS-induced colitis using IDH2-deficient (IDH2-/-) mice. We observed that DSS-induced colitis in IDH2-/- mice was more severe than that in wild-type IDH2+/+ mice. Our results also suggest that IDH2 deficiency exacerbates PUMA-mediated apoptosis, resulting from NF-κB activation regulated by histone deacetylase (HDAC) activity. In addition, DSS-induced colitis is ameliorated by an antioxidant N-acetylcysteine (NAC) through attenuation of oxidative stress, resulting from deficiency of the IDH2 gene. In conclusion, deficiency of IDH2 leads to increased mitochondrial ROS levels, which inhibits HDAC activity, and the activation of NF-κB via acetylation is enhanced by attenuated HDAC activity, which causes PUMA-mediated apoptosis of IEC in DSS-induced colitis. The present study supported the rationale for targeting IDH2 as an important cancer chemoprevention strategy, particularly in the prevention of colorectal cancer. DSS-induced colitis model is associated with the production of ROS. IDH2 is an essential enzyme in the mitochondrial antioxidant system. IDH2-deficient mice have an increased susceptibility to DSS-induced colitis. IDH2 deficiency exacerbates apoptosis through the PUMA/NF-κB/HDAC axis. Protection of NAC against DSS-induced colitis IDH2-deficient mice was observed.
Collapse
Affiliation(s)
- Hanvit Cha
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea
| | - Seoyoon Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea
| | - Sung Hwan Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea
| | - Hyunjin Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea.
| | - Jeen-Woo Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea.
| |
Collapse
|
50
|
Gioacchini G, Rossi G, Carnevali O. Host-probiotic interaction: new insight into the role of the endocannabinoid system by in vivo and ex vivo approaches. Sci Rep 2017; 7:1261. [PMID: 28455493 PMCID: PMC5430882 DOI: 10.1038/s41598-017-01322-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system plays an important role in regulating inflammation in several chronic or anomalous gut inflammatory diseases. In vivo and ex vivo studies showed that 30 days treatment with a probiotic mix activated the endocannabinoid system in zebrafish. These results highlight the potential of this probiotic mixture to regulate immune cell function, by inducing gene expression of toll-like receptors and other immune related molecules. Furthermore, TUNEL assay showed a decrease in the number of apoptotic cells, and this finding was supported by a reduction in pro-apoptotic factors and an increase in anti-apoptotic molecules. The results presented here strengthen the molecular mechanisms activated by probiotic mix controlling immune response and inflammation.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giacomo Rossi
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Via Fidanza 15, 62024, Matelica, MC, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy. .,INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy.
| |
Collapse
|