1
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
2
|
Paliwal A, Vaissière T, Krais A, Cuenin C, Cros MP, Zaridze D, Moukeria A, Boffetta P, Hainaut P, Brennan P, Herceg Z. Aberrant DNA methylation links cancer susceptibility locus 15q25.1 to apoptotic regulation and lung cancer. Cancer Res 2010; 70:2779-88. [PMID: 20332232 DOI: 10.1158/0008-5472.can-09-4550] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nicotinic acetylcholine receptor (nAChR) genes form a highly conserved gene cluster at the lung cancer susceptibility locus 15q25.1. In this study, we show that the CHRNalpha3 gene encoding the nAChRalpha3 subunit is a frequent target of aberrant DNA hypermethylation and silencing in lung cancer, whereas the adjacent CHRNbeta4 and CHRNalpha5 genes exhibit moderate and no methylation, respectively. Treatment of cancer cells exhibiting CHRNalpha3 hypermethylation with DNA methylation inhibitors caused demethylation of the CHRNalpha3 promoter and gene reactivation. Restoring CHRNalpha3 levels through ectopic expression induced apoptotic cell death. Small hairpin RNA-mediated depletion of nAChRalpha3 in CHRNalpha3-expressing lung cancer cells elicited a dramatic Ca(2+) influx response in the presence of nicotine, followed by activation of the Akt survival pathway. CHRNalpha3-depleted cells were resistant to apoptosis-inducing agents, underscoring the importance of epigenetic silencing of the CHRNalpha3 gene in human cancer. In defining a mechanism of epigenetic control of nAChR expression in nonneuronal tissues, our findings offer a functional link between susceptibility locus 15q25.1 and lung cancer, and suggest nAChRs to be theranostic targets for cancer detection and chemoprevention.
Collapse
Affiliation(s)
- Anupam Paliwal
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wallis D, Arcos-Burgos M, Jain M, Castellanos FX, Palacio JD, Pineda D, Lopera F, Stanescu H, Pineda D, Berg K, Palacio LG, Bailey-Wilson JE, Muenke M. Polymorphisms in the neural nicotinic acetylcholine receptor α4 subunit (CHRNA4) are associated with ADHD in a genetic isolate. ACTA ACUST UNITED AC 2009; 1:19-24. [PMID: 21432576 DOI: 10.1007/s12402-009-0003-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 04/02/2009] [Indexed: 12/22/2022]
Abstract
The neural nicotinic acetylcholine receptor α4 subunit (CHRNA4), at 20q13.2-q13.3, is an important candidate gene for conferring susceptibility to attention deficit/hyperactivity disorder (ADHD). Several studies have already looked for association/linkage between ADHD and CHRNA4 in different populations. We used the Pedigree Disequilibrium Test to search for evidence of association between ADHD and six SNP marker loci in families from the isolated Paisa population. We found that the T allele of SNP rs6090384 exhibits a deficit of transmission in unaffected individuals (OR = 5.43, IC 1.54-19.13) (global P value = 0.014). We also found significant association and linkage to extended haplotypes rs2273502-rs6090384 (combination of variants C-T, respectively) (P = 0.02) and rs6090384-rs6090387 (P = 0.04) (combination of variants T-G, respectively). SNP rs6090384, variant T, has also been reported to be associated with inattention in a previous study. This makes ours the ninth study to examine the association of CHRNA4 with ADHD and the seventh one to find evidence for association in a population with a different ethnicity.
Collapse
Affiliation(s)
- Deeann Wallis
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Liu L, van Groen T, Kadish I, Tollefsbol TO. DNA methylation impacts on learning and memory in aging. Neurobiol Aging 2007; 30:549-60. [PMID: 17850924 PMCID: PMC2656583 DOI: 10.1016/j.neurobiolaging.2007.07.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/19/2007] [Accepted: 07/24/2007] [Indexed: 12/20/2022]
Abstract
Learning and memory are two of the fundamental cognitive functions that confer us the ability to accumulate knowledge from our experiences. Although we use these two mental skills continuously, understanding the molecular basis of learning and memory is very challenging. Methylation modification of DNA is an epigenetic mechanism that plays important roles in regulating gene expression, which is one of the key processes underlying the functions of cells including neurons. Interestingly, a genome-wide decline in DNA methylation occurs in the brain during normal aging, which coincides with a functional decline in learning and memory with age. It has been speculated that DNA methylation in neurons might be involved in memory coding. However, direct evidence supporting the role of DNA methylation in memory formation is still under investigation. This particular function of DNA methylation has not drawn wide attention despite several important studies that have provided supportive evidence for the epigenetic control of memory formation. To facilitate further exploration of the epigenetic basis of memory function, we will review existing studies on DNA methylation that are related to the development and function of the nervous system. We will focus on studies illustrating how DNA methylation regulates neural activities and memory formation via the control of gene expression in neurons, and relate these studies to various age-related neurological disorders that affect cognitive functions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294-1170, USA.
| | | | | | | |
Collapse
|
5
|
Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berl) 2007; 190:269-319. [PMID: 16896961 DOI: 10.1007/s00213-006-0441-0] [Citation(s) in RCA: 639] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 05/09/2006] [Indexed: 01/16/2023]
Abstract
RATIONALE This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure. OBJECTIVES This review capitalizes on the authors' collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models. RESULTS Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses. CONCLUSIONS The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.
Collapse
Affiliation(s)
- Shannon G Matta
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Crowe 115, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Danthi S, Boyd RT. Cell specificity of a rat neuronal nicotinic acetylcholine receptor α7 subunit gene promoter. Neurosci Lett 2006; 400:63-8. [PMID: 16546320 DOI: 10.1016/j.neulet.2006.02.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
Neuronal nAChRs are pentameric transmembrane proteins which function as ligand-gated ion channels and are composed of multiple alpha and beta subunits. Nine neuronal nAChR alpha subunit genes (alpha2-alpha10) and three nAChR beta subunit genes (beta2-beta4) have been identified. nAChR subtypes are heteromers, composed of various combinations of nAChR subunits or homomers composed of alpha7, alpha8, or alpha9 subunits. nAChR subtypes are widely expressed in the nervous system, yet each subunit has a distinct and unique pattern of expression. This report focuses on the expression of the nAChR alpha7 gene since homomeric nAChRs can be formed from this one subunit, simplifying a study of the expression of a specific nAChR subtype. Alpha7 nAChRs are involved in several important biological activities in addition to synaptic transmission including mediating neurite outgrowth, neuronal development and cell death, and in presynaptic control of neurotransmitter release. Transcriptional regulation of alpha7 gene expression may be important to control the location and timing of these events. We previously isolated a rat alpha7 nAChR promoter and studied expression in PC12 cells. In this study we examined the expression of the alpha7 promoter in PC12, HEK293, L6, SN17 and Neuro-2A cells in order to define elements necessary for cell-specific expression. Elements promoting expression of alpha7 in muscle and fibroblasts were identified. We also demonstrated that several other nAChR genes are also expressed in SN 17 and Neuro-2A cells, supporting use of these cell lines as models to study transcriptional control of nAChR genes.
Collapse
Affiliation(s)
- Sanjay Danthi
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | |
Collapse
|
7
|
Ishii K, Wong JK, Sumikawa K. Comparison of alpha2 nicotinic acetylcholine receptor subunit mRNA expression in the central nervous system of rats and mice. J Comp Neurol 2005; 493:241-60. [PMID: 16255031 PMCID: PMC4289636 DOI: 10.1002/cne.20762] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) alpha2 subunit was the first neuronal nAChR to be cloned. However, data for the distribution of alpha2 mRNA in the rodent exists in only a few studies. Therefore, we investigated the expression of alpha2 mRNA in the rat and mouse central nervous systems using nonradioactive in situ hybridization histochemistry. We detected strong hybridization signals in cell bodies located in the internal plexiform layer of the olfactory bulb, the interpeduncular nucleus of the midbrain, the ventral and dorsal tegmental nuclei, the median raphe nucleus of the pons, the ventral part of the medullary reticular nucleus, the ventral horn in the spinal cord of both rats and mice, and in a few Purkinje cells of rats, but not of mice. Cells that moderately express alpha2 mRNA were localized to the cerebral cortex layers V and VI, the subiculum, the oriens layer of CA1, the medial septum, the diagonal band complex, the substantia innominata, and the amygdala of both animals. They were also located in a few midbrain nuclei of rats, whereas in mice they were either few or absent in these areas. However, in the upper medulla oblongata alpha2 mRNA was expressed in several large neurons of the gigantocellular reticular nucleus and the raphe magnus nucleus of mice, but not of rats. The data obtained show that a similar pattern of alpha2 mRNA expression exists in both rats and mice, with the exception of a few regions, and provide the basis for cellular level analysis.
Collapse
Affiliation(s)
- Katsuyoshi Ishii
- Department of Neurobiology and Behavior, University of California, Irvine, 92697-4550, USA.
| | | | | |
Collapse
|
8
|
Feng Y, Niu T, Xing H, Xu X, Chen C, Peng S, Wang L, Laird N, Xu X. A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am J Hum Genet 2004; 75:112-21. [PMID: 15154117 PMCID: PMC1181994 DOI: 10.1086/422194] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 04/23/2004] [Indexed: 11/03/2022] Open
Abstract
Nicotine is the major addictive substance in cigarettes, and genes involved in sensing nicotine are logical candidates for vulnerability to nicotine addiction. We studied six single-nucleotide polymorphisms (SNPs) in the CHRNA4 gene and four SNPs in the CHRNB2 gene with respect to nicotine dependence in a collection of 901 subjects (815 siblings and 86 parents) from 222 nuclear families with multiple nicotine-addicted siblings. The subjects were assessed for addiction by both the Fagerstrom Test for Nicotine Dependence (FTND) and the Revised Tolerance Questionnaire (RTQ). Because only 5.8% of female offspring were smokers, only male subjects were included in the final analyses (621 men from 206 families). Univariate (single-marker) family-based association tests (FBATs) demonstrated that variant alleles at two SNPs, rs1044396 and rs1044397, in exon 5 of the CHRNA4 gene were significantly associated with a protective effect against nicotine addiction as either a dichotomized trait or a quantitative phenotype (i.e., age-adjusted FTND and RTQ scores), which was consistent with the results of the global haplotype FBAT. Furthermore, the haplotype-specific FBAT showed a common (22.5%) CHRNA4 haplotype, GCTATA, which was significantly associated with both a protective effect against nicotine addiction as a dichotomized trait (Z=-3.04, P<.005) and significant decreases of age-adjusted FTND (Z=-3.31, P<.005) or RTQ scores (Z=-2.73, P=.006). Our findings provide strong evidence suggesting a common CHRNA4 haplotype might be protective against vulnerability to nicotine addiction in men.
Collapse
Affiliation(s)
- Yan Feng
- Program for Population Genetics, and Department of Biostatistics, Harvard School of Public Health, and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston; Center for Eco-Genetics and Reproductive Health, Health Science Center, Peking University, Beijing; and Anhui Institute of Biomedicine, Anhui Medical University, and School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Tianhua Niu
- Program for Population Genetics, and Department of Biostatistics, Harvard School of Public Health, and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston; Center for Eco-Genetics and Reproductive Health, Health Science Center, Peking University, Beijing; and Anhui Institute of Biomedicine, Anhui Medical University, and School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Houxun Xing
- Program for Population Genetics, and Department of Biostatistics, Harvard School of Public Health, and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston; Center for Eco-Genetics and Reproductive Health, Health Science Center, Peking University, Beijing; and Anhui Institute of Biomedicine, Anhui Medical University, and School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xin Xu
- Program for Population Genetics, and Department of Biostatistics, Harvard School of Public Health, and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston; Center for Eco-Genetics and Reproductive Health, Health Science Center, Peking University, Beijing; and Anhui Institute of Biomedicine, Anhui Medical University, and School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Changzhong Chen
- Program for Population Genetics, and Department of Biostatistics, Harvard School of Public Health, and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston; Center for Eco-Genetics and Reproductive Health, Health Science Center, Peking University, Beijing; and Anhui Institute of Biomedicine, Anhui Medical University, and School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Shaojie Peng
- Program for Population Genetics, and Department of Biostatistics, Harvard School of Public Health, and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston; Center for Eco-Genetics and Reproductive Health, Health Science Center, Peking University, Beijing; and Anhui Institute of Biomedicine, Anhui Medical University, and School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Lihua Wang
- Program for Population Genetics, and Department of Biostatistics, Harvard School of Public Health, and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston; Center for Eco-Genetics and Reproductive Health, Health Science Center, Peking University, Beijing; and Anhui Institute of Biomedicine, Anhui Medical University, and School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Nan Laird
- Program for Population Genetics, and Department of Biostatistics, Harvard School of Public Health, and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston; Center for Eco-Genetics and Reproductive Health, Health Science Center, Peking University, Beijing; and Anhui Institute of Biomedicine, Anhui Medical University, and School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiping Xu
- Program for Population Genetics, and Department of Biostatistics, Harvard School of Public Health, and Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston; Center for Eco-Genetics and Reproductive Health, Health Science Center, Peking University, Beijing; and Anhui Institute of Biomedicine, Anhui Medical University, and School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
9
|
Zirger JM, Beattie CE, McKay DB, Boyd RT. Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. Gene Expr Patterns 2003; 3:747-54. [PMID: 14643683 DOI: 10.1016/s1567-133x(03)00126-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We propose to use the zebrafish (Danio rerio) as a vertebrate model to study the role of neuronal nicotinic acetylcholine receptors (nAChR) in development. As a first step toward using zebrafish as a model, we cloned three zebrafish cDNAs with a high degree of sequence similarity to nAChR beta3, alpha2 and alpha7 subunits expressed in other species. RT-PCR was used to show that the beta3 and alpha2 subunit RNAs were present in zebrafish embryos only 2-5hours post-fertilization (hpf) while alpha7 subunit RNA was not detected until 8hpf, supporting the differential regulation of nAChRs during development. In situ hybridization was used to localize zebrafish beta3, alpha2, and alpha7 RNA expression. nAChR binding techniques were used to detect the early expression of two high-affinity [3H]-epibatidine binding sites in 2 days post-fertilization (dpf) zebrafish embryos with IC(50) values of 28.6pM and 29.7nM and in 5dpf embryos with IC(50) values of 28.4pM and 8.9nM. These studies are consistent with the involvement of neuronal nAChRs in early zebrafish development.
Collapse
Affiliation(s)
- Jeffrey M Zirger
- Department of Neuroscience, College of Medicine and Public Health, The Ohio State University, 4068 Graves Hall, 333 West Tenth Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
10
|
Wells T, Carter DA. Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy? J Neurosci Methods 2001; 108:111-30. [PMID: 11478971 DOI: 10.1016/s0165-0270(01)00391-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As mammalian genome projects move towards completion, the attention of molecular neuroscientists is currently moving away from gene identification towards both cell-specific gene expression patterns (neuronal transcriptions) and protein expression/interactions (neuronal proteomics). In the long term, attention will increasingly be directed towards experimental interventions which are able to question neuronal function in a sophisticated manner that is cognisant of both transcriptomic and proteomic organization. Central to this effort will be the application of a new generation of transgenic approaches which are now evolving towards an appropriate level of molecular, temporal and spatial resolution. In this review, we summarize recent developments in transgenesis, and show how they have been applied in the principal model species for neuroscience, namely rats and mice. Current concepts of transgene design are also considered together with an overview of new genetically-encoded tools including both cellular indicators such as fluorescent activity reporters, and cellular regulators such as dominant negative signalling factors. Application of these tools in a whole animal context can be used to question both basic concepts of brain function, and also current concepts of underlying dysfuction in neurological diseases.
Collapse
Affiliation(s)
- T Wells
- School of Biosciences, Cardiff University, PO Box 911, Museum Avenue, Cardiff CF10 3US, UK
| | | |
Collapse
|
11
|
Stitzel JA, Dobelis P, Jimenez M, Collins AC. Long sleep and short sleep mice differ in nicotine-stimulated 86Rb+ efflux and alpha4 nicotinic receptor subunit cDNA sequence. PHARMACOGENETICS 2001; 11:331-9. [PMID: 11434511 DOI: 10.1097/00008571-200106000-00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In a recent study, we reported that a restriction fragment length polymorphism associated with the alpha4 nicotinic receptor gene (Chrna4) may play a role in regulating differential sensitivity of LS and SS mouse lines to the seizure-inducing effects of nicotine. Since the alpha4 subunit (CHRNA4) is often found as a heteromer with the beta2 subunit (CHRNB2), alpha4 and beta2 cDNAs from the LS and SS mice were cloned and sequenced. A polymorphism in the coding portion of the alpha4 gene was found (1587A to G) which should result in a threonine/alanine substitution at position 529 (T529A). The LS and SS beta2 nicotinic receptor subunit cDNAs were identical. The potential consequences of the alpha4 polymorphism were evaluated using an ion (86Rb+) flux assay that likely measures the function of alpha4beta2-type receptors. LS-SS differences in maximal nicotine-stimulated ion flux were seen when bovine serum albumin (BSA) was not included but this difference was not seen when BSA was included in the perfusion buffer. Current evidence suggests that BSA may alter the ratio of nicotinic receptors that are in the ground state and desensitized forms. Thus, it may be that the Chrna4 T529A substitution leads to a difference in the ratio of the two receptor forms which then promotes differences in receptor function, as well as differential behavioural sensitivity to nicotine.
Collapse
Affiliation(s)
- J A Stitzel
- Department of Pharmacology, University of Michigan, Ann Arbor, USA
| | | | | | | |
Collapse
|
12
|
Chin LS, Weigel C, Li L. Transcriptional regulation of gene expression of sec6, a component of mammalian exocyst complex at the synapse. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 79:127-37. [PMID: 10925150 DOI: 10.1016/s0169-328x(00)00110-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sec6, an essential component of the mammalian brain exocyst complex, is believed to function in synapse formation and synaptic plasticity. During neuronal development, the expression of the Sec6 gene correlates temporally with neurite outgrowth and synaptogenesis. To understand the mechanisms that regulate the Sec6 gene expression, we have cloned and characterized the 5'-terminal region of the murine Sec6 gene. We have shown that the 5'-untranslated region of the murine Sec6 gene is encoded by two exons that are separated by a 1560-bp intron. Primer extension analysis demonstrates that Sec6 gene transcription is initiated from a unique site. The Sec6 promoter is embedded in a CpG island and lacks canonical TATA or CAAT boxes. Sequence analysis of the 5'-flanking region and the first intron reveals the presence of a number of binding sites for transcription factors AP-1, AP-2, AP-4, ATF, C/EBPbeta, GATA-1, Oct 1, SP1, STAT, and NRSF. Transfection experiments using Sec6-luciferase fusion genes demonstrate that the 5'-flanking sequence functions as a strong promoter in neuronal but not in nonneuronal cells. Deletion analysis reveals the presence of a core promoter between nucleotide position -139 and +53, and two enhancer and four silencer elements within the 5'-flanking region and the first intron sequence. These results indicate that neuronal expression of the Sec6 gene involves a relatively specific core promoter and interplay between multiple positive and negative regulatory elements.
Collapse
Affiliation(s)
- L S Chin
- Department of Pharmacology, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill 27599-7178, USA
| | | | | |
Collapse
|
13
|
Miyasaka N, Hatanaka Y, Jin M, Arimatsu Y. Genomic organization and regulatory elements of the rat latexin gene, which is expressed in a cell type-specific manner in both central and peripheral nervous systems. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:62-72. [PMID: 10350638 DOI: 10.1016/s0169-328x(99)00107-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Latexin, a carboxypeptidase A inhibitor, is expressed in a cell type-specific manner in both central and peripheral nervous systems in the rat. In the neocortex, a specific subpopulation of neurons in layers V and VI expresses latexin. In the primary sensory ganglia, the expression is restricted to smaller diameter neurons. As a first step to clarify regulatory mechanisms underlying cell type-specific expression of latexin, we have determined the organization of the rat latexin gene and analyzed its regulatory elements. The latexin gene spans approximately 5.8 kb, and consists of six exons and five introns. Three transcription initiation sites were mapped. The upstream region lacks typical TATA or CAAT boxes but has several GC-rich sites. To assess promoter activity, the luciferase reporter gene fused to the 5'-flanking region (6.4 kb) of the latexin gene was transiently transfected into several cell lines. Luciferase activity was 2-8 times higher in latexin-expressing cells (PC12) than non-expressing cells (NS20 and L6). Deletion analysis with PC12 cells revealed that a core promoter is located between nucleotide positions -261 and -201 relative to the A of the initiation codon. Nerve growth factor (NGF)-responsive element(s) is located between positions -518 and -262, in which AP-1, AP-2 and NF-kappaB binding sites are found. Furthermore, we demonstrate that a 1.3 kb genomic fragment containing the first intron has transcriptional enhancing activity in PC12 cells. These results suggest that up and downstream regulatory elements are involved in the control of cell type-specific expression of latexin.
Collapse
MESH Headings
- 5' Untranslated Regions/physiology
- Animals
- Antigens/genetics
- Base Sequence
- Blotting, Southern
- Carboxypeptidases/analysis
- Carboxypeptidases A
- Cerebral Cortex/chemistry
- Cerebral Cortex/cytology
- Cloning, Molecular
- DNA Primers
- Enhancer Elements, Genetic/physiology
- Ganglia, Sensory/chemistry
- Ganglia, Sensory/cytology
- Gene Expression Regulation/physiology
- Genes, Reporter
- Genome
- Introns/genetics
- Luciferases/genetics
- Molecular Sequence Data
- Nerve Growth Factors/genetics
- Nerve Tissue Proteins/genetics
- Neurons, Afferent/chemistry
- Neurons, Afferent/enzymology
- PC12 Cells
- Plasmids
- Promoter Regions, Genetic/genetics
- Rats
- Rats, Sprague-Dawley
- Transfection
Collapse
Affiliation(s)
- N Miyasaka
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan.
| | | | | | | |
Collapse
|