1
|
Tian GL, Hsieh CJ, Taylor M, Lee JY, Luedtke RR, Mach RH. Design and Synthesis of D 3R Bitopic Ligands with Flexible Secondary Binding Fragments: Radioligand Binding and Computational Chemistry Studies. Molecules 2023; 29:123. [PMID: 38202706 PMCID: PMC10779535 DOI: 10.3390/molecules29010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
A series of bitopic ligands based on Fallypride with a flexible secondary binding fragment (SBF) were prepared with the goal of preparing a D3R-selective compound. The effect of the flexible linker ((R,S)-trans-2a-d), SBFs ((R,S)-trans-2h-j), and the chirality of orthosteric binding fragments (OBFs) ((S,R)-trans-d, (S,R)-trans-i, (S,S)-trans-d, (S,S)-trans-i, (R,R)-trans-d, and (R,R)-trans-i) were evaluated in in vitro binding assays. Computational chemistry studies revealed that the interaction of the fragment binding to the SBF increased the distance between the pyrrolidine nitrogen and ASP1103.32 of the D3R, thereby reducing the D3R affinity to a suboptimal level.
Collapse
Affiliation(s)
- Gui-Long Tian
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-L.T.); (C.-J.H.)
| | - Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-L.T.); (C.-J.H.)
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (M.T.)
| | - Ji Youn Lee
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-L.T.); (C.-J.H.)
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (M.T.)
| | - Robert H. Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-L.T.); (C.-J.H.)
| |
Collapse
|
2
|
Tian GL, Hsieh CJ, Taylor M, Lee JY, Riad AA, Luedtke RR, Mach RH. Synthesis of bitopic ligands based on fallypride and evaluation of their affinity and selectivity towards dopamine D 2 and D 3 receptors. Eur J Med Chem 2023; 261:115751. [PMID: 37688938 PMCID: PMC10841072 DOI: 10.1016/j.ejmech.2023.115751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
The difference in the secondary binding site (SBS) between the dopamine 2 receptor (D2R) and dopamine 3 receptor (D3R) has been used in the design of compounds displaying selectivity for the D3R versus D2R. In the current study, a series of bitopic ligands based on Fallypride were prepared with various secondary binding fragments (SBFs) as a means of improving the selectivity of this benzamide analog for D3R versus D2R. We observed that compounds having a small alkyl group with a heteroatom led to an improvement in D3R versus D2R selectivity. Increasing the steric bulk in the SBF increase the distance between the pyrrolidine N and Asp110, thereby reducing D3R affinity. The best-in-series compound was (2S,4R)-trans-27 which had a modest selectivity for D3R versus D2R and a high potency in the β-arrestin competition assay which provides a measure of the ability of the compound to compete with endogenous dopamine for binding to the D3R. The results of this study identified factors one should consider when designing bitopic ligands based on Fallypride displaying an improved affinity for D3R versus D2R.
Collapse
Affiliation(s)
- Gui-Long Tian
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Texas, TX, 76107, USA
| | - Ji Youn Lee
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aladdin A Riad
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Texas, TX, 76107, USA
| | - Robert H Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Liu MN, Tian XY, Fang T, Wu N, Li H, Li J. Insights into the Involvement and Therapeutic Target Potential of the Dopamine System in the Posttraumatic Stress Disorder. Mol Neurobiol 2023; 60:3708-3723. [PMID: 36933147 DOI: 10.1007/s12035-023-03312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Yu Tian
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Fang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
4
|
Xu J. Dopamine D3 Receptor in Parkinson Disease: A Prognosis Biomarker and an Intervention Target. Curr Top Behav Neurosci 2023; 60:89-107. [PMID: 35711029 PMCID: PMC10034716 DOI: 10.1007/7854_2022_373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Parkinson disease (PD) dementia, pathologically featured as nigrostriatal dopamine (DA) neuronal loss with motor and non-motor manifestations, leads to substantial disability and economic burden. DA therapy targets the DA D3 receptor (D3R) with high affinity and selectivity. The pathological involvement of D3R is evidenced as an effective biomarker for disease progression and DA agnostic interventions, with compensations of increased DA, decreased aggregates of α-synuclein (α-Syn), enhanced secretion of brain-derived neurotrophic factors (BDNF), attenuation of neuroinflammation and oxidative damage, and promoting neurogenesis in the brain. D3R also interacts with D1R to reduce PD-associated motor symptoms and alleviate the side effects of levodopa (L-DOPA) treatment. We recently found that DA D2 receptor (D2R) density decreases in the late-stage PDs, while high D3R or DA D1 receptor (D1R) + D3R densities in the postmortem PD brains correlate with survival advantages. These new essential findings warrant renewed investigations into the understanding of D3R neuron populations and their cross-sectional and longitudinal regulations in PD progression.
Collapse
Affiliation(s)
- Jinbin Xu
- Division of Radiological Sciences, Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Chagraoui A, Di Giovanni G, De Deurwaerdère P. Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson’s Disease. Biomolecules 2022; 12:biom12020243. [PMID: 35204744 PMCID: PMC8961531 DOI: 10.3390/biom12020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The discovery of the D3 receptor (D3R) subtypes of dopamine (DA) has generated an understandable increase in interest in the field of neurological diseases, especially Parkinson’s disease (PD). Indeed, although DA replacement therapy with l-DOPA has provided an effective treatment for patients with PD, it is responsible for invalidating abnormal involuntary movements, known as L-DOPA-induced dyskinesia, which constitutes a serious limitation of the use of this therapy. Of particular interest is the finding that chronic l-DOPA treatment can trigger the expression of D1R–D3R heteromeric interactions in the dorsal striatum. The D3R is expressed in various tissues of the central nervous system, including the striatum. Compelling research has focused on striatal D3Rs in the context of PD and motor side effects, including dyskinesia, occurring with DA replacement therapy. Therefore, this review will briefly describe the basal ganglia (BG) and the DA transmission within these brain regions, before going into more detail with regard to the role of D3Rs in PD and their participation in the current treatments. Numerous studies have also highlighted specific interactions between D1Rs and D3Rs that could promote dyskinesia. Finally, this review will also address the possibility that D3Rs located outside of the BG may mediate some of the effects of DA replacement therapy.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-83-69
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, 2080 Msida, Malta;
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche (UMR) 5287, Centre National de la Recherche Scientifique (CNRS), CEDEX, 33000 Bordeaux, France;
| |
Collapse
|
6
|
Oh T, Daadi ES, Kim J, Daadi EW, Chen PJ, Roy-Choudhury G, Bohmann J, Blass BE, Daadi MM. Dopamine D3 receptor ligand suppresses the expression of levodopa-induced dyskinesia in nonhuman primate model of parkinson's disease. Exp Neurol 2022; 347:113920. [PMID: 34762921 DOI: 10.1016/j.expneurol.2021.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/04/2022]
Abstract
Parkinson's disease (PD) is a complex multisystem, chronic and so far incurable disease with significant unmet medical needs. The incidence of PD increases with aging and the expected burden will continue to escalate with our aging population. Since its discovery in the 1961 levodopa has remained the gold standard pharmacotherapy for PD. However, the progressive nature of the neurodegenerative process in and beyond the nigrostriatal system causes a multitude of side effects, including levodopa-induced dyskinesia within 5 years of therapy. Attenuating dyskinesia has been a significant challenge in the clinical management of PD. We report on a small molecule that eliminates the expression of levodopa-induced dyskinesia and significantly improves PD-like symptoms. The lead compound PD13R we discovered is a dopamine D3 receptor partial agonist with high affinity and selectivity, orally active and with desirable drug-like properties. Future studies are aimed at developing this lead compound for treating PD patients with dyskinesia.
Collapse
Affiliation(s)
- Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elyas S Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Etienne W Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Gourav Roy-Choudhury
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Marcel M Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA; Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
7
|
Favier M, Carcenac C, Savasta M, Carnicella S. Dopamine D3 Receptors: A Potential Target to Treat Motivational Deficits in Parkinson's Disease. Curr Top Behav Neurosci 2022; 60:109-132. [PMID: 35469394 DOI: 10.1007/7854_2022_316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD), which is traditionally viewed as a motor disorder involving the degeneration of dopaminergic (DA) neurons, has recently been identified as a quintessential neuropsychiatric condition. Indeed, a plethora of non-motor symptoms may occur in PD, including apathy. Apathy can be defined as a lack of motivation or a deficit of goal-directed behaviors and results in a pathological decrease of self-initiated voluntary behavior. Apathy in PD appears to fluctuate with the DA state of the patients, suggesting a critical role of DA neurotransmission in the pathophysiology of this neuropsychiatric syndrome. Using a lesion-based approach, we developed a rodent model which exhibits specific alteration in the preparatory component of motivational processes, reminiscent to apathy in PD. We found a selective decrease of DA D3 receptors (D3R) expression in the dorsal striatum of lesioned rats. Next, we showed that inhibition of D3R neurotransmission in non-lesioned animals was sufficient to reproduce the motivational deficit observed in our model. Interestingly, we also found that pharmacologically targeting D3R efficiently reversed the motivational deficit induced by the lesion. Our findings, among other recent data, suggest a critical role of D3R in parkinsonian apathy and highlight this receptor as a promising target for treating motivational deficits.
Collapse
Affiliation(s)
- Mathieu Favier
- Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Carole Carcenac
- Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Marc Savasta
- Inserm, Délégation régionale Provence-Alpes-Côte d'Azur et Corse, Marseille CEDEX 09, France
| | - Sebastien Carnicella
- Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France.
| |
Collapse
|
8
|
Lanza K, Bishop C. Dopamine D3 Receptor Plasticity in Parkinson's Disease and L-DOPA-Induced Dyskinesia. Biomedicines 2021; 9:biomedicines9030314. [PMID: 33808538 PMCID: PMC8003204 DOI: 10.3390/biomedicines9030314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
Parkinson’s Disease (PD) is characterized by primary and secondary plasticity that occurs in response to progressive degeneration and long-term L-DOPA treatment. Some of this plasticity contributes to the detrimental side effects associated with chronic L-DOPA treatment, namely L-DOPA-induced dyskinesia (LID). The dopamine D3 receptor (D3R) has emerged as a promising target in LID management as it is upregulated in LID. This upregulation occurs primarily in the D1-receptor-bearing (D1R) cells of the striatum, which have been repeatedly implicated in LID manifestation. D3R undergoes dynamic changes both in PD and in LID, making it difficult to delineate D3R’s specific contributions, but recent genetic and pharmacologic tools have helped to clarify its role in LID. The following review will discuss these changes, recent advances to better clarify D3R in both PD and LID and potential steps for translating these findings.
Collapse
Affiliation(s)
- Kathryn Lanza
- Department of Physiology, Northwestern University, Chicago, IL 60201, USA;
| | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
- Correspondence:
| |
Collapse
|
9
|
Zhang R, Li J, Wu Y, Liang S, Xu L. Association of Multiple Dopamine D3 Receptor Gene 3'UTR Polymorphisms with Susceptibility to Parkinson's Disease and Clinical Efficacy of Piribedil Therapy. Genet Test Mol Biomarkers 2020; 25:20-30. [PMID: 33372861 DOI: 10.1089/gtmb.2020.0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: To investigate the correlation between the Dopamine D3 receptor (DRD3) 3'untranslated region (3'UTR) gene polymorphism and susceptibility to Parkinson's disease (PD) and the clinical effect of the DRD2 and DRD3 agonist piribedil treatment. Methods: Sanger sequencing was used to analyze the single nucleotide polymorphisms (SNPs) within the 3'UTR rs76126170, rs9868039, rs9817063, and rs3732790 loci of the DRD3 gene in 284 PD patients and 284 controls. PD patients were treated with piribedil sustained-release tablets (50 mg) combined with levodopa and benserazide hydrochloride tablets, three times daily (patients with first-diagnosed PD were only administrated with piribedil sustained-release tablets) for 3 months. The Unified Parkinson's Disease Rating Scale (UPDRS) and the Hoehn and Yahr disease stage were evaluated at baseline and after 3 months of treatment. Results: The T allele carriers of the DRD3 gene rs76126170 locus were more susceptible to PD than the C allele carriers (odds ratio [OR] = 3.44, 95% confidence interval [CI]: 2.46-4.80, p < 0.01). Carriers of the rs9868039 A allele had a decreased risk of PD compared to those with G allele (OR = 0.67, 95% CI: 0.53-0.86, p < 0.01). C allele carriers at rs9817063 were less likely to develop PD than those with T allele (OR = 0.74, 95% CI: 0.58-0.94, p = 0.02). No significant correlation was observed between the alleles or genotypes of the rs3732790 locus and PD susceptibility (p > 0.05). The various genotypes of the DRD3 gene loci rs76126170, rs9868039, and rs9817063 in PD patients were associated with significant differences with regard to reduction of UPDRS scores and Hoehn and Yahr stage after 3 months of treatment (p < 0.05). Conclusion: The alleles and genotypes of the DRD3 gene 3' UTR SNP loci rs76126170, rs9868039, and rs9817063 are associated with PD susceptibility and the clinical efficacy of piribedil treatment.
Collapse
Affiliation(s)
- Rongbo Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Li
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - You Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shunli Liang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Linsheng Xu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Schneider JS, Marshall CA, Keibel L, Snyder NW, Hill MP, Brotchie JM, Johnston TH, Waterhouse BD, Kortagere S. A novel dopamine D3R agonist SK609 with norepinephrine transporter inhibition promotes improvement in cognitive task performance in rodent and non-human primate models of Parkinson's disease. Exp Neurol 2020; 335:113514. [PMID: 33141071 DOI: 10.1016/j.expneurol.2020.113514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Mild cognitive impairment is present in a number of neurodegenerative disorders including Parkinson's disease (PD). Mild cognitive impairment in PD (PD-MCI) often manifests as deficits in executive functioning, attention, and spatial and working memory. Clinical studies have suggested that the development of mild cognitive impairment may be an early symptom of PD and may even precede the onset of motor impairment by several years. Dysfunction in several neurotransmitter systems, including dopamine (DA), norepinephrine (NE), may be involved in PD-MCI, making it difficult to treat pharmacologically. In addition, many agents used to treat motor impairment in PD may exacerbate cognitive impairment. Thus, there is a significant unmet need to develop therapeutics that can treat both motor and cognitive impairments in PD. We have recently developed SK609, a selective, G-protein biased signaling agonist of dopamine D3 receptors. SK609 was successfully used to treat motor impairment and reduce levodopa-induced dyskinesia in a rodent model of PD. Further characterization of SK609 suggested that it is a selective norepinephrine transporter (NET) inhibitor with the ability to increase both DA and NE levels in the prefrontal cortex. Pharmacokinetic analysis of SK609 under systemic administration demonstrated 98% oral bioavailability and high brain distribution in striatum, hippocampus and prefrontal cortex. To evaluate the effects of SK609 on cognitive deficits of potential relevance to PD-MCI, we used unilateral 6-hydroxydopamine (6-OHDA) lesioned rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated cynomolgus macaques, with deficits in performance in a sustained attention and an object retrieval task, respectively. SK609 dose dependently improved the performance of 6-OHDA-lesioned rats, with peak performance achieved using a 4 mg/kg dose. This improvement was predominantly due to a significant reduction in the number of misses and false alarm errors, contributing to an increase in sustained attention. In MPTP-lesioned monkeys, this same dose also improved performance in an object retrieval task, significantly reducing cognitive errors (barrier reaches) and motor errors (fine motor dexterity problems). These data demonstrate that SK609 with its unique pharmacological effects on modulating both DA and NE can ameliorate cognitive impairment in PD models and may provide a therapeutic option to treat both motor and cognitive impairment in PD patients.
Collapse
Affiliation(s)
- Jay S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Courtney A Marshall
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Lauren Keibel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19147, USA
| | | | | | | | - Barry D Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
11
|
Gilleece DY, Tariq DS, Bamford DA, Bhagani DS, Byrne DL, Clarke DE, Clayden MP, Lyall DH, Metcalfe DR, Palfreeman DA, Rubinstein DL, Sonecha MS, Thorley DL, Tookey DP, Tosswill MJ, Utting MD, Welch DS, Wright MA. British HIV Association guidelines for the management of HIV in pregnancy and postpartum 2018. HIV Med 2020; 20 Suppl 3:s2-s85. [PMID: 30869192 DOI: 10.1111/hiv.12720] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dr Yvonne Gilleece
- Honorary Clinical Senior Lecturer and Consultant Physician in HIV and Genitourinary Medicine, Brighton and Sussex University Hospitals NHS Trust
| | - Dr Shema Tariq
- Postdoctoral Clinical Research Fellow, University College London, and Honorary Consultant Physician in HIV, Central and North West London NHS Foundation Trust
| | - Dr Alasdair Bamford
- Consultant in Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London
| | - Dr Sanjay Bhagani
- Consultant Physician in Infectious Diseases, Royal Free Hospital NHS Trust, London
| | - Dr Laura Byrne
- Locum Consultant in HIV Medicine, St George's University Hospitals NHS Foundation Trust, London
| | - Dr Emily Clarke
- Consultant in Genitourinary Medicine, Royal Liverpool and Broadgreen University Hospitals NHS Trust
| | - Ms Polly Clayden
- UK Community Advisory Board representative/HIV treatment advocates network
| | - Dr Hermione Lyall
- Clinical Director for Children's Services and Consultant Paediatrician in Infectious Diseases, Imperial College Healthcare NHS Trust, London
| | | | - Dr Adrian Palfreeman
- Consultant in Genitourinary Medicine, University Hospitals of Leicester NHS Trust
| | - Dr Luciana Rubinstein
- Consultant in Genitourinary Medicine, London North West Healthcare University NHS Trust, London
| | - Ms Sonali Sonecha
- Lead Directorate Pharmacist HIV/GUM, Chelsea and Westminster Healthcare NHS Foundation Trust, London
| | | | - Dr Pat Tookey
- Honorary Senior Lecturer and Co-Investigator National Study of HIV in Pregnancy and Childhood, UCL Great Ormond Street Institute of Child Health, London
| | | | - Mr David Utting
- Consultant Obstetrician and Gynaecologist, Brighton and Sussex University Hospitals NHS Trust
| | - Dr Steven Welch
- Consultant in Paediatric Infectious Diseases, Heart of England NHS Foundation Trust, Birmingham
| | - Ms Alison Wright
- Consultant Obstetrician and Gynaecologist, Royal Free Hospitals NHS Foundation Trust, London
| |
Collapse
|
12
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Veyres N, Hamadjida A, Huot P. Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey. J Pharmacol Exp Ther 2018; 365:379-397. [PMID: 29523699 DOI: 10.1124/jpet.117.247171] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/06/2018] [Indexed: 03/08/2025] Open
Abstract
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate is the gold-standard animal model of Parkinson disease (PD) and has been used to assess the effectiveness of experimental drugs on dyskinesia, parkinsonism, and psychosis. Three species have been used in most studies-the macaque, marmoset, and squirrel monkey-the last much less so than the first two species; however, the predictive value of each species at forecasting clinical efficacy, or lack thereof, is poorly documented. Here, we have reviewed all the published literature detailing pharmacologic studies that assessed the effects of experimental drugs on dyskinesia, parkinsonism, and psychosis in each of these species and have calculated their predictive value of success and failure at the clinical level. We found that, for dyskinesia, the macaque has a positive predictive value of 87.5% and a false-positive rate of 38.1%, whereas the marmoset has a positive predictive value of 76.9% and a false-positive rate of 15.6%. For parkinsonism, the macaque has a positive predictive value of 68.2% and a false-positive rate of 44.4%, whereas the marmoset has a positive predictive value of 86.9% and a false-positive rate of 41.7%. No drug that alleviates psychosis in the clinic has shown efficacy at doing so in the macaque, whereas the marmoset has 100% positive predictive value. The small number of studies conducted in the squirrel monkey precluded us from calculating its predictive efficacy. We hope our results will help in the design of pharmacologic experiments and will facilitate the drug discovery and development process in PD.
Collapse
Affiliation(s)
- Nicolas Veyres
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| | - Adjia Hamadjida
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| | - Philippe Huot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| |
Collapse
|
14
|
Abstract
Dopamine D3 receptors have key roles in behavioral reward, addiction, Parkinson's disease, and schizophrenia, and there is interest in studying their role in these disorders using PET. However, current PET radiotracers for studying D3 receptors in humans all bind to both D2 and D3 due to similarities between the two receptors. Selective D2 and D3 radioligands would aid investigation of the differences between D2 and D3 circuitry in the central nervous system. While there are currently in vitro measures of ligand D3/D2 selectivity, there is a need for an in vivo PET measure of D3/D2 selectivity. This review discusses current PET imaging of dopamine D2/D3 receptors and proposes methodology for quantitating in vivo selectivity of probes for PET imaging of dopamine D3 receptors.
Collapse
Affiliation(s)
- Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle J Labban
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Mach RH, Luedtke RR. Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies. J Labelled Comp Radiopharm 2017; 61:291-298. [PMID: 28857231 DOI: 10.1002/jlcr.3558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [11 C]raclopride, [18 F]fallypride, and [11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET.
Collapse
Affiliation(s)
- Robert H Mach
- Department of Radiology, Perelman School Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX, USA
| |
Collapse
|
16
|
Prieto GA. Abnormalities of Dopamine D 3 Receptor Signaling in the Diseased Brain. J Cent Nerv Syst Dis 2017; 9:1179573517726335. [PMID: 28855798 PMCID: PMC5562332 DOI: 10.1177/1179573517726335] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023] Open
Abstract
Dopamine D3 receptors (D3R) modulate neuronal activity in several brain regions including cortex, striatum, cerebellum, and hippocampus. A growing body of evidence suggests that aberrant D3R signaling contributes to multiple brain diseases, such as Parkinson’s disease, essential tremor, schizophrenia, and addiction. In line with these findings, D3R has emerged as a potential target in the treatment of neurological disorders. However, the mechanisms underlying neuronal D3R signaling are poorly understood, either in healthy or diseased brain. Here, I review the molecular mechanisms involved in D3R signaling via monomeric D3R and heteromeric receptor complexes (e.g., D3R-D1R, D3R-D2R, D3R-A2aR, and D3R-D3nf). I focus on D3R signaling pathways that, according to recent reports, contribute to pathological brain states. In particular, I describe evidence on both quantitative (e.g., increased number or affinity) and qualitative (e.g., switched signaling) changes in D3R that has been associated with brain dysfunction. I conclude with a description of basic mechanisms that modulate D3R signaling such as desensitization, as disruption of these mechanisms may underlie pathological changes in D3R signaling. Because several lines of evidence support the idea that imbalances in D3R signaling alter neural function, a better understanding of downstream D3R pathways is likely to reveal novel therapeutic strategies toward dopamine-related brain disorders.
Collapse
Affiliation(s)
- G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
17
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
18
|
Dopamine and serotonin modulation of motor and non-motor functions of the non-human primate striato-pallidal circuits in normal and pathological states. J Neural Transm (Vienna) 2017; 125:485-500. [PMID: 28176009 DOI: 10.1007/s00702-017-1693-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Thanks to the non-human primate (NHP), we have shown that the pharmacological disturbance of the anterior striatum or of external globus pallidus triggers a set of motivation and movement disorders, depending on the functional subterritory involved. One can, therefore, assume that the aberrant activity of the different subterritories of basal ganglia (BG) could lead to different behavioral disorders in neuropsychiatric disorders as Tourette's syndrome and Parkinson's disease. We are now addressing in the NHP the impact of modulating dopamine or serotonin within the BG on behavioral disorders. Indeed, we have shown a prominent role of serotonergic degeneration within the ventral striatum and caudate nucleus in neuropsychiatric symptoms in de novo PD patients. Of note, the serotonergic modulation of these BG regions in the NHP plays also a critical role in the induction or treatment of behavioral disorders. Given that both dopamine and serotonin are targeted to treat neuropsychiatric disorders, we are studying the effects of modulating dopamine and serotonin transporters in the different territories of the striatum, and more particularly within the ventral striatum on decision-making processing at both behavioral and neuronal levels. Finally, we evidence the need to extend the pharmacological approach to the receptors of these two neuromodulator systems as the use of substances targeting receptor subtypes preferentially localized in the associative and limbic territories of BG could be very effective to specifically improve the behavioral disorders in Parkinson's disease, Gilles de la Tourette syndrome but also in several psychiatric disorders such as depression, anxiety, anorexia, or impulse control disorders.
Collapse
|
19
|
Implication of dorsostriatal D3 receptors in motivational processes: a potential target for neuropsychiatric symptoms in Parkinson's disease. Sci Rep 2017; 7:41589. [PMID: 28134302 PMCID: PMC5278505 DOI: 10.1038/srep41589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023] Open
Abstract
Beyond classical motor symptoms, motivational and affective deficits are frequently observed in Parkinson’s disease (PD), dramatically impairing the quality of life of patients. Using bilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats, we have been able to reproduce these neuropsychiatric/non-motor impairments. The present study describes how bilateral 6-OHDA SNc lesions affect the function of the main striatal dopaminergic (DA) receptor subtypes. Autoradiography was used to measure the levels of striatal DA receptors, and operant sucrose self-administration and neuropharmacological approaches were combined to investigate the causal implication of specific DA receptors subtypes in the motivational deficits induced by a dorsostriatal DA denervation. We found that D3 receptors (D3R) exclusively are down-regulated within the dorsal striatum of lesioned rats. We next showed that infusion of a D3R antagonist (SB-277011A) in non-lesioned animals specifically disrupts preparatory, but not consummatory behaviors. Our findings reveal an unexpected involvement of dorsostriatal D3R in motivational processes. They strongly suggest an implication of dorsostriatal D3R in the neuropsychiatric symptoms observed in PD, highlighting this receptor as a potential target for pharmacological treatment.
Collapse
|
20
|
Le Foll B. What does addiction medicine expect from neuroscience? From genes and neurons to treatment responses. PROGRESS IN BRAIN RESEARCH 2016; 224:419-47. [DOI: 10.1016/bs.pbr.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Carcenac C, Favier M, Vachez Y, Lacombe E, Carnicella S, Savasta M, Boulet S. Subthalamic deep brain stimulation differently alters striatal dopaminergic receptor levels in rats. Mov Disord 2015; 30:1739-49. [DOI: 10.1002/mds.26146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Affiliation(s)
- Carole Carcenac
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Mathieu Favier
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Yvan Vachez
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Emilie Lacombe
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Sébastien Carnicella
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| | - Marc Savasta
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
- Centre Hospitalier Universitaire de Grenoble; Grenoble France
| | - Sabrina Boulet
- Institut National de la Santé et de la Recherche Médicale, Grenoble Institut des Neurosciences; Dynamique et Physiopathologie des Ganglions de la Base Grenoble France
- Grenoble University; Grenoble France
| |
Collapse
|
22
|
Sgambato-Faure V, Worbe Y, Epinat J, Féger J, Tremblay L. Cortico-basal ganglia circuits involved in different motivation disorders in non-human primates. Brain Struct Funct 2014; 221:345-64. [DOI: 10.1007/s00429-014-0911-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/04/2014] [Indexed: 01/29/2023]
|
23
|
Martelle SE, Nader SH, Czoty PW, John WS, Duke AN, Garg PK, Garg S, Newman AH, Nader MA. Further characterization of quinpirole-elicited yawning as a model of dopamine D3 receptor activation in male and female monkeys. J Pharmacol Exp Ther 2014; 350:205-11. [PMID: 24876234 PMCID: PMC4109495 DOI: 10.1124/jpet.114.214833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022] Open
Abstract
The dopamine (DA) D3 receptor (D3R) has been associated with impulsivity, pathologic gambling, and drug addiction, making it a potential target for pharmacotherapy development. Positron emission tomography studies using the D3R-preferring radioligand [(11)C]PHNO ([(11)C](+)-propyl-hexahydro-naphtho-oxazin) have shown higher binding potentials in drug abusers compared with control subjects. Preclinical studies have examined D3R receptor activation using the DA agonist quinpirole and the unconditioned behavior of yawning. However, the relationship between quinpirole-elicited yawning and D3R receptor availability has not been determined. In Experiment 1, eight drug-naive male rhesus monkeys were scanned with [(11)C]PHNO, and the ability of quinpirole (0.01-0.3 mg/kg i.m.) to elicit yawning was examined. Significant positive (globus pallidus) and negative (caudate nucleus, putamen, ventral pallidum, and hippocampus) relationships between D3R receptor availability and quinpirole-induced yawns were noted. Experiment 2 replicated earlier findings that a history of cocaine self-administration (n = 11) did not affect quinpirole-induced yawning and extended this to examine monkeys (n = 3) with a history of methamphetamine (MA) self-administration and found that monkeys with experience self-administering MA showed greater potency and significantly higher quinpirole-elicited yawning compared with controls. Finally, quinpirole-elicited yawning was studied in drug-naive female monkeys (n = 6) and compared with drug-naive male monkeys (n = 8). Sex differences were noted, with quinpirole being more potent and eliciting significantly more yawns in males compared with females. Taken together these findings support the use of quinpirole-elicited yawning as a behavioral tool for examining D3R activation in monkeys and that both drug history and sex may influence individual sensitivity to the behavioral effects of D3R compounds.
Collapse
Affiliation(s)
- Susan E Martelle
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Susan H Nader
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Paul W Czoty
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - William S John
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Angela N Duke
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Pradeep K Garg
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Sudha Garg
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Amy H Newman
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| | - Michael A Nader
- Departments of Physiology and Pharmacology (S.E.M., S.H.N., P.W.C., W.S.J., A.N.D., M.A.N.) and Radiology (P.K.G., S.G., M.A.N.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and the Intramural Research Program (A.H.N.), National Institute on Drug Abuse, Baltimore, Maryland
| |
Collapse
|
24
|
Le Foll B, Wilson AA, Graff A, Boileau I, Di Ciano P. Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol 2014; 5:161. [PMID: 25071579 PMCID: PMC4090596 DOI: 10.3389/fphar.2014.00161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/19/2014] [Indexed: 01/09/2023] Open
Abstract
There is considerable interest in developing highly selective dopamine (DA) D3 receptor ligands for a variety of mental health disorders. DA D3 receptors have been implicated in Parkinson's disease, schizophrenia, anxiety, depression, and substance use disorders. The most concrete evidence suggests a role for the D3 receptor in drug-seeking behaviors. D3 receptors are a subtype of D2 receptors, and traditionally the functional role of these two receptors has been difficult to differentiate. Over the past 10-15 years a number of compounds selective for D3 over D2 receptors have been developed. However, translating these findings into clinical research has been difficult as many of these compounds cannot be used in humans. Therefore, the functional data involving the D3 receptor in drug addiction mostly comes from pre-clinical studies. Recently, with the advent of [(11)C]-(+)-PHNO, it has become possible to image D3 receptors in the human brain with increased selectivity and sensitivity. This is a significant innovation over traditional methods such as [(11)C]-raclopride that cannot differentiate between D2 and D3 receptors. The use of [(11)C]-(+)-PHNO will allow for further delineation of the role of D3 receptors. Here, we review recent evidence that the role of the D3 receptor has functional importance and is distinct from the role of the D2 receptor. We then introduce the utility of analyzing [(11)C]-(+)-PHNO binding by region of interest. This novel methodology can be used in pre-clinical and clinical approaches for the measurement of occupancy of both D3 and D2 receptors. Evidence that [(11)C]-(+)-PHNO can provide insights into the function of D3 receptors in addiction is also presented.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health Toronto, ON, Canada ; Department of Family and Community Medicine, University of Toronto Toronto, ON, Canada ; Department of Pharmacology, University of Toronto Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada
| | - Alan A Wilson
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Ariel Graff
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Isabelle Boileau
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Addiction Imaging Research Group, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Patricia Di Ciano
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada
| |
Collapse
|
25
|
Payer D, Balasubramaniam G, Boileau I. What is the role of the D3 receptor in addiction? A mini review of PET studies with [(11)C]-(+)-PHNO. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:4-8. [PMID: 23999545 DOI: 10.1016/j.pnpbp.2013.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/15/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
The chronic use of drugs, including psychostimulants such as cocaine and amphetamine, has been associated with low D2/3 dopamine receptor availability, which in turn has been linked to poor clinical outcome. In contrast, recent studies focused on the D3 receptor (a member of the D2-like receptor family) suggest that chronic exposure to stimulant drugs can up-regulate this receptor subtype, which, in preclinical models, is linked to dopamine system sensitization - a process hypothesized to contribute to relapse in addiction. In this mini review we present recent human data suggesting that the D3 receptor may contribute to core features of addiction, and discuss the usefulness of the PET imaging probe [(11)C]-(+)-PHNO in investigating this question.
Collapse
Affiliation(s)
- Doris Payer
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Programs, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Programs, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Modeling dyskinesia in animal models of Parkinson disease. Exp Neurol 2014; 256:105-16. [DOI: 10.1016/j.expneurol.2013.01.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/12/2013] [Accepted: 01/21/2013] [Indexed: 01/23/2023]
|
27
|
Mahmoudi S, Lévesque D, Blanchet PJ. Upregulation of dopamine D3, not D2, receptors correlates with tardive dyskinesia in a primate model. Mov Disord 2014; 29:1125-33. [PMID: 24838395 DOI: 10.1002/mds.25909] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 11/12/2022] Open
Abstract
Tardive dyskinesia (TD) is a delayed and potentially irreversible motor complication arising in patients chronically exposed to centrally active dopamine D2 receptor antagonists, including antipsychotic drugs and metoclopramide. The classical dopamine D2 receptor supersensitivity hypothesis in TD, which stemmed from rodent studies, lacks strong support in humans. To investigate the neurochemical basis of TD, we chronically exposed adult capuchin monkeys to haloperidol (median, 18.5 months; n = 11) or clozapine (median, 6 months; n = 6). Six unmedicated animals were used as controls. Five haloperidol-treated animals developed mild TD movements, and no TD was observed in the clozapine group. Using receptor autoradiography, we measured striatal dopamine D1, D2, and D3 receptor levels. We also examined the D3 receptor/preprotachykinin messenger RNA (mRNA) co-expression, and quantified preproenkephalin mRNA levels, in striatal sections. Unlike clozapine, haloperidol strongly induced dopamine D3 receptor binding sites in the anterior caudate-putamen, particularly in TD animals, and binding levels positively correlated with TD intensity. Interestingly, the D3 receptor upregulation was observed in striatonigral neurons. In contrast, D2 receptor binding was comparable to controls, and dopamine D1 receptor binding was reduced in the anterior putamen. Enkephalin mRNA widely increased in all animals, but to a greater extent in TD-free animals. These results suggest for the first time that upregulated striatal D3 receptors correlate with TD in nonhuman primates, adding new insights to the dopamine receptor supersensitivity hypothesis. The D3 receptor could provide a novel target for drug intervention in human TD.
Collapse
Affiliation(s)
- Souha Mahmoudi
- Faculty of Pharmacy, Universite de Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
28
|
Azkona G, Marcilla I, López de Maturana R, Sousa A, Pérez-Navarro E, Luquin MR, Sanchez-Pernaute R. Sustained Increase of PKA Activity in the Postcommissural Putamen of Dyskinetic Monkeys. Mol Neurobiol 2014; 50:1131-41. [DOI: 10.1007/s12035-014-8688-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/23/2014] [Indexed: 01/14/2023]
|
29
|
Sun J, Cairns NJ, Perlmutter JS, Mach RH, Xu J. Regulation of dopamine D₃ receptor in the striatal regions and substantia nigra in diffuse Lewy body disease. Neuroscience 2013; 248:112-26. [PMID: 23732230 PMCID: PMC3796121 DOI: 10.1016/j.neuroscience.2013.05.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 11/26/2022]
Abstract
The regulation of D₃ receptor has not been well documented in diffuse Lewy body disease (DLBD). In this study, a novel D₃-preferring radioligand [(3)H]WC-10 and a D₂-preferring radioligand [(3)H]raclopride were used and the absolute densities of the dopamine D₃ and D₂ receptors were determined in the striatal regions and substantia nigra (SN) from postmortem brains from five cases of DLBD, which included dementia with Lewy bodies (DLB, n=4) and Parkinson disease dementia (PDD, n=1). The densities of the dopamine D₁ receptor, vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT) were also measured by quantitative autoradiography using [(3)H]SCH23390, [(3)H]dihydrotetrabenazine, and [(3)H]WIN35428, respectively. The densities of these dopaminergic markers were also measured in the same brain regions in 10 age-matched control cases. Dopamine D₃ receptor density was significantly increased in the striatal regions including caudate, putamen and nucleus accumbens (NAc). There were no significant changes in the dopamine D₁ and D₂ receptor densities in any brain regions measured. VMAT2 and DAT densities were reduced in all the brain regions measured in DLB/PDD, however, the significant reduction was found in the putamen for DAT and in the NAc and SN for VMAT2. The decrease of dopamine pre-synaptic markers implies neuronal loss in the substantia nigra pars compacta (SNpc) in these DLB/PDD cases, while the increase of D₃ receptors in striatal regions could be attributed to dopaminergic medication history and psychiatric states such as hallucinations. Whether it also reflects compensatory regulation upon dopaminergic denervation warrants further confirmations on larger populations.
Collapse
Affiliation(s)
- J Sun
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA; Neurosurgery Department, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - N J Cairns
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - J S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA; Department of Neurobiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - R H Mach
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - J Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Nakajima S, Gerretsen P, Takeuchi H, Caravaggio F, Chow T, Le Foll B, Mulsant B, Pollock B, Graff-Guerrero A. The potential role of dopamine D₃ receptor neurotransmission in cognition. Eur Neuropsychopharmacol 2013; 23:799-813. [PMID: 23791072 PMCID: PMC3748034 DOI: 10.1016/j.euroneuro.2013.05.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 01/08/2023]
Abstract
Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson's disease and Alzheimer's disease. The primary objective of this work is to review the literature on the role of dopamine D₃ receptors in cognition, and propose dopamine D₃ receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D₃ receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included "dopamine D₃ receptor" and "cognition". The literature search identified 164 articles. The results revealed: (1) D₃ receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D₃ receptor blockade appears to enhance while D₃ receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D₃ receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D₃ receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects.
Collapse
Affiliation(s)
- Shinichiro Nakajima
- Multimodal Imaging Group-Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada M5T 1R8.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li A, Mishra Y, Malik M, Wang Q, Li S, Taylor M, Reichert DE, Luedtke RR, Mach RH. Evaluation of N-phenyl homopiperazine analogs as potential dopamine D3 receptor selective ligands. Bioorg Med Chem 2013; 21:2988-98. [PMID: 23618707 DOI: 10.1016/j.bmc.2013.03.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/14/2013] [Accepted: 03/22/2013] [Indexed: 11/18/2022]
Abstract
A series of N-(2-methoxyphenyl)homopiperazine analogs was prepared and their affinities for dopamine D2, D3, and D4 receptors were measured using competitive radioligand binding assays. Several ligands exhibited high binding affinity and selectivity for the D3 dopamine receptor compared to the D2 receptor subtype. Compounds 11a, 11b, 11c, 11f, 11j and 11k had K(i) values ranging from 0.7 to 3.9 nM for the D3 receptor with 30- to 170-fold selectivity for the D3 versus D2 receptor. Calculated logP values (logP=2.6-3.6) are within the desired range for passive transport across the blood-brain barrier. When the binding and the intrinsic efficacy of these phenylhomopiperazines was compared to those of previously published phenylpiperazine analogues, it was found that (a) affinity at D2 and D3 dopamine receptors generally decreased, (b) the D3 receptor binding selectivity (D2:D3 K(i) value ratio) decreased and, (c) the intrinsic efficacy, measured using a forskolin-dependent adenylyl cyclase inhibition assay, generally increased.
Collapse
Affiliation(s)
- Aixiao Li
- Department of Radiology, Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Motivational properties of D2 and D3 dopamine receptors agonists and cocaine, but not with D1 dopamine receptors agonist and L-dopa, in bilateral 6-OHDA-lesioned rat. Neuropharmacology 2013; 70:74-82. [PMID: 23347953 DOI: 10.1016/j.neuropharm.2012.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/17/2012] [Accepted: 12/31/2012] [Indexed: 11/22/2022]
Abstract
Dopamine dysregulation syndrome in Parkinson's disease (PD) has been attributed to dopamine replacement therapy (DRT). We hypothesize that DRT can induce a potential rewarding effect in an animal model of PD. Using the conditioned place preference (CPP) paradigm, we investigated the motivational effects of L-dopa, dopamine receptor agonists (DRAs), and cocaine in rat with a bilateral 6-OHDA lesion of the nigrostriatal dopaminergic pathway. In 6-OHDA animals, D1 receptors agonist (SKF81297) revealed significantly a conditioned place aversion (CPA) at 3 mg/kg and 9 mg/kg doses. D2 receptors agonist (bromocriptine) induced both CPP and CPA at 1 mg/kg and 10 mg/kg doses respectively. D3 receptors agonist (PD128907) induced a CPP only at 1 mg/kg, comparable to that of cocaine. Sham animals revealed biphasic CPP curves, with significant dose effect, for the intermediate dose of the 3 DRAs. However, L-dopa induced no significant effect while cocaine induced CPP in both lesioned and sham animals. In conclusion, this study confirms the predominant roles of D2R class, and most specifically D3R subtypes, in rewarding properties of DRT.
Collapse
|
33
|
Sun J, Xu J, Cairns NJ, Perlmutter JS, Mach RH. Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) densities in aged human brain. PLoS One 2012; 7:e49483. [PMID: 23185343 PMCID: PMC3504049 DOI: 10.1371/journal.pone.0049483] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
The dopamine D(1), D(2), D(3) receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77-107.8, mean: 91 years) by quantitative autoradiography. The density of D(1) receptors, VMAT2, and DAT was measured using [(3)H]SCH23390, [(3)H]dihydrotetrabenazine, and [(3)H]WIN35428, respectively. The density of D(2) and D(3) receptors was calculated using the D(3)-preferring radioligand, [(3)H]WC-10 and the D(2)-preferring radioligand [(3)H]raclopride using a mathematical model developed previously by our group. Dopamine D(1), D(2), and D(3) receptors are extensively distributed throughout striatum; the highest density of D(3) receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10-20-fold lower than that of VMAT2 in striatal regions. Dopamine D(3) receptor density exceeded D(2) receptor densities in extrastriatal regions, and thalamus contained a high level of D(3) receptors with negligible D(2) receptors. The density of dopamine D(1) linearly correlated with D(3) receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D(3) receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D(1) and D(2) receptors and DAT compared with the aged rhesus monkey brain. The differential density of D(3) and D(2) receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D(2) or D(3) receptors.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nigel J. Cairns
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert H. Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology amd Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
34
|
Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin in methamphetamine polydrug users: a positron emission tomography study. J Neurosci 2012; 32:1353-9. [PMID: 22279219 DOI: 10.1523/jneurosci.4371-11.2012] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Positron emission tomography (PET) findings suggesting lower D2-type dopamine receptors and dopamine concentration in brains of stimulant users have prompted speculation that increasing dopamine signaling might help in drug treatment. However, this strategy needs to consider the possibility, based on animal and postmortem human data, that dopaminergic activity at the related D3 receptor might, in contrast, be elevated and thereby contribute to drug-taking behavior. We tested the hypothesis that D3 receptor binding is above normal in methamphetamine (MA) polydrug users, using PET and the D3-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin ([11C]-(+)-PHNO). Sixteen control subjects and 16 polydrug users reporting MA as their primary drug of abuse underwent PET scanning after [11C]-(+)-PHNO. Compared with control subjects, drug users had higher [11C]-(+)-PHNO binding in the D3-rich midbrain substantia nigra (SN; +46%; p<0.02) and in the globus pallidus (+9%; p=0.06) and ventral pallidum (+11%; p=0.1), whereas binding was slightly lower in the D2-rich dorsal striatum (approximately -4%, NS; -12% in heavy users, p=0.01) and related to drug-use severity. The [11C]-(+)-PHNO binding ratio in D3-rich SN versus D2-rich dorsal striatum was 55% higher in MA users (p=0.004), with heavy but not moderate users having ratios significantly different from controls. [11C]-(+)-PHNO binding in SN was related to self-reported "drug wanting." We conclude that the dopamine D3 receptor, unlike the D2 receptor, might be upregulated in brains of MA polydrug users, although lower dopamine levels in MA users could have contributed to the finding. Pharmacological studies are needed to establish whether normalization of D3 receptor function could reduce vulnerability to relapse in stimulant abuse.
Collapse
|
35
|
Synthesis and characterization of selective dopamine D₂ receptor ligands using aripiprazole as the lead compound. Bioorg Med Chem 2011; 19:3502-11. [PMID: 21536445 DOI: 10.1016/j.bmc.2011.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 11/23/2022]
Abstract
A series of compounds structurally related to aripiprazole (1), an atypical antipsychotic and antidepressant used clinically for the treatment of schizophrenia, bipolar disorder, and depression, have been prepared and evaluated for affinity at D(₂-like) dopamine receptors. These compounds also share structural elements with the classical D(₂-like) dopamine receptor antagonists, haloperidol, N-methylspiperone, domperidone and benperidol. Two new compounds, 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (6) and 7-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (7) were found to (a) bind to the D₂ receptor subtype with high affinity (K(i) values < 0.3 nM), (b) exhibit >50-fold D₂ versus D₃ receptor binding selectivity and (c) be partial agonists at both the D₂ and D₃ receptor subtype.
Collapse
|
36
|
Giorgi M, Melchiorri G, Nuccetelli V, D'Angelo V, Martorana A, Sorge R, Castelli V, Bernardi G, Sancesario G. PDE10A and PDE10A-dependent cAMP catabolism are dysregulated oppositely in striatum and nucleus accumbens after lesion of midbrain dopamine neurons in rat: a key step in parkinsonism physiopathology. Neurobiol Dis 2011; 43:293-303. [PMID: 21515371 DOI: 10.1016/j.nbd.2011.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/16/2011] [Accepted: 04/07/2011] [Indexed: 12/01/2022] Open
Abstract
Loss of dopamine neurons in experimental parkinsonism results in altered cyclic nucleotide cAMP and cGMP levels throughout the basal ganglia. Our objective was to examine whether expression of phosphodiesterase 10A (PDE10A), an isozyme presenting a unique distribution in basal ganglia, is altered after unilateral injection of 6-hydroxydopamine in the medial forebrain bundle, eliminating all midbrain dopaminergic neurons, such that cyclic nucleotide catabolism and steady state could be affected. Our study demonstrates that PDE10A mRNA levels were decreased in striatal neurons 10 weeks after 6-hydroxydopamine midbrain lesion. Such changes occurred in the striatum ipsilateral to lesion and were paralleled by decreased PDE10A protein levels and activity in striatal neurons and in striato-pallidal and striato-nigral projections. However, PDE10A protein and activity were increased while PDE10A mRNA was unchanged in the nucleus accumbens ipsilateral to the 6-hydroxydopamine midbrain lesion. Accordingly, cAMP levels were down-regulated in the nucleus accumbens, and up-regulated in the striatum ipsilateral to the lesion, but they were not significantly changed in substantia nigra and globus pallidus. Unlike cAMP, cGMP levels were decreased in all dopamine-deafferented regions. The opposite variations of cAMP steady state in striatum and nucleus accumbens are concordant and likely dependent, at least in part, on the down-regulation of PDE10A expression and activity in the former and its up-regulation in the latter. On the other hand, the down-regulation of cGMP steady state in the striato-nigral and striato-pallidal complex is not consistent with and is likely independent from the concomitant down-regulation of PDE10A. Therefore, dopamine loss inversely regulates PDE10A gene expression in the striatum and PDE10A post-transcription in the nucleus accumbens, therein differentially modulating PDE10A-dependent cAMP catabolism.
Collapse
Affiliation(s)
- M Giorgi
- Department of Basic and Applied Biology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Choi YG, Yeo S, Hong YM, Lim S. Neuroprotective changes of striatal degeneration-related gene expression by acupuncture in an MPTP mouse model of Parkinsonism: microarray analysis. Cell Mol Neurobiol 2011; 31:377-91. [PMID: 21107677 PMCID: PMC11498463 DOI: 10.1007/s10571-010-9629-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023]
Abstract
Acupuncture at acupoints GB34 and LR3 has been reported to inhibit nigrostriatal degeneration in Parkinsonism models, yet the genes related to this preventive effect of acupuncture on the nigrostriatal dopaminergic system remain elusive. This study investigated gene expression profile changes in the striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism models after acupuncture at the acupoints GB34 and LR3 using a whole transcript genechip microarray (Affymetrix genechip mouse gene 1.0 ST array). It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase and dopamine transporter in the nigrostriatal region of the MPTP model while acupuncture at the non-acupoints could not counteract this decrease. Genechip gene array analysis (fold change cutoff 1.3 and P < 0.05) showed that 12 of the 69 probes up-regulated in MPTP when compared to the control were down-regulated by acupuncture at the acupoints. Of these 12 probes, 11 probes (nine annotated genes) were exclusively down-regulated by acupuncture only at the acupoints; the Gfral gene was excluded because it was commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 28 of the 189 probes down-regulated in MPTP when compared to the control were up-regulated by acupuncture at the acupoints. Of these 28 probes, 19 probes (seven annotated genes) were exclusively up-regulated by acupuncture only at the acupoints while nine probes were commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The regulation patterns of representative genes in real-time RT-PCR correlated with those of the genes in the microarray. These results suggest that the 30 probes (16 annotated genes), which are affected by MPTP and acupuncture only at the acupoints, are responsible for exerting in the striatal regions the inhibitory effect of acupuncture at the acupoints on MPTP-induced striatal degeneration.
Collapse
Affiliation(s)
- Yeong-Gon Choi
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East–West Medical Research Institute, Kyung Hee University, #1 Hoegi-dong Dongdaemoon-gu, Seoul, 130-701 Republic of Korea
| | - Sujung Yeo
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East–West Medical Research Institute, Kyung Hee University, #1 Hoegi-dong Dongdaemoon-gu, Seoul, 130-701 Republic of Korea
- Department of Basic Eastern Medical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Mi Hong
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East–West Medical Research Institute, Kyung Hee University, #1 Hoegi-dong Dongdaemoon-gu, Seoul, 130-701 Republic of Korea
- Department of Basic Eastern Medical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Sabina Lim
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East–West Medical Research Institute, Kyung Hee University, #1 Hoegi-dong Dongdaemoon-gu, Seoul, 130-701 Republic of Korea
- Department of Basic Eastern Medical Science, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Morissette M, Samadi P, Hadj Tahar A, Bélanger N, Di Paolo T. Striatal Akt/GSK3 signaling pathway in the development of L-Dopa-induced dyskinesias in MPTP monkeys. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:446-54. [PMID: 20026151 DOI: 10.1016/j.pnpbp.2009.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/19/2009] [Accepted: 12/13/2009] [Indexed: 01/26/2023]
Abstract
L-Dopa treatment, the gold standard therapy for Parkinson's disease, is hampered by motor complications such as dyskinesias. Recently, impairment of striatal Akt/GSK3 signaling was proposed to play a role in the mechanisms implicated in development of L-Dopa-induced dyskinesias in a rodent model of Parkinson's disease. The present experiment investigated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys, the effects on Akt/GSK3 of chronic L-Dopa treatment inducing dyskinesias compared to L-Dopa with CI-1041 (NMDA receptor antagonist) or a low dose of cabergoline (dopamine D2 receptor agonist) preventing dyskinesias. The extensive dopamine denervation induced by MPTP was associated with a decrease by about half of phosphorylated Akt(Ser473) levels in posterior caudate nucleus, anterior and posterior putamen; smaller changes were observed for phosphorylated Akt(Thr308) levels that did not reach statistical significance. Dopamine depletion reduced phosphorylated GSK3beta(Ser9) levels, mainly in posterior putamen whereas pGSK3beta(Tyr216) and pGSK3alpha(Ser21) were unchanged. In posterior caudate nucleus, anterior and posterior putamen of dyskinetic L-Dopa-treated MPTP monkeys, pAkt(Ser473) and pGSK3beta(Ser9) were elevated whereas L-Dopa+cabergoline treated MPTP monkeys without dyskinesias had lower values in posterior striatum as vehicle-treated MPTP monkeys. In non-dyskinetic MPTP monkeys treated with L-Dopa+CI-1041, putamen pAkt(Ser473) and pGSK3beta(Ser9) levels remained elevated as in dyskinetic monkeys while in posterior caudate nucleus, these levels were low as vehicle-treated and lower than L-Dopa treated MPTP monkeys. Extent of phosphorylation of Akt and GSK3beta in putamen correlated positively with dyskinesias scores of MPTP monkeys; these correlations were higher with dopaminergic drugs (L-Dopa, cabergoline) suggesting implication of additional mechanisms and/or signaling molecules in the NMDA antagonist antidyskinetic effect. In conclusion, our results showed that in MPTP monkeys, loss of striatal dopamine decreased Akt/GSK3 signaling and that increased phosphorylation of Akt and GSK3beta was associated with L-Dopa-induced dyskinesias.
Collapse
Affiliation(s)
- Marc Morissette
- Molecular Endocrinology and Genomic Research Centre, CHUQ, Laval University Medical Centre, Quebec, Canada
| | | | | | | | | |
Collapse
|
39
|
Samadi P, Morissette M, Lévesque D, Di Paolo T. BDNF levels are not related with levodopa-induced dyskinesias in MPTP monkeys. Mov Disord 2010; 25:116-21. [PMID: 20014115 DOI: 10.1002/mds.22885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Levodopa-induced dyskinesias (LIDs) are frequent in parkinsonian patients and may result from an aberrant plasticity. Brain-derived neurotrophic factor (BDNF) represents a likely candidate to subserve neuroadaptive processes encountered in LIDs. We compared striatal BDNF levels measured by ELISA in levodopa-treated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys having developed LIDs compared with animals where LIDs were prevented by the addition of CI-1041 (NR1A/2B NMDA receptor antagonist) or low doses of cabergoline (dopamine D2 receptor agonist). We observed reduced striatal BDNF concentrations in levodopa-treated MPTP monkeys with or without LIDs, suggesting that levodopa treatment is associated with reduced striatal BDNF levels and is independent of dyskinesias.
Collapse
Affiliation(s)
- Pershia Samadi
- Molecular Endocrinology and Genomic Research Centre, Laval University Medical Centre, Quebec, Canada G1V 4G2
| | | | | | | |
Collapse
|
40
|
Mela F, Millan MJ, Brocco M, Morari M. The selective D3 receptor antagonist, S33084, improves parkinsonian-like motor dysfunction but does not affect l-DOPA-induced dyskinesia in 6-hydroxydopamine hemi-lesioned rats. Neuropharmacology 2010; 58:528-36. [DOI: 10.1016/j.neuropharm.2009.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/10/2009] [Accepted: 08/25/2009] [Indexed: 11/16/2022]
|
41
|
Xu J, Chu W, Tu Z, Jones LA, Luedtke RR, Perlmutter JS, Mintun MA, Mach RH. [(3)H]4-(Dimethylamino)-N-[4-(4-(2-methoxyphenyl)piperazin- 1-yl)butyl]benzamide, a selective radioligand for dopamine D(3) receptors. I. In vitro characterization. Synapse 2009; 63:717-28. [PMID: 19425052 DOI: 10.1002/syn.20652] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
4-(Dimethylamino)-N-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)benzamide (WC-10), a N-phenyl piperazine analog, has been shown to have high affinity and selectivity for dopamine D(3) receptors versus dopamine D(2) receptors (Chu et al. [2005] Bioorg Med Chem 13:77-87). In this study, WC-10 was radiolabeled with tritium (specific activity = 80 Ci/mmol) and [(3)H]WC-10 binding to genetically cloned dopamine D(2L) and D(3) receptors was evaluated in vitro. [(3)H]WC-10 binds with a 66-fold higher affinity to human HEK D(3) than HEK D(2L) receptors, with a dissociation constant (K(d)) of 1.2 nM at HEK D(3) receptors. However, [(3)H]WC-10 binds to rat Sf9 rD(3) receptors with a K(d) of 3.9 nM, a value that is 3-fold lower than binding to human HEK D(3) receptors and 40-fold value higher than binding to rat Sf9 rD(2L) receptors. The K(d) values obtained from saturation binding experiments were consistent with the results determined from kinetic (k(on) and k(off)) studies. The pharmacologic profiles of a series of dopaminergic drugs for inhibiting the binding of [(3)H]WC-10 to D(3) receptors was in agreement with previously reported data. In vitro autoradiography studies of rat and monkey brains show that [(3)H]WC-10 labeled D(3) sites in the striatal region.
Collapse
Affiliation(s)
- Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Impulse control disorders and dopamine dysregulation syndrome associated with dopamine agonist therapy in Parkinson's disease. Behav Pharmacol 2009; 20:363-79. [DOI: 10.1097/fbp.0b013e32833109a0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Abstract
Drug dependence is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behaviours persist despite serious negative consequences. Addictive substances, such as opioids, ethanol, psychostimulants and nicotine, induce pleasant states or relieve distress, effects that contribute to their recreational use. Dopamine is critically involved in drug addiction processes. However, the role of the various dopaminergic receptor subtypes has been difficult to delineate. Here, we will review the information collected implicating the receptors of the D1 family (DRD1 and DRD5) and of the D2 family (DRD2, DRD3 and DRD4) in drug addiction. We will summarize the distribution of these receptors in the brain, the preclinical experiments carried out with pharmacological and transgenic approaches and the genetic studies carried out linking genetic variants of these receptors to drug addiction phenotypes. A meta-analysis of the studies carried out evaluating DRD2 and alcohol dependence is also provided, which indicates a significant association. Overall, this review indicates that different aspects of the addiction phenotype are critically influenced by dopaminergic receptors and that variants of those genes seem to influence some addiction phenotypes in humans.
Collapse
|
44
|
Boileau I, Guttman M, Rusjan P, Adams JR, Houle S, Tong J, Hornykiewicz O, Furukawa Y, Wilson AA, Kapur S, Kish SJ. Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson's disease. Brain 2009; 132:1366-75. [PMID: 19153147 DOI: 10.1093/brain/awn337] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The D(3) dopamine (DA) receptor is a member of the D(2)-like DA receptor family. While the D(2) receptor is abundant especially in motor-regions of the striatum, the D(3) receptor shows a relative abundance in limbic regions and globus pallidus. This receptor is of current interest in neurology because of its potential involvement in psychiatric and motor complications in Parkinson's disease and the possibility that dopamine D(3)-preferring agonist therapy might delay progression of the disorder. Preclinical data indicate that striatal levels of the D(3) (but not the D(2)) DA receptor are decreased following lesion of nigrostriatal DA neurons; at present, there are no in vivo data on this receptor subtype in Parkinson's disease. The objective of this positron emission tomography study was to compare [(11)C]-(+)-PHNO (D(3) versus D(2) preferring) and [(11)C]raclopride (D(3) = D(2)) binding in brain of non-depressed, non-demented, dopaminergic drug-naïve patients with early-stage Parkinson's disease (n = 10), relative to matched-controls (n = 9). Parkinson's disease was associated with a trend for bilaterally decreased [(11)C]-(+)-PHNO (but not [(11)C]raclopride) binding in the D(3)-rich ventral striatum (-11%, P = 0.07) and significantly decreased binding in globus pallidus (-42%, P = 0.02). In contrast, in the primarily D(2)-populated putamen, both [(11)C]-(+)-PHNO (25%, P = 0.02) and [(11)C]raclopride (25%, P < 0.01) binding were similarly increased, especially on the side contra-lateral to the symptoms. In the midbrain, presumably containing D(3) receptors localized to the substantia nigra, [(11)C]-(+)-PHNO binding was normal. Decreased [(11)C]-(+)-PHNO to [(11)C]raclopride ratio correlated with motor deficits and lowered-mood (P < 0.02). Our imaging data suggest that brain DA neuron loss in the human causes region-specific differential changes in DA D(2) and D(3) receptors with D(3) receptor 'downregulation' possibly related to some motor and mood problems in Parkinson disease. D(3) receptor levels might be a determinant vulnerability factor underlying side-effects associated with treatment; hence, these initial findings provide valuable baseline information to understand the role of D(3) receptors in response to Parkinson's disease medication.
Collapse
Affiliation(s)
- Isabelle Boileau
- Human Neurochemical Pathology Laboratory, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Roussos P, Giakoumaki SG, Bitsios P. The dopamine D(3) receptor Ser9Gly polymorphism modulates prepulse inhibition of the acoustic startle reflex. Biol Psychiatry 2008; 64:235-40. [PMID: 18325483 DOI: 10.1016/j.biopsych.2008.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/02/2008] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND The dopamine D(3) receptor (DRD(3)) is suspected to modulate prepulse inhibition (PPI) in animals and humans, but definite conclusions cannot be drawn due to lack of selective DRD(3) ligands. The Ser9Gly polymorphism is a common variant of the DRD(3) gene and determines the gain of function of the D(3) receptor. This is the first study to examine the influence of the DRD(3) Ser9Gly polymorphism on human PPI. METHODS Prepulse inhibition was measured in 101 healthy male subjects presented with 75-dB and 85-dB prepulses at 30-, 60-, and 120-msec prepulse-pulse intervals. Subjects were grouped according to their DRD(3) status into a Gly/Gly, a Ser/Gly, and a Ser/Ser group. RESULTS Analyses of variance showed that at all prepulse and interval conditions, Gly/Gly individuals had the lowest PPI and the greatest onset latency facilitation and Ser/Ser individuals had the highest PPI and the lowest onset latency facilitation, while Ser/Gly individuals were intermediate. CONCLUSIONS These results suggest that PPI is modulated by the D(3) receptor and its levels depend on the Ser9Gly polymorphism.
Collapse
Affiliation(s)
- Panos Roussos
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | | | | |
Collapse
|
46
|
Basal ganglia shape abnormalities in the unaffected siblings of schizophrenia patients. Biol Psychiatry 2008; 64:111-20. [PMID: 18295189 PMCID: PMC2486271 DOI: 10.1016/j.biopsych.2008.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/10/2007] [Accepted: 01/04/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Abnormalities of basal ganglia structure in schizophrenia have been attributed to the effects of antipsychotic drugs. Our aim was to test the hypothesis that abnormalities of basal ganglia structure are intrinsic features of schizophrenia by assessing basal ganglia volume and shape in the unaffected siblings of schizophrenia subjects. METHOD The study involved 25 pairs of schizophrenia subjects and their unaffected siblings and 40 pairs of healthy control subjects and their siblings. Large-deformation, high-dimensional brain mapping was used to obtain surface representations of the caudate, putamen, and globus pallidus. Surfaces were derived from transformations of anatomic templates, and shapes were analyzed using reduced-dimensional measures of surface variability (i.e., principal components and canonical analysis). Canonical functions were derived using schizophrenia and control groups and were then used to compare shapes in the sibling groups. To visualize shape differences, maps of the estimated surface displacement between groups were created. RESULTS In the caudate, putamen, and globus pallidus, the degree of shape abnormality observed in the siblings of the schizophrenia subjects was intermediate between the schizophrenia and control subjects. In the schizophrenia subjects, significant correlations were observed between measures of caudate, putamen, and globus pallidus structure and the selected measures of lifetime psychopathology. CONCLUSIONS Attenuated abnormalities of basal ganglia structure are present in the unaffected siblings of schizophrenia subjects. This finding implies that basal ganglia structural abnormalities observed in subjects with schizophrenia are at least in part an intrinsic feature of the illness.
Collapse
|
47
|
Maggio R, Novi F, Rossi M, Corsini GU, Millan MJ. Partial agonist actions at dopamine D2L receptors are modified by co-transfection of D3 receptors: Potential role of heterodimer formation. Parkinsonism Relat Disord 2008; 14 Suppl 2:S139-44. [DOI: 10.1016/j.parkreldis.2008.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Giakoumaki SG, Roussos P, Frangou S, Bitsios P. Disruption of prepulse inhibition of the startle reflex by the preferential D(3) agonist ropinirole in healthy males. Psychopharmacology (Berl) 2007; 194:289-95. [PMID: 17579840 DOI: 10.1007/s00213-007-0843-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Emerging evidence from agonist-antagonist studies suggests a role for the dopamine D(3) receptor subtype in the regulation of PPI in animals, but such evidence is lacking for human subjects. OBJECTIVES This study examines the effect of the preferential D(3) agonist ropinirole on PPI in humans. METHODS PPI was tested in 12 healthy men in three sessions associated with ropinirole 0.25 mg, ropinirole 0.5 mg, or placebo according to a balanced, crossover, double-blind design. Two prepulses (75- and 85-dB white noise bursts) and two lead intervals (50 and 80 ms) were employed. RESULTS Ropinirole 0.5 mg significantly reduced prepulse inhibition (PPI) with both prepulses at the 80-ms lead intervals. There was no effect of treatment on startle amplitude and habituation. CONCLUSIONS These results suggest a role for the dopamine D(3) receptor in the mediation of human PPI, although a contribution from ropinirole's agonistic activity at the D(2) receptor cannot be entirely excluded. Firm conclusions on the role of the D(3) receptor in the modulation of human PPI can only be drawn with the use of genetic approaches or more selective ligands for this receptor.
Collapse
Affiliation(s)
- Stella G Giakoumaki
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, P.O. Box 2208, Heraklion, 71003, Crete, Greece
| | | | | | | |
Collapse
|
49
|
Singh B, Wilson JH, Vasavada HH, Guo Z, Allore HG, Zeiss CJ. Motor deficits and altered striatal gene expression in aphakia (ak) mice. Brain Res 2007; 1185:283-92. [PMID: 17949697 DOI: 10.1016/j.brainres.2007.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/30/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Like humans with Parkinson's disease (PD), the ak mouse lacks the majority of the substantia nigra pars compacta (SNc) and experiences striatal denervation. The purpose of this study was to test whether motor abnormalities in the ak mouse progress over time, and whether motor function could be associated with temporal alterations in the striatal transcriptome. Ak and wt mice (28 to 180 days old) were tested using paradigms sensitive to nigrostriatal dysfunction. Results were analyzed using a linear mixed model. Ak mice significantly underperformed wt controls in rotarod, balance beam, string test, pole test and cotton shred tests at all ages examined. Motor performance in ak mice remained constant over the first 6 months of life, with the exception of the cotton shred test, in which ak mice exhibited marginal decline in performance. Dorsal striatal semi-quantitative RT-PCR for 19 dopaminergic, cholinergic, glutaminergic and catabolic genes was performed in 1- and 6-month-old groups of ak and wt mice. Preproenkephalin levels in ak mice were elevated in both age groups. Drd1, 3 and 4 levels declined over time, in contrast to increasing Drd2 expression. Additional findings included decreased Chrnalpha6 expression and elevated VGluT1 expression at both time points in ak mice and elevated AchE expression in young ak mice only. Results confirm that motor ability does not decline significantly for the first 6 months of life in ak mice. Their striatal gene expression patterns are consistent with dopaminergic denervation, and change over time, despite relatively unaltered motor performance.
Collapse
Affiliation(s)
- Bhupinder Singh
- Section of Comparative Medicine, Yale University, 375 Congress Ave., New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
50
|
Novi F, Millan MJ, Corsini GU, Maggio R. Partial agonist actions of aripiprazole and the candidate antipsychotics S33592, bifeprunox, N-desmethylclozapine and preclamol at dopamine D2Lreceptors are modified by co-transfection of D3receptors: potential role of heterodimer formation. J Neurochem 2007; 102:1410-24. [PMID: 17532788 DOI: 10.1111/j.1471-4159.2007.04660.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aripiprazole and the candidate antipsychotics, S33592, bifeprunox, N-desmethylclozapine (NDMC) and preclamol, are partial agonists at D(2) receptors. Herein, we examined their actions at D(2L) and D(3) receptors expressed separately or together in COS-7 cells. In D(2L) receptor-expressing cells co-transfected with (D(3) receptor-insensitive) chimeric adenylate cyclase-V/VI, drugs reduced forskolin-stimulated cAMP production by approximately 20% versus quinpirole (48%). Further, quinpirole-induced inhibition was blunted by aripiprazole and S33592, confirming partial agonist properties. In cells co-transfected with equal amounts of D(2L)and D(3) receptors (1 : 1), efficacies of aripiprazole and S33592 were attenuated. Further, in cells co-transfected with D(2L) and an excess of D(3) receptors (1 : 3), aripiprazole and S33592 were completely inactive, and they abolished the actions of quinpirole. Likewise, bifeprunox, NDMC and preclamol lost agonist properties in cells co-transfected with D(2L)and D(3) receptors. Accordingly, at split D(2trunk)/D(3tail) and D(3trunk)/D(2tail) chimeras, agonist actions of quinpirole were blocked by aripiprazole and S33592 that, like bifeprunox, NDMC and preclamol, were inactive alone. Conversely, when a 12 amino acid sequence in the third intracellular loop of D(3) receptors was replaced by the homologous sequence of D(2L) receptors, aripiprazole, S33592, bifeprunox, NDMC and preclamol inhibited cAMP formation by approximately 20% versus quinpirole (42%). Moreover, at D(2L) receptor-expressing cells co-transfected with modified D(3i3(D2)) receptors, drugs behaved as partial agonists. To summarize, low efficacy agonist actions of aripiprazole, S33592, bifeprunox, NDMC and preclamol at D(2L) receptors are abrogated upon co-expression of D(3) receptors, probably due to physical association and weakened coupling efficacy. These findings have implications for the functional profiles of antipsychotics.
Collapse
Affiliation(s)
- Francesca Novi
- Department of Neuroscience, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|