1
|
Cheng Y, Wang X, Zhang Q, Ge R, Zhou M, Dai Y. Multiple patterns of persistent inward currents with multiple types of repetitive firings in medullary serotonergic neurons of mice: An experimental and modeling study. PLoS Comput Biol 2025; 21:e1012918. [PMID: 40203009 PMCID: PMC11981129 DOI: 10.1371/journal.pcbi.1012918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/26/2025] [Indexed: 04/11/2025] Open
Abstract
Persistent inward currents (PICs) play a crucial role in regulating neuronal excitability. These currents are composed of calcium (CaL) and sodium (NaP) components in vertebrate spinal neurons. Recent studies have reported that PICs are expressed in serotonergic neurons (5-HT) in medulla of mice. Multiple patterns of PICs were identified in 5-HT neurons, corresponding to a range of distinct repetitive firing types. The mechanisms underlying formation of these PIC patterns and firing types remain unknown. Using combined modeling and experimental approaches we explored the ionic mechanisms responsible for the PIC patterns and firing types. The whole cell patch clamp recordings were performed on the medullary 5-HT neurons of postnatal day 3-6 mice. A 5-HT neuron model was built based on the membrane properties of the 5-HT neurons and kinetics of voltage-gated channels. Results from physiological experiments and modeling simulations included: (1) PICs in 5-HT neurons were classified into six patterns based on their current trajectory induced by bi-ramp voltage, while repetitive firings were categorized into three types according to their response to bi-ramp current. Modulation of PICs conductance and kinetics altered the PIC patterns and firing types. (2) NaP conductance contributed to amplitude of PICs, whereas the slow inactivation gate (Sgate) of NaP regulated the PIC patterns and firing types. Increasing Sgate changed trajectory of PICs from counterclockwise to clockwise and firing types from asymmetrical to symmetric types induced by bi-ramp current. (3) CaL conductance dominated the amplitude of PICs, while CaL kinetics (half-activation voltage and slope) determined inactivation of PICs and prolongation of repetitive firing. (4) The novel finding was that distribution of CaL in distal dendrites modulated the PIC patterns and firing types. This study provides insights into the ionic mechanisms underlying generation of multiple PIC patterns and firing types in 5-HT neurons.
Collapse
Affiliation(s)
- Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Xingyu Wang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Qiang Zhang
- School of Electrical and Information Engineering, Jiangsu University of Science and Technology (Zhangjiagang Campus), Zhangjiagang, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Mei Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai, China
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Goltash S, Khodr R, Bui TV, Laliberte AM. An optogenetic mouse model of hindlimb spasticity after spinal cord injury. Exp Neurol 2025; 386:115157. [PMID: 39863244 DOI: 10.1016/j.expneurol.2025.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour. Therefore, we have generated a mouse model of SCI-related spasticity that utilizes optogenetics to activate a subset of cutaneous VGLUT2+ sensory afferents to produce reliable incidences of spasticity-associated responses in the hindlimb. To examine the efficacy of this optogenetic SCI spasticity model, a T9-T10 complete transection injury was performed in Islet1-Cre+/-;VGLUT2-Flp+/-;CreON-FlpON-CatCh+/- mice, followed by the implantation of EMG electrodes into the left and right gastrocnemius and tibialis anterior muscles. EMG recordings were performed during episodic optogenetic stimulation (1-2 sessions per week until 5 weeks post-injury (wpi); n = 10 females, 5 males). A subset of these mice (n = 3 females, 2 males) was also tested at 10 wpi. During each recording session, an optic fiber coupled to a 470 nm wavelength LED was used to deliver 9 × 100 ms light pulses to the palmar surface of each hind paw. The results of these recordings demonstrated significant increases in the amplitude of EMG responses to the light stimulus from 2 wpi to 10 wpi, suggesting increased excitability of cutaneous sensorimotor pathways. Interestingly, this effect was significantly greater in the female cohort than in the males. Incidences of prolonged involuntary muscle contraction in response to the stimulus (fictive spasms) were also detected through EMG and visual observation during the testing period, supporting the presence of spasticity. As such, the optogenetic mouse model developed for this study appears to elicit spasticity-associated behaviours in SCI mice reliably and may be valuable for studying SCI-related limb spasticity mechanisms and therapeutic.
Collapse
Affiliation(s)
- Sara Goltash
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Riham Khodr
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tuan V Bui
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Alex M Laliberte
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Singh S, Yao L, Shevtsova NA, Rybak IA, Dougherty KJ. Properties of rhythmogenic currents in spinal Shox2 interneurons across postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.612677. [PMID: 39386611 PMCID: PMC11463365 DOI: 10.1101/2024.09.26.612677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Locomotor behaviors are performed by organisms throughout life, despite developmental changes in cellular properties, neural connectivity, and biomechanics. The basic rhythmic activity in the central nervous system that underlies locomotion is thought to be generated via a complex balance between network and intrinsic cellular properties. Within mature mammalian spinal locomotor circuitry, we have yet to determine which properties of spinal interneurons (INs) are critical to rhythmogenesis and how they change during development. Here, we combined whole cell patch clamp recordings, immunohistochemistry, and RNAscope targeting lumbar Shox2 INs in mice, which are known to be involved in locomotor rhythm generation. We focused on the properties of putatively rhythmogenic ionic currents and the expression of corresponding ion channels across postnatal time points in mice. We show that subsets of Shox2 INs display voltage-sensitive conductances, in addition to respective ion channels, which may contribute to or shape rhythmic bursting. Persistent inward currents, M-type potassium currents, slow afterhyperpolarization, and T-type calcium currents are enhanced with age. In contrast, the hyperpolarization-activated and A-type potassium currents were either found with low prevalence in subsets of neonatal, juvenile, and adult Shox2 INs or did not developmentally change. We show that Shox2 INs become more electrophysiologically diverse by juvenile and adult ages, when locomotor behavior is weight-bearing. These results suggest a developmental shift in the magnitude of rhythmogenic ionic currents and the expression of corresponding ion channels that may be important for mature, weight-bearing locomotor behavior.
Collapse
|
4
|
Eleftheriadis PE, Pothakos K, Sharples SA, Apostolou PE, Mina M, Tetringa E, Tsape E, Miles GB, Zagoraiou L. Peptidergic modulation of motor neuron output via CART signaling at C bouton synapses. Proc Natl Acad Sci U S A 2023; 120:e2300348120. [PMID: 37733738 PMCID: PMC10523464 DOI: 10.1073/pnas.2300348120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
The intensity of muscle contraction, and therefore movement vigor, needs to be adaptable to enable complex motor behaviors. This can be achieved by adjusting the properties of motor neurons, which form the final common pathway for all motor output from the central nervous system. Here, we identify roles for a neuropeptide, cocaine- and amphetamine-regulated transcript (CART), in the control of movement vigor. We reveal distinct but parallel mechanisms by which CART and acetylcholine, both released at C bouton synapses on motor neurons, selectively amplify the output of subtypes of motor neurons that are recruited during intense movement. We find that mice with broad genetic deletion of CART or selective elimination of acetylcholine from C boutons exhibit deficits in behavioral tasks that require higher levels of motor output. Overall, these data uncover spinal modulatory mechanisms that control movement vigor to support movements that require a high degree of muscle force.
Collapse
Affiliation(s)
| | - Konstantinos Pothakos
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Simon A. Sharples
- School of Psychology and Neuroscience, University of St. Andrews, St. AndrewsKY16 9JP, United Kingdom
| | - Panagiota E. Apostolou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Maria Mina
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Efstathia Tetringa
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Eirini Tsape
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| | - Gareth B. Miles
- School of Psychology and Neuroscience, University of St. Andrews, St. AndrewsKY16 9JP, United Kingdom
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens11527, Greece
| |
Collapse
|
5
|
Lee KH, Wassef DE, MacNeil EK, Magoski NS. Cholinergic depolarization recruits a persistent Ca 2+ current in Aplysia bag cell neurons. J Neurophysiol 2023; 129:1045-1060. [PMID: 36988203 PMCID: PMC11918274 DOI: 10.1152/jn.00429.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Many behaviors and types of information storage are mediated by lengthy changes in neuronal activity. In bag cell neurons of the hermaphroditic sea snail Aplysia californica, a transient cholinergic synaptic input triggers an ∼30-min afterdischarge. This causes these neuroendocrine cells to release egg laying hormone and elicit reproductive behavior. When acetylcholine is pressure-ejected onto a current-clamped bag cell neuron, the evoked depolarization is far longer than the current evoked by acetylcholine under voltage clamp, suggesting recruitment of another conductance. Our earlier studies found bag cell neurons to display a voltage-dependent persistent Ca2+ current. Hence, we hypothesized that this current is activated by the acetylcholine-induced depolarization and sought a selective Ca2+ current blocker. Rapid Ca2+ current evoked by 200-ms depolarizing steps in voltage-clamped cultured bag cell neurons demonstrated a concentration-dependent sensitivity to Ni2+, Co2+, Zn2+, and verapamil but not Cd2+ or ω-conotoxin GIVa. Leak subtraction of Ca2+ current evoked by 10-s depolarizing steps using the IC100 (concentration required to eliminate maximal current) of Ni2+, Co2+, Zn2+, or verapamil revealed persistent Ca2+ current, demonstrating persistent current block. Only Co2+ and Zn2+ did not suppress the acetylcholine-induced current, although Zn2+ appeared to impact additional channels. When Co2+ was applied during an acetylcholine-induced depolarization, the amplitude was reduced; furthermore, protein kinase C activation, previously established to enhance the persistent Ca2+ current, extended the depolarization. Therefore, the persistent Ca2+ current sustains the acetylcholine-induced depolarization and may translate brief cholinergic input into afterdischarge initiation. This could be a general mechanism of triggering long-term change in activity with a short-lived input.NEW & NOTEWORTHY Ionotropic acetylcholine receptors mediate brief synaptic communication, including in bag cell neurons of the sea snail Aplysia. However, this study demonstrates that cholinergic depolarization can open a voltage-gated persistent Ca2+ current, which extends the bag cell neuron response to acetylcholine. Bursting in these neuroendocrine cells results in hormone release and egg laying. Thus, this emphasizes the role of ionotropic signaling in reaching a depolarized level to engage Ca2+ influx and perpetuating the activity necessary for behavior.
Collapse
Affiliation(s)
- Kelly H Lee
- Department of Biomedical and Molecular Sciences, Experimental Medicine Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - David E Wassef
- Department of Biomedical and Molecular Sciences, Experimental Medicine Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Eammon K MacNeil
- Department of Biomedical and Molecular Sciences, Experimental Medicine Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Experimental Medicine Graduate Program, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Elbasiouny SM. Motoneuron excitability dysfunction in ALS: Pseudo-mystery or authentic conundrum? J Physiol 2022; 600:4815-4825. [PMID: 36178320 PMCID: PMC9669170 DOI: 10.1113/jp283630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023] Open
Abstract
In amyotrophic lateral sclerosis (ALS), abnormalities in motoneuronal excitability are seen in early pathogenesis and throughout disease progression. Fully understanding motoneuron excitability dysfunction may lead to more effective treatments. Yet decades of research have not produced consensus on the nature, role or underlying mechanisms of motoneuron excitability dysfunction in ALS. For example, contrary to Ca excitotoxicity theory, predictions of motoneuronal hyper-excitability, normal and hypo-excitability have also been seen at various disease stages and in multiple ALS lines. Accordingly, motoneuron excitability dysfunction in ALS is a disputed topic in the field. Specifically, the form (hyper, hypo or unchanged) and what role excitability dysfunction plays in the disease (pathogenic or downstream of other pathologies; neuroprotective or detrimental) are currently unclear. Although several motoneuron properties that determine cellular excitability change in the disease, some of these changes are pro-excitable, whereas others are anti-excitable, making dynamic fluctuations in overall 'net' excitability highly probable. Because various studies assess excitability via differing methods and at differing disease stages, the conflicting reports in the literature are not surprising. Hence, the overarching process of excitability degradation and motoneuron degeneration is not fully understood. Consequently, the discrepancies on motoneuron excitability dysfunction in the literature represent a substantial barrier to our understanding of the disease. Emerging studies suggest that biological variables, variations in experimental protocols, issues of rigor and sampling/analysis strategies are key factors that may underlie conflicting data in the literature. This review highlights potential confounding factors for researchers to consider and also offers ideas on avoiding pitfalls and improving robustness of data.
Collapse
Affiliation(s)
- Sherif M. Elbasiouny
- Department of NeuroscienceCell Biology, and PhysiologyBoonshoft School of Medicine and College of Science and MathematicsWright State UniversityDaytonOHUSA,Department of BiomedicalIndustrial, and Human Factors EngineeringCollege of Engineering and Computer ScienceWright State UniversityDaytonOHUSA
| |
Collapse
|
7
|
Ji B, Wojtaś B, Skup M. Molecular Identification of Pro-Excitogenic Receptor and Channel Phenotypes of the Deafferented Lumbar Motoneurons in the Early Phase after SCT in Rats. Int J Mol Sci 2022; 23:ijms231911133. [PMID: 36232433 PMCID: PMC9569670 DOI: 10.3390/ijms231911133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Spasticity impacts the quality of life of patients suffering spinal cord injury and impedes the recovery of locomotion. At the cellular level, spasticity is considered to be primarily caused by the hyperexcitability of spinal α-motoneurons (MNs) within the spinal stretch reflex circuit. Here, we hypothesized that after a complete spinal cord transection in rats, fast adaptive molecular responses of lumbar MNs develop in return for the loss of inputs. We assumed that early loss of glutamatergic afferents changes the expression of glutamatergic AMPA and NMDA receptor subunits, which may be the forerunners of the developing spasticity of hindlimb muscles. To better understand its molecular underpinnings, concomitant expression of GABA and Glycinergic receptors and serotoninergic and noradrenergic receptors, which regulate the persistent inward currents crucial for sustained discharges in MNs, were examined together with voltage-gated ion channels and cation-chloride cotransporters. Using quantitative real-time PCR, we showed in the tracer-identified MNs innervating extensor and flexor muscles of the ankle joint multiple increases in transcripts coding for AMPAR and 5-HTR subunits, along with a profound decrease in GABAAR, GlyR subunits, and KCC2. Our study demonstrated that both MNs groups similarly adapt to a more excitable state, which may increase the occurrence of extensor and flexor muscle spasms.
Collapse
Affiliation(s)
- Benjun Ji
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Bartosz Wojtaś
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
8
|
Zhang Q, Dai Y, Zhou J, Ge R, Hua Y, Powers RK, Binder MD. The effects of membrane potential oscillations on the excitability of rat hypoglossal motoneurons. Front Physiol 2022; 13:955566. [PMID: 36082223 PMCID: PMC9445839 DOI: 10.3389/fphys.2022.955566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Oscillations in membrane potential induced by synaptic inputs and intrinsic ion channel activity play a role in regulating neuronal excitability, but the precise mechanisms underlying their contributions remain largely unknown. Here we used electrophysiological and modeling approaches to investigate the effects of Gaussian white noise injected currents on the membrane properties and discharge characteristics of hypoglossal (HG) motoneurons in P16-21 day old rats. We found that the noise-induced membrane potential oscillations facilitated spike initiation by hyperpolarizing the cells’ voltage threshold by 3.1 ± 1.0 mV and reducing the recruitment current for the tonic discharges by 0.26 ± 0.1 nA, on average (n = 59). Further analysis revealed that the noise reduced both recruitment and decruitment currents by 0.26 ± 0.13 and 0.33 ± 0.1 nA, respectively, and prolonged the repetitive firing. The noise also increased the slopes of frequency-current (F-I) relationships by 1.1 ± 0.2 Hz/nA. To investigate the potential mechanisms underlying these findings, we constructed a series of HG motoneuron models based on their electrophysiological properties. The models consisted of five compartments endowed with transient sodium (NaT), delayed-rectify potassium [K(DR)], persistent sodium (NaP), calcium-activated potassium [K(AHP)], L-type calcium (CaL) and H-current channels. In general, all our experimental results could be well fitted by the models, however, a modification of standard Hodgkin-Huxley kinetics was required to reproduce the changes in the F-I relationships and the prolonged discharge firing. This modification, corresponding to the noise generated by the stochastic flicker of voltage-gated ion channels (channel flicker, CF), was an adjustable sinusoidal function added to kinetics of the channels that increased their sensitivity to subthreshold membrane potential oscillations. Models with CF added to NaP and CaL channels mimicked the noise-induced alterations of membrane properties, whereas models with CF added to NaT and K(DR) were particularly effective in reproducing the noise-induced changes for repetitive firing observed in the real motoneurons. Further analysis indicated that the modified channel kinetics enhanced NaP- and CaL-mediated inward currents thus increasing the excitability and output of HG motoneurons, whereas they produced relatively small changes in NaT and K(DR), thus balancing these two currents and triggering variability of repetitive firing. This study provided insight into the types of membrane channel mechanisms that might underlie oscillation-induced alterations of neuronal excitability and motor output in rat HG motoneurons.
Collapse
Affiliation(s)
- Qiang Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
- *Correspondence: Yue Dai, ; Marc D. Binder,
| | - Junya Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yiyun Hua
- Neuroscience, McGill University, Montreal, QC, Canada
| | - Randall K. Powers
- Department of Physiology & Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Marc D. Binder
- Department of Physiology & Biophysics, School of Medicine, University of Washington, Seattle, WA, United States
- *Correspondence: Yue Dai, ; Marc D. Binder,
| |
Collapse
|
9
|
Chen K, Dai Y. Chronic exercise increases excitability of lamina X neurons through enhancement of persistent inward currents and dendritic development in mice. J Physiol 2022; 600:3775-3793. [PMID: 35848453 DOI: 10.1113/jp283037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Chronic exercise alters adaptability of spinal motor system in rodents. Multiple mechanisms are responsible for the adaptation, including regulation of neuronal excitability and change in dendritic morphology. Spinal interneurons in lamina X are a cluster of heterogeneous neurons playing multifunctional roles in the spinal cord, especially in regulating locomotor activity. Chronic exercise in juvenile mice increased excitability of these interneurons and facilitated dendritic development. Mechanisms underlying these changes remain unknown. Lamina X neurons expressed persistent inward currents (PICs) composed of calcium (Ca-PIC) and sodium (Na-PIC) components. The exercise-increased excitability of lamina X neurons was mediated by enhancing Ca-PIC and Na-PIC components and facilitating dendritic length. Na-PIC contributed more to lowering of PIC onset and Ca-PIC to increase of PIC amplitude. This study unveiled novel morphological and ionic mechanisms underlying adaptation of lamina X neurons in rodents during chronic exercise. ABSTRACT Chronic exercise has been shown to enhance excitability of spinal interneurons in rodents. However, the mechanisms underlying this enhancement remain unclear. In this study we investigated adaptability of lamina X neurons with three-week treadmill exercise in mice of P21-P24. Whole-cell path-clamp recording was performed on the interneurons from slices of T12-L4. The experimental results included: (1) Treadmill exercise reduced rheobase by 7.4±2.2 pA (control: 11.3±6.1 pA, n = 12; exercise: 3.8±4.6 pA, n = 13; P = 0.002) and hyperpolarized voltage threshold by 7.1±1.5 mV (control: -36.6±4.6 mV, exercise: -43.7±2.7 mV; P = 0.001). (2) Exercise enhanced persistent inward currents (PICs) with increase of amplitude (control: 140.6±56.3 pA, n = 25; exercise: 225.9±62.5 pA, n = 17; P = 0.001) and hyperpolarization of onset (control: -50.3±3.6 mV, exercise: -56.5±5.5 mV; P = 0.001). (3) PICs consisted of dihydropyridine-sensitive calcium (Ca-PIC) and tetrodotoxin-sensitive sodium (Na-PIC) components. Exercise increased amplitude of both components but hyperpolarized onset of Na-PIC only. (4) Exercise reduced derecruitment current of repetitive firing evoked by current bi-ramp and prolonged firing in falling phase of the bi-ramp. The derecruitment reduction was eliminated by bath application of 3 μM riluzole or 25 μM nimodipine, suggesting that both Na-PIC and Ca-PIC contributed to the exercise-prolonged hysteresis of firing. (5) Exercise facilitated dendritic development with significant increase in dendritic length by 285.1±113 μm (control: 457.8±171.8 μm, n = 12; exercise: 742.9±357 μm, n = 14; P = 0.019). We concluded that three-week treadmill exercise increased excitability of lamina X interneurons through enhancement of PICs and increase of dendritic length. This study provided insight into cellular and channel mechanisms underlying adaptation of the spinal motor system in exercise. Abstract figure legend A. B6 mice were randomly divided into control group and exercise group. Control group mice remained sedentary in the cage; exercise group mice completed 60 min treadmill runs each day (6 days/week) for a period of 3 weeks. B. Whole-cell patch clamp recordings were made from lumbar lamina X neurons after three-weeks exercise. C. Exercise facilitated development of dendrites of lamina X neurons. D. Exercise enhanced persistent inward currents. E. Exercise increased excitability of lamina X neurons by hyperpolarizing voltage threshold for action potential generation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ke Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Yue Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, 200241, China.,Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
10
|
Cholinergic modulation of persistent inward currents is mediated by activating muscarinic receptors of serotonergic neurons in the brainstem of ePet-EYFP mice. Exp Brain Res 2022; 240:1177-1189. [PMID: 35166863 DOI: 10.1007/s00221-022-06322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/02/2022] [Indexed: 11/04/2022]
Abstract
Persistent inward currents (PICs) play important roles in regulating neural excitability. Results from our previous studies showed that serotonergic (5-HT) neurons of the brainstem expressed PICs. However, little is known about cholinergic (ACh) modulation of PICs in the 5-HT neurons. The whole-cell patch-clamp recordings were performed in the brainstem slices of ePet-EYFP mice to investigate the electrophysiological properties of PICs with cholinergic modulation. PICs in 5-HT neurons were activated at - 51.4 ± 3.7 mV with the amplitude of - 171.6 ± 48.9 pA (n = 71). Bath application of 20-25 μM ACh increased the amplitude by 79.1 ± 42.5 pA (n = 23, p < 0.001) and hyperpolarized the onset voltage by 2.2 ± 2.7 mV (n = 23, p < 0.01) and half-maximal activation by 3.6 ± 2.7 mV (n = 6, p < 0.01). Muscarine mimicked the effects of ACh on PICs, while bath application of nicotine (15-20 μM) did not induce substantial change in the PICs (n = 9). Muscarine enhanced the amplitude of PICs by 100.0 ± 27.4 pA (n = 28, p < 0.001) and lowered the onset voltage by 2.8 ± 1.2 mV (n = 28, p < 0.001) and the half-maximal activation by 2.9 ± 1.4 mV. ACh-induced increase of amplitude and hyperpolarization of onset voltage were blocked by 3-5 μM atropine. Furthermore, the muscarine-induced enhancement of the PICs was antagonized by 5 μM 4-DAMP, the antagonist of M3 receptor, while the antagonists of M1 (Telenzepine, 5 μM) and M5 (VU6008667, 5 μM) receptors did not significantly affect the PIC enhancement. This study suggested that ACh potentiated PICs in 5-HT neurons of the brainstem by activating muscarinic M3 receptor.
Collapse
|
11
|
Abstract
Motoneurons are the 'final common path' between the central nervous system (that intends, selects, commands, and organises movement) and muscles (that produce the behaviour). Motoneurons are not passive relays, but rather integrate synaptic activity to appropriately tune output (spike trains) and therefore the production of muscle force. In this chapter, we focus on studies of mammalian motoneurons, describing their heterogeneity whilst providing a brief historical account of motoneuron recording techniques. Next, we describe adult motoneurons in terms of their passive, transition, and active (repetitive firing) properties. We then discuss modulation of these properties by somatic (C-boutons) and dendritic (persistent inward currents) mechanisms. Finally, we briefly describe select studies of human motor unit physiology and relate them to findings from animal preparations discussed earlier in the chapter. This interphyletic approach to the study of motoneuron physiology is crucial to progress understanding of how these diverse neurons translate intention into behaviour.
Collapse
|
12
|
Trpm5 channels encode bistability of spinal motoneurons and ensure motor control of hindlimbs in mice. Nat Commun 2021; 12:6815. [PMID: 34819493 PMCID: PMC8613399 DOI: 10.1038/s41467-021-27113-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Bistable motoneurons of the spinal cord exhibit warmth-activated plateau potential driven by Na+ and triggered by a brief excitation. The thermoregulating molecular mechanisms of bistability and their role in motor functions remain unknown. Here, we identify thermosensitive Na+-permeable Trpm5 channels as the main molecular players for bistability in mouse motoneurons. Pharmacological, genetic or computational inhibition of Trpm5 occlude bistable-related properties (slow afterdepolarization, windup, plateau potentials) and reduce spinal locomotor outputs while central pattern generators for locomotion operate normally. At cellular level, Trpm5 is activated by a ryanodine-mediated Ca2+ release and turned off by Ca2+ reuptake through the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump. Mice in which Trpm5 is genetically silenced in most lumbar motoneurons develop hindlimb paresis and show difficulties in executing high-demanding locomotor tasks. Overall, by encoding bistability in motoneurons, Trpm5 appears indispensable for producing a postural tone in hindlimbs and amplifying the locomotor output.
Collapse
|
13
|
Sharples SA, Miles GB. Maturation of persistent and hyperpolarization-activated inward currents shapes the differential activation of motoneuron subtypes during postnatal development. eLife 2021; 10:e71385. [PMID: 34783651 PMCID: PMC8641952 DOI: 10.7554/elife.71385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
The size principle underlies the orderly recruitment of motor units; however, motoneuron size is a poor predictor of recruitment amongst functionally defined motoneuron subtypes. Whilst intrinsic properties are key regulators of motoneuron recruitment, the underlying currents involved are not well defined. Whole-cell patch-clamp electrophysiology was deployed to study intrinsic properties, and the underlying currents, that contribute to the differential activation of delayed and immediate firing motoneuron subtypes. Motoneurons were studied during the first three postnatal weeks in mice to identify key properties that contribute to rheobase and may be important to establish orderly recruitment. We find that delayed and immediate firing motoneurons are functionally homogeneous during the first postnatal week and are activated based on size, irrespective of subtype. The rheobase of motoneuron subtypes becomes staggered during the second postnatal week, which coincides with the differential maturation of passive and active properties, particularly persistent inward currents. Rheobase of delayed firing motoneurons increases further in the third postnatal week due to the development of a prominent resting hyperpolarization-activated inward current. Our results suggest that motoneuron recruitment is multifactorial, with recruitment order established during postnatal development through the differential maturation of passive properties and sequential integration of persistent and hyperpolarization-activated inward currents.
Collapse
Affiliation(s)
- Simon A Sharples
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
14
|
Noise-induced properties of active dendrites. Proc Natl Acad Sci U S A 2021; 118:2023381118. [PMID: 34413187 DOI: 10.1073/pnas.2023381118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendrites play an essential role in the integration of highly fluctuating input in vivo into neurons across all nervous systems. Yet, they are often studied under conditions where inputs to dendrites are sparse. The dynamic properties of active dendrites facing in vivo-like fluctuating input thus remain elusive. In this paper, we uncover dynamics in a canonical model of a dendritic compartment with active calcium channels, receiving in vivo-like fluctuating input. In a single-compartment model of the active dendrite with fast calcium activation, we show noise-induced nonmonotonic behavior in the relationship of the membrane potential output, and mean input emerges. In contrast, noise can induce bistability in the input-output relation in the system with slowly activating calcium channels. Both phenomena are absent in a noiseless condition. Furthermore, we show that timescales of the emerging stochastic bistable dynamics extend far beyond a deterministic system due to stochastic switching between the solutions. A numerical simulation of a multicompartment model neuron shows that in the presence of in vivo-like synaptic input, the bistability uncovered in our analysis persists. Our results reveal that realistic synaptic input contributes to sustained dendritic nonlinearities, and synaptic noise is a significant component of dendritic input integration.
Collapse
|
15
|
Kim H, Ju Y. Effective Stimulation Type and Waveform for Force Control of the Motor Unit System: Implications for Intraspinal Microstimulation. Front Neurosci 2021; 15:645984. [PMID: 34262423 PMCID: PMC8274570 DOI: 10.3389/fnins.2021.645984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
The input-output properties of spinal motoneurons and muscle fibers comprising motor units are highly non-linear. The goal of this study was to investigate the stimulation type (continuous versus discrete) and waveform (linear versus non-linear) controlling force production at the motor unit level under intraspinal microstimulation. We constructed a physiological model of the motor unit with computer software enabling virtual experiments on single motor units under a wide range of input conditions, including intracellular and synaptic stimulation of the motoneuron and variation in the muscle length under neuromodulatory inputs originating from the brainstem. Continuous current intensity and impulse current frequency waveforms were inversely estimated such that the motor unit could linearly develop and relax the muscle force within a broad range of contraction speeds and levels during isometric contraction at various muscle lengths. Under both continuous and discrete stimulation, the stimulation waveform non-linearity increased with increasing speed and level of force production and with decreasing muscle length. Only discrete stimulation could control force relaxation at all muscle lengths. In contrast, continuous stimulation could not control force relaxation at high contraction levels in shorter-than-optimal muscles due to persistent inward current saturation on the motoneuron dendrites. These results indicate that non-linear adjustment of the stimulation waveform is more effective in regard to varying the force profile and muscle length and that the discrete stimulation protocol is a more robust approach for designing stimulation patterns aimed at neural interfaces for precise movement control under pathological conditions.
Collapse
Affiliation(s)
- Hojeong Kim
- Division of Biotechnology, DGIST, Daegu, South Korea
| | - Youngchang Ju
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| |
Collapse
|
16
|
Marcantoni M, Fuchs A, Löw P, Bartsch D, Kiehn O, Bellardita C. Early delivery and prolonged treatment with nimodipine prevents the development of spasticity after spinal cord injury in mice. Sci Transl Med 2021; 12:12/539/eaay0167. [PMID: 32295897 DOI: 10.1126/scitranslmed.aay0167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Spasticity, one of the most frequent comorbidities of spinal cord injury (SCI), disrupts motor recovery and quality of life. Despite major progress in neurorehabilitative and pharmacological approaches, therapeutic strategies for treating spasticity are lacking. Here, we show in a mouse model of chronic SCI that treatment with nimodipine-an L-type calcium channel blocker already approved from the European Medicine Agency and from the U.S. Food and Drug Administration-starting in the acute phase of SCI completely prevents the development of spasticity measured as increased muscle tone and spontaneous spasms. The aberrant muscle activities associated with spasticity remain inhibited even after termination of the treatment. Constitutive and conditional silencing of the L-type calcium channel CaV1.3 in neuronal subtypes demonstrated that this channel mediated the preventive effect of nimodipine on spasticity after SCI. This study identifies a treatment protocol and suggests that targeting CaV1.3 could prevent spasticity after SCI.
Collapse
Affiliation(s)
- Maite Marcantoni
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen Denmark
| | - Andrea Fuchs
- Department of Neuroscience, Karolinska Institutet, 17162 Solna, Sweden
| | - Peter Löw
- Department of Neuroscience, Karolinska Institutet, 17162 Solna, Sweden
| | - Dusan Bartsch
- Transgenic Models, Central Institute of Mental Health, 28159 Mannheim, Germany
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen Denmark. .,Department of Neuroscience, Karolinska Institutet, 17162 Solna, Sweden
| | - Carmelo Bellardita
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen Denmark
| |
Collapse
|
17
|
Cheng Y, Song N, Ge R, Dai Y. Serotonergic Modulation of Persistent Inward Currents in Serotonergic Neurons of Medulla in ePet-EYFP Mice. Front Neural Circuits 2021; 15:657445. [PMID: 33889077 PMCID: PMC8055846 DOI: 10.3389/fncir.2021.657445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Serotonergic (5-HT) neurons in the medulla play multiple functional roles associated with many symptoms and motor activities. The descending serotonergic pathway from medulla is essential for initiating locomotion. However, the ionic properties of 5-HT neurons in the medulla remain unclear. Using whole-cell patch-clamp technique, we studied the biophysical and modulatory properties of persistent inward currents (PICs) in 5-HT neurons of medulla in ePet-EYFP transgenic mice (P3–P6). PICs were recorded by a family of voltage bi-ramps (10-s duration, 40-mV peak step), and the ascending and descending PICs were mirrored to analyze the PIC hysteresis. PICs were found in 77% of 5-HT neurons (198/258) with no significant difference between parapyramidal region (n = 107) and midline raphe nuclei (MRN) (n = 91) in either PIC onset (−47.4 ± 10 mV and −48.7 ± 7 mV; P = 0.44) or PIC amplitude (226.9 ± 138 pA and 259.2 ± 141 pA; P = 0.29). Ninety-six percentage (191/198) of the 5-HT neurons displayed counterclockwise hysteresis and four percentage (7/198) exhibited the clockwise hysteresis. The composite PICs could be differentiated as calcium component (Ca_PIC) by bath application of nimodipine (25 μM), sodium component (Na_PIC) by tetrodotoxin (TTX, 2 μM), and TTX- and dihydropyridine-resistance component (TDR_PIC) by TTX and nimodipine. Ca_PIC, Na_PIC and TDR_PIC all contributed to upregulation of excitability of 5-HT neurons. 5-HT (15 μM) enhanced the PICs, including a 26% increase in amplitude of the compound currents of Ca_PIC and TDR_PIC (P < 0.001, n = 9), 3.6 ± 5 mV hyperpolarization of Na_PIC and TDR_PIC onset (P < 0.05, n = 12), 30% increase in amplitude of TDR_PIC (P < 0.01), and 2.0 ± 3 mV hyperpolarization of TDR_PIC onset (P < 0.05, n = 18). 5-HT also facilitated repetitive firing of 5-HT neurons through modulation of composite PIC, Na_PIC and TDR_PIC, and Ca_PIC and TDR_PIC, respectively. In particular, the high voltage-activated TDR_PIC facilitated the repetitive firing in higher membrane potential, and this facilitation could be amplified by 5-HT. Morphological data analysis indicated that the dendrites of 5-HT neurons possessed dense spherical varicosities intensively crossing 5-HT neurons in medulla. We characterized the PICs in 5-HT neurons and unveiled the mechanism underlying upregulation of excitability of 5-HT neurons through serotonergic modulation of PICs. This study provided insight into channel mechanisms responsible for the serotonergic modulation of serotonergic neurons in brainstem.
Collapse
Affiliation(s)
- Yi Cheng
- School of Physical Education, Yunnan University, Kunming, China
| | - Nan Song
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Renkai Ge
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yue Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China.,Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
18
|
Deardorff AS, Romer SH, Fyffe RE. Location, location, location: the organization and roles of potassium channels in mammalian motoneurons. J Physiol 2021; 599:1391-1420. [DOI: 10.1113/jp278675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Adam S. Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
- Department of Neurology and Internal Medicine, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| | - Shannon H. Romer
- Odyssey Systems Environmental Health Effects Laboratory, Navy Medical Research Unit‐Dayton Wright‐Patterson Air Force Base OH 45433 USA
| | - Robert E.W. Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| |
Collapse
|
19
|
Ge R, Dai Y. Three-Week Treadmill Exercise Enhances Persistent Inward Currents, Facilitates Dendritic Plasticity, and Upregulates the Excitability of Dorsal Raphe Serotonin Neurons in ePet-EYFP Mice. Front Cell Neurosci 2020; 14:575626. [PMID: 33177992 PMCID: PMC7595958 DOI: 10.3389/fncel.2020.575626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Exercise plays a key role in preventing or treating mental or motor disorders caused by dysfunction of the serotonergic system. However, the electrophysiological and ionic channel mechanisms underlying these effects remain unclear. In this study, we investigated the effects of 3-week treadmill exercise on the electrophysiological and channel properties of dorsal raphe nucleus (DRN). Serotonin (5-HT) neurons in ePet-EYFP mice, using whole-cell patch clamp recording. Treadmill exercise was induced in ePet-EYFP mice of P21–24 for 3 weeks, and whole-cell patch clamp recording was performed on EYFP-positive 5-HT neurons from DRN slices of P42–45 mice. Experiment data showed that 5-HT neurons in the DRN were a heterogeneous population with multiple firing patterns (single firing, phasic firing, and tonic firing). Persistent inward currents (PICs) with multiple patterns were expressed in 5-HT neurons and composed of Cav1.3 (Ca-PIC) and sodium (Na-PIC) components. Exercise hyperpolarized the voltage threshold for action potential (AP) by 3.1 ± 1.0 mV (control: n = 14, exercise: n = 18, p = 0.005) and increased the AP amplitude by 6.7 ± 3.0 mV (p = 0.031) and firing frequency by more than 22% especially within a range of current stimulation stronger than 70 pA. A 3-week treadmill exercise was sufficient to hyperpolarize PIC onset by 2.6 ± 1.3 mV (control: −53.4 ± 4.7 mV, n = 28; exercise: −56.0 ± 4.7 mV, n = 25, p = 0.050) and increase the PIC amplitude by 28% (control: 193.6 ± 81.8 pA; exercise: 248.5 ± 105.4 pA, p = 0.038). Furthermore, exercise hyperpolarized Na-PIC onset by 3.8 ± 1.8 mV (control: n = 8, exercise: n = 9, p = 0.049) and increased the Ca-PIC amplitude by 23% (p = 0.013). The exercise-induced enhancement of the PIC amplitude was mainly mediated by Ca-PIC and hyperpolarization of PIC onset by Na-PIC. Moreover, exercise facilitated dendritic plasticity, which was shown as the increased number of branch points by 1.5 ± 0.5 (p = 0.009) and dendritic branches by 2.1 ± 0.6 (n = 20, p = 0.001) and length by 732.0 ± 100.1 μm (p < 0.001) especially within the range of 50–200 μm from the soma. Functional analysis suggested that treadmill exercise enhanced Na-PIC for facilitation of spike initiation and Ca-PIC for regulation of repetitive firing. We concluded that PICs broadly existed in DRN 5-HT neurons and could influence serotonergic neurotransmission in juvenile mice and that 3-week treadmill exercise induced synaptic adaptations, enhanced PICs, and thus upregulated the excitability of the 5-HT neurons.
Collapse
Affiliation(s)
- Renkai Ge
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Mousa MH, Elbasiouny SM. Dendritic distributions of L-type Ca 2+ and SK L channels in spinal motoneurons: a simulation study. J Neurophysiol 2020; 124:1285-1307. [PMID: 32937080 PMCID: PMC7717167 DOI: 10.1152/jn.00169.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Persistent inward currents are important to motoneuron excitability and firing behaviors and also have been implicated in excitotoxicity. In particular, L-type Ca2+ channels, usually located on motoneuron dendrites, play a primary role in amplification of synaptic inputs. However, recent experimental findings on L-type Ca2+ channel behaviors challenge some fundamental assumptions that have been used in interpreting experimental and computational modeling data. Thus, the objectives of this study were to incorporate recent experimental data into an updated, high-fidelity computational model in order to explain apparent inconsistencies and to better elucidate the spatial distributions, expression patterns, and functional roles of L-type Ca2+ and SKL channels. Specifically, the updated model incorporated asymmetric channel activation/deactivation kinetics, depolarization-dependent facilitation, randomness in channel gating, and coactivation of SKL channels. Our simulation results suggest that L-type Ca2+ and SKL channels colocalize primarily on distal dendrites of motoneurons in a punctate expression. Also, punctate expression, as opposed to a homogeneous expression, provides high synaptic current amplification, limits bistability and firing rates, and robustly regulates the Ca2+ persistent inward current, thereby reducing risk of excitotoxicity. The hysteresis and bistability observed experimentally in current-voltage and frequency-current relationships result from the L-type Ca2+ channels' distal location and intrinsic warm-up. Accordingly, our results indicate that punctate expression of L-type Ca2+ and SKL channels is a potent mechanism for regulating excitability, which would provide a strong neuroprotective effect. Our results could provide broader insights into the functional significance of warm-up and punctate expression of ion channels to regulation of cell excitability.NEW & NOTEWORTHY Recent experimental findings on L-type Ca2+ channels challenge fundamental assumptions used in interpreting experimental and computational modeling data. Here, we incorporated recent experimental data into an updated, high-fidelity computational model to explain apparent inconsistencies and better elucidate the distributions, expression patterns, and functional roles of L-type Ca2+ and SKL channels. Our results indicate that punctate expression of L-type Ca2+ and SKL channels is a potent mechanism for regulating motoneuron excitability, providing a strong neuroprotective effect.
Collapse
Affiliation(s)
- Mohamed H Mousa
- Department of Systems and Biomedical Engineering, Faculty of Engineering, Cairo University, Cairo, Egypt
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| |
Collapse
|
21
|
Zhang Q, Dai Y. A modeling study of spinal motoneuron recruitment regulated by ionic channels during fictive locomotion. J Comput Neurosci 2020; 48:409-428. [PMID: 32895895 DOI: 10.1007/s10827-020-00763-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 11/24/2022]
Abstract
During fictive locomotion cat lumbar motoneurons exhibit changes in membrane proprieties including a decrease in voltage threshold (Vth), afterhyperpolarization (AHP) and input resistance (Rin) and an increase in non-linear membrane property. The impact of these changes on the motoneuron recruitment remains unknown. Using modeling approach we investigated the channel mechanism regulating the motoneuron recruitment. Three types of motoneuron pools including slow (S), fatigue-resistant (FR) and fast-fatigable (FF) motoneurons were constructed based on the membrane proprieties of cat lumbar motoneurons. The transient sodium (NaT), persistent sodium (NaP), delayed-rectifier potassium [K(DR)], Ca2+-dependent K+ [K(AHP)] and L-type calcium (CaL) channels were included in the models. Simulation results showed that (1) Strengthening synaptic inputs increased the number of recruitments in all three types of motoneurons following the size principle. (2) Increasing NaT or NaP or decreasing K(DR) or K(AHP) lowered rheobase of spike generation thus increased recruitment of motoneuron pools. (3) Decreasing Rin reduced recruitment in all three types of motoneurons. (4) The FF-type motoneuron pool, followed by FR- and S-type, were the most sensitive to increase of synaptic inputs, reduction of Rin, upregulation of NaT and NaP, and downregulation of K(DR) and K(AHP). (5) Increasing CaL enhanced overall discharge rate of motoneuron pools with little effect on the recruitment. Simulation results suggested that modulation of ionic channels altered the output of motoneuron pools with either modulating the number of recruited motoneurons or regulating the overall discharge rate of motoneuron pools. Multiple channels contributed to the recruitment of motoneurons with interaction of excitatory and inhibitory synaptic inputs during walking.
Collapse
Affiliation(s)
- Qiang Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
22
|
Afsharipour B, Manzur N, Duchcherer J, Fenrich KF, Thompson CK, Negro F, Quinlan KA, Bennett DJ, Gorassini MA. Estimation of self-sustained activity produced by persistent inward currents using firing rate profiles of multiple motor units in humans. J Neurophysiol 2020; 124:63-85. [PMID: 32459555 DOI: 10.1152/jn.00194.2020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Persistent inward calcium and sodium currents (IP) activated during motoneuron recruitment help synaptic inputs maintain self-sustained firing until derecruitment. Here, we estimate the contribution of the IP to self-sustained firing in human motoneurons of varying recruitment threshold by measuring the difference in synaptic input needed to maintain minimal firing once the IP is fully activated compared with the larger synaptic input required to initiate firing before full IP activation. Synaptic input to ≈20 dorsiflexor motoneurons simultaneously recorded during ramp contractions was estimated from firing profiles of motor units decomposed from high-density surface electromyography (EMG). To avoid errors introduced when using high-threshold units firing in their nonlinear range, we developed methods where the lowest threshold units firing linearly with force were used to construct a composite (control) unit firing rate profile to estimate synaptic input to higher threshold (test) units. The difference in the composite firing rate (synaptic input) at the time of test unit recruitment and derecruitment (ΔF = Frecruit - Fderecruit) was used to measure IP amplitude that sustained firing. Test units with recruitment thresholds 1-30% of maximum had similar ΔF values, which likely included both slow and fast motor units activated by small and large motoneurons, respectively. This suggests that the portion of the IP that sustains firing is similar across a wide range of motoneuron sizes.NEW & NOTEWORTHY A new method of estimating synaptic drive to multiple, simultaneously recorded motor units provides evidence that the portion of the depolarizing drive from persistent inward currents that contributes to self-sustained firing is similar across motoneurons of different sizes.
Collapse
Affiliation(s)
- Babak Afsharipour
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nagib Manzur
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Duchcherer
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Keith F Fenrich
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania
| | - Francesco Negro
- Research Centre for Neuromuscular Function and Adapted Physical Activity "Teresa Camplani," Università degli Studi di Brescia, Brescia, Italy
| | - Katharina A Quinlan
- Department of Biomedical and Pharmaceutical Sciences and George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - David J Bennett
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Sheng L, Leshchyns'ka I, Sytnyk V. Neural Cell Adhesion Molecule 2 (NCAM2)-Induced c-Src-Dependent Propagation of Submembrane Ca2+ Spikes Along Dendrites Inhibits Synapse Maturation. Cereb Cortex 2020. [PMID: 29522129 DOI: 10.1093/cercor/bhy041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neural cell adhesion molecule 2 (NCAM2) is encoded by a gene on chromosome 21 in humans. NCAM2 accumulates in synapses, but its role in regulation of synapse formation remains poorly understood. We demonstrate that an increase in NCAM2 levels results in increased instability of dendritic protrusions and reduced conversion of protrusions to dendritic spines in mouse cortical neurons. NCAM2 overexpression induces an increase in the frequency of submembrane Ca2+ spikes localized in individual dendritic protrusions and promotes propagation of submembrane Ca2+ spikes over segments of dendrites or the whole dendritic tree. NCAM2-dependent submembrane Ca2+ spikes are L-type voltage-gated Ca2+ channel-dependent, and their propagation but not initiation depends on the c-Src protein tyrosine kinase. Inhibition of initiation or propagation of NCAM2-dependent submembrane Ca2+ spikes reduces the NCAM2-dependent instability of dendritic protrusions. Synaptic boutons formed on dendrites of neurons with elevated NCAM2 expression are enriched in the protein marker of immature synapses GAP43, and the number of boutons with mature activity-dependent synaptic vesicle recycling is reduced. Our results indicate that synapse maturation is inhibited in NCAM2-overexpressing neurons and suggest that changes in NCAM2 levels and altered submembrane Ca2+ dynamics can cause defects in synapse maturation in Down syndrome and other brain disorders associated with abnormal NCAM2 expression.
Collapse
Affiliation(s)
- Lifu Sheng
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Linking Motoneuron PIC Location to Motor Function in Closed-Loop Motor Unit System Including Afferent Feedback: A Computational Investigation. eNeuro 2020; 7:ENEURO.0014-20.2020. [PMID: 32269036 PMCID: PMC7218009 DOI: 10.1523/eneuro.0014-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 11/21/2022] Open
Abstract
The goal of this study is to investigate how the activation location of persistent inward current (PIC) over motoneuron dendrites is linked to motor output in the closed-loop motor unit. Here, a physiologically realistic model of a motor unit including afferent inputs from muscle spindles was comprehensively analyzed under intracellular stimulation at the soma and synaptic inputs over the dendrites during isometric contractions over a full physiological range of muscle lengths. The motor output of the motor unit model was operationally assessed by evaluating the rate of force development, the degree of force potentiation and the capability of self-sustaining force production. Simulations of the model motor unit demonstrated a tendency for a faster rate of force development, a greater degree of force potentiation, and greater capacity for self-sustaining force production under both somatic and dendritic stimulation of the motoneuron as the PIC channels were positioned farther from the soma along the path of motoneuron dendrites. Interestingly, these effects of PIC activation location on force generation significantly differed among different states of muscle length. The rate of force development and the degree of force potentiation were systematically modulated by the variation of PIC channel location for shorter-than-optimal muscles but not for optimal and longer-than-optimal muscles. Similarly, the warm-up behavior of the motor unit depended on the interplay between PIC channel location and muscle length variation. These results suggest that the location of PIC activation over motoneuron dendrites may be distinctively reflected in the motor performance during shortening muscle contractions.
Collapse
|
25
|
Wu Z, Li L, Xie F, Xu G, Dang D, Yang Q. Enhancing KCNQ Channel Activity Improves Neurobehavioral Recovery after Spinal Cord Injury. J Pharmacol Exp Ther 2020; 373:72-80. [PMID: 31969383 PMCID: PMC7076523 DOI: 10.1124/jpet.119.264010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) usually leads to acute neuronal death and delayed secondary degeneration, resulting in sensory dysfunction, paralysis, and chronic pain. Excessive excitation is one of the critical factors leading to secondary neural damage initiated by various insults. KCNQ/Kv7 channels are highly expressed in spinal neurons and axons and play an important role in controlling their excitability. Enhancing KCNQ channel activity by using its specific opener retigabine could thus be a plausible treatment strategy to reduce the pathology after SCI. We produced contusive SCI at T10 in adult male rats, which then received 10 consecutive days' treatment with retigabine or vehicle starting 3 hours or 3 days after contusion. Two different concentrations and two different delivery methods were applied. Delivery of retigabine via Alzet osmotic pumps, but not intraperitoneal injections 3 hours after contusion, promoted recovery of locomotor function. Remarkably, retigabine delivery in both methods significantly attenuated the development of mechanical stimuli-induced hyperreflexia and spontaneous pain; however, no significant difference in the thermal threshold was observed. Although retigabine delivered 3 days after contusion significantly attenuated the development of mechanical hypersensitivity and spontaneous pain, the locomotor function is not improved by the delayed treatments. Finally, we found that early application of retigabine attenuates the inflammatory activity in the spinal cord and increases the survival of white matter after SCI. Our results suggest that decreasing neuronal excitability by targeting KCNQ/Kv7 channels at acute stage aids the recovery of locomotor function and attenuates the development of neuropathic pain after SCI. SIGNIFICANCE STATEMENT: Several pharmacological interventions have been proposed for spinal cord injury (SCI) treatment, but none have been shown to be both effective and safe in clinical trials. Necrotic neuronal death and chronic pain are often the cost of pathological neural excitation after SCI. We show that early, brief application of retigabine could aid locomotor and sensory neurobehavioral recovery after SCI, supporting the use of this drug in the clinic to promote motor and sensory function in patients with SCI.
Collapse
Affiliation(s)
- Zizhen Wu
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Lin Li
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Fuhua Xie
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Guoying Xu
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Danny Dang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Qing Yang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| |
Collapse
|
26
|
Bonnevie VS, Dimintiyanova KP, Hedegaard A, Lehnhoff J, Grøndahl L, Moldovan M, Meehan CF. Shorter axon initial segments do not cause repetitive firing impairments in the adult presymptomatic G127X SOD-1 Amyotrophic Lateral Sclerosis mouse. Sci Rep 2020; 10:1280. [PMID: 31992746 PMCID: PMC6987224 DOI: 10.1038/s41598-019-57314-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Increases in axonal sodium currents in peripheral nerves are some of the earliest excitability changes observed in Amyotrophic Lateral Sclerosis (ALS) patients. Nothing is known, however, about axonal sodium channels more proximally, particularly at the action potential initiating region - the axon initial segment (AIS). Immunohistochemistry for Nav1.6 sodium channels was used to investigate parameters of AISs of spinal motoneurones in the G127X SOD1 mouse model of ALS in adult mice at presymptomatic time points (~190 days old). In vivo intracellular recordings from lumbar spinal motoneurones were used to determine the consequences of any AIS changes. AISs of both alpha and gamma motoneurones were found to be significantly shorter (by 6.6% and 11.8% respectively) in G127X mice as well as being wider by 9.8% (alpha motoneurones). Measurements from 20–23 day old mice confirmed that this represented a change during adulthood. Intracellular recordings from motoneurones in presymptomatic adult mice, however, revealed no differences in individual action potentials or the cells ability to initiate repetitive action potentials. To conclude, despite changes in AIS geometry, no evidence was found for reduced excitability within the functional working range of firing frequencies of motoneurones in this model of ALS.
Collapse
Affiliation(s)
- V S Bonnevie
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - K P Dimintiyanova
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - A Hedegaard
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - J Lehnhoff
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - L Grøndahl
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - M Moldovan
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - C F Meehan
- Department of Neuroscience, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
27
|
Plantier V, Sanchez-Brualla I, Dingu N, Brocard C, Liabeuf S, Gackière F, Brocard F. Calpain fosters the hyperexcitability of motoneurons after spinal cord injury and leads to spasticity. eLife 2019; 8:e51404. [PMID: 31815668 PMCID: PMC6927741 DOI: 10.7554/elife.51404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Up-regulation of the persistent sodium current (INaP) and down-regulation of the potassium/chloride extruder KCC2 lead to spasticity after spinal cord injury (SCI). We here identified calpain as the driver of the up- and down-regulation of INaP and KCC2, respectively, in neonatal rat lumbar motoneurons. Few days after SCI, neonatal rats developed behavioral signs of spasticity with the emergence of both hyperreflexia and abnormal involuntary muscle contractions on hindlimbs. At the same time, in vitro isolated lumbar spinal cords became hyperreflexive and displayed numerous spontaneous motor outputs. Calpain-I expression paralleled with a proteolysis of voltage-gated sodium (Nav) channels and KCC2. Acute inhibition of calpains reduced this proteolysis, restored the motoneuronal expression of Nav and KCC2, normalized INaP and KCC2 function, and curtailed spasticity. In sum, by up- and down-regulating INaP and KCC2, the calpain-mediated proteolysis of Nav and KCC2 drives the hyperexcitability of motoneurons which leads to spasticity after SCI.
Collapse
Affiliation(s)
- Vanessa Plantier
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Irene Sanchez-Brualla
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Nejada Dingu
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Cécile Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Florian Gackière
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Frédéric Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| |
Collapse
|
28
|
Cheng Y, Zhang Q, Dai Y. Sequential activation of multiple persistent inward currents induces staircase currents in serotonergic neurons of medulla in ePet-EYFP mice. J Neurophysiol 2019; 123:277-288. [PMID: 31721638 DOI: 10.1152/jn.00623.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Persistent inward currents (PICs) are widely reported in rodent spinal neurons. A distinctive pattern observed recently is staircase-like PICs induced by voltage ramp in serotonergic neurons of mouse medulla. The mechanism underlying this pattern of PICs is unclear. Combining electrophysiological, pharmacological, and computational approaches, we investigated the staircase PICs in serotonergic neurons of medulla in ePet-EYFP transgenic mice (postnatal days 1-7). Staircase PICs induced by 10-s voltage biramps were observed in 70% of serotonergic neurons (n = 73). Staircase PICs activated at -48.8 ± 5 mV and consisted of two components, with the first PIC of 45.8 ± 51 pA and the second PIC of 197.3 ± 126 pA (n = 51). Staircase PICs were also composed of low-voltage-activated sodium PIC (Na-PIC; onset -46.2 ± 5 mV, n = 34), high-voltage-activated calcium PIC (Ca-PIC; onset -29.3 ± 6 mV, n = 23), and high-voltage-activated tetrodotoxin (TTX)- and dihydropyridine-resistant sodium PIC (TDR-PIC; onset -16.8 ± 4 mV, n = 28). Serotonergic neurons expressing Na-PIC, Ca-PIC, and TDR-PIC were evenly distributed in medulla. Bath application of 1-2 μM TTX blocked the first PIC and decreased the second PIC by 36% (n = 23, P < 0.05). Nimodipine (25 μM) reduced the second PIC by 38% (n = 34, P < 0.001) without altering the first PIC. TTX and nimodipine removed the first PIC and reduced the second PIC by 59% (n = 28, P < 0.01). A modeling study mimicked the staircase PICs and verified experimental conclusions that sequential activation of Na-PIC, Ca-PIC, and TDR-PIC in order of voltage thresholds induced staircase PICs in serotonergic neurons. Further experimental results suggested that the multiple components of staircase PICs play functional roles in regulating excitability of serotonergic neurons in medulla.NEW & NOTEWORTHY Staircase persistent inward currents (PICs) are mediated by activation of L-type calcium channels in dendrites of mouse spinal motoneurons. A novel mechanism is explored in this study. Here we report that the staircase PICs are mediated by sequentially activating sodium and calcium PICs in serotonergic neurons of mouse medulla.
Collapse
Affiliation(s)
- Yi Cheng
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, People's Republic of China
| | - Qiang Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, People's Republic of China
| | - Yue Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Circuit-Specific Early Impairment of Proprioceptive Sensory Neurons in the SOD1 G93A Mouse Model for ALS. J Neurosci 2019; 39:8798-8815. [PMID: 31530644 DOI: 10.1523/jneurosci.1214-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system. Leveraging unique brainstem circuitry, we show in vitro evidence for reflex circuit-specific postnatal abnormalities in the jaw proprioceptive sensory neurons in the well-studied SOD1G93A mouse. These include impaired and arrhythmic action potential burst discharge associated with a deficit in Nav1.6 Na+ channels. However, the mechanoreceptive and nociceptive trigeminal ganglion neurons and the visual sensory retinal ganglion neurons were resistant to excitability changes in age-matched SOD1G93A mice. Computational modeling of the observed disruption in sensory patterns predicted asynchronous self-sustained motor neuron discharge suggestive of imminent reflexive defects, such as muscle fasciculations in ALS. These results demonstrate a novel reflex circuit-specific proprioceptive sensory abnormality in ALS.SIGNIFICANCE STATEMENT Neurodegenerative diseases have prolonged periods of disease development and progression. Identifying early markers of vulnerability can therefore help devise better diagnostic and treatment strategies. In this study, we examined postnatal abnormalities in the electrical excitability of muscle spindle afferent proprioceptive neurons in the well-studied SOD1G93A mouse model for neurodegenerative motor neuron disease, amyotrophic lateral sclerosis. Our findings suggest that these proprioceptive sensory neurons are exclusively afflicted early in the disease process relative to sensory neurons of other modalities. Moreover, they presented Nav1.6 Na+ channel deficiency, which contributed to arrhythmic burst discharge. Such sensory arrhythmia could initiate reflexive defects, such as muscle fasciculations in amyotrophic lateral sclerosis, as suggested by our computational model.
Collapse
|
30
|
Revill AL, Chu NY, Ma L, LeBlancq MJ, Dickson CT, Funk GD. Postnatal development of persistent inward currents in rat XII motoneurons and their modulation by serotonin, muscarine and noradrenaline. J Physiol 2019; 597:3183-3201. [PMID: 31038198 DOI: 10.1113/jp277572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS Persistent inward currents (PICs) in spinal motoneurons are long-lasting, voltage-dependent currents that increase excitability; they are dramatically potentiated by serotonin, muscarine, and noradrenaline (norepinephrine). Loss of these modulators (and the PIC) during sleep is hypothesized as a major contributor to REM sleep atonia. Reduced excitability of XII motoneurons that drive airway muscles and maintain airway patency is causally implicated in obstructive sleep apnoea (OSA), but whether XII motoneurons possess a modulator-sensitive PIC that could be a factor in the reduced airway tone of sleep is unknown. Whole-cell recordings from rat XII motoneurons in brain slices indicate that PIC amplitude increases ∼50% between 1 and 23 days of age, when potentiation of the PIC by 5HT2 , muscarinic, or α1 noradrenergic agonists peaks at <50%, manyfold lower than the potentiation observed in spinal motoneurons. α1 noradrenergic receptor activation produced changes in XII motoneuron firing behaviour consistent with PIC involvement, but indicators of strong PIC activation were never observed; in vivo experiments are needed to determine the role of the modulator-sensitive PIC in sleep-dependent reductions in airway tone. ABSTRACT Hypoglossal (XII) motoneurons play a key role in maintaining airway patency; reductions in their excitability during sleep through inhibition and disfacilitation, i.e. loss of excitatory modulation, is implicated in obstructive sleep apnoea. In spinal motoneurons, 5HT2 , muscarinic and α1 noradrenergic modulatory systems potentiate persistent inward currents (PICs) severalfold, dramatically increasing excitability. If the PICs in XII and spinal motoneurons are equally sensitive to modulation, loss of the PIC secondary to reduced modulatory tone during sleep could contribute to airway atonia. Modulatory systems also change developmentally. We therefore characterized developmental changes in magnitude of the XII motoneuron PIC and its sensitivity to modulation by comparing, in neonatal (P1-4) and juvenile (P14-23) rat brainstem slices, the PIC elicited by slow voltage ramps in the absence and presence of agonists for 5HT2 , muscarinic, and α1 noradrenergic receptors. XII motoneuron PIC amplitude increased developmentally (from -195 ± 12 to -304 ± 19 pA). In neonatal XII motoneurons, the PIC was only potentiated by α1 receptor activation (5 ± 4%). In contrast, all modulators potentiated the juvenile XII motoneurons PIC (5HT2 , 5 ± 5%; muscarine, 22 ± 11%; α1 , 18 ± 5%). These data suggest that the influence of the PIC and its modulation on XII motoneuron excitability will increase with postnatal development. Notably, the modulator-induced potentiation of the PIC in XII motoneurons was dramatically smaller than the 2- to 6-fold potentiation reported for spinal motoneurons. In vivo measurements are required to determine if the modulator-sensitive, XII motoneuron PIC is an important factor in sleep-state dependent reductions in airway tone.
Collapse
Affiliation(s)
- Ann L Revill
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Nathan Y Chu
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Li Ma
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Clayton T Dickson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Gregory D Funk
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Dai Y, Cheng Y, Fedirchuk B, Jordan LM, Chu J. Motoneuron output regulated by ionic channels: a modeling study of motoneuron frequency-current relationships during fictive locomotion. J Neurophysiol 2018; 120:1840-1858. [PMID: 30044677 DOI: 10.1152/jn.00068.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cat lumbar motoneurons display changes in membrane properties during fictive locomotion. These changes include reduction of input resistance and afterhyperpolarization, hyperpolarization of voltage threshold, and voltage-dependent excitation of the motoneurons. The state-dependent alteration of membrane properties leads to dramatic changes in frequency-current (F-I) relationship. The mechanism underlying these changes remains unknown. Using a motoneuron model combined with electrophysiological data, we investigated the channel mechanisms underlying the regulation of motoneuronal excitability and motor output. Simulation results showed that upregulation of transient sodium, persistent sodium, or Cav1.3 calcium conductances or downregulation of calcium-activated potassium or KCNQ/Kv7 potassium conductances could increase motoneuronal excitability and motor output through hyperpolarizing (left shifting) the F-I relationships or increasing the F-I slopes, whereas downregulation of input resistance or upregulation of potassium-mediated leak conductance produced the opposite effects. The excitatory phase of locomotor drive potentials (LDPs) also substantially hyperpolarized the F-I relationships and increased the F-I slopes, whereas the inhibitory phase of the LDPs had opposite effects to a similar extent. The simulation results also showed that none of the individual channel modulations could produce all the changes in the F-I relationships. The effects of modulation of Cav1.3 and KCNQ/Kv7 on F-I relationships were supported by slice experiments with the Cav1.3 agonist Bay K8644 and the KCNQ/Kv7 antagonist XE-991. The conclusion is that the varying changes in F-I relationships during fictive locomotion could be regulated by multichannel modulations. This study provides insight into the ionic basis for control of motor output in walking. NEW & NOTEWORTHY Mammalian spinal motoneurons have their excitability adapted to facilitate recruitment and firing during locomotion. Cat lumbar motoneurons display dramatic changes in membrane properties during fictive locomotion. These changes lead to a varying alteration of frequency-current relationship. The mechanisms underlying the changes remain unknown. In particular, little is known about the ionic basis for regulation of motoneuronal excitability and thus control of the motor output for walking by the spinal motor system.
Collapse
Affiliation(s)
- Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Information Science Technology, East China Normal University , Shanghai , People's Republic of China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University , Shanghai , People's Republic of China
| | - Yi Cheng
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University , Shanghai , People's Republic of China
| | - Brent Fedirchuk
- Department of Physiology, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Larry M Jordan
- Department of Physiology, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Junhao Chu
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Information Science Technology, East China Normal University , Shanghai , People's Republic of China
| |
Collapse
|
32
|
Parker J, Bondy B, Prilutsky BI, Cymbalyuk G. Control of transitions between locomotor-like and paw shake-like rhythms in a model of a multistable central pattern generator. J Neurophysiol 2018; 120:1074-1089. [PMID: 29766765 DOI: 10.1152/jn.00696.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of the same neuronal circuit to control different motor functions is an actively debated concept. Previously, we showed in a model that a single multistable central pattern generator (CPG) could produce two different rhythmic motor patterns, slow and fast, corresponding to cat locomotion and paw shaking. A locomotor-like rhythm (~1 Hz) and a paw shake-like rhythm (~10 Hz) did coexist in our model, and, by applying a single pulse of current, we could switch the CPG from one regime to another (Bondy B, Klishko AN, Edwards DH, Prilutsky BI, Cymbalyuk G. In: Neuromechanical Modeling of Posture and Locomotion, 2016). Here we investigated the roles of slow intrinsic ionic currents in this multistability. The CPG is modeled as a half-center oscillator circuit comprising two reciprocally inhibitory neurons. Each neuron is equipped with two slow inward currents, a Na+ current ( INaS) and a Ca2+ current ( ICaS). ICaS inactivates much more slowly and at more hyperpolarized voltages than INaS. We demonstrate that INaS is the primary current driving the paw shake-like bursting. ICaS is crucial for the locomotor-like bursting, and it is inactivated during the paw shake-like activity. We investigate the sensitivity of the bursting regimes to perturbations, using a pulse of current to induce a switch from one regime to the other, and we demonstrate that the transition duration is dependent on pulse amplitude and application phase. We also investigate the modulatory roles of the strength of various currents on characteristics of these rhythms and show that their effects are regime specific. We conclude that a multistable CPG is physiologically plausible and derive testable predictions of the model. NEW & NOTEWORTHY Little is known about how a single central pattern generator could produce multiple rhythms. We describe a novel mechanism for multistability of bursting regimes with strongly distinct periods. The proposed mechanism emphasizes the role of intrinsic cellular dynamics over synaptic dynamics in the production of multistability. We describe how the temporal characteristics of multiple rhythms could be controlled by neuromodulation and how single pulses of current could produce a switch between regimes in a functional fashion.
Collapse
Affiliation(s)
- Jessica Parker
- Neuroscience Institute, Georgia State University , Atlanta, Georgia
| | - Brian Bondy
- Neuroscience Institute, Georgia State University , Atlanta, Georgia.,Institute for Neuroscience, University of Texas , Austin, Texas
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | | |
Collapse
|
33
|
Kim H, Kim M. PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System. Front Neuroinform 2018; 12:15. [PMID: 29695959 PMCID: PMC5904262 DOI: 10.3389/fninf.2018.00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/23/2018] [Indexed: 02/04/2023] Open
Abstract
We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input-output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings.
Collapse
Affiliation(s)
- Hojeong Kim
- Convergence Research Institute, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | | |
Collapse
|
34
|
Dashevskiy T, Cymbalyuk G. Propensity for Bistability of Bursting and Silence in the Leech Heart Interneuron. Front Comput Neurosci 2018; 12:5. [PMID: 29467641 PMCID: PMC5808133 DOI: 10.3389/fncom.2018.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/12/2018] [Indexed: 12/15/2022] Open
Abstract
The coexistence of neuronal activity regimes has been reported under normal and pathological conditions. Such multistability could enhance the flexibility of the nervous system and has many implications for motor control, memory, and decision making. Multistability is commonly promoted by neuromodulation targeting specific membrane ionic currents. Here, we investigated how modulation of different ionic currents could affect the neuronal propensity for bistability. We considered a leech heart interneuron model. It exhibits bistability of bursting and silence in a narrow range of the leak current parameters, conductance (gleak) and reversal potential (Eleak). We assessed the propensity for bistability of the model by using bifurcation diagrams. On the diagram (gleak, Eleak), we mapped bursting and silent regimes. For the canonical value of Eleak we determined the range of gleak which supported the bistability. We use this range as an index of propensity for bistability. We investigated how this index was affected by alterations of ionic currents. We systematically changed their conductances, one at a time, and built corresponding bifurcation diagrams in parameter planes of the maximal conductance of a given current and the leak conductance. We found that conductance of only one current substantially affected the index of propensity; the increase of the maximal conductance of the hyperpolarization-activated cationic current increased the propensity index. The second conductance with the strongest effect was the conductance of the low-threshold fast Ca2+ current; its reduction increased the propensity index although the effect was about two times smaller in magnitude. Analyzing the model with both changes applied simultaneously, we found that the diagram (gleak, Eleak) showed a progressively expanded area of bistability of bursting and silence.
Collapse
Affiliation(s)
- Tatiana Dashevskiy
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Gennady Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
35
|
Jean-Xavier C, Sharples SA, Mayr KA, Lognon AP, Whelan PJ. Retracing your footsteps: developmental insights to spinal network plasticity following injury. J Neurophysiol 2017; 119:521-536. [PMID: 29070632 DOI: 10.1152/jn.00575.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.
Collapse
Affiliation(s)
- C Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - K A Mayr
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - A P Lognon
- Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
36
|
Kim H. Impact of the localization of dendritic calcium persistent inward current on the input-output properties of spinal motoneuron pool: a computational study. J Appl Physiol (1985) 2017; 123:1166-1187. [PMID: 28684585 DOI: 10.1152/japplphysiol.00034.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 01/23/2023] Open
Abstract
The goal of this study is to investigate how the dendritic Ca-PIC location influences nonlinear input-output properties and depends on the type of motoneurons across the motoneuron pool. A model motoneuron pool consisting of 10 motoneurons was constructed using a recently developed two-compartment modeling approach that reflected key cell type-associated properties experimentally identified. The dendritic excitability and firing output depended systematically on both the PIC location and the motoneuron type. The PIC onset and offset in the current-voltage (I-V) relationship tended to occur at more hyperpolarized voltages as the path length to the PIC channels from the soma increased and as the cell type shifted from high- to low-threshold motoneurons. At the same time, the firing acceleration and frequency hysteresis in the frequency-current (F-I) relationship became faster and larger, respectively. However, the PIC onset-offset hysteresis increased as the path length and the recruitment threshold increased. Furthermore, the gain of frequency-current function before full PIC activation was larger for PIC channels located over distal dendritic regions in low- compared with high-threshold motoneurons. When compared with previously published experimental observations, the modeling concurred when Ca-PIC channels were placed closer to the soma in high- than low-threshold motoneurons in the model motoneuron pool. All of these results suggest that the negative relationship of Ca-PIC location and cell recruitment threshold may underlie the systematic variation in I-V and F-I transformation across the motoneuron pool.NEW & NOTEWORTHY How does the dendritic location of calcium persistent inward current (Ca-PIC) influence dendritic excitability and firing behavior across the spinal motoneuron pool? This issue was investigated developing a model motoneuron pool that reflected key motoneuron type-specific properties experimentally identified. The simulation results point out the negative relationship between the distance of Ca-PIC source from the soma and cell recruitment threshold as a basis underlying the systematic variation in input-output properties of motoneurons over the motoneuron pool.
Collapse
Affiliation(s)
- Hojeong Kim
- Convergence Research Institute, DGIST, Daegu, Korea
| |
Collapse
|
37
|
Kim H. Muscle length-dependent contribution of motoneuron Ca v1.3 channels to force production in model slow motor unit. J Appl Physiol (1985) 2017; 123:88-105. [PMID: 28336534 DOI: 10.1152/japplphysiol.00491.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/03/2023] Open
Abstract
Persistent inward current (PIC)-generating Cav1.3 channels in spinal motoneuron dendrites are thought to be actively recruited during normal behaviors. However, whether and how the activation of PIC channels influences force output of motor unit remains elusive. Here, building a physiologically realistic model of slow motor unit I demonstrated that force production induced by the PIC activation is much smaller for short than lengthened muscles during the regular firing of the motoneuron that transitions from the quiescent state by either a brief current pulse at the soma or a brief synaptic excitation at the dendrites. By contrast, the PIC-induced force potentiation was maximal for short muscles when the motoneuron switched from a stable low-frequency firing state to a stable high-frequency firing state by the current pulse at the soma. Under the synaptic excitation at the dendrites, however, the force could not be potentiated by the transitioning of the motoneuron from a low- to a high-frequency firing state due to the simultaneous onset of PIC at the dendrites and firing at the soma. The strong dependency of the input-output relationship of the motor unit on the neuromodulation and Ia afferent inputs for the PIC channels was further shown under static variations in muscle length. Taken together, these findings suggest that the PIC activation in the motoneuron dendrites may differentially affect the force production of the motor unit, depending not only on the firing state history of the motoneuron and the variation in muscle length but also on the mode of motor activity.NEW & NOTEWORTHY Cav1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Cav1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Cav1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem.
Collapse
Affiliation(s)
- Hojeong Kim
- Convergence Research Institute, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
38
|
Abstract
Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems. © 2017 American Physiological Society. Compr Physiol 7:463-484, 2017.
Collapse
Affiliation(s)
- Jorn Hounsgaard
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
39
|
Revill AL, Fuglevand AJ. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents. J Physiol 2017; 595:179-191. [PMID: 27470946 PMCID: PMC5199728 DOI: 10.1113/jp272823] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/21/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. ABSTRACT During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing rate profiles were best fitted by rising exponential functions. With stimulation, however, firing rate profiles were best fitted with linear functions or with less steeply rising exponentials. Firing rate profiles for the descending phases of the contractions were best fitted with linear functions for both control and stimulation conditions. These results seem consistent with the idea that PICs contribute to non-linear firing rate profiles during ascending but not descending phases of contractions.
Collapse
Affiliation(s)
- Ann L. Revill
- Department of PhysiologyCollege of MedicineUniversity of ArizonaTucsonAZUSA
| | | |
Collapse
|
40
|
N- and L-type calcium channels blocker cilnidipine ameliorates neuropathic pain. Eur J Pharmacol 2016; 793:66-75. [PMID: 27823932 DOI: 10.1016/j.ejphar.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 11/21/2022]
Abstract
Cilnidipine is a dihydropyridine derivative that inhibits N-type and L-type voltage-gated Ca2+ channels (VDCCs). We recently reported that a selective N-type VDCC blocker attenuated the spinal long-term potentiation (LTP) of C-fiber-evoked field potentials recorded in the spinal dorsal horn of rats, which served as a model for examining synaptic function during central pain sensitization. In this study, we investigated the effects of cilnidipine on the changes related to neuropathic pain induced by nerve injury. Mechanical allodynia and hyperalgesia were evaluated by von Frey test and pin prick test, respectively. Spinal LTP of C-fiber-evoked field potentials were evaluated by in vivo electrophysiology. Intrathecally administrated cilnidipine attenuated mechanical allodynia and hyperalgesia in the spared nerve injury mouse model. Using in vivo electrophysiology in rats, cilnidipine (10µm) administered spinally inhibited the induction and maintenance of high-frequency stimulation-induced LTP of C-fiber-evoked field potentials, while basal C-fiber-evoked field potentials in naïve rats were unaffected. The basal C-fiber-evoked field potentials in nerve-injured rats were strongly inhibited by cilnidipine. Treatment with a specific N-type VDCC blocker, ω-conotoxin GVIA, which reportedly attenuates C-fiber-evoked field potentials both before and after the induction of LTP, attenuated mechanical allodynia and hyperalgesia in nerve-injured mice. By contrast, an L-type VDCC blocker, nicardipine attenuated only mechanical hyperalgesia, but not mechanical allodynia in nerve-injured mice, and also attenuated the established LTP of C-fiber-evoked field potentials in rats. These results suggested that N-type and L-type VDCC blockers may effectively alleviate the hyperalgesia and allodynia associated with neuropathic pain without affecting normal pain perception.
Collapse
|
41
|
Recio-Pinto E, Montoya-Gacharna JV, Xu F, Blanck TJJ. Isoflurane, but Not the Nonimmobilizers F6 and F8, Inhibits Rat Spinal Cord Motor Neuron CaV1 Calcium Currents. Anesth Analg 2016; 122:730-737. [PMID: 26702867 DOI: 10.1213/ane.0000000000001111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Volatile anesthetics decrease Ca²⁺ entry through voltage-dependent Ca²⁺ channels. Ca influences neurotransmitter release and neuronal excitability. Because volatile anesthetics act specifically on the spinal cord to produce immobility, we examined the effect of isoflurane and the nonimmobilizers F6 (1, 2-dichlorohexafluorocyclobutane) and F8 (2, 3-dichlorooctafluorobutane) on CaV1 and CaV2 Ca²⁺ channels in spinal cord motor neurons and dorsal root ganglion neurons. METHODS Using patch clamping, we compared the effects of isoflurane with those of F6 and F8 on CaV1 and CaV2 channels in isolated, cultured adult rat spinal cord motor neurons and on CaV1 and CaV2 channels in adult rat dorsal root ganglion sensory neurons. RESULTS In spinal cord motor neurons, isoflurane, but not F6 or F8, inhibited currents through CaV1 channels. Isoflurane and at least one of the nonimmobilizers inhibited currents through CaV1 and CaV2 channels in dorsal root ganglion neurons and CaV2 in spinal cord motor neurons. CONCLUSIONS The findings that isoflurane, but not nonimmobilizers, inhibited CaV1 Ca²⁺ channels in spinal cord motor neurons are consistent with the notion that spinal cord motor neurons might mediate isoflurane-induced immobility. Additional studies are required to examine whether inhibition of CaV1 calcium currents in spinal cord motor neurons is sufficient or whether actions on other channels/proteins contribute to isoflurane-induced immobility.
Collapse
Affiliation(s)
- Esperanza Recio-Pinto
- From the Department of Anesthesiology, NYU Langone Medical Center, New York, New York
| | | | | | | |
Collapse
|
42
|
White SH, Sturgeon RM, Magoski NS. Nicotine inhibits potassium currents in Aplysia bag cell neurons. J Neurophysiol 2016; 115:2635-48. [PMID: 26864763 DOI: 10.1152/jn.00816.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/09/2016] [Indexed: 11/22/2022] Open
Abstract
Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K(+) with Cs(+) Consistent with an underlying mechanism of direct inhibition of one or more K(+) channels, nicotine was found to rapidly reduce the fast-inactivating A-type K(+) current as well as both components of the delayed-rectifier K(+) current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K(+) channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time.
Collapse
Affiliation(s)
- Sean H White
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Raymond M Sturgeon
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
43
|
Chang Q, Martin LJ. Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS. Neurobiol Dis 2016; 93:78-95. [PMID: 27151771 DOI: 10.1016/j.nbd.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motoneurons. Hyperexcitability and excitotoxicity have been implicated in the early pathogenesis of ALS. Studies addressing excitotoxic motoneuron death and intracellular Ca(2+) overload have mostly focused on Ca(2+) influx through AMPA glutamate receptors. However, intrinsic excitability of motoneurons through voltage-gated ion channels may also have a role in the neurodegeneration. In this study we examined the function and localization of voltage-gated Ca(2+) channels in cultured spinal cord motoneurons from mice expressing a mutant form of human superoxide dismutase-1 with a Gly93→Ala substitution (G93A-SOD1). Using whole-cell patch-clamp recordings, we showed that high voltage activated (HVA) Ca(2+) currents are increased in G93A-SOD1 motoneurons, but low voltage activated Ca(2+) currents are not affected. G93A-SOD1 motoneurons also have altered persistent Ca(2+) current mediated by L-type Ca(2+) channels. Quantitative single-cell RT-PCR revealed higher levels of Ca1a, Ca1b, Ca1c, and Ca1e subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the increase of HVA Ca(2+) currents may result from upregulation of Ca(2+) channel mRNA expression in motoneurons. The localizations of the Ca1B N-type and Ca1D L-type Ca(2+) channels in motoneurons were examined by immunocytochemistry and confocal microscopy. G93A-SOD1 motoneurons had increased Ca1B channels on the plasma membrane of soma and dendrites. Ca1D channels are similar on the plasma membrane of soma and lower on the plasma membrane of dendrites of G93A-SOD1 motoneurons. Our study demonstrates that voltage-gated Ca(2+) channels have aberrant functions and localizations in ALS mouse motoneurons. The increased HVA Ca(2+) currents and PCCa current could contribute to early pathogenesis of ALS.
Collapse
Affiliation(s)
- Qing Chang
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, MD 21205, United States.
| | - Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, MD 21205, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, MD 21205, United States
| |
Collapse
|
44
|
Tadros MA, Fuglevand AJ, Brichta AM, Callister RJ. Intrinsic excitability differs between murine hypoglossal and spinal motoneurons. J Neurophysiol 2016; 115:2672-80. [PMID: 26936988 DOI: 10.1152/jn.01114.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022] Open
Abstract
Motoneurons differ in the behaviors they control and their vulnerability to disease and aging. For example, brain stem motoneurons such as hypoglossal motoneurons (HMs) are involved in licking, suckling, swallowing, respiration, and vocalization. In contrast, spinal motoneurons (SMs) innervating the limbs are involved in postural and locomotor tasks requiring higher loads and lower movement velocities. Surprisingly, the properties of these two motoneuron pools have not been directly compared, even though studies on HMs predominate in the literature compared with SMs, especially for adult animals. Here we used whole cell patch-clamp recording to compare the electrophysiological properties of HMs and SMs in age-matched neonatal mice (P7-P10). Passive membrane properties were remarkably similar in HMs and SMs, and afterhyperpolarization properties did not differ markedly between the two populations. HMs had narrower action potentials (APs) and a faster upstroke on their APs compared with SMs. Furthermore, HMs discharged APs at higher frequencies in response to both step and ramp current injection than SMs. Therefore, while HMs and SMs have similar passive properties, they differ in their response to similar levels of depolarizing current. This suggests that each population possesses differing suites of ion channels that allow them to discharge at rates matched to the different mechanical properties of the muscle fibers that drive their distinct motor functions.
Collapse
Affiliation(s)
- M A Tadros
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia; and
| | - A J Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - A M Brichta
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia; and
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia; and
| |
Collapse
|
45
|
Kim HR, Hong SZ, Fiorillo CD. T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input. Front Cell Neurosci 2015; 9:428. [PMID: 26582654 PMCID: PMC4631812 DOI: 10.3389/fncel.2015.00428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022] Open
Abstract
Although neurons within intact nervous systems can be classified as ‘sensory’ or ‘motor,’ it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of ‘predictive homeostasis’ to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced (‘H-type’) depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.
Collapse
Affiliation(s)
- Haram R Kim
- Department of Bio and Brain Engineering, KAIST Daejeon, South Korea
| | - Su Z Hong
- Department of Bio and Brain Engineering, KAIST Daejeon, South Korea
| | | |
Collapse
|
46
|
Kim H, Sandercock TG, Heckman CJ. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements. J Neural Eng 2015; 12:046025. [PMID: 26087477 PMCID: PMC4870066 DOI: 10.1088/1741-2560/12/4/046025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. APPROACH The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca(2+)]; (2) [Ca(2+)]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. MAIN RESULTS The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. SIGNIFICANCE This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.
Collapse
Affiliation(s)
- Hojeong Kim
- Division of Robotics Research, Daegu Gyeongbuk Institute of Science & Technology, Daegu 711-873, Korea
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
| | - Thomas G. Sandercock
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
| | - C. J. Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
- Department of Physical Medicine and Rehabilitation, and Physical Therapy and Human Movement Science, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
| |
Collapse
|
47
|
Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signatures in Clinical Cancer Patients. PLoS One 2015; 10:e0125766. [PMID: 26147197 PMCID: PMC4493072 DOI: 10.1371/journal.pone.0125766] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/26/2015] [Indexed: 12/25/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are well documented to play roles in cell proliferation, migration, and apoptosis; however, whether VGCCs regulate the onset and progression of cancer is still under investigation. The VGCC family consists of five members, which are L-type, N-type, T-type, R-type and P/Q type. To date, no holistic approach has been used to screen VGCC family genes in different types of cancer. We analyzed the transcript expression of VGCCs in clinical cancer tissue samples by accessing ONCOMINE (www.oncomine.org), a web-based microarray database, to perform a systematic analysis. Every member of the VGCCs was examined across 21 different types of cancer by comparing mRNA expression in cancer to that in normal tissue. A previous study showed that altered expression of mRNA in cancer tissue may play an oncogenic role and promote tumor development; therefore, in the present findings, we focus only on the overexpression of VGCCs in different types of cancer. This bioinformatics analysis revealed that different subtypes of VGCCs (CACNA1C, CACNA1D, CACNA1B, CACNA1G, and CACNA1I) are implicated in the development and progression of diverse types of cancer and show dramatic up-regulation in breast cancer. CACNA1F only showed high expression in testis cancer, whereas CACNA1A, CACNA1C, and CACNA1D were highly expressed in most types of cancer. The current analysis revealed that specific VGCCs likely play essential roles in specific types of cancer. Collectively, we identified several VGCC targets and classified them according to different cancer subtypes for prospective studies on the underlying carcinogenic mechanisms. The present findings suggest that VGCCs are possible targets for prospective investigation in cancer treatment.
Collapse
|
48
|
Quinlan KA, Lamano JB, Samuels J, Heckman CJ. Comparison of dendritic calcium transients in juvenile wild type and SOD1(G93A) mouse lumbar motoneurons. Front Cell Neurosci 2015; 9:139. [PMID: 25914627 PMCID: PMC4392694 DOI: 10.3389/fncel.2015.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022] Open
Abstract
Previous studies of spinal motoneurons in the SOD1 mouse model of amyotrophic lateral sclerosis have shown alterations long before disease onset, including increased dendritic branching, increased persistent Na+ and Ca2+ currents, and impaired axonal transport. In this study dendritic Ca2+ entry was investigated using two photon excitation fluorescence microscopy and whole-cell patch-clamp of juvenile (P4-11) motoneurons. Neurons were filled with both Ca2+ Green-1 and Texas Red dextrans, and line scans performed throughout. Steps were taken to account for different sources of variability, including (1) dye filling and laser penetration, (2) dendritic anatomy, and (3) the time elapsed from the start of recording. First, Ca2+ Green-1 fluorescence was normalized by Texas Red; next, neurons were reconstructed so anatomy could be evaluated; finally, time was recorded. Customized software detected the largest Ca2+ transients (area under the curve) from each line scan and matched it with parameters above. Overall, larger dendritic diameter and shorter path distance from the soma were significant predictors of larger transients, while time was not significant up to 2 h (data thereafter was dropped). However, Ca2+ transients showed additional variability. Controlling for previous factors, significant variation was found between Ca2+ signals from different processes of the same neuron in 3/7 neurons. This could reflect differential expression of Ca2+ channels, local neuromodulation or other variations. Finally, Ca2+ transients in SOD1G93A motoneurons were significantly smaller than in non-transgenic motoneurons. In conclusion, motoneuron processes show highly variable Ca2+ transients, but these transients are smaller overall in SOD1G93A motoneurons.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Jonathan B Lamano
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Julienne Samuels
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|
49
|
Abstract
Although Renshaw cells (RCs) were discovered over half a century ago, their precise role in recurrent inhibition and ability to modulate motoneuron excitability have yet to be established. Indirect measurements of recurrent inhibition have suggested only a weak modulatory effect but are limited by the lack of observed motoneuron responses to inputs from single RCs. Here we present dual recordings between connected RC-motoneuron pairs, performed on mouse spinal cord. Motoneuron responses demonstrated that Renshaw synapses elicit large inhibitory conductances and show short-term potentiation. Anatomical reconstruction, combined with a novel method of quantal analysis, showed that the strong inhibitory input from RCs results from the large number of synaptic contacts that they make onto individual motoneurons. We used the NEURON simulation environment to construct realistic electrotonic models, which showed that inhibitory conductances from Renshaw inputs exert considerable shunting effects in motoneurons and reduce the frequency of spikes generated by excitatory inputs. This was confirmed experimentally by showing that excitation of a single RC or selective activation of the recurrent inhibitory pathway to generate equivalent inhibitory conductances both suppress motoneuron firing. We conclude that recurrent inhibition is remarkably effective, in that a single action potential from one RC is sufficient to silence a motoneuron. Although our results may differ from previous indirect observations, they underline a need for a reevaluation of the role that RCs perform in one of the first neuronal circuits to be discovered.
Collapse
|
50
|
Kim H, Heckman CJ. Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite. Front Comput Neurosci 2014; 8:110. [PMID: 25309410 PMCID: PMC4160741 DOI: 10.3389/fncom.2014.00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/23/2014] [Indexed: 11/13/2022] Open
Abstract
Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interaction between PIC neuromodulation and PIC location dependence, we used a two-compartment model that was biologically realistic in that it retains directional and frequency-dependent electrical coupling between the soma and the dendrites, as seen in multi-compartment models based on full anatomical reconstructions of motoneurons. Our two-compartment approach allowed us to systematically vary the coupling parameters between the soma and the dendrite to accurately reproduce the effect of location of the dendritic PIC on the generation of nonlinear (hysteretic) motoneuron firing patterns. Our results show that as a single parameter value for PIC activation was either increased or decreased by 20% from its default value, the solution space of the coupling parameter values for nonlinear firing outputs was drastically reduced by approximately 80%. As a result, the model tended to fire only in a linear mode at the majority of dendritic PIC sites. The same results were obtained when all parameters for the PIC activation simultaneously changed only by approximately ±10%. Our results suggest the democratization effect of neuromodulation: the neuromodulation by the brainstem systems may play a role in switching the motoneurons with PICs at different dendritic locations to a similar mode of firing by reducing the effect of the dendritic location of PICs on the firing behavior.
Collapse
Affiliation(s)
- Hojeong Kim
- Division of Robotics Research, Daegu Gyeongbuk Institute of Science and Technology Daegu, South Korea ; Department of Physiology, Northwestern University Chicago, IL, USA
| | - C J Heckman
- Department of Physiology, Northwestern University Chicago, IL, USA ; Department of Physical Medicine and Rehabilitation, Northwestern University Chicago, IL, USA ; Department of Physical Therapy and Human Movement Science, Northwestern University Chicago, IL, USA
| |
Collapse
|