1
|
Ostlund I, Von Gunten M, Smith C, Edwards JG. Chronic Δ9-tetrahydrocannabinol impact on plasticity, and differential activation requirement for CB1-dependent long-term depression in ventral tegmental area GABA neurons in adult versus young mice. Front Neurosci 2023; 16:1067493. [PMID: 36699526 PMCID: PMC9869137 DOI: 10.3389/fnins.2022.1067493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The ventral tegmental area (VTA) mediates incentive salience and reward prediction error through dopamine (DA) neurons that are regulated by local VTA GABA neurons. In young mice, VTA GABA cells exhibit a form of synaptic plasticity known as long-term depression (LTD) that is dependent on cannabinoid 1 (CB1) receptors preceded by metabotropic glutamate receptor 5 (mGluR5) signaling to induce endocannabinoid production. This LTD was eliminated following chronic (7-10 consecutive days) exposure to the marijuana derived cannabinoid Δ9 -tetrahydrocannabinol (THC). We now examine the mechanism behind THC-induced elimination of LTD in adolescents as well as plasticity induction ability in adult versus young male and female mice using whole-cell electrophysiology experiments of VTA GABA cells. Chronic THC injections in adolescents resulted in a loss of CB1 agonist-mediated depression, illustrating chronic THC likely desensitizes or removes synaptic CB1. We noted that seven days withdrawal from chronic THC restored LTD and CB1 agonist-induced depression, suggesting reversibility of THC-induced changes. Adult mice continue to express functional mGluR5 and CB1, but require a doubling of the synaptic stimulation compared to young mice to induce LTD, suggesting a quantitative difference in CB1-dependent plasticity between young and adult mice. One potential rationale for this difference is changes in AMPA and NMDA glutamate receptors. Indeed, AMPA/NMDA ratios were increased in in adults compared to young mice. Lastly, we performed quantitative reverse-transcription PCR and identified that CB1, DAGLα, and GluA1 levels increased following chronic THC exposure. Collectively, our data demonstrate the first age-dependent GABA neuron plasticity in the VTA, which could have implications for decreased THC dependence capacity in adults, as well as the mechanism behind chronic THC-induced synaptic alterations in young mice.
Collapse
Affiliation(s)
- Isaac Ostlund
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| | | | - Calvin Smith
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Jeffrey G. Edwards
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| |
Collapse
|
2
|
Kim JI, Ganesan S, Luo SX, Wu YW, Park E, Huang EJ, Chen L, Ding JB. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 2015; 350:102-6. [PMID: 26430123 DOI: 10.1126/science.aac4690] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.
Collapse
Affiliation(s)
- Jae-Ick Kim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Subhashree Ganesan
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sarah X Luo
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA. Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Esther Park
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA. Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA. Pathology Service 113B, San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA. Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
3
|
Fyk-Kolodziej BE, Shimano T, Gafoor D, Mirza N, Griffith RD, Gong TW, Holt AG. Dopamine in the auditory brainstem and midbrain: co-localization with amino acid neurotransmitters and gene expression following cochlear trauma. Front Neuroanat 2015; 9:88. [PMID: 26257610 PMCID: PMC4510424 DOI: 10.3389/fnana.2015.00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/19/2015] [Indexed: 11/13/2022] Open
Abstract
Dopamine (DA) modulates the effects of amino acid neurotransmitters (AANs), including GABA and glutamate, in motor, visual, olfactory, and reward systems (Hnasko et al., 2010; Stuber et al., 2010; Hnasko and Edwards, 2012). The results suggest that DA may play a similar modulatory role in the auditory pathways. Previous studies have shown that deafness results in decreased GABA release, changes in excitatory neurotransmitter levels, and increased spontaneous neuronal activity within brainstem regions related to auditory function. Modulation of the expression and localization of tyrosine hydroxylase (TH; the rate limiting enzyme in the production of DA) in the IC following cochlear trauma has been previously reported (Tong et al., 2005). In the current study the possibility of co-localization of TH with AANs was examined. Changes in the gene expression of TH were compared with changes in the gene expression of markers for AANs in the cochlear nucleus (CN) and inferior colliculus (IC) to determine whether those deafness related changes occur concurrently. The results indicate that bilateral cochlear ablation significantly reduced TH gene expression in the CN after 2 months while in the IC the reduction in TH was observed at both 3 days and 2 months following ablation. Furthermore, in the CN, glycine transporter 2 (GLYT2) and the GABA transporter (GABAtp) were also significantly reduced only after 2 months. However, in the IC, DA receptor 1 (DRDA1), vesicular glutamate transporters 2 and 3 (VGLUT2, VGLUT3), GABAtp and GAD67 were reduced in expression both at the 3 days and 2 months time points. A close relationship between the distribution of TH and several of the AANs was determined in both the CN and the IC. In addition, GLYT2 and VGLUT3 each co-localized with TH within IC somata and dendrites. Therefore, the results of the current study suggest that DA is spatially well positioned to influence the effects of AANs on auditory neurons.
Collapse
Affiliation(s)
- Bozena E Fyk-Kolodziej
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Takashi Shimano
- Department of Otolaryngology, Kansai Medical University Osaka, Japan
| | - Dana Gafoor
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Najab Mirza
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Ronald D Griffith
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| | - Tzy-Wen Gong
- Kresge Hearing Research Institute, University of Michigan School of Medicine, Ann Arbor MI, USA
| | - Avril Genene Holt
- Molecular Anatomy of Auditory-related Central Systems, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit MI, USA
| |
Collapse
|
4
|
Tritsch NX, Oh WJ, Gu C, Sabatini BL. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLife 2014; 3:e01936. [PMID: 24843012 PMCID: PMC4001323 DOI: 10.7554/elife.01936] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Synaptic transmission between midbrain dopamine neurons and target neurons in the striatum is essential for the selection and reinforcement of movements. Recent evidence indicates that nigrostriatal dopamine neurons inhibit striatal projection neurons by releasing a neurotransmitter that activates GABAA receptors. Here, we demonstrate that this phenomenon extends to mesolimbic afferents, and confirm that the released neurotransmitter is GABA. However, the GABA synthetic enzymes GAD65 and GAD67 are not detected in midbrain dopamine neurons. Instead, these cells express the membrane GABA transporters mGAT1 (Slc6a1) and mGAT4 (Slc6a11) and inhibition of these transporters prevents GABA co-release. These findings therefore indicate that GABA co-release is a general feature of midbrain dopaminergic neurons that relies on GABA uptake from the extracellular milieu as opposed to de novo synthesis. This atypical mechanism may confer dopaminergic neurons the flexibility to differentially control GABAergic transmission in a target-dependent manner across their extensive axonal arbors. DOI:http://dx.doi.org/10.7554/eLife.01936.001 The electrical signals that are fired along neurons cannot be transmitted across the small gaps, called synapses that are found between neurons. Instead, the neuron sending the signal releases chemicals called neurotransmitters into the synapse. These neurotransmitters bind to receptor proteins on the surface of the second neuron and control how it fires. A neurotransmitter called dopamine plays a key role in the circuits of the brain that control how we learn certain tasks involving movement. In particular, two populations of neurons from the midbrain that release dopamine target the striatum, an area of the brain that is responsible for motor control. These neurons also release other neurotransmitters, but the identity of these other chemicals is not known, and the details of the interaction between the neurons and the striatum are poorly understood. Previous research showed that some of the midbrain neurons activate receptors that normally respond to a neurotransmitter called gamma-aminobutyric acid (GABA). However, several different chemicals can trigger this receptor. Using a range of techniques, Tritsch et al. now confirm that dopamine neurons release GABA alongside dopamine, and that this applies to both sets of the dopamine-producing neurons that feed into the striatum. Some neurons can manufacture GABA from amino acids found in their internal fluid. However, Tritsch et al. could not detect the enzymes needed for this reaction in dopamine-producing neurons. Instead, these neurons contain proteins that can transport GABA across the cell membrane, which suggests that the neurons collect GABA from the extracellular fluid that surrounds them. DOI:http://dx.doi.org/10.7554/eLife.01936.002
Collapse
Affiliation(s)
- Nicolas X Tritsch
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Won-Jong Oh
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
5
|
GABA is localized in dopaminergic synaptic vesicles in the rodent striatum. Brain Struct Funct 2013; 219:1901-12. [DOI: 10.1007/s00429-013-0609-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/03/2013] [Indexed: 11/24/2022]
|
6
|
He XB, Yi SH, Rhee YH, Kim H, Han YM, Lee SH, Lee H, Park CH, Lee YS, Richardson E, Kim BW, Lee SH. Prolonged membrane depolarization enhances midbrain dopamine neuron differentiation via epigenetic histone modifications. Stem Cells 2012; 29:1861-73. [PMID: 21922608 DOI: 10.1002/stem.739] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding midbrain dopamine (DA) neuron differentiation is of importance, because of physiological and clinical implications of this neuronal subtype. We show that prolonged membrane depolarization induced by KCl treatment promotes DA neuron differentiation from neural precursor cells (NPCs) derived from embryonic ventral midbrain (VM). Interestingly, the depolarization-induced increase of DA neuron yields was not abolished by L-type calcium channel blockers, along with no depolarization-mediated change of intracellular calcium level in the VM-derived NPCs (VM-NPCs), suggesting that the depolarization effect is due to a calcium-independent mechanism. Experiments with labeled DA neuron progenitors indicate that membrane depolarization acts at the differentiation fate determination stage and promotes the expression of DA phenotype genes (tyrosine hydroxylase [TH] and DA transporter [DAT]). Recruitment of Nurr1, a transcription factor crucial for midbrain DA neuron development, to the promoter of TH gene was enhanced by depolarization, along with increases of histone 3 acetylation (H3Ac) and trimethylation of histone3 on lysine 4 (H3K4m3), and decreases of H3K9m3 and H3K27m3 in the consensus Nurr1 binding regions of TH promoter. Depolarization stimuli on differentiating VM-NPCs also induced dissociation of methyl CpG binding protein 2 and related repressor complex molecules (repressor element-1 silencing transcription factor corepressor and histone deacetylase 1) from the CpG sites of TH and DAT promoters. Based on these findings, we suggest that membrane depolarization promotes DA neuron differentiation by opening chromatin structures surrounding DA phenotype genes and inhibiting the binding of corepressors, thus allowing transcriptional activators such as Nurr1 to access DA neuron differentiation gene promoter regions.
Collapse
Affiliation(s)
- Xi-Biao He
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Saigusa T, Aono Y, Sekino R, Uchida T, Takada K, Oi Y, Koshikawa N, Cools AR. In vivo neurochemical evidence that newly synthesised GABA activates GABA(B), but not GABA(A), receptors on dopaminergic nerve endings in the nucleus accumbens of freely moving rats. Neuropharmacology 2011; 62:907-13. [PMID: 21964521 DOI: 10.1016/j.neuropharm.2011.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/19/2011] [Accepted: 09/16/2011] [Indexed: 01/13/2023]
Abstract
GABA released from accumbal GABAergic interneurons plays an inhibitory role in the regulation of dopamine efflux through GABA(B) and GABA(A) receptors located on accumbal dopaminergic nerve endings. The cytosolic newly synthesised GABA alters vesicular GABA levels and, accordingly, the amount of GABA released from the neuron. Therefore, we hypothesised that glutamic acid decarboxylase (GAD) which generates GABA in accumbal GABAergic neurons, at least partly determines the GABA receptor subtype-mediated GABAergic tonus. To (in)validate this hypothesis, in vivo microdialysis was used to study the effects of an intra-accumbal infusion of the GAD inhibitor l-allylglycine (allylglycine) on the accumbal dopamine efflux of freely moving rats. The intra-accumbal infusion of allylglycine (50.0, 250.0 and 500.0 nmol) dose-dependently increased the accumbal dopamine levels. The co-administration of tetrodotoxin (720 pmol) suppressed the allylglycine (500.0 nmol)-induced dopamine efflux. The intra-accumbal infusion of GABA(B) receptor agonist baclofen (2.5 and 5.0 nmol) inhibited the allylglycine (500.0 nmol)-induced dopamine efflux. The baclofen's effects were counteracted by GABA(B) receptor antagonist saclofen (10.0 nmol). Neither GABA(A) receptor agonist (muscimol: 25.0 and 250.0 pmol) nor antagonist (bicuculline: 50.0 pmol) altered the allylglycine (250.0 and 500.0 nmol)-induced dopamine efflux. The present study provides in vivo neurochemical evidence that newly synthesised GABA that exerts an inhibitory tonus on the accumbal dopaminergic activity, acts at the level of GABA(B) receptors, but not GABA(A) receptors. The present study also shows that there is an allylglycine-insensitive GABA pool that release GABA exerting an inhibitory control of the accumbal dopaminergic activity, at the level of GABA(A) receptors. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Tadashi Saigusa
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Combined fluorescent in situ hybridization and immunofluorescence: Limiting factors and a substitution strategy for slide-mounted tissue sections. J Neurosci Methods 2011; 196:281-8. [DOI: 10.1016/j.jneumeth.2011.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/18/2022]
|
9
|
Barreiro-Iglesias A, Villar-Cerviño V, Anadón R, Rodicio MC. Dopamine and gamma-aminobutyric acid are colocalized in restricted groups of neurons in the sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates. J Anat 2009; 215:601-10. [PMID: 19840024 DOI: 10.1111/j.1469-7580.2009.01159.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since its discovery, the possible corelease of classic neurotransmitters from neurons has received much attention. Colocalization of monoamines and amino acidergic neurotransmitters [mainly glutamate and dopamine (DA) or serotonin] in mammalian neurons has been reported. However, few studies have dealt with the colocalization of DA and gamma-aminobutyric acid (GABA) in neurons. With the aim of providing some insight into the colocalization of neurotransmitters during early vertebrate phylogeny, we studied GABA expression in dopaminergic neurons in the sea lamprey brain by using double-immunofluorescence methods with anti-DA and anti-GABA antibodies. Different degrees of colocalization of DA and GABA were observed in different dopaminergic brain nuclei. A high degree of colocalization (GABA in at least 25% of DA-immunoreactive neurons) was observed in populations of the caudal rhombencephalon, ventral isthmus, postoptic commissure nucleus, preoptic nucleus and in granule-like cells of the olfactory bulb. A new DA-immunoreactive striatal population that showed colocalization with GABA in about a quarter of its neurons was observed. In the periventricular hypothalamus, colocalization was observed in only a few cells, despite the abundance of DA- and GABA-immunoreactive neurons, and no double-labelled cells were observed in the paratubercular nucleus. The frequent colocalization of DA and GABA reveals that the dopaminergic populations of lampreys are more complex than previously reported. Double-labelled fibres or terminals were observed in different brain regions, suggesting possible corelease of DA and GABA by these lamprey neurons. The present results suggest that colocalization of DA and GABA in neurons appeared early in vertebrate evolution.
Collapse
Affiliation(s)
- Antón Barreiro-Iglesias
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
10
|
Hirasawa H, Puopolo M, Raviola E. Extrasynaptic release of GABA by retinal dopaminergic neurons. J Neurophysiol 2009; 102:146-58. [PMID: 19403749 DOI: 10.1152/jn.00130.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA release by dopaminergic amacrine (DA) cells of the mouse retina was detected by measuring Cl- currents generated by isolated perikarya in response to their own neurotransmitter. The possibility that the Cl- currents were caused by GABA release from synaptic endings that had survived the dissociation of the retina was ruled out by examining confocal Z series of the surface of dissociated tyrosine hydroxylase-positive perikarya after staining with antibodies to pre and postsynaptic markers. GABA release was caused by exocytosis because 1) the current events were transient on the millisecond time scale and thus resembled miniature synaptic currents; 2) they were abolished by treatment with a blocker of the vesicular proton pump, bafilomycin A1; and 3) their frequency was controlled by the intracellular Ca2+ concentration. Because DA cell perikarya do not contain presynaptic active zones, release was by necessity extrasynaptic. A range of depolarizing stimuli caused GABA exocytosis, showing that extrasynaptic release of GABA is controlled by DA cell electrical activity. With all modalities of stimulation, including long-lasting square pulses, segments of pacemaker activity delivered by the action-potential-clamp method and high-frequency trains of ramps, discharge of GABAergic currents exhibited considerable variability in latency and duration, suggesting that coupling between Ca2+ influx and transmitter exocytosis is extremely loose in comparison with the synapse. Paracrine signaling based on extrasynaptic release of GABA by DA cells and other GABAergic amacrines may participate in controlling the excitability of the neuronal processes that interact synaptically in the inner plexiform layer.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
11
|
González-Hernández T, Afonso-Oramas D, Cruz-Muros I. Phenotype, compartmental organization and differential vulnerability of nigral dopaminergic neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:21-37. [PMID: 20411765 DOI: 10.1007/978-3-211-92660-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The degeneration of nigral dopaminergic (DA-) neurons is the histopathologic hallmark of Parkinson's disease (PD), but not all nigral DA-cells show the same susceptibility to degeneration. This starts in DA-cells in the ventrolateral and caudal regions of the susbtantia nigra (SN) and progresses to DA-cells in the dorsomedial and rostral regions of the SN and the ventral tegmental area, where many neurons remain intact until the final stages of the disease. This fact indicates a relationship between the topographic distribution of midbrain DA-cells and their differential vulnerability, and the possibility that this differential vulnerability is associated with phenotypic differences between different subpopulations of nigral DA-cells. Studies carried out during the last two decades have contributed to establishing the existence of different compartments of nigral DA-cells according to their neurochemical profile, and a possible relationship between the expression of some factors and the relative vulnerability or resistance of DA-cell subpopulations to degeneration. These aspects are reviewed and discussed here.
Collapse
Affiliation(s)
- Tomás González-Hernández
- Department of Anatomy, Faculty of Medicine, University of La Laguna, 38071, La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
12
|
SK channel function regulates the dopamine phenotype of neurons in the substantia nigra pars compacta. Exp Neurol 2008; 213:419-30. [PMID: 18680743 DOI: 10.1016/j.expneurol.2008.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 07/02/2008] [Accepted: 07/05/2008] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is characterized by loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). It is widely believed that replacing lost SNc DA neurons is a key to longer-term effective treatment of PD motor symptoms, but generating new SNc DA neurons in PD patients has proven difficult. Following loss of tyrosine hydroxylase-positive (TH+) SNc neurons in the rodent 6-hydroxy-DA (6-OHDA) model of PD, the number of TH+ neurons partially recovers and there is evidence this occurs via phenotype "shift" from TH- to TH+ cells. Understanding how this putative phenotype shift occurs may help increase SNc DAergic neurons in PD patients. In this study we characterize the electrophysiology of SNc TH- and TH+ cells during recovery from 6-OHDA in mice. Three distinct phenotypes were observed: (1) TH- were fast discharging with a short duration action potential (AP), short afterhyperpolarization (AHP) and no small conductance Ca(2+)-activated K(+) (SK) current; (2) TH+ were slow discharging with a long AP, long AHP and prominent SK current; and (3) cells with features "intermediate" between these TH- and TH+ phenotypes. The same 3 phenotypes were present also in the normal and D2 DA receptor knock-out SNc suggesting they are more closely related to the biology of TH expression than recovery from 6-OHDA. Acute inhibition of SK channel function shifted the electrophysiological phenotype of TH+ neurons toward TH- and chronic (2 weeks) inhibition of SK channel function in normal mice shifted the neurochemical phenotype of SNc from TH+ to TH- (i.e. decreased TH+ and increased TH- cell numbers). Importantly, chronic facilitation of SK channel function shifted the neurochemical phenotype of SNc from TH- to TH+ (i.e. increased TH+ and decreased TH- cell numbers). We conclude that SK channel function bidirectionally regulates the DA phenotype of SNc cells and facilitation of SK channels may be a novel way to increase the number of SNc DAergic neurons in PD patients.
Collapse
|
13
|
Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 2008; 152:1024-31. [PMID: 18355970 PMCID: PMC2575227 DOI: 10.1016/j.neuroscience.2008.01.046] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/14/2007] [Accepted: 01/11/2008] [Indexed: 02/06/2023]
Abstract
Midbrain dopamine neurons in the ventral tegmental area, substantia nigra and retrorubral field play key roles in reward processing, learning and memory, and movement. Within these midbrain regions and admixed with the dopamine neurons, are also substantial populations of GABAergic neurons that regulate dopamine neuron activity and have projection targets similar to those of dopamine neurons. Additionally, there is a small group of putative glutamatergic neurons within the ventral tegmental area whose function remains unclear. Although dopamine neurons have been intensively studied and quantified, there is little quantitative information regarding the GABAergic and glutamatergic neurons. We therefore used unbiased stereological methods to estimate the number of dopaminergic, GABAergic and glutamatergic cells in these regions in the rat. Neurons were identified using a combination of immunohistochemistry (tyrosine hydroxylase) and in situ hybridization (glutamic acid decarboxylase mRNA and vesicular glutamate transporter 2 mRNA). In substantia nigra pars compacta 29% of cells were glutamic acid decarboxylase mRNA-positive, 58% in the retrorubral field and 35% in the ventral tegmental area. There were further differences in the relative sizes of the GABAergic populations in subnuclei of the ventral tegmental area. Thus, glutamic acid decarboxylase mRNA-positive neurons represented 12% of cells in the interfascicular nucleus, 30% in the parabrachial nucleus, and 45% in the parainterfascicular nucleus. Vesicular glutamate transporter 2 mRNA-positive neurons were present in the ventral tegmental area, but not substantia nigra or retrorubral field. They were mainly confined to the rostro-medial region of the ventral tegmental area, and represented approximately 2-3% of the total neurons counted ( approximately 1600 cells). These results demonstrate that GABAergic and glutamatergic neurons represent large proportions of the neurons in what are traditionally considered as dopamine nuclei and that there are considerable heterogeneities in the proportions of cell types in the different dopaminergic midbrain regions.
Collapse
Affiliation(s)
- R G Nair-Roberts
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS, UK; Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3US, UK
| | | | | | | | | | | |
Collapse
|
14
|
Eulitz D, Prüss H, Derst C, Veh RW. Heterogeneous distribution of kir3 potassium channel proteins within dopaminergic neurons in the mesencephalon of the rat brain. Cell Mol Neurobiol 2007; 27:285-302. [PMID: 17235695 PMCID: PMC11517118 DOI: 10.1007/s10571-006-9118-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 09/06/2006] [Indexed: 11/25/2022]
Abstract
1. Dopaminergic neurons in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) of the ventral mesencephalon play an important role in the regulation of the parallel basal ganglia loops.2. We have raised affinity-purified polyclonal rabbit antibodies specific for all four members of the Kir3 family of inwardly rectifying potassium channels (Kir3.1-Kir3.4) to investigate the distribution of the channel proteins in the dopaminergic neurons of the rat mesencephalon at light and electron microscopic level. In addition, immunocytochemical double labeling with tyrosine hydroxylase (TH), a marker of dopaminergic neurons, were performed.3. All Kir3 channels were present in this region. However, the individual proteins showed differential cellular and subcellular distributions.4. Kir3.1 immunoreactivity was found in SNc fibers and some neurons of the substantia nigra pars reticulata (SNr). Few Kir3.3-positive neurons were found in the SNc. However, a strong Kir3.3 signal was identified in the SNr neuropil. Weak Kir3.4 staining was detected in neuronal somata as well as in dendritic fibers of both parts of the SN.5. In the VTA, Kir3.1, Kir3.3, and Kir3.4 showed only weak staining of neuropil structures. The distribution of the Kir3.2 channel protein was especially striking with strong labeling in the SNc and in the lateral but not central VTA.6. Our results suggest that the heterogeneously distributed Kir3.2 channel proteins could help to discriminate the dopaminergic neurons of VTA and SNc.
Collapse
Affiliation(s)
- Dirk Eulitz
- Centrum für Anatomie, Institut für Integrative Neuroanatomie, Charité—Universitätsmedizin Berlin, Philippstr. 12, D-10115, Berlin, Germany
- Present Address: Abteilung für Anatomie und Embryologie, Medizinische Fakultät, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, Germany
| | - Harald Prüss
- Centrum für Anatomie, Institut für Integrative Neuroanatomie, Charité—Universitätsmedizin Berlin, Philippstr. 12, D-10115, Berlin, Germany
- Present Address: Abteilung für Experimentelle Neurologie und Klinik für Neurologie, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Derst
- Centrum für Anatomie, Institut für Integrative Neuroanatomie, Charité—Universitätsmedizin Berlin, Philippstr. 12, D-10115, Berlin, Germany
| | - Rüdiger W. Veh
- Centrum für Anatomie, Institut für Integrative Neuroanatomie, Charité—Universitätsmedizin Berlin, Philippstr. 12, D-10115, Berlin, Germany
| |
Collapse
|
15
|
Ossowska K, Smiałowska M, Kuter K, Wierońska J, Zieba B, Wardas J, Nowak P, Dabrowska J, Bortel A, Biedka I, Schulze G, Rommelspacher H. Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: implications for Parkinson's disease. Neuroscience 2006; 141:2155-65. [PMID: 16797138 DOI: 10.1016/j.neuroscience.2006.05.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/18/2006] [Accepted: 05/18/2006] [Indexed: 12/28/2022]
Abstract
A deficiency of the dopaminergic transmission in the mesocortical system has been suggested to contribute to cognitive disturbances in Parkinson's disease. Therefore, the aim of the present study was to examine whether the long-term administration of a commonly used herbicide, paraquat, which has already been found to induce a slowly progressing degeneration of the nigrostriatal neurons, influences mesocortical dopaminergic neurons in rats. Paraquat at a dose of 10 mg/kg i.p. was injected either acutely or once a week for 4, 8, 12 and 24 weeks. Acute treatment with this pesticide increased the level of homovanillic acid (HVA) and HVA/dopamine ratio in the prefrontal cortex. After 8 weeks of administration paraquat increased the number of stereologically counted tyrosine hydroxylase-immunoreactive (TH-ir) neurons and their staining intensity in the ventral tegmental area (VTA), which is a source of the mesocortical dopaminergic projection. At the same time, few TH-ir neurons appeared in different regions of the cerebral cortex: in the frontal, cingulate, retrosplenial and parietal cortices. Chronic paraquat administration did not influence the level of dopamine in the prefrontal cortex but increased the levels of its metabolites: 3,4-dihydroxyphenylacetic acid (after 8-12 weeks), HVA (after 4 and 12 weeks) and HVA/dopamine ratio (4 weeks). After 24 weeks this pesticide reduced the number of TH-ir neurons in the VTA by 42% and of the Nissl-stained neurons by 26%, and induced shrinkage of this structure by ca. 25%. Moreover, TH-ir neurons in the cortex were no more visible after such a long period of administration and levels of dopamine metabolites returned to control values. The present results suggest that the long-term paraquat administration destroys dopaminergic neurons of the VTA. However, compensatory activation of the VTA neurons and cortex overcomes progressing degeneration and maintains cortical dopaminergic transmission.
Collapse
Affiliation(s)
- K Ossowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., PL-31-343 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
We examined the neurochemical phenotype of striatal neurons expressing tyrosine hydroxylase (TH) mRNA to determine if they form a distinct class of neurons within the human striatum. Double in situ hybridization (ISH) and immunohistochemical (IHC) procedures were used to know if TH mRNA-positive striatal neurons express molecular markers of mature neurons (MAP2 and NeuN), dopaminergic neurons (DAT and Nurr1) or immature neurons (TuJ1). All TH mRNA-labeled neurons were found to express NeuN, DAT and Nurr1, whereas about 80% of them exhibited MAP2, confirming their neuronal and dopaminergic nature. Only about 30% of TH mRNA-labeled neurons expressed TuJ1, suggesting that this ectopic dopaminergic neuronal population is principally composed of mature neurons. The same double ISH/IHC approach was then used to know if these dopamine neurons display markers of well-established classes of striatal projection neurons (GAD65 and calbindin) or local circuit neurons (GAD65, calretinin, somatostatin and parvalbumin). Virtually all TH-labeled neurons expressed GAD65 mRNA, about 30% of them exhibited calretinin, but none stained for the other striatal neuron markers. These results suggest that the majority of TH-positive neurons intrinsic to the human striatum belong to a distinct subpopulation of striatal interneurons characterized by their ability to produce dopamine and GABA.
Collapse
Affiliation(s)
- Martine Cossette
- Laboratoire de Neurobiologie Systémique, Centre de Recherche Université Laval Robert-Giffard, 2601, de la Canardière, Local F-6500, Beauport, Que., Canada G1J 2G3
| | | | | |
Collapse
|
17
|
Chrapusta SJ, Egan MF. Poor evidence for depolarization block but uncoupling of nigral from striatal dopamine metabolism after chronic haloperidol treatment in the rat. J Neural Transm (Vienna) 2005; 113:573-82. [PMID: 16082510 DOI: 10.1007/s00702-005-0347-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 06/18/2005] [Indexed: 11/28/2022]
Abstract
Chronic haloperidol treatment induces depolarization block in midbrain dopamine neuronal systems. We studied the effect of this treatment on nigrostriatal dopamine catabolism using microwave fixation in situ of the brain to prevent post-mortem changes. Male Sprague-Dawley rats were given haloperidol (0.4 mg/kg/day, i.p.) or vehicle for 21 days. On day 22, some rats in each group received a haloperidol challenge (0.4 mg/kg, i.p.), and the remaining rats were given the vehicle. Dopamine metabolite levels 60 min after the challenge were assayed by combined gas chromatography-mass fragmentography. Haloperidol pretreatment significantly modified haloperidol challenge effect on regional dopamine metabolite contents. The challenge elevated all striatal metabolites studied similarly in the chronic vehicle- or chronic haloperidol-pretreated rats. In contrast, it did not significantly affect nigral dopamine metabolites except it elevated 3,4-dihydroxyphenylacetic acid in the haloperidol-pretreated rats. A linear correlation between the nigral and striatal contents of 3-methoxytyramine (R = 0.72, p = 0.03), and a trend for correlation (R = 0.65, p = 0.06) between the respective 3,4-dihydroxyphenylacetic acid contents were found after the haloperidol challenge in the vehicle-pretreated rats only. These results suggest that chronic haloperidol treatment uncouples somatodendritic dopamine turnover and release from those in the axon terminals of nigrostriatal dopamine neurons.
Collapse
Affiliation(s)
- S J Chrapusta
- Department of Experimental Pharmacology, Polish Academy of Sciences Medical Research Center, Warsaw, Poland.
| | | |
Collapse
|
18
|
Torrealba F, Carrasco MA. A review on electron microscopy and neurotransmitter systems. ACTA ACUST UNITED AC 2005; 47:5-17. [PMID: 15572159 DOI: 10.1016/j.brainresrev.2004.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this article is to review the contributions of transmission electron microscopy studies to the understanding of brain circuits and neurotransmitter systems. Our views on the microstructure of connections between neurons have gradually changed, and now we recognize that the classical mental image we had on a chemical synapse is no longer applicable to every neuronal connection. We highlight studies that converge to point out that, while the most prevalent fast transmitters in the brain, glutamate and GABA, are stored in small, clear synaptic vesicles (SSV) and released at synapses, neuropeptides are exclusively stored in large dense core vesicles (LDCV) and released extrasynaptically. Amine transmitters are preferentially, but not exclusively, accumulated in LDCV and may be released at synaptic or extrasynaptic sites. We discuss evidence suggesting that axon terminals from pyramidal cortical neurons and dorsal thalamic neurons lack LDCV and therefore could not use neuropeptides as transmitters. This idea fits with the fast, high temporal resolution information processing that characterizes cortical and thalamic function.
Collapse
Affiliation(s)
- Fernando Torrealba
- Departamento de Ciencias Fisiológicas, Fac. Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | |
Collapse
|
19
|
Lévesque M, Wallman MJ, Parent A. Striosomes are enriched in glutamic acid decarboxylase in primates. Neurosci Res 2004; 50:29-35. [PMID: 15288496 DOI: 10.1016/j.neures.2004.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 05/21/2004] [Indexed: 11/26/2022]
Abstract
The compartmental distribution of glutamic acid decarboxylase (GAD) in the striatum was investigated in squirrel monkeys and rats with antibodies raised against the two isoforms of this enzyme (GAD65 and GAD67) and with calbindin D-28k (CB) and/or micro-opiate receptor (MOR) as striosomal markers. In primates, immunostaining for both GAD65 and GAD67 was much more intense in striosomes than in the surrounding matrix. A thin immunoreactive strip of GAD labeling was also present in the dorsolateral part of both caudate nucleus and putamen. This narrow band appears to correspond to the so-called subcallosal streak (SS) found in rodent striatum. Although the immunostaining intensity for the two enzymes was similar at pallidal level, that for GAD65 was more intense than that for GAD67 at the striatal level. The GAD immunostaining was more uniformly distributed in the rat striatum, which did not display GAD-rich patches that corresponded to MOR-positive striosomes. Moreover, in contrast to the findings obtained in monkeys, the subcallosal streak in rats was less intensely stained for GAD than for the remaining regions of the striatum. These results reveal that GAD65 and GAD67 are faithful markers of striosomes in primates but not in rodents. They suggest the existence of a significant species difference between rodents and primates in respect to the chemical organization of the striatum, a difference that should be taken into account when using rodents as animal models to study the functional organization of the basal ganglia and the pathogenesis of neurodegenerative diseases that affect the striatum.
Collapse
Affiliation(s)
- Martin Lévesque
- Centre de recherche Université Laval Robert-Giffard, 2601, de la Canardière, Local F-6500, Beauport, Québec, Canada G1J 2G3
| | | | | |
Collapse
|
20
|
González-Hernández T, Barroso-Chinea P, Pérez de la Cruz MA, Valera P, Dopico JG, Rodríguez M. Response of GABAergic cells in the deep mesencephalic nucleus to dopaminergic cell degeneration: an electrophysiological and in situ hybridization study. Neuroscience 2002; 113:311-21. [PMID: 12127088 DOI: 10.1016/s0306-4522(02)00186-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The deep mesencephalic nucleus (DMN) is a large midbrain reticular region located between the substantia nigra compacta and the superior colliculus. It contains GABAergic cells that share striatal afferents, thalamic and collicular efferents, as well as neurochemical and electrophysiological similarities, with those of the substantia nigra reticulata. In the present paper we used electrophysiological (firing rate and firing pattern) and morphological (densitometric analysis of in situ hybridization histochemical labeling for glutamic acid decarboxylase (GAD)65 and GAD67 mRNA) techniques, to study the response of DMN GABAergic cells to the degeneration of nigral dopaminergic cells. Our results showed that unilateral dopaminergic cell loss (after injection of 6-hydroxydopamine in the medial forebrain bundle) induces a bilateral and symmetrical increase in both firing rate and GAD67 mRNA levels and a decrease in GAD65 mRNA levels. These findings support the involvement of DMN GABAergic cells in the basal ganglia modifications that follow dopaminergic cell loss, also suggesting its participation in the pathophysiology of Parkinson's disease. The symmetry of effects, together with its recently reported bilateral projections to the thalamus and superior colliculus, suggest that unlike substantia nigra reticulata, DMN is involved in the interhemispheric regulation of basal ganglia, probably keeping their functional symmetry even after asymmetric lesions.
Collapse
Affiliation(s)
- T González-Hernández
- Department of Anatomy, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Rodríguez M, Abdala P, Barroso-Chinea P, González-Hernández T. The deep mesencephalic nucleus as an output center of basal ganglia: morphological and electrophysiological similarities with the substantia nigra. J Comp Neurol 2001; 438:12-31. [PMID: 11503150 DOI: 10.1002/cne.1299] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The deep mesencephalic nucleus (DMN) is a large midbrain reticular region between the superior colliculus, the substantia nigra compacta, the periaqueductal gray, and the medial geniculate body. Although some data suggest that it is involved in nociception and visceral control, its functions remain unclear. In the present study, by using morphological (combination of anterograde and retrograde tracers with immunocytochemistry and in situ hibrydization) and electrophysiological (firing activity and transynaptic response to striatal stimulation) methods, we show that a subpopulation of DMN cells shares many morphological and electrophysiological characteristics with those of the substantia nigra reticulata (SNR). These similarities include the following: 1) firing rate, firing pattern, and conduction velocity; 2) expression of GAD65, GAD67, and PV; 3) excitatory and inhibitory inputs from the striatum; and 4) projections to the ventral thalamus, superior colliculus, and pedunculopontine tegmental nucleus. Some differences were also found. In comparison with SN, DMN cells and striatal afferents are more sparsely distributed and they show conspicuous contralateral projections to the thalamus and superior colliculus. This suggests that, similarly to the SNR, the DMN acts as an output center of basal ganglia and probably facilitates the inter-hemispheric regulation of these centers.
Collapse
Affiliation(s)
- M Rodríguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife 38207, Canary Islands, Spain.
| | | | | | | |
Collapse
|