1
|
Lee UJ, Gwak JH, Choi S, Jung MY, Lee TK, Ryu H, Imisi Awala S, Wanek W, Wagner M, Quan ZX, Rhee SK. " Ca. Nitrosocosmicus" members are the dominant archaea associated with plant rhizospheres. mSphere 2024; 9:e0082124. [PMID: 39530672 DOI: 10.1128/msphere.00821-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Archaea catalyzing the first step of nitrification in the rhizosphere possibly have an influence on plant growth and development. In this study, we found a distinct archaeal community, dominated by ammonia-oxidizing archaea (AOA), associated with the root system of pepper (Capsicum anuum L.) and ginseng plants (Panax ginseng C.A. Mey.) compared to bulk soil not penetrated by roots. While the abundance of total AOA decreased in the rhizosphere soils, AOA related to "Candidatus Nitrosocosmicus," which harbor gene encoding manganese catalase (MnKat) in contrast to most other AOA, dominated the AOA community in the rhizosphere soils. For both plant species, the ratio of copy numbers of the AOA MnKat gene to the amoA gene (encoding the ammonia monooxygenase subunit A) was significantly higher in the rhizospheres than in bulk soils. In contrast to MnKat-negative strains from other AOA clades, the catalase activity of a representative isolate of "Ca. Nitrosocosmicus" was demonstrated. Members of this clade were enriched in H2O2-amended bulk soils, and constitutive expression of their MnKat gene was observed in both bulk and rhizosphere soils. Due to their abundance, "Ca. Nitrosocosmicus" members can be considered important players mediating the nitrification process in rhizospheres. The dominance of this MnKat-containing AOA in rhizospheres of agriculturally important plants hints at a previously overlooked AOA-plant interaction. IMPORTANCE Ammonia-oxidizing archaea (AOA) are widespread in terrestrial environments and outnumber other ammonia oxidizers in the rhizosphere, possibly exerting an influence on plant growth and development. However, little is known about the selection forces that shape their composition, functions, survival, and proliferation strategies in the rhizosphere. Here, we observed a distinct AOA community on root systems of two different plant species compared to bulk soil. Our results show that the "Ca. Nitrosocosmicus" clade, which possesses functional MnKat genes unlike most other AOA, dominated the rhizosphere soils. Moreover, members of this clade were enriched in H2O2-amended bulk soil, which mimics the ROS stress in root systems. While research on AOA-plant interactions in the rhizosphere is still in its infancy, these findings suggest that "Ca. Nitrosocosmicus" may be an important clade of AOA with potential AOA-plant interaction.
Collapse
Affiliation(s)
- Ui-Ju Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Seungyeon Choi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Man-Young Jung
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Zhe-Xue Quan
- School of Life Sciences, Fudan University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Liu S, He F, Kuzyakov Y, Xiao H, Hoang DTT, Pu S, Razavi BS. Nutrients in the rhizosphere: A meta-analysis of content, availability, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153908. [PMID: 35183641 DOI: 10.1016/j.scitotenv.2022.153908] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Nutrient deficiency in most terrestrial ecosystems constrains global primary productivity. Rhizosphere nutrient availability directly regulates plant growth and is influenced by many factors, including soil properties, plant characteristics and climate. A quantitatively comprehensive understanding of the role of these factors in modulating rhizosphere nutrient availability remains largely unknown. We reviewed 123 studies to assess nutrient availability in the rhizosphere compared to bulk soil depending on various factors. The increase in microbial nitrogen (N) content and N-cycling related enzyme activities in the rhizosphere led to a 10% increase in available N relative to bulk soil. The available phosphorus (P) in the rhizosphere decreased by 12% with a corresponding increase in phosphatase activities, indicating extreme demand and competition between plants and microorganisms for P. Greater organic carbon (C) content around taproots (+17%) confirmed their stronger ability to store more organic compounds than the fibrous roots. This corresponds to higher bacterial and fungal contents and slightly higher available nutrients in the rhizosphere of taproots. The maximal rhizosphere nutrient accumulation was common for low-fertile soils, which is confirmed by the negative correlation between most soil chemical properties and the effect sizes of available nutrients. Increases in rhizosphere bacterial and fungal population densities (205-254%) were much higher than microbial biomass increases (indicated as microbial C: +19%). Consequently, despite the higher microbial population densities in the rhizosphere, the biomass of individual microbial cells decreased, pointing on their younger age and faster turnover. This meta-analysis shows that, contrary to the common view, most nutrients are more available in the rhizosphere than in bulk soil because of higher microbial activities around roots.
Collapse
Affiliation(s)
- Shibin Liu
- College of Ecology and Environment, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Fakun He
- College of Earth Sciences, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Yakov Kuzyakov
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia; Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Huxuan Xiao
- College of Earth Sciences, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Duyen Thi Thu Hoang
- Climate Change and Development Program, VNU Vietnam-Japan University, Vietnam National University, Hanoi, Viet Nam
| | - Shengyan Pu
- College of Ecology and Environment, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
3
|
Hu W, Hou Q, Delgado-Baquerizo M, Stegen JC, Du Q, Dong L, Ji M, Sun Y, Yao S, Gong H, Xiong J, Xia R, Liu J, Aqeel M, Akram MA, Ran J, Deng J. Continental-scale niche differentiation of dominant topsoil archaea in drylands. Environ Microbiol 2022; 24:5483-5497. [PMID: 35706137 DOI: 10.1111/1462-2920.16099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Archaea represent a diverse group of microorganisms often associated with extreme environments. However, an integrated understanding of biogeographical patterns of the specialist Haloarchaea and the potential generalist ammonia-oxidizing archaea (AOA) across large-scale environmental gradients remains limited. We hypothesize that niche differentiation determines their distinct distributions along environmental gradients. To test the hypothesis, we use a continental-scale research network including 173 dryland sites across northern China. Our results demonstrate that Haloarchaea and AOA dominate topsoil archaeal communities. As hypothesized, Haloarchaea and AOA show strong niche differentiation associated with two ecosystem types mainly found in China's drylands (i.e., deserts vs. grasslands), and they differ in the degree of habitat specialization. The relative abundance and richness of Haloarchaea are higher in deserts due to specialization to relatively high soil salinity and extreme climates, while those of AOA are greater in grassland soils. Our results further indicate a divergence in ecological processes underlying the segregated distributions of Haloarchaea and AOA. Haloarchaea are governed primarily by environmental-based processes while the more generalist AOA are assembled mostly via spatial-based processes. Our findings add to existing knowledge of large-scale biogeography of topsoil archaea, advancing our predictive understanding on changes in topsoil archaeal communities in a drier world. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qingqing Hou
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, Spain.,Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, Spain
| | - James C Stegen
- Ecosystem Science Team, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Qiajun Du
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Longwei Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Mingfei Ji
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yuan Sun
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shuran Yao
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Haiyang Gong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Junlan Xiong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Rui Xia
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jiayuan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China.,School of Economics, Lanzhou University, Lanzhou, China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Gobbi A, Acedo A, Imam N, Santini RG, Ortiz-Álvarez R, Ellegaard-Jensen L, Belda I, Hansen LH. A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs. Commun Biol 2022; 5:241. [PMID: 35304890 PMCID: PMC8933554 DOI: 10.1038/s42003-022-03202-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The microbial biodiversity found in different vitivinicultural regions is an important determinant of wine terroir. It should be studied and preserved, although it may, in the future, be subjected to manipulation by precision agriculture and oenology. Here, we conducted a global survey of vineyards' soil microbial communities. We analysed soil samples from 200 vineyards on four continents to establish the basis for the development of a vineyard soil microbiome's map, representing microbial biogeographical patterns on a global scale. This study describes vineyard microbial communities worldwide and establishes links between vineyard locations and microbial biodiversity on different scales: between continents, countries, and between different regions within the same country. Climate data correlates with fungal alpha diversity but not with prokaryotes alpha diversity, while spatial distance, on a global and national scale, is the main variable explaining beta-diversity in fungal and prokaryotes communities. Proteobacteria, Actinobacteria and Acidobacteria phyla, and Archaea genus Nitrososphaera dominate prokaryotic communities in soil samples while the overall fungal community is dominated by the genera Solicoccozyma, Mortierella and Alternaria. Finally, we used microbiome data to develop a predictive model based on random forest analyses to discriminate between microbial patterns and to predict the geographical source of the samples with reasonable precision.
Collapse
Affiliation(s)
- Alex Gobbi
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Nabeel Imam
- Biome Makers Inc., 95605, West Sacramento, CA, USA
| | - Rui G Santini
- Natural History Museum, Centre for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Ignacio Belda
- Biome Makers Inc., 95605, West Sacramento, CA, USA.
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Lars H Hansen
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Medina-Chávez NO, Travisano M. Archaeal Communities: The Microbial Phylogenomic Frontier. Front Genet 2022; 12:693193. [PMID: 35154237 PMCID: PMC8826477 DOI: 10.3389/fgene.2021.693193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Archaea are a unique system for investigating the diversity of life. There are the most diverse group of organisms with the longest evolutionary history of life on Earth. Phylogenomic investigations reveal the complex evolutionary history of Archaea, overturning longstanding views of the history of life. They exist in the harshest environments and benign conditions, providing a system to investigate the basis for living in extreme environments. They are frequently members of microbial communities, albeit generally rare. Archaea were central in the evolution of Eukaryotes and can be used as a proxy for studying life on other planets. Future advances will depend not only upon phylogenomic studies but also on a better understanding of isolation and cultivation techniques.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Michael Travisano
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Ammonia-oxidizing archaea in biological interactions. J Microbiol 2021; 59:298-310. [DOI: 10.1007/s12275-021-1005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
|
7
|
Abstract
The Archaea domain was recognized as a separate phylogenetic lineage in the tree of life nearly 3 decades ago. It is now known as part of the human microbiome; however, given that its roles in oral sites are still poorly understood, this review aimed to establish the current level of evidence regarding archaea in the oral cavity to guide future research, providing insights on the present knowledge about the human oral archaeome. A scoping review was conducted with the PRISMA Extension for Scoping Reviews checklist. Five electronic databases were searched, as well as gray literature. Two independent reviewers performed the selection and characterization of the studies. Clinical studies were included when the target population consisted of humans of any age who were donors of samples from the oral cavity. A qualitative analysis was performed, based on the type of oral site and by considering the methods employed for archaeal identification and taxonomy, including the DNA extraction protocols, primers, and probes used. Fifty articles were included in the final scoping review, published from 1987 to 2019. Most studies sampled periodontal sites. Methanogens were the most abundant archaea in those sites, and their presence could be associated with other periodontal pathogens. No consistent relationship with different disease conditions was observed in studies that evaluated the microbiota surviving in endodontic sites. Few articles analyzed the presence of archaea in dental caries, saliva, or tongue microbiota, as well as in archaeologic samples, also showing a relationship with healthy microbiota. Archaea have been detected in different oral niches of individuals from diverse geographic locations and clinical conditions, suggesting potential roles in oral diseases. Methodological limitations may hamper our current knowledge about archaeal diversity and prevalence in oral samples, and future research with diversified methodological approaches may lead to a better comprehension of the human oral archaeome.
Collapse
Affiliation(s)
- A Belmok
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - J A de Cena
- Department of Dentistry, Faculty of Heath Sciences, University of Brasília, Brasília, Brazil
| | - C M Kyaw
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - N Damé-Teixeira
- Department of Dentistry, Faculty of Heath Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
8
|
Odelade KA, Babalola OO. Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3873. [PMID: 31614851 PMCID: PMC6843647 DOI: 10.3390/ijerph16203873] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/19/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022]
Abstract
The persistent and undiscriminating application of chemicals as means to improve crop growth, development and yields for several years has become problematic to agricultural sustainability because of the adverse effects these chemicals have on the produce, consumers and beneficial microbes in the ecosystem. Therefore, for agricultural productivity to be sustained there are needs for better and suitable preferences which would be friendly to the ecosystem. The use of microbial metabolites has become an attractive and more feasible preference because they are versatile, degradable and ecofriendly, unlike chemicals. In order to achieve this aim, it is then imperative to explore microbes that are very close to the root of a plant, especially where they are more concentrated and have efficient activities called the rhizosphere. Extensive varieties of bacteria, archaea, fungi and other microbes are found inhabiting the rhizosphere with various interactions with the plant host. Therefore, this review explores various beneficial microbes such as bacteria, fungi and archaea and their roles in the environment in terms of acquisition of nutrients for plants for the purposes of plant growth and health. It also discusses the effect of root exudate on the rhizosphere microbiome and compares the three domains at molecular levels.
Collapse
Affiliation(s)
- Kehinde Abraham Odelade
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
9
|
Achouak W, Abrouk D, Guyonnet J, Barakat M, Ortet P, Simon L, Lerondelle C, Heulin T, Haichar FEZ. Plant hosts control microbial denitrification activity. FEMS Microbiol Ecol 2019; 95:5307930. [DOI: 10.1093/femsec/fiz021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, Laboratory for Microbial Ecology and Extreme Environment (LEMiRE), UMR7265 BVME, F-13108 Saint-Paul-lez-Durance, France
- Aix Marseille Univ, CNRS, FR 3098 ECCOREV, F-13545 Aix-en-Provence, France
| | - Danis Abrouk
- Université de Lyon, Université Lyon1, CNRS, UMR5557, INRA 1418, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Julien Guyonnet
- Université de Lyon, Université Lyon1, CNRS, UMR5557, INRA 1418, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, Laboratory for Microbial Ecology and Extreme Environment (LEMiRE), UMR7265 BVME, F-13108 Saint-Paul-lez-Durance, France
- Aix Marseille Univ, CNRS, FR 3098 ECCOREV, F-13545 Aix-en-Provence, France
| | - Philippe Ortet
- Aix Marseille Univ, CEA, CNRS, Laboratory for Microbial Ecology and Extreme Environment (LEMiRE), UMR7265 BVME, F-13108 Saint-Paul-lez-Durance, France
- Aix Marseille Univ, CNRS, FR 3098 ECCOREV, F-13545 Aix-en-Provence, France
| | - Laurent Simon
- Université de Lyon, Université Lyon 1, UMR5023 LEHNA, CNRS, ENTPE, F‐69622 Villeurbanne Cedex, France
| | - Catherine Lerondelle
- Université de Lyon, Université Lyon1, CNRS, UMR5557, INRA 1418, Ecologie Microbienne, Villeurbanne F-69622, France
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, Laboratory for Microbial Ecology and Extreme Environment (LEMiRE), UMR7265 BVME, F-13108 Saint-Paul-lez-Durance, France
- Aix Marseille Univ, CNRS, FR 3098 ECCOREV, F-13545 Aix-en-Provence, France
| | - Feth el Zahar Haichar
- Université de Lyon, Université Lyon1, CNRS, UMR5557, INRA 1418, Ecologie Microbienne, Villeurbanne F-69622, France
| |
Collapse
|
10
|
Song GC, Im H, Jung J, Lee S, Jung M, Rhee S, Ryu C. Plant growth‐promoting archaea trigger induced systemic resistance inArabidopsis thalianaagainstPectobacterium carotovorumandPseudomonas syringae. Environ Microbiol 2019; 21:940-948. [DOI: 10.1111/1462-2920.14486] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
| | - Hyunjoo Im
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
- Biosystems and Bioengineering ProgramUniversity of Science and Technology Daejeon 34113 South Korea
| | - Jihye Jung
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
| | - Man‐Young Jung
- Department of MicrobiologyChungbuk National University Cheongju 28644 South Korea
| | - Sung‐Keun Rhee
- Department of MicrobiologyChungbuk National University Cheongju 28644 South Korea
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
- Biosystems and Bioengineering ProgramUniversity of Science and Technology Daejeon 34113 South Korea
| |
Collapse
|
11
|
Lay CY, Bell TH, Hamel C, Harker KN, Mohr R, Greer CW, Yergeau É, St-Arnaud M. Canola Root-Associated Microbiomes in the Canadian Prairies. Front Microbiol 2018; 9:1188. [PMID: 29937756 PMCID: PMC6002653 DOI: 10.3389/fmicb.2018.01188] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/16/2018] [Indexed: 01/16/2023] Open
Abstract
Canola is one of the most economically important crops in Canada, and the root and rhizosphere microbiomes of a canola plant likely impact its growth and nutrient uptake. The aim of this study was to determine whether canola has a core root microbiome (i.e., set of microbes that are consistently selected in the root environment), and whether this is distinct from the core microbiomes of other crops that are commonly grown in the Canadian Prairies, pea, and wheat. We also assessed whether selected agronomic treatments can modify the canola microbiome, and whether this was associated to enhanced yield. We used a field experiment with a randomized complete block design, which was repeated at three locations across the canola-growing zone of Canada. Roots and rhizosphere soil were harvested at the flowering stage of canola. We separately isolated total extractable DNA from plant roots and from adjacent rhizosphere soil, and constructed MiSeq amplicon libraries for each of 60 samples, targeting bacterial, and archaeal 16S rRNA genes and the fungal ITS region. We determined that the microbiome of the roots and rhizosphere of canola was consistently different from those of wheat and pea. These microbiomes comprise several putative plant-growth-promoting rhizobacteria, including Amycolatopsis sp., Serratia proteamaculans, Pedobacter sp., Arthrobacter sp., Stenotrophomonas sp., Fusarium merismoides, and Fusicolla sp., which correlated positively with canola yield. Crop species had a significant influence on bacterial and fungal assemblages, especially within the roots, while higher nutrient input or seeding density did not significantly alter the global composition of bacterial, fungal, or archaeal assemblages associated with canola roots. However, the relative abundance of Olpidium brassicae, a known pathogen of members of the Brassicaceae, was significantly reduced in the roots of canola planted at higher seeding density. Our results suggest that seeding density and plant nutrition management modified the abundance of other bacterial and fungal taxa forming the core microbiomes of canola that are expected to impact crop growth. This work helps us to understand the microbial assemblages associated with canola grown under common agronomic practices and indicates microorganisms that can potentially benefit or reduce the yield of canola.
Collapse
Affiliation(s)
- Chih-Ying Lay
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| | - Terrence H Bell
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada.,Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA, United States
| | - Chantal Hamel
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec City, QC, Canada
| | - K Neil Harker
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Ramona Mohr
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Charles W Greer
- Energy, Mining and Environment, National Research Council Canada, Montreal, QC, Canada
| | - Étienne Yergeau
- Energy, Mining and Environment, National Research Council Canada, Montreal, QC, Canada.,Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Marc St-Arnaud
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| |
Collapse
|
12
|
Oberholster T, Vikram S, Cowan D, Valverde A. Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:530-539. [PMID: 29268225 DOI: 10.1016/j.scitotenv.2017.12.170] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Microbes are key determinants of plant health and productivity. Previous studies have characterized the rhizosphere microbiomes of numerous plant species, but little information is available on how rhizosphere microbial communities change over time under crop rotation systems. Here, we document microbial communities in the rhizosphere of sorghum and sunflower (at seedling, flowering and senescence stages) grown in crop rotation in four different soils under field conditions. A comprehensive 16S rRNA-based amplicon sequencing survey revealed that the differences in alpha-diversity between rhizosphere and bulk soils changed over time. Sorghum rhizosphere soil microbial diversity at flowering and senescence were more diverse than bulk soils, whereas the microbial diversity of sunflower rhizosphere soils at flowering were less diverse with respect to bulk soils. Sampling time was also important in explaining the variation in microbial community composition in soils grown with both crops. Temporal changes observed in the rhizosphere microbiome were both plant-driven and due to seasonal changes in the bulk soil biota. Several individual taxa were relatively more abundant in the rhizosphere and/or found to be important in maintaining rhizosphere microbial networks. Interestingly, some of these taxa showed similar patterns at different sampling times, suggesting that the same organisms may play the same functional/structural role at different plant growth stages and in different crops. Overall, we have identified prominent microbial taxa that might be used to develop microbiome-based strategies for improving the yield and productivity of sorghum and sunflower.
Collapse
Affiliation(s)
- Tanzelle Oberholster
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Surendra Vikram
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Angel Valverde
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa; Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
13
|
Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS One 2018; 13:e0192953. [PMID: 29447262 PMCID: PMC5814021 DOI: 10.1371/journal.pone.0192953] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/01/2018] [Indexed: 01/25/2023] Open
Abstract
Reducing tillage and growing cover crops, widely recommended practices for boosting soil health, have major impacts on soil communities. Surprisingly little is known about their impacts on soil microbial functional diversity, and especially so in irrigated Mediterranean ecosystems. In long-term experimental plots at the West Side Research and Extension Center in California's Central Valley, we characterized soil microbial communities in the presence or absence of physical disturbance due to tillage, in the presence or absence of cover crops, and at three depths: 0-5, 5-15 and 15-30 cm. This characterization included qPCR for bacterial and archaeal abundances, DNA sequencing of the 16S rRNA gene, and phylogenetic estimation of two ecologically important microbial traits (rRNA gene copy number and genome size). Total (bacterial + archaeal) diversity was higher in no-till than standard till; diversity increased with depth in no-till but decreased with depth in standard till. Total bacterial numbers were higher in cover cropped plots at all depths, while no-till treatments showed higher numbers in 0-5 cm but lower numbers at lower depths compared to standard tillage. Trait estimates suggested that different farming practices and depths favored distinctly different microbial life strategies. Tillage in the absence of cover crops shifted microbial communities towards fast growing competitors, while no-till shifted them toward slow growing stress tolerators. Across all treatment combinations, increasing depth resulted in a shift towards stress tolerators. Cover crops shifted the communities towards ruderals-organisms with wider metabolic capacities and moderate rates of growth. Overall, our results are consistent with decreasing nutrient availability with soil depth and under no-till treatments, bursts of nutrient availability and niche homogenization under standard tillage, and increases in C supply and variety provided by cover crops. Understanding how agricultural practices shift microbial abundance, diversity and life strategies, such as presented here, can assist with designing farming systems that can support high yields, while enhancing C sequestration and increasing resilience to climate change.
Collapse
Affiliation(s)
- Radomir Schmidt
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, United States of America
| | - Kelly Gravuer
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Anne V. Bossange
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, United States of America
| | - Jeffrey Mitchell
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Kate Scow
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
14
|
Mamet SD, Lamb EG, Piper CL, Winsley T, Siciliano SD. Archaea and bacteria mediate the effects of native species root loss on fungi during plant invasion. THE ISME JOURNAL 2017; 11:1261-1275. [PMID: 28140393 PMCID: PMC5437935 DOI: 10.1038/ismej.2016.205] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/16/2016] [Accepted: 12/15/2016] [Indexed: 01/21/2023]
Abstract
Although invasive plants can drive ecosystem change, little is known about the directional nature of belowground interactions between invasive plants, native roots, bacteria, archaea and fungi. We used detailed bioinformatics and a recently developed root assay on soils collected in fescue grassland along a gradient of smooth brome (Bromus inermis Leyss) invasion to examine the links between smooth brome shoot litter and root, archaea, bacteria and fungal communities. We examined (1) aboveground versus belowground influences of smooth brome on soil microbial communities, (2) the importance of direct versus microbe-mediated impacts of plants on soil fungal communities, and (3) the web of roots, shoots, archaea, bacteria and fungi interactions across the A and B soil horizons in invaded and non-invaded sites. Archaea and bacteria influenced fungal composition, but not vice versa, as indicated by redundancy analyses. Co-inertia analyses suggested that bacterial-fungal variance was driven primarily by 12 bacterial operational taxonomic units (OTUs). Brome increased bacterial diversity via smooth brome litter in the A horizon and roots in the B horizon, which then reduced fungal diversity. Archaea increased abundance of several bacterial OTUs, and the key bacterial OTUs mediated changes in the fungi's response to invasion. Overall, native root diversity loss and bacterial mediation were more important drivers of fungal composition than were the direct effects of increases in smooth brome. Critically, native plant species displacement and root loss appeared to be the most important driver of fungal composition during invasion. This causal web likely gives rise to the plant-fungi feedbacks, which are an essential factor determining plant diversity in invaded grassland ecosystems.
Collapse
Affiliation(s)
- Steven D Mamet
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Eric G Lamb
- Department of Plant Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Candace L Piper
- Department of Plant Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tristrom Winsley
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Li Y, Adams J, Shi Y, Wang H, He JS, Chu H. Distinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau. Sci Rep 2017; 7:46407. [PMID: 28401921 PMCID: PMC5388882 DOI: 10.1038/srep46407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/17/2017] [Indexed: 11/29/2022] Open
Abstract
Global change may be a severe threat to natural and agricultural systems, partly through its effects in altering soil biota and processes, due to changes in water balance. We studied the potential influence of changing soil water balance on soil biota by comparing existing sites along a natural water balance gradient in the Qinghai-Tibetan Plateau. In this study, the community structure of bacteria, archaea and eukaryotes differed between the different soil water conditions. Soil moisture was the strongest predictor of bacterial and eukaryotic community structure, whereas C/N ratio was the key factor predicting variation in the archaeal community. Bacterial and eukaryotic diversity was quite stable among different soil water availability, but archaeal diversity was dramatically different between the habitats. The auxotype of methanogens also varied significantly among different habitats. The co-varying soil properties among habitats shaped the community structure of soil microbes, with archaea being particularly sensitive in terms of community composition, diversity and functional groups. Bacterial and archaeal phylogenetic community turnover was mainly driven by deterministic processes while stochastic processes had stronger effects on eukaryotic phylogenetic community turnover. Our work provides insight into microbial community, functional group and phylogenetic turnover under different soil conditions in low-latitude alpine ecosystem.
Collapse
Affiliation(s)
- Yuntao Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jonathan Adams
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China
| | - Hao Wang
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Jin-Sheng He
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China
| |
Collapse
|
16
|
Wang J, Ni L, Song Y, Rhodes G, Li J, Huang Q, Shen Q. Dynamic Response of Ammonia-Oxidizers to Four Fertilization Regimes across a Wheat-Rice Rotation System. Front Microbiol 2017; 8:630. [PMID: 28446904 PMCID: PMC5388685 DOI: 10.3389/fmicb.2017.00630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/28/2017] [Indexed: 11/23/2022] Open
Abstract
Ammonia oxidation by microorganisms is a rate-limiting step of the nitrification process and determines the efficiency of fertilizer utilized by crops. Little is known about the dynamic response of ammonia-oxidizers to different fertilization regimes in a wheat-rice rotation system. Here, we examined ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities across eight representative stages of wheat and rice growth and under four fertilization regimes: no nitrogen fertilization (NNF), chemical fertilization (CF), organic-inorganic mixed fertilizer (OIMF) and organic fertilization (OF). The abundance and composition of ammonia oxidizers were analyzed using quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP) of their amoA genes. Results showed that fertilization but not plant growth stages was the best predictor of soil AOB community abundance and composition. Soils fertilized with more urea-N had higher AOB abundance, while organic-N input showed little effect on AOB abundance. 109 bp T-RF (Nitrosospira Cluster 3b) and 280 bp T-RF (Nitrosospira Cluster 3c) dominated the AOB communities with opposing responses to fertilization regimes. Although the abundance and composition of the AOA community was significantly impacted by fertilization and plant growth stage, it differed from the AOB community in that there was no particular trend. In addition, across the whole wheat-rice rotation stages, results of multiple stepwise linear regression revealed that AOB played a more important role in ammonia oxidizing process than AOA. This study provided insight into the dynamic effects of fertilization strategies on the abundance and composition of ammonia-oxidizers communities, and also offered insights into the potential of managing nitrogen for sustainable agricultural productivity with respect to soil ammonia-oxidizers.
Collapse
Affiliation(s)
- Jichen Wang
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Lei Ni
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Yang Song
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State UniversityEast Lansing, MI, USA
| | - Jing Li
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Qiwei Huang
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
17
|
Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, Hong H, Si OJ, Kerou M, Schleper C, Rhee SK. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:983-992. [PMID: 27700018 DOI: 10.1111/1758-2229.12477] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
A wide diversity of ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota exists and plays a key role in the N cycle in a variety of habitats. In this study, we isolated and characterized an ammonia-oxidizing archaeon, strain MY3, from a coal tar-contaminated sediment. Phylogenetically, strain MY3 falls in clade 'Nitrosocosmicus' of the thaumarchaeotal group I.1b. The cells of strain MY3 are large 'walnut-like' cocci, divide by binary fission along a central cingulum, and form aggregates. Strain MY3 is mesophilic and neutrophilic. An assay of 13 C-bicarbonate incorporation into archaeal membrane lipids indicated that strain MY3 is capable of autotrophy. In contrast to some other AOA, TCA cycle intermediates, i.e. pruvate, oxaloacetate and α-ketoglutarate, did not affect the growth rates and yields of strain MY3. The attachment of cells of strain MY3 to XAD-7 hydrophobic beads and to the adsorbent vermiculite demonstrated the potential of strain MY3 to form biofilms. The cell surface was confirmed to be hydrophobic by the extraction of strain MY3 from an aqueous medium with p-xylene. Our finding of a strong potential for surface attachment by strain MY3 may reflect an adaptation to the selective pressures in hydrophobic terrestrial environments.
Collapse
Affiliation(s)
- Man-Young Jung
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, Utrecht, 3508, TA, The Netherlands
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - So-Jeong Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Heeji Hong
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Ok-Ja Si
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Melina Kerou
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Christa Schleper
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| |
Collapse
|
18
|
Pakpour S, Scott JA, Turvey SE, Brook JR, Takaro TK, Sears MR, Klironomos J. Presence of Archaea in the Indoor Environment and Their Relationships with Housing Characteristics. MICROBIAL ECOLOGY 2016; 72:305-312. [PMID: 27098176 DOI: 10.1007/s00248-016-0767-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Archaea are widespread and abundant in soils, oceans, or human and animal gastrointestinal (GI) tracts. However, very little is known about the presence of Archaea in indoor environments and factors that can regulate their abundances. Using a quantitative PCR approach, and targeting the archaeal and bacterial 16S rRNA genes in floor dust samples, we found that Archaea are a common part of the indoor microbiota, 5.01 ± 0.14 (log 16S rRNA gene copies/g dust, mean ± SE) in bedrooms and 5.58 ± 0.13 in common rooms, such as living rooms. Their abundance, however, was lower than bacteria: 9.20 ± 0.32 and 9.17 ± 0.32 in bedrooms and common rooms, respectively. In addition, by measuring a broad array of environmental factors, we obtained preliminary insights into how the abundance of total archaeal 16S rRNA gene copies in indoor environment would be associated with building characteristics and occupants' activities. Based on the results, Archaea are not equally distributed within houses, and the areas with greater input of outdoor microbiome and higher traffic and material heterogeneity tend to have a higher abundance of Archaea. Nevertheless, more research is needed to better understand causes and consequences of this microbial group in indoor environments.
Collapse
Affiliation(s)
- Sepideh Pakpour
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Child & Family Research Institute, BC Children's Hospital, Vancouver, BC, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Timothy K Takaro
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Malcolm R Sears
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - John Klironomos
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
19
|
Hong JK, Kim HJ, Cho JC. Novel PCR primers for the archaeal phylum Thaumarchaeota designed based on the comparative analysis of 16S rRNA gene sequences. PLoS One 2014; 9:e96197. [PMID: 24805255 PMCID: PMC4013054 DOI: 10.1371/journal.pone.0096197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/03/2014] [Indexed: 02/01/2023] Open
Abstract
Based on comparative phylogenetic analysis of 16S rRNA gene sequences deposited in an RDP database, we constructed a local database of thaumarchaeotal 16S rRNA gene sequences and developed a novel PCR primer specific for the archaeal phylum Thaumarchaeota. Among 9,727 quality-filtered (chimeral-checked, size >1.2 kb) archaeal sequences downloaded from the RDP database, 1,549 thaumarchaeotal sequences were identified and included in our local database. In our study, Thaumarchaeota included archaeal groups MG-I, SAGMCG-I, SCG, FSCG, RC, and HWCG-III, forming a monophyletic group in the phylogenetic tree. Cluster analysis revealed 114 phylotypes for Thaumarchaeota. The majority of the phylotypes (66.7%) belonged to the MG-I and SCG, which together contained most (93.9%) of the thaumarchaeotal sequences in our local database. A phylum-directed primer was designed from a consensus sequence of the phylotype sequences, and the primer's specificity was evaluated for coverage and tolerance both in silico and empirically. The phylum-directed primer, designated THAUM-494, showed >90% coverage for Thaumarchaeota and <1% tolerance to non-target taxa, indicating high specificity. To validate this result experimentally, PCRs were performed with THAUM-494 in combination with a universal archaeal primer (ARC917R or 1017FAR) and DNAs from five environmental samples to construct clone libraries. THAUM-494 showed a satisfactory specificity in empirical studies, as expected from the in silico results. Phylogenetic analysis of 859 cloned sequences obtained from 10 clone libraries revealed that >95% of the amplified sequences belonged to Thaumarchaeota. The most frequently sampled thaumarchaeotal subgroups in our samples were SCG, MG-I, and SAGMCG-I. To our knowledge, THAUM-494 is the first phylum-level primer for Thaumarchaeota. Furthermore, the high coverage and low tolerance of THAUM-494 will make it a potentially valuable tool in understanding the phylogenetic diversity and ecological niche of Thaumarchaeota.
Collapse
Affiliation(s)
- Jin-Kyung Hong
- Institute of Environmental Sciences and Department of Environmental Sciences, Hankuk University of Foreign Studies, Yong-In, Korea
| | - Hye-Jin Kim
- Institute of Environmental Sciences and Department of Environmental Sciences, Hankuk University of Foreign Studies, Yong-In, Korea
| | - Jae-Chang Cho
- Institute of Environmental Sciences and Department of Environmental Sciences, Hankuk University of Foreign Studies, Yong-In, Korea
- * E-mail:
| |
Collapse
|
20
|
Ke X, Angel R, Lu Y, Conrad R. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environ Microbiol 2013; 15:2275-92. [PMID: 23437806 DOI: 10.1111/1462-2920.12098] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 11/27/2022]
Abstract
The dynamics of populations and activities of ammonia-oxidizing and nitrite-oxidizing microorganisms were investigated in rice microcosms treated with two levels of nitrogen. Different soil compartments (surface, bulk, rhizospheric soil) and roots (young and old roots) were collected at three time points (the panicle initiation, heading and maturity periods) of the season. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of their amoA genes (coding for a subunit of ammonia monooxygenase), that of nitrite oxidizers (NOB) by quantifying the nxrA gene (coding for a subunit of nitrite oxidase of Nitrobacter spp.) and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by measuring the rates of potential ammonia oxidation and nitrite oxidation and by quantifying the copy numbers of amoA and nxrA transcripts. Potential nitrite oxidation activity was much higher than potential ammonia oxidation activity and was not directly affected by nitrogen amendment demonstrating the importance of ammonia oxidizers as pace makers for nitrite oxidizer populations. Marked differences in the distribution of bacterial and archaeal ammonia oxidizers, and of Nitrobacter-like and Nitrospira-like nitrite oxidizers were found in the different compartments of planted paddy soil indicating niche differentiation. In bulk soil, ammonia-oxidizing bacteria (Nitrosospira and Nitrosomonas) were at low abundance and displayed no activity, but in surface soil their activity and abundance was high. Nitrite oxidation in surface soil was dominated by Nitrospira spp. By contrast, ammonia-oxidizing Thaumarchaeota and Nitrobacter spp. seemed to dominate nitrification in rhizospheric soil and on rice roots. In contrast to soil compartment, the level of N fertilization and the time point of sampling had only little effect on the abundance, composition and activity of the nitrifying communities. The results of our study show that in rice fields population dynamics and activity of nitrifiers is mainly differentiated by the soil compartments rather than by nitrogen amendment or season.
Collapse
Affiliation(s)
- Xiubin Ke
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | |
Collapse
|
21
|
Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, Rogel MA, Ormeño-Orrillo E, Martínez-Romero E. Gut and root microbiota commonalities. Appl Environ Microbiol 2013; 79:2-9. [PMID: 23104406 PMCID: PMC3536091 DOI: 10.1128/aem.02553-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.
Collapse
|
22
|
Lassak K, Ghosh A, Albers SV. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res Microbiol 2012; 163:630-44. [PMID: 23146836 DOI: 10.1016/j.resmic.2012.10.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/04/2012] [Indexed: 11/25/2022]
Abstract
Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures.
Collapse
Affiliation(s)
- Kerstin Lassak
- Max Planck Institute for Terrestrial Microbiology, Molecular Biology of Archaea, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | | | | |
Collapse
|
23
|
Karlsson AE, Johansson T, Bengtson P. Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 2012; 80:305-11. [PMID: 22611550 DOI: 10.1111/j.1574-6941.2012.01298.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Archaea are ubiquitous in forest soils, but little is known about the factors regulating their abundance and distribution. Low molecular weight organic compounds represent an important energy source for archaea in marine environments, and it is reasonable to suspect that archaeal abundance is dependent on such compounds in soils as well, represented by, for example, plant and fungal exudates. To test this hypothesis, we designed a microcosm experiment in which we grew ponderosa pine, sitka spruce, and western hemlock in forest soil. Root and mycorrhizal exudation rates were estimated in a 13C pulse-chase experiment, and the number of archaeal and bacterial 16S rRNA genes was determined by qPCR. Archaeal abundance differed among plant species, and the number of archaeal 16S rRNA genes was generally lower in soil receiving high concentration of exudates. The mycorrhizal fungi of ponderosa pine seemed to favor archaea, while no such effect was found for mycorrhized sitka spruce or western hemlock. The low abundance of archaea in the proximity of roots and mycorrhiza may be a result of slow growth rates and poor competitive ability of archaea vs. bacteria and does not necessarily reflect a lack of heterotrophic abilities of the archaeal community.
Collapse
Affiliation(s)
- Anna E Karlsson
- Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
24
|
Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 2012; 78:7501-10. [PMID: 22923400 DOI: 10.1128/aem.01960-12] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding of nitrification. Surprising insights into the physiological distinctiveness of AOA are mirrored by the recognition of the phylogenetic uniqueness of these microbes, which fall within a novel archaeal phylum now known as Thaumarchaeota. The relative importance of AOA in nitrification, compared to ammonia-oxidizing bacteria (AOB), is still under debate. This minireview provides a synopsis of our current knowledge of the diversity and physiology of AOA, the factors controlling their ecology, and their role in carbon cycling as well as their potential involvement in the production of the greenhouse gas nitrous oxide. It emphasizes the importance of activity-based analyses in AOA studies and formulates priorities for future research.
Collapse
|
25
|
Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture. Appl Environ Microbiol 2012; 78:2137-46. [PMID: 22267662 DOI: 10.1128/aem.06845-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We took advantage of a plant-root enrichment culture system to characterize mesophilic soil archaea selected through the use of organic and inorganic amendments. Comparative analysis of 16S rRNA and amoA genes indicated that specific archaeal clades were selected under different conditions. Three amoA sequence clades were identified, while for a fourth group, identified by 16S rRNA gene analysis alone and referred to as the "root" clade, we detected no corresponding amoA gene. The amoA-containing archaea were present in media with either organic or inorganic amendments, whereas archaea representing the root clade were present only when organic amendment was used. Analysis of amoA gene abundance and expression, together with nitrification-coupled growth assays, indicated potential growth by autotrophic ammonia oxidation for members of two group 1.1b clades. Increased abundance of one of these clades, however, also occurred upon the addition of organic amendment. Finally, although amoA-containing group 1.1a archaea were present in enrichments, we detected neither expression of amoA genes nor evidence for nitrification-coupled growth of these organisms. These data support a model of a diverse metabolic community in mesophilic soil archaea that is just beginning to be characterized.
Collapse
|
26
|
Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci U S A 2011; 108:16771-6. [PMID: 21930919 DOI: 10.1073/pnas.1106427108] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the Thaumarchaeota (AEA) are autotrophic nitrifiers. In this study, 52 municipal and industrial wastewater treatment plants were screened for the presence of AEA and AOB. Thaumarchaeota carrying amoA were detected in high abundance only in four industrial plants. In one plant, thaumarchaeotes closely related to soil group I.1b outnumbered AOB up to 10,000-fold, and their numbers, which can only be explained by active growth in this continuous culture system, were two to three orders of magnitude higher than could be sustained by autotrophic ammonia oxidation. Consistently, (14)CO(2) fixation could only be detected in AOB but not in AEA in actively nitrifying sludge from this plant via FISH combined with microautoradiography. Furthermore, in situ transcription of archaeal amoA, and very weak in situ labeling of crenarchaeol after addition of (13)CO(2), was independent of the addition of ammonium. These data demonstrate that some amoA-carrying group I.1b Thaumarchaeota are not obligate chemolithoautotrophs.
Collapse
|
27
|
Abstract
The Yellowstone geothermal complex has yielded foundational discoveries that have significantly enhanced our understanding of the Archaea. This study continues on this theme, examining Yellowstone Lake and its lake floor hydrothermal vents. Significant Archaea novelty and diversity were found associated with two near-surface photic zone environments and two vents that varied in their depth, temperature and geochemical profile. Phylogenetic diversity was assessed using 454-FLX sequencing (~51,000 pyrosequencing reads; V1 and V2 regions) and Sanger sequencing of 200 near-full-length polymerase chain reaction (PCR) clones. Automated classifiers (Ribosomal Database Project (RDP) and Greengenes) were problematic for the 454-FLX reads (wrong domain or phylum), although BLAST analysis of the 454-FLX reads against the phylogenetically placed full-length Sanger sequenced PCR clones proved reliable. Most of the archaeal diversity was associated with vents, and as expected there were differences between the vents and the near-surface photic zone samples. Thaumarchaeota dominated all samples: vent-associated organisms corresponded to the largely uncharacterized Marine Group I, and in surface waters, ~69-84% of the 454-FLX reads matched archaeal clones representing organisms that are Nitrosopumilus maritimus-like (96-97% identity). Importance of the lake nitrogen cycling was also suggested by >5% of the alkaline vent phylotypes being closely related to the nitrifier Candidatus Nitrosocaldus yellowstonii. The Euryarchaeota were primarily related to the uncharacterized environmental clones that make up the Deep Sea Euryarchaeal Group or Deep Sea Hydrothermal Vent Group-6. The phylogenetic parallels of Yellowstone Lake archaea to marine microorganisms provide opportunities to examine interesting evolutionary tracks between freshwater and marine lineages.
Collapse
|
28
|
Abstract
Nitrification is a microbially mediated process that plays a central role in the global cycling of nitrogen and is also of economic importance in agriculture and wastewater treatment. The first step in nitrification is performed by ammonia-oxidising microorganisms, which convert ammonia into nitrite ions. Ammonia-oxidising bacteria (AOB) have been known for more than 100 years. However, metagenomic studies and subsequent cultivation efforts have recently demonstrated that microorganisms of the domain archaea are also capable of performing this process. Astonishingly, members of this group of ammonia-oxidising archaea (AOA), which was overlooked for so long, are present in almost every environment on Earth and typically outnumber the known bacterial ammonia oxidisers by orders of magnitudes in common environments such as the marine plankton, soils, sediments and estuaries. Molecular studies indicate that AOA are amongst the most abundant organisms on this planet, adapted to the most common environments, but are also present in those considered extreme, such as hot springs. The ecological distribution and community dynamics of these archaea are currently the subject of intensive study by many research groups who are attempting to understand the physiological diversity and the ecosystem function of these organisms. The cultivation of a single marine isolate and two enrichments from hot terrestrial environments has demonstrated a chemolithoautotrophic mode of growth. Both pure culture-based and environmental studies indicate that at least some AOA have a high substrate affinity for ammonia and are able to grow under extremely oligotrophic conditions. Information from the first available genomes of AOA indicate that their metabolism is fundamentally different from that of their bacterial counterparts, involving a highly copper-dependent system for ammonia oxidation and electron transport, as well as a novel carbon fixation pathway that has recently been discovered in hyperthermophilic archaea. A distinct set of informational processing genes of AOA indicates that they are members of a distinct and novel phylum within the archaea, the 'Thaumarchaeota', which may even be a more ancient lineage than the established Cren- and Euryarchaeota lineages, raising questions about the evolutionary origins of archaea and the origins of ammonia-oxidising metabolism.
Collapse
Affiliation(s)
- Christa Schleper
- Department of Genetics in Ecology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
29
|
Ayton J, Aislabie J, Barker GM, Saul D, Turner S. Crenarchaeota affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environ Microbiol 2009; 12:689-703. [PMID: 20002141 DOI: 10.1111/j.1462-2920.2009.02111.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to examine the presence and diversity of Archaea within mineral and ornithogenic soils from 12 locations across the Ross Sea region. Archaea were not abundant but DNA sufficient for producing 16S rRNA gene clone libraries was extracted from 18 of 51 soil samples, from four locations. A total of 1452 clones were analysed by restriction fragment length polymorphism and assigned to 43 operational taxonomic units from which representatives were sequenced. Archaea were primarily restricted to coastal mineral soils which showed a predominance of Crenarchaeota belonging to group 1.1b (> 99% of clones). These clones were assigned to six clusters (A through F), based on shared identity to sequences in the GenBank database. Ordination indicated that soil chemistry and water content determined archaeal community structure. This is the first comprehensive study of the archaeal community in Antarctic soils and as such provides a reference point for further investigation of microbial function in this environment.
Collapse
Affiliation(s)
- J Ayton
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
30
|
Chronáková A, Horák A, Elhottová D, Kristůfek V. Diverse archaeal community of a bat guano pile in Domica Cave (Slovak Karst, Slovakia). Folia Microbiol (Praha) 2009; 54:436-46. [PMID: 19937217 DOI: 10.1007/s12223-009-0061-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 05/19/2009] [Indexed: 02/01/2023]
Abstract
The molecular diversity of Archaea in a bat guano pile in Cave Domica (Slovakia), temperate cave ecosystem with significant bat colony (about 1600 individuals), was examined. The guano pile was created mainly by an activity of the Mediterranean horseshoe bat (Rhinolophus euryale) and provides a source of organic carbon and other nutrients in the oligotrophic subsurface ecosystem. The upper and the basal parts of guano surface were sampled where the latter one had higher pH and higher admixture of limestone bedrock and increased colonization of invertebrates. The relative proportion of Archaea determined using CARD-FISH in both parts was 3.5-3.9 % (the basal and upper part, respectively). The archaeal community was dominated by non-thermophilic Crenarchaeota (99 % of clones). Phylogenetic analysis of 115 16S rDNA sequences revealed the presence of Crenarchaeota previously isolated from temperate surface soils (group 1.1b, 62 clones), deep subsurface acid waters (group 1.1a, 52 clones) and Euryarchaeota (1 clone). Four of the analyzed sequences were found to have little similarity to those in public databases. The composition of both archaeal communities differed, with respect to higher diversity of Archaea in the upper part of the bat guano pile. High diversity archaeal population is present in the bat guano deposit and consists of both soil- and subsurface-born Crenarchaeota.
Collapse
Affiliation(s)
- A Chronáková
- Biology Centre, Institute of Soil Biology, Academy of Sciences of the Czech Republic, Ceské Budejovice, Czech Republic.
| | | | | | | |
Collapse
|
31
|
Lehtovirta LE, Prosser JI, Nicol GW. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. FEMS Microbiol Ecol 2009; 70:367-76. [PMID: 19732147 DOI: 10.1111/j.1574-6941.2009.00748.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Archaeal communities in many acidic forest soil systems are dominated by a distinct crenarchaeal lineage Group 1.1c. In addition, they are found consistently in other acidic soils including grassland pasture, moorland and alpine soils. To determine whether soil pH is a major factor in determining their presence and abundance, Group 1.1c community size and composition were investigated across a pH gradient from 4.5 to 7.5 that has been maintained for > 40 years. The abundances of Group 1.1c Crenarchaeota, total Crenarchaeota and total bacteria were assessed by quantitative PCR (qPCR) targeting 16S rRNA genes and the diversity of Group 1.1c crenarchaeal community was investigated by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. The abundance of Group 1.1c Crenarchaeota declined as the pH increased, whereas total Crenarchaeota and Bacteria showed no clear trend. Community diversity of Group 1.1c Crenarchaeota was also influenced with different DGGE bands dominating at different pH. Group 1.1c Crenarchaeota were also quantified in 13 other soils representing a range of habitats, soil types and pH. These results exhibited the same trend as that shown across the pH gradient with Group 1.1c Crenarchaeota representing a greater proportion of total Crenarchaeota in the most acidic soils.
Collapse
Affiliation(s)
- Laura E Lehtovirta
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
32
|
Vissers EW, Bodelier PLE, Muyzer G, Laanbroek HJ. A nested PCR approach for improved recovery of archaeal 16S rRNA gene fragments from freshwater samples. FEMS Microbiol Lett 2009; 298:193-8. [PMID: 19656198 DOI: 10.1111/j.1574-6968.2009.01718.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In a survey on the presence of archaea in a number of European lakes, it was found that known archaeal primer sets for PCR were not suited for use in freshwater environment, as some lack selectivity, while others were too selective. A nested PCR was developed for denaturing gradient gel electrophoresis (DGGE) with primer sets 21F-958R and Parch519f-Arch915r, respectively. After sequencing of the DGGE bands obtained by this nested method, 93% of the sequences were of archaeal origin. More diverse archaeal DGGE patterns were found as compared with other PCR methods. The nested PCR-DGGE method presented here is therefore a reliable tool to analyze the archaeal diversity in freshwater habitats, revealing even more widespread diversity of the archaea.
Collapse
Affiliation(s)
- Elisabeth W Vissers
- Department of Microbial Wetland Ecology, Centre for Limnology, Netherlands Institute of Ecology (NIOO-KNAW), Nieuwersluis, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 2009; 75:4993-5000. [PMID: 19502431 DOI: 10.1128/aem.02917-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of agricultural management practices on geochemical cycles in moderate ecosystems is by far better understood than in semiarid regions, where fertilizer availability and climatic conditions are less favorable. We studied the impact of different fertilizer regimens in an agricultural long-term observatory in Burkina Faso at three different plant development stages (early leaf development, flowering, and senescence) of sorghum cultivars. Using real-time PCR, we investigated functional microbial communities involved in key processes of the nitrogen cycle (nitrogen fixation, ammonia oxidation, and denitrification) in the rhizosphere. The results indicate that fertilizer treatments and plant development stages combined with environmental factors affected the abundance of the targeted functional genes in the rhizosphere. While nitrogen-fixing populations dominated the investigated communities when organic fertilizers (manure and straw) were applied, their numbers were comparatively reduced in urea-treated plots. In contrast, ammonia-oxidizing bacteria (AOB) increased not only in absolute numbers but also in relation to the other bacterial groups investigated in the urea-amended plots. Ammonia-oxidizing archaea exhibited higher numbers compared to AOB independent of fertilizer application. Similarly, denitrifiers were also more abundant in the urea-treated plots. Our data imply as well that, more than in moderate regions, water availability might shape microbial communities in the rhizosphere, since low gene abundance data were obtained for all tested genes at the flowering stage, when water availability was very limited.
Collapse
|
34
|
Bomberg M, Timonen S. Effect of tree species and mycorrhizal colonization on the archaeal population of boreal forest rhizospheres. Appl Environ Microbiol 2009; 75:308-15. [PMID: 18978075 PMCID: PMC2620727 DOI: 10.1128/aem.01739-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/23/2008] [Indexed: 11/20/2022] Open
Abstract
Group 1.1c Crenarchaeota are the predominating archaeal group in acidic boreal forest soils. In this study, we show that the detection frequency of 1.1c crenarchaeotal 16S rRNA genes in the rhizospheres of the boreal forest trees increased following colonization by the ectomycorrhizal fungus Paxillus involutus. This effect was very clear in the fine roots of Pinus sylvestris, Picea abies, and Betula pendula, the most common forest trees in Finland. The nonmycorrhizal fine roots had a clearly different composition of archaeal 16S rRNA genes in comparison to the mycorrhizal fine roots. In the phylogenetic analysis, the 1.1c crenarchaeotal 16S rRNA gene sequences obtained from the fine roots formed a well-defined cluster separate from the mycorrhizal ones. Alnus glutinosa differed from the other trees by having high diversity and detection levels of Crenarchaeota both on fine roots and on mycorrhizas as well as by harboring a distinct archaeal flora. The similarity of the archaeal populations in rhizospheres of the different tree species was increased upon colonization by the ectomycorrhizal fungus. A minority of the sequences obtained from the mycorrhizas belonged to Euryarchaeota (order Halobacteriales).
Collapse
MESH Headings
- Basidiomycota/growth & development
- Biodiversity
- Crenarchaeota/classification
- Crenarchaeota/genetics
- Crenarchaeota/isolation & purification
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Finland
- Genes, rRNA
- Molecular Sequence Data
- Mycorrhizae/growth & development
- Phylogeny
- Plant Roots/microbiology
- RNA, Archaeal/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Soil Microbiology
- Trees
Collapse
Affiliation(s)
- Malin Bomberg
- Department of Applied Chemistry and Microbiology, Division of Microbiology, P.O. Box 56, FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
35
|
Juottonen H, Tuittila ES, Juutinen S, Fritze H, Yrjälä K. Seasonality of rDNA- and rRNA-derived archaeal communities and methanogenic potential in a boreal mire. ISME JOURNAL 2008; 2:1157-68. [DOI: 10.1038/ismej.2008.66] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl Environ Microbiol 2008; 74:3279-83. [PMID: 18344332 DOI: 10.1128/aem.02802-07] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaeal and bacterial ammonia monooxygenase genes (amoA) had similar low relative abundances in freshwater sediment. In the rhizosphere of the submersed macrophyte Littorella uniflora, archaeal amoA was 500- to >8,000-fold enriched compared to bacterial amoA, suggesting that the enhanced nitrification activity observed in the rhizosphere was due to ammonia-oxidizing Archaea.
Collapse
|
37
|
Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 2008; 9:2603-21. [PMID: 17803783 DOI: 10.1111/j.1462-2920.2007.01377.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous investigations of the salinity effects on the microbial community composition have largely been limited to dynamic estuaries and coastal solar salterns. In this study, the effects of salinity and mineralogy on microbial community composition was studied by using a 900-cm sediment core collected from a stable, inland hypersaline lake, Lake Chaka, on the Tibetan Plateau, north-western China. This core, spanning a time of 17,000 years, was unique in that it possessed an entire range of salinity from freshwater clays and silty sands at the bottom to gypsum and glauberite in the middle, to halite at the top. Bacterial and archaeal communities were studied along the length of this core using an integrated approach combining mineralogy and geochemistry, molecular microbiology (16S rRNA gene analysis and quantitative polymerase chain reaction), cultivation and lipid biomarker analyses. Systematic changes in microbial community composition were correlated with the salinity gradient, but not with mineralogy. Bacterial community was dominated by the Firmicutes-related environmental sequences and known species (including sulfate-reducing bacteria) in the freshwater sediments at the bottom, but by halophilic and halotolerant Betaproteobacteria and Bacteroidetes in the hypersaline sediments at the top. Succession of proteobacterial groups along the salinity gradient, typically observed in free-living bacterial communities, was not observed in the sediment-associated community. Among Archaea, the Crenarchaeota were predominant in the bottom freshwater sediments, but the halophilic Halobacteriales of the Euryarchaeota was the most important group in the hypersaline sediments. Multiple isolates were obtained along the whole length of the core, and their salinity tolerance was consistent with the geochemical conditions. Iron-reducing bacteria were isolated in the freshwater sediments, which were capable of reducing structural Fe(III) in the Fe(III)-rich clay minerals predominant in the source sediment. These data have important implications for understanding how microorganisms respond to increased salinity in stable, inland water bodies.
Collapse
Affiliation(s)
- Hongchen Jiang
- Department of Geology, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Bomberg M, Timonen S. Distribution of cren- and euryarchaeota in scots pine mycorrhizospheres and boreal forest humus. MICROBIAL ECOLOGY 2007; 54:406-16. [PMID: 17334967 DOI: 10.1007/s00248-007-9232-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 02/12/2007] [Accepted: 02/14/2007] [Indexed: 05/14/2023]
Abstract
Archaeal 16S rRNA gene sequences have been found in a variety of moderate-temperature habitats including soil and rhizospheres. In this study, the differences of archaeal communities associated with Scots pine (Pinus sylvestris L.) short roots, different types of mycorrhizospheric compartments, and uncolonized boreal forest humus were tested by direct DNA extraction, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and sequencing. The results indicated that mycorrhizal colonization of Scots pine roots substantially influence the archaeal community of pine rhizospheres. Colonization of short roots by most mycorrhizal fungi tested increased both archaeal frequency and diversity. Most of the archaeal sequences encountered in mycorrhizas belonged to the phylum Euryarchaeota, order of Halobacteriales. The difference in archaeal diversity between the mycorrhizospheric compartments and humus was profound. Most compartments with fungal components contained euryarchaeotal 16S rRNA gene sequences, whereas a high diversity of crenarchaeotal sequences and no euryarchaeotal sequences were found in forest humus outside mycorrhizospheres.
Collapse
Affiliation(s)
- Malin Bomberg
- Department of Applied Biology, University of Helsinki, P.O. Box 27, Latokartanonkaari 7, FIN-00014, Helsinki, Finland
| | | |
Collapse
|
39
|
Abstract
Prokaryotic extremophiles were the first representatives of life on Earth and they are responsible for the genesis of geological structures during the evolution and creation of all currently known ecosystems. Flexibility of the genome probably allowed life to adapt to a wide spectrum of extreme environments. As a result, modern prokaryotic diversity formed in a framework of physico-chemical factors, and it is composed of: thermophilic, psychrophilic, acidophilic, alkaliphilic, halophilic, barophilic, and radioresistant species. This artificial systematics cannot reflect the multiple actions of different environmental factors since one organism could unite characteristics of several extreme-groups. In this review we show the current status of studies in all fields of extremophiles and summarize the limits of life for different species of microbial extremophiles. We also discuss the finding of extremophiles from unusual places such as soils, and briefly review recent studies of microfossils in meteorites in the context of the significance of microbial extremophiles to Astrobiology.
Collapse
Affiliation(s)
- Elena V Pikuta
- National Space Sciences and Technology Center, NASA, Astrobiology Laboratory, Huntsville, Alabama 35805, USA.
| | | | | |
Collapse
|
40
|
Kemnitz D, Kolb S, Conrad R. High abundance of Crenarchaeota in a temperate acidic forest soil. FEMS Microbiol Ecol 2007; 60:442-8. [PMID: 17391330 DOI: 10.1111/j.1574-6941.2007.00310.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The objective of the study was to elucidate the depth distribution and community composition of Archaea in a temperate acidic forest soil. Numbers of Archaea and Bacteria were measured in the upper 18 cm of the soil, and soil cores were sampled on two separate occasions using quantitative PCR targeting 16S rRNA genes. Maximum numbers of Archaea were 0.6-3.8 x 10(8) 16S rRNA genes per gram of dry soil. Numbers of Bacteria were generally higher, but Archaea always accounted for a high percentage of the total gene numbers (12-38%). The archaeal community structure was analysed by the construction of clone libraries and by terminal restriction length polymorphism (T-RFLP) using the same Archaea-specific primers. With the reverse primer labelled, T-RFLP analysis led to the detection of four T-RFs. Three had lengths of 83, 185 and 218 bp and corresponded to uncultured Crenarchaeota. One (447 bp) was assigned to Thermoplasmales. Labelling of the forward primer allowed further separation of the T-RF into Crenarchaeota Group I.1c and Group I.1b, and indicated that Crenarchaeota of the Group I.1c were the predominant 16S rRNA genotype (<or=85%) in the soil. The abundance of Archaea and concentration of ammonia and nitrate decreased with soil depth. Hence it is unclear if the detected Crenarchaeota Group I.1c participated in ammonia oxidation or had another phenotype.
Collapse
Affiliation(s)
- Dana Kemnitz
- Department of Biogeochemistry, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | |
Collapse
|
41
|
Nicol GW, Campbell CD, Chapman SJ, Prosser JI. Afforestation of moorland leads to changes in crenarchaeal community structure. FEMS Microbiol Ecol 2007; 60:51-9. [PMID: 17263837 DOI: 10.1111/j.1574-6941.2006.00258.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Group 1 Crenarchaeota are an abundant component of soil microbial communities. A number of distinct lineages have been discovered, and the Group 1.1b lineage is present in most soil types. Others, such as the Group 1.1c lineage, may be restricted to specific soil types, such as acidic forest soils. To determine the effects of afforestation on the Archaea of moorland soils, archaeal community structure was examined across three parallel 180 m transects, running from open heather moorland into a Scots pine forest. Communities were characterized using a combination of cloning and denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA reverse transcriptase-polymerase chain reaction products. Although forest soils selected for a reproducibly distinct crenarchaeal community structure from moorland soils, both habitats contained similar populations, indicated by comigrating DGGE bands. Archaeal communities in soils of both ecosystems were dominated by Group 1.1c crenarchaea, and reproducible differences in community structure within this lineage were observed between forest and moorland soils. The findings indicate that the afforestation of moorland soils can lead to changes in crenarchaeal community structure with a potential impact on ecosystem function.
Collapse
Affiliation(s)
- Graeme W Nicol
- School of Biological Sciences, University of Aberdeen, St Machar Drive, Aberdeen, UK.
| | | | | | | |
Collapse
|
42
|
Midgley DJ, Saleeba JA, Stewart MI, McGee PA. Novel soil lineages ofArchaeaare present in semi-arid soils of eastern Australia. Can J Microbiol 2007; 53:129-38. [PMID: 17496958 DOI: 10.1139/w06-104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diversity of Archaea was studied in vertisolic and loam soils of a semi-arid region in Australia. Sampling was undertaken at an agricultural site, two grassland environments, and a brigalow (Acacia harpophylla) woodland. Archaeal community structure was profiled using amplified ribosomal DNA restriction analysis (ARDRA) combined with rDNA sequencing of an example of each restriction fragment length polymorphism type. Sequence comparison and phylogenetic analysis demonstrated that both crenarchaeotal and euryarchaeotal Archaea were present at oxic depths in the soil at all field sites. Along with previously described soil archaeal lineages, novel soil lineages and the deeply divergent Pendant-33 group of Euryarchaeota were also detected. A novel statistical method for comparing ARDRA derived data was demonstrated and implemented using the archaeal communities from the four field sites. Archaeal diversity, as measured by this method, was significantly higher in the agricultural site than at either of the grassland sites or the brigalow woodland.Key words: archaeal communities, cotton, Euryarchaeota, Crenarchaeota, soil.
Collapse
Affiliation(s)
- David J Midgley
- School of Biological Sciences, University of Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
43
|
Abstract
Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries in combination with 14 t-RFLP profiles revealed a high abundance of clones clustering together with sequences from the nonthermophilic I.1b group of Crenarchaeota. The archaeal diversity in one solfatara was high; 26 different RFLP patterns were found using double digestion of the PCR products with restriction enzymes AluI and BsuRI. The sequenced clones from this solfatara belonged to Sulfolobales, Thermoproteales or were most closest related to sequences from uncultured Archaea. Sequences related to group I.1b were not found in the neutral hot spring or the hyperthermophilic solfatara (90 degrees C).
Collapse
Affiliation(s)
- Thomas Kvist
- Bioprocess Science and Technology Group, Biocentrum-DTU Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
44
|
Poplawski AB, Mårtensson L, Wartiainen I, Rasmussen U. Archaeal diversity and community structure in a Swedish barley field: Specificity of the EK510R/(EURY498) 16S rDNA primer. J Microbiol Methods 2006; 69:161-73. [PMID: 17289189 DOI: 10.1016/j.mimet.2006.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/15/2006] [Accepted: 12/15/2006] [Indexed: 11/27/2022]
Abstract
The aim of this study was to analyze a total euryarchaeal community at DNA and RNA levels in a Swedish barley field with relation to soil depth (0-10 and 20-30 cm layers), soil fraction (bulk soil and rhizosphere) and time (August and November sample collection). Amplification of 16S rRNA gene using the archaeal universal A2F and Euryarchaea specific EK510R/(EURY498) primer pair, combined with denaturing gradient gel electrophoresis (DGGE), revealed distinct differences between rDNA and rRNA DGGE profiles. The soil depth, time, or rhizosphere effects did not significantly influence Archaeal community structure. Surprisingly, sequence analysis of DGGE-derived amplicons revealed the presence of Euryarchaea as well as uncultured soil Crenarchaea affiliated with group 1. In agreement, sequence comparison analyses showed that the majority of uncultured Crenarchaea group 1 had almost 100% sequence complementarity to the 3' end of the EK510R/(EURY498) primer. Therefore, we propose that EK510R/(EURY498R) is a universal archaeal primer rather than a Euryarchaea specific SSUrRNA primer. Hence, considerable care should be taken during application of this primer in studies of euryarchaeal biodiversity in soil environments.
Collapse
|
45
|
Nicol GW, Tscherko D, Chang L, Hammesfahr U, Prosser JI. Crenarchaeal community assembly and microdiversity in developing soils at two sites associated with deglaciation. Environ Microbiol 2006; 8:1382-93. [PMID: 16872402 DOI: 10.1111/j.1462-2920.2006.01031.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-thermophilic Crenarchaeota are recognized as ubiquitous and abundant components of soil microbial communities. Previous studies of the foreland of the receding Rotmoosferner glacier in the Austrian Central Alps have demonstrated that crenarchaeal communities in soil at different stages of development are distinct from each other, with Group 1.1b crenarchaeal populations dominating throughout the successional gradient, while Group 1.1c crenarchaea are present in mature soils only. To determine whether this highly structured succession was unique to the Rotmoosferner glacier foreland, 1.1b and 1.1c communities were compared with those present along a successional gradient at Odenwinkelkees glacier, 125 km away, by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA reverse transcription polymerase chain reaction products. Similarities in community structure were observed; 1.1b communities were present throughout both successional gradients (though lacking the defined structure at Odenwinkelkees) and 1.1c communities were present only in mature soil. Comigration of bands on DGGE gels indicated that a number of similar crenarchaeal populations were present at both sites. To compare populations, and examine microscale diversity, 16S rRNA genes and complete 16S-23S internal transcribed spacer (ITS) regions representing six major band positions in DGGE analysis were amplified, cloned and sequenced and represented four 1.1b and two 1.1c lineages. The data provide no evidence of endemism, but large differences in the rate of sequence divergence in the ITS region (relative to that in 16S rRNA genes) were observed. Two of the 1.1b lineages (each possessing > 98% 16S rRNA gene similarity) had relatively long and highly divergent ITS sequences. In contrast, two other 1.1b and two 1.1c lineages (each possessing > 99% 16S rRNA gene similarity) exhibited markedly less variation in their respective 16S-23S ITS regions. The results reveal common patterns in the ecology and assembly of crenarchaeal communities in spatially separated soil systems and may indicate different evolutionary rates between soil crenarchaea lineages.
Collapse
Affiliation(s)
- Graeme W Nicol
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK.
| | | | | | | | | |
Collapse
|
46
|
Oline DK, Schmidt SK, Grant MC. Biogeography and landscape-scale diversity of the dominant Crenarchaeota of soil. MICROBIAL ECOLOGY 2006; 52:480-90. [PMID: 16909343 DOI: 10.1007/s00248-006-9101-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 04/22/2005] [Indexed: 05/11/2023]
Abstract
We surveyed the diversity of soil Archaea across a large scale elevational gradient of ecosystem types, from foothills forest to alpine tundra in the Front Range of the Rocky Mountains. We used a dilution technique to sequence the single most abundant archaeal 16S rDNA sequence in each of the 40 soil cores distributed across the gradient to compare our results to those of typical 16S clone library studies. We found a greater diversity of sequences than has typically been found in clone library studies from a single site or core, identifying sequences both from the Terrestrial Group and the FFSB Group at several sites. We did not observe any significant environmental correlates with the dominant sequence type, nor was there any relationship between the spatial distance between samples and the phylogenetic similarity of the dominant sequence types. Despite using a very different methodology, our collective results are in remarkably good agreement with other studies of soil Crenarchaeota in terms of the diversity and relative abundance of sequence types identified. We are able to identify two instances of very tightly clustered sequences which we suggest are the results of global selective sweeps-one closely related to SCA1145, an abundant globally distributed group within the Terrestrial Group of Crenarchaeota, and another nested within the more basal FFSB group of sequences. We replicated our sequence results at two levels: first, by repeating the dilution and PCR processes from the same soil core DNA extraction, and second, by performing a replicate DNA extraction from the same homogenized soil core sample. Pairs of sequences produced by the dilution replicates were significantly more similar than the pairs of sequences produced by the extraction replicates, suggesting that soil Crenarchaeota exists in highly localized and discrete clonal populations.
Collapse
Affiliation(s)
- David K Oline
- Biology Department, Southern Oregon University, 1250 Siskiyou Blvd., Ashland, OR 97520, USA.
| | | | | |
Collapse
|
47
|
Abstract
The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.Key words: Archaea, methanogen, extreme halophile, hyperthermophile, thermoacidophile, uncultured archaea, habitats.
Collapse
Affiliation(s)
- Bonnie Chaban
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
48
|
Robertson CE, Harris JK, Spear JR, Pace NR. Phylogenetic diversity and ecology of environmental Archaea. Curr Opin Microbiol 2005; 8:638-42. [PMID: 16236543 DOI: 10.1016/j.mib.2005.10.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
On the basis of culture studies, Archaea were thought to be synonymous with extreme environments. However, the large numbers of environmental rRNA gene sequences currently flooding into databases such as GenBank show that these organisms are present in almost all environments examined to date. Large sequence databases and new fast phylogenetic software allow more precise determination of the archaeal phylogenetic tree, but also indicate that our knowledge of archaeal diversity is incomplete. Although it is apparent that Archaea can be found in all environments, the chemistry of their ecological context is mostly unknown.
Collapse
Affiliation(s)
- Charles E Robertson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
49
|
Gonzalez JM, Portillo MC, Saiz-Jimenez C. Metabolically active Crenarchaeota in Altamira Cave. Naturwissenschaften 2005; 93:42-5. [PMID: 16292522 DOI: 10.1007/s00114-005-0060-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Altamira Cave contains valuable paleolithic paintings dating back to 15,000 years. The conservation of these unique paintings is attracting increasing interest, and so, understanding microbial proliferation in Altamira Cave represents a prioritary objective. Here, we show for the first time that members of the Crenarchaeota were metabolically active components of developing microbial communities. RNA was extracted directly from the studied environment, and a number of 16S rRNA gene sequences belonging to the low-temperature Crenarchaeota were detected. Although low-temperature Crenarchaeota detected in a variety of ecosystems by using molecular techniques remain uncultured, this RNA-based study confirms an active participation of the Crenarchaeota in cave biogeochemical cycles.
Collapse
Affiliation(s)
- Juan M Gonzalez
- Instituto de Recursos Naturales y Agrobiologia, CSIC, Apartado 1052, 41080 Sevilla, Spain.
| | | | | |
Collapse
|
50
|
Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 2005; 7:1985-95. [PMID: 16309395 DOI: 10.1111/j.1462-2920.2005.00906.x] [Citation(s) in RCA: 470] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mesophilic crenarchaeota are frequently found in terrestrial and marine habitats worldwide, but despite their considerable abundance the physiology of these as yet uncultivated archaea has remained unknown. From a 1.2 Gb large-insert environmental fosmid library of a calcareous grassland soil, a 43 kb genomic fragment was isolated with a ribosomal RNA that shows its affiliation to group 1.1b of crenarchaeota repeatedly found in soils. The insert encoded a homologue of a copper-containing nitrite reductase with an unusual C-terminus that encoded a potential amicyanin-like electron transfer domain as well as two proteins related to subunits of ammonia monooxygenases or particulate methane monooxygenases (AmoAB/PmoAB) respectively. Expression of nirK and the amoA-like gene was shown by reverse transcription polymerase chain reaction (PCR) analyses in soil samples, the latter being found at higher levels when the soil was incubated with ammonia (measured by quantitative PCR). Further variants of both genes were amplified from soil samples and were found in the environmental database from the Sargasso Sea plankton. Taken together, our findings suggest that mesophilic terrestrial and marine crenarchaeota might be capable of ammonia oxidation under aerobic and potentially also under anaerobic conditions.
Collapse
Affiliation(s)
- Alexander H Treusch
- University of Bergen, Department of Biology, Jahnebakken 5, N-5020 Bergen, Norway
| | | | | | | | | | | |
Collapse
|