1
|
Shen H, Wang M, Ning Y, Zhao Y, Danzeng B, Li K, Shi H, Li W. Effect of Dietary Addition of Lentinus edodes on Rumen Flora, Lactation, and Health of Dairy Goats. Animals (Basel) 2025; 15:676. [PMID: 40075961 PMCID: PMC11899011 DOI: 10.3390/ani15050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Lentinus edodes (LE) is a nutrient-rich medicinal fungus with potential applications in animal nutrition; however, its effects on dairy goats remain underexplored. This study investigated the impact of dietary LE addition on rumen microbiota, metabolic profiles, serum immunity, and milk quality in lactating dairy goats. Twenty Saanen goats were randomly assigned to a control group (CON, basal diet) or an LE group (basal diet + 25 g Lentinus edodes) for 56 days. Rumen fluid, serum, and milk samples were analyzed using 16S rDNA sequencing, metabolomics, and biochemical assays. The results showed that the addition of LE altered the microbial composition, decreasing the abundance of fibrobacterial flora and Treponema (p < 0.05) while increasing VadinHA49. Metabolomic analysis revealed elevated fumaric acid, lysophospholipids (LysoPE, LysoPG), and D-quinic acid in the rumen (p < 0.05). Serum immunoglobulin A (IgA), immunoglobulin G (IgG), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and tumor necrosis factor-α (TNF-α) levels were significantly enhanced (p < 0.05). The milk somatic cell count (SCC) was reduced by 52.8% (p = 0.005) at day 56, and protein, fat, and total solids increased significantly (p < 0.05). Enrichment of functional metabolites such as D-arabitol and D-tryptophan in milk further highlighted LE's role in improving product value. These findings demonstrate that LE optimizes rumen flora, enhances antioxidant and immune functions, and improves milk quality, supporting its use as a functional feed additive for dairy goats.
Collapse
Affiliation(s)
- Huijun Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mengyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Ning
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiqi Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Baiji Danzeng
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China
| | - Kaixin Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weijuan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China
| |
Collapse
|
2
|
Iwata K, Kanokozawa R, Iwata A, Maeda M, Maehashi K, Yoshikawa J. d-Arabitol production by a high arabitol-producing yeast, Zygosaccharomyces sp. Gz-5 isolated from miso. Biosci Biotechnol Biochem 2024; 88:1102-1108. [PMID: 38802125 DOI: 10.1093/bbb/zbae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
d-Arabitol, an alternative sweetener to sugar, has low calorie content, high sweetness, low glycemic index, and insulin resistance-improving ability. In this study, d-arabitol-producing yeast strains were isolated from various commercial types of miso, and strain Gz-5 was selected among these strains. Phylogenetic tree analysis of the internal transcribed spacer sequence revealed that strain Gz-5 was distinct from Zygosaccharomyces rouxii, a major fermenting yeast of miso. The strain, identified as Zygosaccharomyces sp. Gz-5, grew better than other Z. rouxii in 150 g/L NaCl and produced 114 g/L d-arabitol from 295 g/L glucose in a batch culture for 8 days (0.386 g/g-consumed glucose). In a fed-batch culture, the yeast produced 133 g/L d-arabitol for 14 days, and the total d-arabitol amount increased by 1.75-fold. These results indicated that Zygosaccharomyces sp. Gz-5, a non-genetically modified strain, has excellent potential for the industrial production of d-arabitol.
Collapse
Affiliation(s)
- Kan Iwata
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Rikuo Kanokozawa
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Aoi Iwata
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Mayumi Maeda
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Kenji Maehashi
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Jun Yoshikawa
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
3
|
Zhang G, Zabed HM, Zhang Y, Li J, Yun J, Qi X. Random mutagenesis and transcriptomics-guided rational engineering in Zygosaccharomyces rouxii for elevating D-arabitol biosynthesis. BIORESOURCE TECHNOLOGY 2024; 400:130685. [PMID: 38599349 DOI: 10.1016/j.biortech.2024.130685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
D-arabitol, a versatile compound with applications in food, pharmaceutical, and biochemical industries, faces challenges in biomanufacturing due to poor chassis performance and unclear synthesis mechanisms. This study aimed to enhance the performance of Zygosaccharomyces rouxii to improve D-arabitol production. Firstly, a mutant strain Z. rouxii M075 obtained via atmospheric and room temperature plasma-mediated mutagenesis yielded 42.0 g/L of D-arabitol at 96 h, with about 50 % increase. Transcriptome-guided metabolic engineering of pathway key enzymes co-expression produced strain ZR-M3, reaching 48.9 g/L D-arabitol after 96 h fermentation. Finally, under optimized conditions, fed-batch fermentation of ZR-M3 in a 5 L bioreactor yielded an impressive D-arabitol titer of 152.8 g/L at 192 h, with a productivity of 0.8 g/L/h. This study highlights promising advancements in enhancing D-arabitol production, offering potential for more efficient biomanufacturing processes and wider industrial applications.
Collapse
Affiliation(s)
- Guoyan Zhang
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Yufei Zhang
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Jia Li
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
4
|
Basile AJ, Kreisler A, Hassen R, Singh K, Symes M, Larson G, de Sousa MF, Sweazea KL. Acute metformin induces hyperglycemia in healthy adult mourning doves, Zenaida macroura. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111594. [PMID: 38311294 DOI: 10.1016/j.cbpa.2024.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Birds have the highest blood glucose among vertebrates. Several mechanisms may explain this including the lack of a functional insulin-responsive glucose transport protein, high glucagon concentrations, and reliance on lipid oxidation resulting in the production of gluconeogenic precursors. The hypothesis was that interruption of gluconeogenesis using the diabetes medication metformin would lower glucose concentrations in wild-caught birds. We captured two cohorts of adult mourning doves, Zenaida macroura, and acclimated them to captivity for two weeks. In this crossover study, cohort 1 was administered a single dose of one of the following oral treatments each week: metformin (150 or 300 mg/kg), glycogenolysis inhibitor (2.5 mg/kg 1,4-dideoxy-1,4-imino-D-arabinitol (DAB)), or water (50 μL). Whole blood glucose was measured using a glucometer at baseline, 30, 60, and 120 min following the oral doses. In contrast to mammals and chickens, 300 mg/kg metformin did not alter blood glucose (p > 0.05) whereas 150 mg/kg metformin increased blood glucose compared to water (p = 0.043). To examine whether 150 mg/kg metformin stimulated glycogenolysis, we co-administered 150 mg/kg metformin and 2.5 mg/kg DAB, which prevented the hyperglycemic response. Cohort 2 was administered the same treatments and the early response was examined (0, 5, 10, 15 min). Low-dose metformin increased blood glucose within 5 min (p = 0.039) whereas the high dose had no effect. DAB did not prevent the early response to metformin nor did it alter blood glucose concentrations when administered alone (p = 0.887). In conclusion, metformin increases endogenous blood glucose via glycogenolysis in healthy adult male mourning doves.
Collapse
Affiliation(s)
- Anthony J Basile
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America; School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Avin Kreisler
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Ryan Hassen
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Kavita Singh
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Maggie Symes
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States of America
| | - Gale Larson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | | | - Karen L Sweazea
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America; College of Health Solutions, Arizona State University, Phoenix, AZ, United States of America.
| |
Collapse
|
5
|
Li X, Huang J, Yun J, Zhang G, Zhang Y, Zhao M, Zabed HM, Ravikumar Y, Qi X. d-Arabitol Ameliorates Obesity and Metabolic Disorders via the Gut Microbiota-SCFAs-WAT Browning Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:522-534. [PMID: 36542783 DOI: 10.1021/acs.jafc.2c06674] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
d-Arabitol, which is typically found in mushrooms, lichens, and higher fungi, might play an effective role in alleviating visceral fat accumulation and insulin resistance particularly for its low calorie and glycemic index. However, the regulatory mechanisms of d-arabitol for alleviating obesity and associated metabolic disorders remain poorly understood. This study aimed to investigate and analyze the underlying relationship between d-arabitol-mediated gut microbiota and obesity. The results showed that d-arabitol dramatically ameliorated body weight gain, fat accumulation, and insulin resistance in HFD-fed rats. Likewise, d-arabitol remarkably increased the relative abundance of the genera Blautia, Anaerostipes, and Phascolarctobacterium and decreased the genera Romboutsia and Clostridium_sensu_stricto_1. Furthermore, these alterations in gut microflora increased SCFAs, which in turn indirectly promoted AMPK-PGC-1α-related white adipose tissue (WAT) browning. Therefore, d-arabitol would have the potential to alleviate obesity through the gut microbiota-SCFAs-WAT browning axis. It could be considered as a sugar substitute for the obese population and diabetic patients.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jian Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
6
|
Liu Z, Feng Y, Zhao H, Hu J, Chen Y, Liu D, Wang H, Zhu X, Yang H, Shen Z, Xia X, Ye J, Liu Y. Pharmacokinetics and tissue distribution of Ramulus Mori (Sangzhi) alkaloids in rats and its effects on liver enzyme activity. Front Pharmacol 2023; 14:1136772. [PMID: 36873997 PMCID: PMC9981942 DOI: 10.3389/fphar.2023.1136772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Ramulus Mori (Sangzhi) alkaloids (SZ-A) derived from twigs of mulberry (Morus alba L., genus Morus in the Moraceae family) was approved by the National Medical Products Administration in 2020 for the treatment of type 2 diabetes mellitus. In addition to excellent hypoglycemic effect, increasing evidence has confirmed that SZ-A exerts multiple pharmacological effects, such as protecting pancreatic ß-cell function, stimulating adiponectin expression, and alleviating hepatic steatosis. Importantly, a specific distribution of SZ-A in target tissues following oral absorption into the blood is essential for the induction of multiple pharmacological effects. However, there is a lack of studies thoroughly exploring the pharmacokinetic profiles and tissue distribution of SZ-A following oral absorption into the blood, particularly dose-linear pharmacokinetics and target tissue distribution associated with glycolipid metabolic diseases. In the present study, we systematically investigated the pharmacokinetics and tissue distribution of SZ-A and its metabolites in human and rat liver microsomes, and rat plasma, as well as its effects on the activity of hepatic cytochrome P450 enzymes (CYP450s). The results revealed that SZ-A was rapidly absorbed into the blood, exhibited linear pharmacokinetic characteristics in the dose range of 25-200 mg/kg, and was broadly distributed in glycolipid metabolism-related tissues. The highest SZ-A concentrations were observed in the kidney, liver, and aortic vessels, followed by the brown and subcutaneous adipose tissues, and the heart, spleen, lung, muscle, pancreas, and brain. Except for the trace oxidation products produced by fagomine, other phase I or phase II metabolites were not detected. SZ-A had no inhibitory or activating effects on major CYP450s. Conclusively, SZ-A is rapidly and widely distributed in target tissues, with good metabolic stability and a low risk of triggering drug-drug interactions. This study provides a framework for deciphering the material basis of the multiple pharmacological functions of SZ-A, its rational clinical use, and the expansion of its indications.
Collapse
Affiliation(s)
- Zhihua Liu
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China
| | - Yu Feng
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China
| | - Hang Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanmin Chen
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongdong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiangyang Zhu
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China
| | - Hongzhen Yang
- Beijing Wehand-Bio Pharmaceutical Co, Ltd., Beijing, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Wang JZ, Cheng B, Kato A, Kise M, Shimadate Y, Jia YM, Li YX, Fleet GW, Yu CY. Design, synthesis and glycosidase inhibition of C-4 branched LAB and DAB derivatives. Eur J Med Chem 2022; 233:114230. [DOI: 10.1016/j.ejmech.2022.114230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
|
8
|
Goyard D, Kónya B, Czifrák K, Larini P, Demontrond F, Leroy J, Balzarin S, Tournier M, Tousch D, Petit P, Duret C, Maurel P, Docsa T, Gergely P, Somsák L, Praly JP, Azay-Milhau J, Vidal S. Glucose-based spiro-oxathiazoles as in vivo anti-hyperglycemic agents through glycogen phosphorylase inhibition. Org Biomol Chem 2020; 18:931-940. [PMID: 31922157 DOI: 10.1039/c9ob01190k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The design of glycogen phosphorylase (GP) inhibitors targeting the catalytic site of the enzyme is a promising strategy for a better control of hyperglycaemia in the context of type 2 diabetes. Glucopyranosylidene-spiro-heterocycles have been demonstrated as potent GP inhibitors, and more specifically spiro-oxathiazoles. A new synthetic route has now been elaborated through 1,3-dipolar cycloaddition of an aryl nitrile oxide to a glucono-thionolactone affording in one step the spiro-oxathiazole moiety. The thionolactone was obtained from the thermal rearrangement of a thiosulfinate precursor according to Fairbanks' protocols, although with a revisited outcome and also rationalised with DFT calculations. The 2-naphthyl substituted glucose-based spiro-oxathiazole 5h, identified as one of the most potent GP inhibitors (Ki = 160 nM against RMGPb) could be produced on the gram-scale from this strategy. Further evaluation in vitro using rat and human hepatocytes demonstrated that compound 5h is a anti-hyperglycaemic drug candidates performing slightly better than DAB used as a positive control. Investigation in Zucker fa/fa rat model in acute and subchronic assays further confirmed the potency of compound 5h since it lowered blood glucose levels by ∼36% at 30 mg kg-1 and ∼43% at 60 mg kg-1. The present study is one of the few in vivo investigations for glucose-based GP inhibitors and provides data in animal models for such drug candidates.
Collapse
Affiliation(s)
- David Goyard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | - Bálint Kónya
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Katalin Czifrák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Paolo Larini
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | - Fanny Demontrond
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | - Jérémy Leroy
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Sophie Balzarin
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Michel Tournier
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Didier Tousch
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Pierre Petit
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Cédric Duret
- INSERM U1040, Montpellier, France and Montpellier University, UMR-1040, Montpellier, France
| | - Patrick Maurel
- INSERM U1040, Montpellier, France and Montpellier University, UMR-1040, Montpellier, France
| | - Tibor Docsa
- Institute of Medical Chemistry, University of Debrecen, POB 7, Nagyerdei krt. 98, H-4012 Debrecen, Hungary
| | - Pál Gergely
- Institute of Medical Chemistry, University of Debrecen, POB 7, Nagyerdei krt. 98, H-4012 Debrecen, Hungary
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Jean-Pierre Praly
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| | - Jacqueline Azay-Milhau
- Montpellier University, EA7288, Biocommunication in cardiometabolism (BC2M), Montpellier, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Bâtiment Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France.
| |
Collapse
|
9
|
Pharmacokinetics, Tissue Distribution, and Elimination of Three Active Alkaloids in Rats after Oral Administration of the Effective Fraction of Alkaloids from Ramulus Mori, an Innovative Hypoglycemic Agent. Molecules 2017; 22:molecules22101616. [PMID: 28954438 PMCID: PMC6151740 DOI: 10.3390/molecules22101616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/10/2023] Open
Abstract
In this study, we systematically investigated the plasma pharmacokinetics, tissue distribution, and elimination of three active alkaloids after oral administration of the effective fraction of alkaloids from Ramulus Mori (SZ–A)—an innovative hypoglycemic agent—in rats. Moreover, the influences of other components in SZ–A on dynamic process of alkaloids were explored for the first time. The results showed that 1-deoxynojirimycin (DNJ), fagomine (FGM) and 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) exhibited nonlinear pharmacokinetics following oral administration of SZ–A (40–1000 mg/kg). The prolonged t1/2 and greater area under concentration-time curve (AUC) versus time (AUC0–t) of DNJ for SZ–A than for purified DNJ has been observed after both oral and intravenous administration. It was found that other components in SZ–A could enhance the absorption of DNJ through the intestinal barrier. The major distribution tissues of DNJ, FGM, and DAB were the gastrointestinal tract, liver, and kidney. Three alkaloids were mainly excreted into urine and feces, but less into bile. Interestingly, the excess excretion of FGM was revealed to be partly due to the biotransformation of other components in SZ–A via gut microbiota. These information provide a rational basis for the use of SZ–A in clinical practice.
Collapse
|
10
|
Glucose-derived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition. Eur J Med Chem 2016; 108:444-454. [DOI: 10.1016/j.ejmech.2015.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/13/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
|
11
|
Yang S, Wang B, Xia X, Li X, Wang R, Sheng L, Li D, Liu Y, Li Y. Simultaneous quantification of three active alkaloids from a traditional Chinese medicine Ramulus Mori (Sangzhi) in rat plasma using liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2015; 109:177-83. [DOI: 10.1016/j.jpba.2015.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/22/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
|
12
|
Honda T, Takakusa H, Murai T, Izumi T. Tissue distribution and identification of radioactivity components at elimination phase after oral administration of [¹⁴C]CS-1036, an α-amylase inhibitor, to rats. Drug Metab Dispos 2013; 41:1125-33. [PMID: 23454829 DOI: 10.1124/dmd.112.050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
(2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036) is a potent inhibitor of pancreatic and salivary α-amylase. After oral administration of [¹⁴C]CS-1036 to rats, the radioactivity was still detectable up to 7-14 days after administration in various tissues, and its terminal phase in plasma could be explained neither by the exposure of CS-1036 nor its major metabolite M1. The slow elimination of radioactivity in various tissues was hypothesized to be caused by covalent binding to macromolecules or use for biogenic components. To assess the use for biogenic components, amino acid analysis of plasma proteins and lipid analysis of adipose tissue were conducted after repeated oral administration of [¹⁴C]CS-1036 by high-performance liquid chromatography and accelerated mass spectrometry and by thin layer chromatography and liquid chromatography/mass spectrometry, respectively. In amino acid analysis, glutamic acid, aspartic acid, alanine, and proline were identified as major radioactive amino acids, and radioactive nonessential amino acids occupied 76.0% of the radioactivity. In lipid analysis, a part of the radioactive lipids were identified as the fatty acids constituting the neutral lipids by lipase-hydrolysis. The radioactive fatty acids from neutral lipids were identified as palmitic acid, oleic acid, and 8,11,14-eicosatrienoic acid. Intestinal flora were involved in CS-1036 metabolism and are indicated to be involved in the production of small molecule metabolites, which are the sources for amino acids and fatty acids, from [¹⁴C]CS-1036. In conclusion, radioactivity derived from [¹⁴C]CS-1036 was incorporated as the constituents of amino acids of plasma proteins and fatty acids of neutral lipids.
Collapse
Affiliation(s)
- Tomohiro Honda
- Drug Metabolism & Pharmacokinetics Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | |
Collapse
|
13
|
Honda T, Kaneno-Urasaki Y, Murai T, Kakuta M, Nasu H, Namba E, Koga T, Okuno A, Izumi T. Absorption, elimination, and metabolism of CS-1036, a novel α-amylase inhibitor in rats and monkeys, and the relationship between gastrointestinal distribution and suppression of glucose absorption. Drug Metab Dispos 2013; 41:878-87. [PMID: 23378626 DOI: 10.1124/dmd.112.050591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The absorption, metabolism, and excretion of (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-d-glucopyranosyl)-α-d-glucopyranoside (CS-1036), a novel and potent pancreatic and salivary α-amylase inhibitor, were evaluated in F344/DuCrlCrlj rats and cynomolgus monkeys. The total body clearance and volume of distribution of CS-1036 were low (2.67-3.44 ml/min/kg and 0.218-0.237 l/kg for rats and 2.25-2.84 ml/min/kg and 0.217-0.271 l/kg for monkeys). After intravenous administration of [(14)C]CS-1036 to rats and monkeys, radioactivity was mainly excreted into urine (77.2% for rats and 81.1% for monkeys). After oral administration, most of the radioactivity was recovered from feces (80.28% for rats and 88.13% for monkeys) with a low oral bioavailability (1.73-2.44% for rats and 0.983-1.20% for monkeys). In rats, intestinal secretion is suggested to be involved in the fecal excretion as a minor component because fecal excretion after intravenous administration was observed (15.66%) and biliary excretion was almost negligible. Although intestinal flora was involved in CS-1036 metabolism, CS-1036 was the main component in feces (70.3% for rats and 48.7% for monkeys) and in the intestinal contents (33-68% for rats up to 2 hours after the dose) after oral administration. In Zucker diabetic fatty rats, CS-1036 showed a suppressive effect on plasma glucose elevation after starch loading with a 50% effective dose at 0.015 mg/kg. In summary, CS-1036 showed optimal pharmacokinetic profiles: low oral absorption and favorable stability in gastrointestinal lumen, resulting in suppression of postprandial hyperglycemia by α-amylase inhibition.
Collapse
Affiliation(s)
- Tomohiro Honda
- Drug Metabolism and Pharmacokinetics Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Newman LA, Korol DL, Gold PE. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One 2011; 6:e28427. [PMID: 22180782 PMCID: PMC3236748 DOI: 10.1371/journal.pone.0028427] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023] Open
Abstract
When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.
Collapse
Affiliation(s)
- Lori A Newman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America.
| | | | | |
Collapse
|
16
|
Abstract
For the purpose of this article, iminosugars are polyhydroxylated secondary and tertiary amines in which the molecules resemble monosaccharide sugars in which the ring oxygen is replaced by the nitrogen. The bicyclic structures may biologically resemble disaccharides. Very few iminosugars have been available up to now for evaluation of their pharmaceutical applications. The early compounds were discovered and selected for study due to glycosidase inhibition, which is now known to not be necessary for pharmacological activity and may cause off-target effects. Glyset® and Zavesca®, derived from the glucosidase-inhibiting natural product 1-deoxynojirimycin, are the first two examples of iminosugar drugs. Since the discovery of this first generation, many new natural products have been identified with a wide range of biological activities but few are widely available. Among the biological properties of these compounds are good oral bioavailability and very specific immune modulatory and chaperoning activity. Although the natural products from plants and microorganisms can have good specificity, modifications of the template natural products have been very successful recently in producing bioactive compounds with good profiles. The field of iminosugars continues to open up exciting new opportunities for therapeutic agent discovery and offers many new tools for precisely modifying carbohydrate structures and modulating glycosidase activity in vivo. Current efforts are directed towards a greater range of structures and a wider range of biochemical targets.
Collapse
|
17
|
A versatile approach to pyrrolidine azasugars and homoazasugars based on a highly diastereoselective reductive benzyloxymethylation of protected tartarimide. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.02.087] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
van Poelje PD, Dang Q, Erion MD. Fructose-1,6-bisphosphatase as a therapeutic target for type 2 diabetes. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ddstr.2007.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Loxham SJG, Teague J, Poucher SM, De Schoolmeester J, Turnbull AV, Carey F. Glucagon challenge in the rat: A robust method for the in vivo assessment of Glycogen phosphorlyase inhibitor efficacy. J Pharmacol Toxicol Methods 2007; 55:71-7. [PMID: 16713718 DOI: 10.1016/j.vascn.2006.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/16/2006] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Glycogen phosphorlyase inhibitors (GPi) act on the glycogenolytic pathway decreasing hepatic glucose output, making them potential candidates for Type 2 diabetes treatment. We established a robust in vivo method to assess GPis efficacy utilising glucagon-stimulated glycogenolysis. METHODS Blood glucose was monitored in both male AP Wistar and AP Zucker rats using tail prick samples pre- and post intraperitoneal or subcutaneous glucagon administration. The effect of glycogen phosphorylase inhibitors GPi296 (6-60 mg kg(-1) po) and DAB (5 mg kg(-1) po) upon glucose response to subcutaneous glucagon were examined in both strains. RESULTS In the Wistar rat glucagon induced dose related increases in blood glucose, with the maximum increase occurring 20 min post dose (4.0+/-0.88 mmol l(-1), intraperitoneal; and 2.8+/-0.72 mmol l(-1), subcutaneous, ns). Intraperitoneal glucagon administration produced shorter duration blood glucose elevation than observed with the subcutaneous route of administration. In the Zucker rat, no differences were observed between the 10 and 13 week old rats in response to glucagon (3-200 microg kg(-1) subcutaneous). The maximum blood glucose increase was lower in the Wistar rat compared to the Zucker rats (2.9+/-0.20 vs 7.7+/-1.22 mmol l(-1), P<0.0000018). GPi296 and DAB both produced similar inhibition in each strain. DISCUSSION Subcutaneous glucagon administration induced more sustained increases in blood glucose than intraperitoneal administration. Blood glucose response to glucagon was higher in the Zucker rat compared to the Wistar rat; there was no difference in inhibition mediated by either GPi296 or DAB between the two strains. We believe that subcutaneous glucagon administration produces a robust model for the assessment of GPis in either rat strain.
Collapse
Affiliation(s)
- Susan J G Loxham
- Cardiovascular and Gastrointestinal Discovery Department, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Lauritsen A, Madsen R. Synthesis of naturally occurring iminosugars from d-fructose by the use of a zinc-mediated fragmentation reaction. Org Biomol Chem 2006; 4:2898-905. [PMID: 16855738 DOI: 10.1039/b605818c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A short synthesis of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and a formal synthesis of australine are described. In both cases, D-fructose is employed as the starting material and converted into a protected methyl 6-deoxy-6-iodo-furanoside. Zinc-mediated fragmentation produces an unsaturated ketone which serves as a key building block for both syntheses. Ozonolysis, reductive amination with benzylamine and deprotection affords 1,4-dideoxy-1,4-imino-D-arabinitol in only 7 steps and 11% overall yield from D-fructose. Alternatively, reductive amination with homoallylamine, ring-closing metathesis and protecting group manipulations give rise to an intermediate which can be converted into australine in 3 steps. The intermediate is prepared by two different strategies both of which use a total of 9 steps. The first strategy utilizes benzyl ethers for protection of fructose while the second and more effective strategy employs an isopropylidene acetal.
Collapse
Affiliation(s)
- Anne Lauritsen
- Center for Sustainable and Green Chemistry, Department of Chemistry, Building 201, Technical University of Denmark, Lyngby
| | | |
Collapse
|
21
|
Sarabu R, Tilley J. Recent Advances in Therapeutic Approaches toType 2 Diabetes. ANNUAL REPORTS IN MEDICINAL CHEMISTRY VOLUME 40 2005. [DOI: 10.1016/s0065-7743(05)40011-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|