1
|
Abstract
The term “prion” was originally coined to describe the proteinaceous infectious agents involved in mammalian neurological disorders. More recently, a prion has been defined as a nonchromosomal, protein-based genetic element that is capable of converting the copies of its own benign variant into the prion form, with the new phenotypic effects that can be transmitted through the cytoplasm. Some prions are toxic to the cell, are able to aggregate and/or form amyloid structures, and may be infectious in the wild, but none of those traits are seen as an integral property of all prions. The term “prion” was originally coined to describe the proteinaceous infectious agents involved in mammalian neurological disorders. More recently, a prion has been defined as a nonchromosomal, protein-based genetic element that is capable of converting the copies of its own benign variant into the prion form, with the new phenotypic effects that can be transmitted through the cytoplasm. Some prions are toxic to the cell, are able to aggregate and/or form amyloid structures, and may be infectious in the wild, but none of those traits are seen as an integral property of all prions. We propose that the definition of prion should be expanded, to include the inducible transmissible entities undergoing autocatalytic conversion and consisting of RNA rather than protein. We show that when seen in this framework, some naturally occurring RNAs, including ribozymes, riboswitches, viroids, viroid-like retroelements, and PIWI-interacting RNAs (piRNAs), possess several of the characteristic properties of prions.
Collapse
|
2
|
Lafleur E, Kapfer C, Joly V, Liu Y, Tebbji F, Daigle C, Gray-Mitsumune M, Cappadocia M, Nantel A, Matton DP. The FRK1 mitogen-activated protein kinase kinase kinase (MAPKKK) from Solanum chacoense is involved in embryo sac and pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1833-43. [PMID: 25576576 PMCID: PMC4378624 DOI: 10.1093/jxb/eru524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The fertilization-related kinase 1 (ScFRK1), a nuclear-localized mitogen-activated protein kinase kinase kinase (MAPKKK) from the wild potato species Solanum chacoense, belongs to a small group of pMEKKs that do not possess an extended N- or C-terminal regulatory domain. Initially selected based on its highly specific expression profile following fertilization, in situ expression analyses revealed that the ScFRK1 gene is also expressed early on during female gametophyte development in the integument and megaspore mother cell and, later, in the synergid and egg cells of the embryo sac. ScFRK1 mRNAs are also detected in pollen mother cells. Transgenic plants with lower or barely detectable levels of ScFRK1 mRNAs lead to the production of small fruits with severely reduced seed set, resulting from a concomitant decline in the number of normal embryo sacs produced. Megagametogenesis and microgametogenesis were affected, as megaspores did not progress beyond the functional megaspore (FG1) stage and the microspore collapsed around the first pollen mitosis. As for other mutants that affect embryo sac development, pollen tube guidance was severely affected in the ScFRK1 transgenic lines. Gametophyte to sporophyte communication was also affected, as observed from a marked change in the transcriptomic profiles of the sporophytic tissues of the ovule. The ScFRK1 MAPKKK is thus involved in a signalling cascade that regulates both male and female gamete development.
Collapse
Affiliation(s)
- Edith Lafleur
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Christelle Kapfer
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Valentin Joly
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Yang Liu
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Faiza Tebbji
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada Institut de recherche en biotechnologie, Conseil national de recherches du Canada, 6100 Avenue Royalmount, Montréal, QC H4P 2R2, Canada
| | - Caroline Daigle
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Madoka Gray-Mitsumune
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Mario Cappadocia
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - André Nantel
- Institut de recherche en biotechnologie, Conseil national de recherches du Canada, 6100 Avenue Royalmount, Montréal, QC H4P 2R2, Canada
| | - Daniel P Matton
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
3
|
Lange MJ, Sharma TK, Whatley AS, Landon LA, Tempesta MA, Johnson MC, Burke DH. Robust suppression of HIV replication by intracellularly expressed reverse transcriptase aptamers is independent of ribozyme processing. Mol Ther 2012; 20:2304-14. [PMID: 22948672 DOI: 10.1038/mt.2012.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RNA aptamers that bind human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) also inhibit viral replication, making them attractive as therapeutic candidates and potential tools for dissecting viral pathogenesis. However, it is not well understood how aptamer-expression context and cellular RNA pathways govern aptamer accumulation and net antiviral bioactivity. Using a previously-described expression cassette in which aptamers were flanked by two "minimal core" hammerhead ribozymes, we observed only weak suppression of pseudotyped HIV. To evaluate the importance of the minimal ribozymes, we replaced them with extended, tertiary-stabilized hammerhead ribozymes with enhanced self-cleavage activity, in addition to noncleaving ribozymes with active site mutations. Both the active and inactive versions of the extended hammerhead ribozymes increased inhibition of pseudotyped virus, indicating that processing is not necessary for bioactivity. Clonal stable cell lines expressing aptamers from these modified constructs strongly suppressed infectious virus, and were more effective than minimal ribozymes at high viral multiplicity of infection (MOI). Tertiary stabilization greatly increased aptamer accumulation in viral and subcellular compartments, again regardless of self-cleavage capability. We therefore propose that the increased accumulation is responsible for increased suppression, that the bioactive form of the aptamer is one of the uncleaved or partially cleaved transcripts, and that tertiary stabilization increases transcript stability by reducing exonuclease degradation.
Collapse
Affiliation(s)
- Margaret J Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Meyer V. Genetic engineering of filamentous fungi--progress, obstacles and future trends. Biotechnol Adv 2007; 26:177-85. [PMID: 18201856 DOI: 10.1016/j.biotechadv.2007.12.001] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 01/09/2023]
Abstract
Filamentous fungi are widely used in biotechnology as cell factories for the production of chemicals, pharmaceuticals and enzymes. In order to improve their productivities, genetic engineering strategies can be powerful approaches. Different transformation techniques as well as DNA- and RNA-based methods to rationally design metabolic fluxes have been developed for industrially important filamentous fungi. However, the lack of efficient genetic engineering approaches still forms an obstacle for a multitude of fungi producing new and commercially interesting metabolites. This review summarises the variety of options that have recently become available to introduce and control gene expression in filamentous fungi and discusses their advantages and disadvantages. Furthermore, important considerations that have to be taken into account to design the best engineering strategy will be discussed.
Collapse
Affiliation(s)
- Vera Meyer
- TU Berlin, Institut für Biotechnologie, Fachgebiet Mikrobiologie und Genetik, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| |
Collapse
|
5
|
Chantha SC, Matton DP. Underexpression of the plant NOTCHLESS gene, encoding a WD-repeat protein, causes pleitropic phenotype during plant development. PLANTA 2007; 225:1107-20. [PMID: 17086402 DOI: 10.1007/s00425-006-0420-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 09/29/2006] [Indexed: 05/12/2023]
Abstract
WD-repeat proteins are involved in a breadth of cellular processes. While the WD-repeat protein encoding gene NOTCHLESS has been involved in the regulation of the Notch signaling pathway in Drosophila, its yeast homolog Rsa4p was shown to participate in 60S ribosomal subunit biogenesis. The plant homolog ScNLE was previously characterized in Solanum chacoense (ScNLE) as being involved in seed development. However, expression data and reduced size of ScNLE underexpressing plants suggested in addition a role during shoot development. We here report the detailed phenotypic characterization of ScNLE underexpressing plants during shoot development. ScNLE was shown to be expressed in actively dividing cells of the shoot apex. Consistent with this, ScNLE underexpression caused pleiotropic defects such as a reduction in aerial organ size, a reduction in some organ numbers, delayed flowering, and an increase in stomatal index. Analysis of adaxial epidermal cells revealed that both cell number and cell size were reduced in mature leaves of ScNLE underexpressing lines. Two-hybrid screens with the Nle domain and the WD-repeat domain of ScNLE allowed the isolation of homologs of yeast MIDASIN and NSA2 genes, the products of which are involved in 60S ribosomal subunit biogenesis in yeast. A ScNLE-GFP chimeric protein was localized in both the cytoplasm and nucleus. These data altogether suggest that ScNLE likely plays a role in 60S ribosomal subunit biogenesis, which is essential for proper cellular growth and proliferation during plant development.
Collapse
Affiliation(s)
- Sier-Ching Chantha
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC, Canada H1X 2B2
| | | |
Collapse
|
6
|
Chantha SC, Emerald BS, Matton DP. Characterization of the plant Notchless homolog, a WD repeat protein involved in seed development. PLANT MOLECULAR BIOLOGY 2006; 62:897-912. [PMID: 17006595 DOI: 10.1007/s11103-006-9064-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 07/23/2006] [Indexed: 05/12/2023]
Abstract
We have isolated a plant NOTCHLESS (NLE) homolog from the wild potato species Solanum chacoense Bitt., encoding a WD-repeat containing protein initially characterized as a negative regulator of the Notch receptor in animals. Although no Notch signaling pathway exists in plants, the NLE gene is conserved in animals, plants, and yeast. Overexpression of the plant ScNLE gene in Drosophila similarly affected bristle formation when compared to the overexpression of the endogenous Drosophila NLE gene, suggesting functional conservation. Expression analyses showed that the ScNLE gene was fertilization-induced and primarily expressed in ovules after fertilization, mainly in the integumentary tapetum (endothelium). Significant expression was also detected in the shoot apex. Promoter deletion analysis revealed that the ScNLE promoter had a complex modulatory architecture with both positive, negative, and tissue specific regulatory elements. Transgenic plants with reduced levels of ScNLE transcripts displayed pleitotropic phenotypes including a severe reduction in seed set, consistent with ScNLE gene expression pattern.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/ultrastructure
- Fertility/genetics
- Fertility/physiology
- Flowers/genetics
- Flowers/growth & development
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Glucuronidase/genetics
- Glucuronidase/metabolism
- In Situ Hybridization
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/physiology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Repetitive Sequences, Amino Acid/genetics
- Seeds/genetics
- Seeds/growth & development
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanum/genetics
- Solanum/growth & development
Collapse
Affiliation(s)
- Sier-Ching Chantha
- Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, H1X 2B2, Montréal, QC, Canada
| | | | | |
Collapse
|
7
|
Fiola K, Perreault JP, Cousineau B. Gene targeting in the Gram-Positive bacterium Lactococcus lactis, using various delta ribozymes. Appl Environ Microbiol 2006; 72:869-79. [PMID: 16391129 PMCID: PMC1352214 DOI: 10.1128/aem.72.1.869-879.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 10/20/2005] [Indexed: 11/20/2022] Open
Abstract
The trans-acting antigenomic delta ribozyme, isolated from the human hepatitis delta virus, was shown to be highly stable and active in vitro, as well as in mammalian cell lines. However, the stability and gene-targeting competence of this small ribozyme have not been studied previously in bacterial cells. In this paper we describe the use of two variants of the trans-acting antigenomic delta ribozyme targeting the abundant EF-Tu mRNA in the industrially important gram-positive bacterium Lactococcus lactis. These two delta ribozyme variants were expressed at significant levels and were shown to be highly stable in vivo. The half-life of the EF-Tu mRNA was slightly but consistently reduced in the presence of the classical delta ribozymes (7 to 13%). In contrast, delta ribozymes harboring a specific on/off riboswitch (SOFA-delta ribozymes) targeting the same sites on the EF-Tu mRNA considerably reduced the half-life of this mRNA (22 to 47%). The rates of catalysis of the SOFA-delta ribozymes in L. lactis were similar to the rates determined in vitro, showing that this new generation of delta ribozymes was highly efficient in these bacterial cells. Clearly, SOFA-delta ribozymes appear to be an ideal means for development of gene inactivation systems in bacteria.
Collapse
Affiliation(s)
- Karine Fiola
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 2B4, Canada
| | | | | |
Collapse
|