1
|
Zummo L, Vitale AM, Caruso Bavisotto C, De Curtis M, Garbelli R, Giallonardo AT, Di Bonaventura C, Fanella M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms22168601. [PMID: 34445306 PMCID: PMC8395327 DOI: 10.3390/ijms22168601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising candidates as useful biomarkers for diagnosis and patient monitoring, and as targets for developing novel therapies. Components of the CS are also promising as biomarkers and as therapeutic targets, since they participate in epileptogenic pathways and in cytoprotective mechanisms in various epileptogenic brain areas, even if what they do and how is not yet clear. The data in this review should help in the identification of molecular targets among the discussed miRNAs and CS components for research aiming at understanding epileptogenic mechanisms and, subsequently, develop means for predicting/preventing seizures and treating the disease.
Collapse
Affiliation(s)
- Leila Zummo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Department of Neurology and Stroke Unit, A.R.N.A.S. Ospedale Civico—Di Cristina Benfratelli, 90127 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Marco De Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Anna Teresa Giallonardo
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Martina Fanella
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Correspondence:
| |
Collapse
|
2
|
Marshall P, Bredy TW. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory? NPJ SCIENCE OF LEARNING 2016; 1:16014. [PMID: 27512601 PMCID: PMC4977095 DOI: 10.1038/npjscilearn.2016.14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 05/02/2023]
Abstract
A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. To date, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.
Collapse
Affiliation(s)
- Paul Marshall
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Timothy W Bredy
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Tokarz P, Kaarniranta K, Blasiak J. Role of the Cell Cycle Re-Initiation in DNA Damage Response of Post-Mitotic Cells and Its Implication in the Pathogenesis of Neurodegenerative Diseases. Rejuvenation Res 2016. [DOI: 10.1089/rej.2015.1717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| |
Collapse
|
4
|
Yost AD, Joshi SG. Atmospheric Nonthermal Plasma-Treated PBS Inactivates Escherichia coli by Oxidative DNA Damage. PLoS One 2015; 10:e0139903. [PMID: 26461113 PMCID: PMC4603800 DOI: 10.1371/journal.pone.0139903] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
We recently reported that phosphate-buffered saline (PBS) treated with nonthermal dielectric-barrier discharge plasma (plasma) acquires strong antimicrobial properties, but the mechanisms underlying bacterial inactivation were not known. The goal of this study is to understand the cellular responses of Escherichia coli and to investigate the properties of plasma-activated PBS. The plasma-activated PBS induces severe oxidative stress in E. coli cells and reactive-oxygen species scavengers, α-tocopherol and catalase, protect E. coli from cell death. Here we show that the response of E. coli to plasma-activated PBS is regulated by OxyR and SoxyRS regulons, and mediated predominantly through the expression of katG that deactivates plasma-generated oxidants. During compensation of E. coli in the absence of both katG and katE, sodA and sodB are significantly overexpressed in samples exposed to plasma-treated PBS. Microarray analysis found that up-regulation of genes involved in DNA repair, and E. coli expressing recA::lux fusion was extremely sensitive to the SOS response upon exposure to plasma-treated PBS. The cellular changes include rapid loss of E. coli membrane potential and membrane integrity, lipid peroxidation, accumulation of 8-hydroxy-deoxyguinosine (8OHdG), and severe oxidative DNA damage; reveal ultimate DNA disintegration, and cell death. Together, these data suggest that plasma-treated PBS contains hydrogen peroxide and superoxide like reactive species or/and their products which lead to oxidative changes to cell components, and are eventually responsible for cell death.
Collapse
Affiliation(s)
- Adam D. Yost
- Center for Surgical Infections and Biofilms, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania, United States of America
| | - Suresh G. Joshi
- Center for Surgical Infections and Biofilms, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Leak RK, Li P, Zhang F, Sulaiman HH, Weng Z, Wang G, Stetler RA, Shi Y, Cao G, Gao Y, Chen J. Apurinic/apyrimidinic endonuclease 1 upregulation reduces oxidative DNA damage and protects hippocampal neurons from ischemic injury. Antioxid Redox Signal 2015; 22:135-48. [PMID: 24180454 PMCID: PMC4281843 DOI: 10.1089/ars.2013.5511] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme that participates in base-excision repair of oxidative DNA damage and in the redox activation of transcription factors. We tested the hypothesis that APE1 upregulation protects neuronal structure and function against transient global cerebral ischemia (tGCI). RESULTS Upregulation of APE1 by low-dose proton irradiation (PI) or by transgene overexpression protected hippocampal CA1 neurons against tGCI-induced cell loss and reduced apurinic/apyrimidinic sites and DNA fragmentation. Conversely, APE1 knockdown attenuated the protection afforded by PI and ischemic preconditioning. APE1 overexpression inhibited the DNA damage response, as evidenced by lower phospho-histone H2A and p53-upregulated modulator of apoptosis levels. APE1 overexpression also partially rescued dendritic spines and attenuated the decrease in field excitatory postsynaptic potentials in hippocampal CA1. Presynaptic and postsynaptic markers were reduced after tGCI, and this effect was blunted in APE1 transgenics. The Morris water maze test revealed that APE1 protected against learning and memory deficits for at least 27 days post-injury. Animals expressing DNA repair-disabled mutant APE1 (D210A) exhibited more DNA damage than wild-type controls and were not protected against tGCI-induced cell loss. INNOVATION This is the first study that thoroughly characterizes structural and functional protection against ischemia after APE1 upregulation by measuring synaptic markers, electrophysiological function, and long-term neurological deficits in vivo. Furthermore, disabling the DNA repair activity of APE1 was found to abrogate its protective impact. CONCLUSION APE1 upregulation, either endogenously or through transgene overexpression, protects DNA, neuronal structures, synaptic function, and behavioral output from ischemic injury.
Collapse
Affiliation(s)
- Rehana K Leak
- 1 State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University , Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gupta N, Curtis RM, Mulder JE, Massey TE. Acute in vivo treatment with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone does not alter base excision repair activities in murine lung and liver. DNA Repair (Amst) 2013; 12:1031-6. [DOI: 10.1016/j.dnarep.2013.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/07/2013] [Accepted: 09/30/2013] [Indexed: 11/17/2022]
|
7
|
Qiu X, Cao L, Yang X, Zhao X, Liu X, Han Y, Xue Y, Jiang H, Chi Z. Role of mitochondrial fission in neuronal injury in pilocarpine-induced epileptic rats. Neuroscience 2013; 245:157-65. [DOI: 10.1016/j.neuroscience.2013.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 12/18/2022]
|
8
|
Effect of different mild hypoxia manipulations on kainic acid-induced seizures in the hippocampus of rats. Neurochem Res 2012; 38:123-32. [PMID: 23065181 DOI: 10.1007/s11064-012-0899-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/20/2012] [Accepted: 10/03/2012] [Indexed: 02/01/2023]
Abstract
The protective effect of the mild hypoxia to the epilepsy has been widely tested. Although it is found that the hypoxia protects the brain by up-regulation of hypoxia-inducible factor-1α, few focused on systematic comparisons between different mild hypoxia manipulations and their effects. The male Sprague-Dawley rats were observed following exposure to hypoxia before and after epilepsy for 3 days with 90 min per day. The effects of different mild hypoxia manipulations on kainic acid-induced epilepsy were compared from the perspective of morphology, molecular biology and behavioral test. Results showed that different mild hypoxia manipulations could inhibit the cell apoptosis of kainic acid-induced rat hippocampus and improve their physiological functions. The effect of preconditioning group was better than that of postconditioning group and that of preconditioning and postconditioning with mild hypoxia group was the best among all the groups. The result showed that the preconditioning and postconditioning of mild hypoxia was recommended pre- and post-epilepsy and exposure to mild hypoxia should be prolonged. These findings might provide new ideas and methods for the clinical treatment of epilepsy.
Collapse
|
9
|
Chonpathompikunlert P, Fan CH, Ozaki Y, Yoshitomi T, Yeh CK, Nagasaki Y. Redox nanoparticle treatment protects against neurological deficit in focused ultrasound-induced intracerebral hemorrhage. Nanomedicine (Lond) 2012; 7:1029-43. [PMID: 22394184 DOI: 10.2217/nnm.12.2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage is reported to induce the generation of reactive oxygen species and oxidative DNA damage in the brain. AIMS We aimed to examine whether our designed redox polymer nanoparticle could reduce intracerebral hemorrhage induced by 1-MHz focused ultrasound sonication coupled with microbubble treatment. MATERIALS & METHODS Contrast-enhanced ultrasound imaging, frozen section, brain edema, neurologic deficit, the number of morphologically normal neurons, DNA oxidization and superoxide anion generation were used to investigate the neuroprotective effect of redox polymer nanoparticles. RESULTS We confirmed that the 1-MHz focused ultrasound coupled with microbubble produced intracerebral hemorrhage and showed that the redox polymer nanoparticle ameliorates intracerebral hemorrhage-induced brain edema, neurological deficit and oxidative damage. CONCLUSION These results suggest that redox polymer nanoparticle is a potential therapeutic agent for intracerebral hemorrhage induced by focused ultrasound.
Collapse
Affiliation(s)
- Pennapa Chonpathompikunlert
- Department of Materials Sciences, Graduate School of Pure & Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Bozzi Y, Dunleavy M, Henshall DC. Cell signaling underlying epileptic behavior. Front Behav Neurosci 2011; 5:45. [PMID: 21852968 PMCID: PMC3151612 DOI: 10.3389/fnbeh.2011.00045] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a complex disease, characterized by the repeated occurrence of bursts of electrical activity (seizures) in specific brain areas. The behavioral outcome of seizure events strongly depends on the brain regions that are affected by overactivity. Here we review the intracellular signaling pathways involved in the generation of seizures in epileptogenic areas. Pathways activated by modulatory neurotransmitters (dopamine, norepinephrine, and serotonin), involving the activation of extracellular-regulated kinases and the induction of immediate early genes (IEGs) will be first discussed in relation to the occurrence of acute seizure events. Activation of IEGs has been proposed to lead to long-term molecular and behavioral responses induced by acute seizures. We also review deleterious consequences of seizure activity, focusing on the contribution of apoptosis-associated signaling pathways to the progression of the disease. A deep understanding of signaling pathways involved in both acute- and long-term responses to seizures continues to be crucial to unravel the origins of epileptic behaviors and ultimately identify novel therapeutic targets for the cure of epilepsy.
Collapse
Affiliation(s)
- Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | | | | |
Collapse
|
11
|
Proteomic identification of hippocampal proteins vulnerable to oxidative stress in excitotoxin-induced acute neuronal injury. Neurobiol Dis 2011; 43:706-14. [PMID: 21669285 DOI: 10.1016/j.nbd.2011.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/02/2011] [Accepted: 05/28/2011] [Indexed: 12/26/2022] Open
Abstract
Excitotoxicity is involved in seizure-induced acute neuronal death, hypoxic-ischemic encephalopathy, and chronic neurodegenerative conditions such as Alzheimer's disease. Although oxidative stress has been implicated in excitotoxicity, the target proteins of oxidative damage during the course of excitotoxic cell death are still unclear. In the present study, we performed 2D-oxyblot analysis and mass spectrometric amino acid sequencing to identify proteins that were vulnerable to oxidative damage in the rat hippocampus during kainic acid (KA)-induced status epilepticus. We first investigated the time course in which oxidative protein damage occurred using immunohistochemistry. Carbonylated proteins, a manifestation of protein oxidation, were detected in hippocampal neurons as early as 3h after KA administration. Immunoreactivity for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was also elevated at the same time point. The increase in oxidative damage to proteins and DNA occurred concomitantly with the early morphological changes in KA-treated rat hippocampus, i.e., changes in chromatin distribution and swelling of rough endoplasmic reticulum and mitochondria, which preceded the appearance of morphological features of neuronal death such as pyknotic nuclei and hypereosinophilic cytoplasm. Proteomic analysis revealed that several hippocampal proteins were consistently carbonylated at this time point, including heat shock 70kDa protein 4, valosin-containing protein, mitochondrial inner membrane protein (mitofilin), α-internexin, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (14-3-3 protein). We propose that oxidative damage to these proteins may be one of the upstream events in the molecular pathway leading to excitotoxic cell death in KA-treated rat hippocampus, and these proteins may be targets of therapeutic intervention for seizure-induced neuronal death.
Collapse
|
12
|
Crowe SL, Tsukerman S, Gale K, Jorgensen TJ, Kondratyev AD. Phosphorylation of histone H2A.X as an early marker of neuronal endangerment following seizures in the adult rat brain. J Neurosci 2011; 31:7648-56. [PMID: 21613478 PMCID: PMC3118469 DOI: 10.1523/jneurosci.0092-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/14/2011] [Accepted: 04/07/2011] [Indexed: 11/21/2022] Open
Abstract
The phosphorylated form of histone H2A.X (γ-H2AX) is a well documented early, sensitive, and selective marker of DNA double-strand breaks (DSBs). Previously, we found that excessive glutamatergic activity increased γ-H2AX in neurons in vitro. Here, we evaluated γ-H2AX formation in the adult rat brain following neuronal excitation evoked by seizure activity in vivo. We found that brief, repeated electroconvulsive shock (ECS)-induced seizures (three individual seizures within 60 min) did not trigger an increase γ-H2AX immunostaining. In contrast, a cluster of 5-7 individual seizures evoked by kainic acid (KA) rapidly (within 30 min) induced γ-H2AX in multiple neuronal populations in hippocampus and entorhinal cortex. This duration of seizure activity is well below threshold for induction of neuronal cell death, indicating that the γ-H2AX increase occurs in response to sublethal insults. Moreover, an increase in γ-H2AX was seen in dentate granule cells, which are resistant to cell death caused by KA-evoked seizures. With as little as a 5 min duration of status epilepticus (SE), γ-H2AX increased in CA1, CA3, and entorhinal cortex to a greater extent than that observed after the clusters of individual seizures, with still greater increases after 120 min of SE. Our findings provide the first direct demonstration that DNA DSB damage occurs in vivo in the brain following seizures. Furthermore, we found that the γ-H2AX increase caused by 120 min of SE was prevented by neuroprotective preconditioning with ECS-evoked seizures. This demonstrates that DNA DSB damage is an especially sensitive indicator of neuronal endangerment and that it is responsive to neuroprotective intervention.
Collapse
Affiliation(s)
- Samantha L Crowe
- Interdisciplinary Program in Neuroscience and Department of Pharmacology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
13
|
Cho KJ, Kim HJ, Park SC, Kim HW, Kim GW. Decisive role of apurinic/apyrimidinic endonuclease/Ref-1 in initiation of cell death. Mol Cell Neurosci 2010; 45:267-76. [PMID: 20637286 DOI: 10.1016/j.mcn.2010.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 06/03/2010] [Accepted: 07/04/2010] [Indexed: 11/16/2022] Open
Abstract
The apurinic/apyrimidinic endonuclease/redox effector factor-1 (APE/Ref-1) is involved in the base excision repair of apurinic/apyrimidinic sites induced by oxidative DNA damage. APE/Ref-1 was decreased by kainic acid (KA) injury in a time-dependent manner at the level of proteins, not transcripts. We investigated whether alteration of APE/Ref-1 amounts would influence hippocampal cell fate, survival or death, after KA injury. Overexpression of APE/Ref-1 using adenovirus and restoration of APE small peptides significantly reduced KA-induced hippocampal cell death. Both silencing of APE/Ref-1 by siRNA and inhibition of endonuclease by an antibody significantly increased caspase-3 activity and apoptotic cell death triggered from the early time after exposure to KA. These findings suggest that cell death is initiated by reducing APE/Ref-1 protein and inhibiting its repair function in spite of enough protein amounts. In conclusion, APE/Ref-1 may be a regulator of cell death initiation, and APE small peptides could provide molecular mechanism-based therapies for neuroprotection in progressive excitotoxic neuronal damage.
Collapse
Affiliation(s)
- Kyoung Joo Cho
- Department of Neurology, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Yalcin A, Armagan G, Turunc E, Konyalioglu S, Kanit L. Potential neuroprotective effect of γ-glutamylcysteine ethyl ester on rat brain against kainic acid-induced excitotoxicity. Free Radic Res 2010; 44:513-21. [DOI: 10.3109/10715761003645964] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci 2010; 67:1817-29. [PMID: 20148281 DOI: 10.1007/s00018-010-0277-y] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/21/2009] [Accepted: 01/18/2010] [Indexed: 12/11/2022]
Abstract
Overproduction of free radicals can damage cellular components resulting in progressive physiological dysfunction, which has been implicated in many human diseases. Oxidative damage to RNA received little attention until the past decade. Recent studies indicate that RNA, such as messenger RNA and ribosomal RNA, is very vulnerable to oxidative damage. RNA oxidation is not a consequence of dying cells but an early event involved in pathogenesis. Oxidative modification to RNA results in disturbance of the translational process and impairment of protein synthesis, which can cause cell deterioration or even cell death. In this review, we discuss the mechanisms of oxidative damage to RNA and the possible biological consequences of damaged RNA. Furthermore, we review recent evidence suggesting that oxidative damage to RNA may contribute to progression of many human diseases.
Collapse
|
16
|
Greggio S, Rosa RM, Dolganov A, de Oliveira IM, Menegat FD, Henriques JA, DaCosta JC. NAP prevents hippocampal oxidative damage in neonatal rats subjected to hypoxia-induced seizures. Neurobiol Dis 2009; 36:435-44. [DOI: 10.1016/j.nbd.2009.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/08/2009] [Accepted: 08/17/2009] [Indexed: 11/29/2022] Open
|
17
|
Cell Cycle Activation and CNS Injury. Neurotox Res 2009; 16:221-37. [PMID: 19526282 DOI: 10.1007/s12640-009-9050-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 12/28/2022]
|
18
|
Jarrett SG, Liang LP, Hellier JL, Staley KJ, Patel M. Mitochondrial DNA damage and impaired base excision repair during epileptogenesis. Neurobiol Dis 2008; 30:130-8. [PMID: 18295498 DOI: 10.1016/j.nbd.2007.12.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/16/2007] [Accepted: 12/21/2007] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are acute consequences of status epilepticus (SE). However, the role of mitochondrial oxidative stress and genomic instability during epileptogenesis remains unknown. Using the kainate animal model of temporal lobe epilepsy, we investigated oxidative mitochondrial DNA (mtDNA) damage and changes in the mitochondrial base excision repair pathway (mtBER) in the rat hippocampus for a period of 3 months after SE. Acute seizure activity caused a time-dependent increase in mitochondrial, but not nuclear 8-hydroxy-2-deoxyguanosine (8-OHdG/2dG) levels and a greater frequency of mtDNA lesions. This was accompanied by increased mitochondrial H2O2 production and a transient decrease in mtDNA repair capacity. The mtBER proteins 8-oxoguanine glycosylase (Ogg1) and DNA polymerase gamma (Pol gamma) demonstrated elevated expression at mRNA and protein levels shortly after SE and this was followed by a gradual improvement in mtDNA repair capacity. Recurrent seizures associated with the chronic phase of epilepsy coincided with the accumulation of mtDNA damage, increased mitochondrial H2O2 levels, decreased expression of Ogg1 and Pol gamma and impaired mtDNA repair capacity. Together, increased oxidative mtDNA damage, mitochondrial H2O2 production and alterations in the mtBER pathway provide evidence for mitochondrial oxidative stress in epilepsy and suggest that mitochondrial injury may contribute to epileptogenesis.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
19
|
Wang SJ, Wang SH, Song ZF, Liu XW, Wang R, Chi ZF. Poly(ADP-ribose) polymerase inhibitor is neuroprotective in epileptic rat via apoptosis-inducing factor and Akt signaling. Neuroreport 2007; 18:1285-9. [PMID: 17632284 DOI: 10.1097/wnr.0b013e32826fb3a5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
3-Aminobenzamide (3-AB), an inhibitor of poly(ADP-ribose) polymerase (PARP), has been proved to have neuroprotective properties. In this study, we examined the role of 3-AB in rat hippocampal neuron death induced by seizures. Our data showed that the seizures resulted in PARP activation and translocation of the apoptosis-inducing factor from the mitochondria to the nucleus, leading to neuron death. These effects could, however, all be abolished by 3-AB. Moreover, we showed that 3-AB facilitated Akt activation and decreased the activity of its downstream target, glycogen synthase kinase-3beta. Altogether, our data suggested that 3-AB might have a therapeutic value in seizure-induced hippocampal neuron damage, probably due to the inhibition of apoptosis and activation of Akt cell survival signaling.
Collapse
Affiliation(s)
- Sheng-jun Wang
- Department of Neurology, Qilu Hospital of Shandong University, China
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Neurodegeneration in limbic circuits is a hallmark feature of chronic temporal lobe epilepsy (TLE). Studies in experimental animal models and human patients indicate that seizure-induced neuronal injury involves some active, as well as passive cell death processes. Experimental approaches that inhibit active steps in cell death programs have been shown to reduce neuronal cell death and sclerosis, but not to prevent epileptogenesis in animal models of TLE. These findings suggest that we need additional research using both animal models and brain slices from human patients to understand the pathological mechanisms underlying seizure generation. Such comparative studies will also aid in evaluating the potential therapeutic value of inhibiting cell death in seizure disorders.
Collapse
Affiliation(s)
- Janice R Naegele
- Department of Biology, Room 257, Hall-Atwater Laboratory, Lawn Avenue, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
21
|
Ampuero E, Dagnino-Subiabre A, Sandoval R, Zepeda-Carreño R, Sandoval S, Viedma A, Aboitiz F, Orrego F, Wyneken U. Status epilepticus induces region-specific changes in dendritic spines, dendritic length and TrkB protein content of rat brain cortex. Brain Res 2007; 1150:225-38. [PMID: 17397806 DOI: 10.1016/j.brainres.2007.02.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 02/27/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Induction of status epilepticus (SE) with kainic acid results in a large reorganization of neuronal brain circuits, a phenomenon that has been studied primarily in the hippocampus. The neurotrophin BDNF, by acting through its receptor TrkB, has been implicated in such reorganization. In the present work we investigated, by Western blot and immunohistochemistry, whether regional changes of TrkB expression within the rat brain cortex are correlated with altered neuronal morphology and/or with apoptotic cell death. We found that the full-length TrkB protein decreased within the cortex when measured 24 h to 1 week after induction of SE. Analysis by immunohistochemistry revealed that TrkB staining diminished within layer V of the retrosplenial granular b (RSGb) and motor cortices, but not within the auditory cortex. In layer II/III, differential changes were also observed: TrkB decreased in the motor cortex, did not change within the RSGb but increased within the auditory cortex. Reduced TrkB was associated with dendritic atrophy and decreased spine density in pyramidal neurons within layer V of the RSGb. No correlation was observed between regional and cellular changes of TrkB protein and apoptosis, measured by the TdT-mediated dUTP nick end labeling (TUNEL) method. The global decrease of TrkB within the neocortex and the associated dendritic atrophy may counteract seizure propagation in the epileptic brain but may also underlie cognitive impairment after seizures.
Collapse
Affiliation(s)
- Estíbaliz Ampuero
- Neuroscience Laboratory, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ippoushi K, Takeuchi A, Ito H, Horie H, Azuma K. Antioxidative effects of daikon sprout (Raphanus sativus L.) and ginger (Zingiber officinale Roscoe) in rats. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.04.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Wang CH, Chang A, Tsai MJ, Cheng H, Liao LP, Lin AMY. Kainic acid-induced oxidative injury is attenuated by hypoxic preconditioning. Ann N Y Acad Sci 2006; 1042:314-24. [PMID: 15965077 DOI: 10.1196/annals.1338.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Female Wistar rats were subjected to 380 mmHg in an altitude chamber for 15 h/day for 28 days. Hypoxic preconditioning attenuated kainic acid (KA)-induced oxidative injury, including KA-elevated lipid peroxidation and neuronal loss in rat hippocampus. Furthermore, KA-induced translocation of cytochrome c and apoptosis-inducing factor from mitochondria to cytosol was attenuated in the hypoxic rats. In addition, hypoxic preconditioning attenuated the KA-induced reduction in glutathione content and superoxide dismutase as well as KA-induced increase in glutathione peroxidase. Although local infusion of KA increased hippocampal NF-kappaB binding activity in the normoxic rat, hypoxia further enhanced KA-elevated NF-kappaB binding activity. Moreover, hypoxic preconditioning potentiated the KA-induced increase in Bcl-2 level in the lesioned hippocampus. Our data suggest that hypoxic preconditioning exerts its neuroprotection of KA-induced oxidative injury via enhancing NF-kappaB activation, upregulating the antioxidative defense system, and attenuating the apoptotic process.
Collapse
Affiliation(s)
- Cheng-Hao Wang
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Shiihara T, Kato M, Ichiyama T, Takahashi Y, Tanuma N, Miyata R, Hayasaka K. Acute encephalopathy with refractory status epilepticus: bilateral mesial temporal and claustral lesions, associated with a peripheral marker of oxidative DNA damage. J Neurol Sci 2006; 250:159-61. [PMID: 16935306 DOI: 10.1016/j.jns.2006.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/20/2006] [Accepted: 07/12/2006] [Indexed: 11/15/2022]
Abstract
We describe a 12-year-old girl, who had been medicated with theophylline for bronchial asthma and developed acute encephalopathy with refractory status epilepticus, showing bilateral mesial temporal and claustral lesions, which were evident on fluid-attenuated inversion recovery images, obtained with 1.5 T magnetic resonance imaging. To date, oxidative stress has been implicated in aging or various disorders, including inflammatory or degenerative neurological disorders. One of the oxidative stress markers, 8-hydroxydeoxyguanosine, was increased in our patient's cerebro-spinal fluid, plasma and urine. We speculate that augmented oxidative stress was associated with refractory status epilepticus in our patient, accompanying bilateral mesial temporal, claustral lesions and severe neuronal damage. Serial measurements of oxidative stress markers in acute encephalitis, encephalopathy, or status epilepticus could clarify the relationships between acute brain damage and free radicals.
Collapse
Affiliation(s)
- Takashi Shiihara
- Department of Pediatrics, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kajitani K, Yamaguchi H, Dan Y, Furuichi M, Kang D, Nakabeppu Y. MTH1, an oxidized purine nucleoside triphosphatase, suppresses the accumulation of oxidative damage of nucleic acids in the hippocampal microglia during kainate-induced excitotoxicity. J Neurosci 2006; 26:1688-98. [PMID: 16467516 PMCID: PMC6793619 DOI: 10.1523/jneurosci.4948-05.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enhanced oxidative stress has been implicated in the excitotoxicity of the CNS, and 8-oxo-7,8-dihydro-guanine (8-oxoG), a major type of oxidative damage in nucleic acids, was reported to be accumulated in the rat hippocampus after kainate administration. We herein showed that the 8-oxoG levels in mitochondrial DNA and cellular RNA increased significantly in the CA3 subregion of the mouse hippocampus 6-12 h after kainate administration but returned to basal levels within a few days. Laser-scanning confocal microscopy revealed the 8-oxoG accumulation in mitochondrial DNA to be remarkable in CA3 microglia, whereas that in nuclear DNA or cellular RNA was also detected in the CA3 pyramidal cells and astrocytes. 8-oxoG accumulation in cellular DNA or RNA should be suppressed by MutT homolog 1 (MTH1) with 8-oxo-dGTPase (8-oxo-7,8-dihydro-2'-deoxyguanosine triphosphatase) activity and 8-oxoG-DNA glycosylase 1 (OGG1) with 8-oxoG DNA glycosylase activity. We thus examined the expression level of MTH1 and OGG1 in the mouse hippocampus after kainate administration. The Mth1 mRNA level decreased soon after kainate administration and then quickly recovered beyond the basal level, and a continuously increased MTH1 protein level was observed, whereas the Ogg1 mRNA level remained constant. MTH1-null and wild-type mice exhibited a similar degree of CA3 neuron loss after kainate administration; however, the 8-oxoG levels that accumulated in mitochondrial DNA and cellular RNA in the CA3 microglia significantly increased in the MTH1-null mice in comparison with wild-type mice, thus demonstrating that MTH1 efficiently suppresses the accumulation of 8-oxoG in both cellular DNA and RNA in the hippocampus, especially in microglia, caused by excitotoxicity.
Collapse
|
26
|
Nakabeppu Y, Kajitani K, Sakamoto K, Yamaguchi H, Tsuchimoto D. MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair (Amst) 2006; 5:761-72. [PMID: 16621731 DOI: 10.1016/j.dnarep.2006.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
In human and rodent cells, MTH1, an oxidized purine nucleoside triphosphatase, efficiently hydrolyzes oxidized dGTP, GTP, dATP and ATP such as 2'-deoxy-8-oxoguanosine triphosphate (8-oxo-dGTP) and 2'-deoxy-2-hydroxyadenosine triphosphate (2-OH-dATP) in nucleotide pools, thus avoiding their incorporation into DNA or RNA. MTH1 is expressed in postmitotic neurons as well as in proliferative tissues, and it is localized both in the mitochondria and nucleus, thus suggesting that MTH1 plays an important role in the prevention of the mutagenicity and cytotoxicity of such oxidized purines as 8-oxoG which are known to accumulate in the cellular genome. Our recent studies with MTH1-deficient mice or cells revealed that MTH1 efficiently minimizes accumulation of 8-oxoG in both nuclear and mitochondrial DNA in the mouse brain as well as in cultured cells, thus contributing to the protection of the brain from oxidative stress.
Collapse
Affiliation(s)
- Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
27
|
Li W, Luo Y, Zhang F, Signore AP, Gobbel GT, Simon RP, Chen J. Ischemic preconditioning in the rat brain enhances the repair of endogenous oxidative DNA damage by activating the base-excision repair pathway. J Cereb Blood Flow Metab 2006; 26:181-98. [PMID: 16001017 DOI: 10.1038/sj.jcbfm.9600180] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of ischemic tolerance in the brain, whereby a brief period of sublethal 'preconditioning' ischemia attenuates injury from subsequent severe ischemia, may involve the activation of multiple intracellular signaling events that promote neuronal survival. In this study, the potential role of inducible DNA base-excision repair (BER), an endogenous adaptive response that prevents the detrimental effect of oxidative DNA damage, has been studied in the rat model of ischemic tolerance produced by three episodes of ischemic preconditioning (IP). This paradigm of IP, when applied 2 and 5 days before 2-h middle cerebral artery occlusion (MCAO), significantly decreased infarct volume in the frontal-parietal cortex 72 h later. Correlated with this protective effect, IP markedly attenuated the nuclear accumulations of several oxidative DNA lesions, including 8-oxodG, AP sites, and DNA strand breaks, after 2-h MCAO. Consequently, harmful DNA damage-responsive events, including NAD depletion and p53 activation, were reduced during postischemic reperfusion in preconditioned brains. The mechanism underlying the decreased DNA damage in preconditioned brain was then investigated by measuring BER activities in nuclear extracts. Beta-polymerase-mediated BER activity was markedly increased after IP, and this activation occurred before (24 h) and during the course of ischemic tolerance (48 to 72 h). In similar patterns, the activities for AP site and 8-oxodG incisions were also upregulated after IP. The upregulation of BER activities after IP was likely because of increased expression of repair enzymes beta-polymerase, AP endonuclease, and OGG1. These results suggest that the activation of the BER pathway may contribute to IP-induced neuroprotection by enhancing the repair of endogenous oxidative DNA damage after ischemic injury.
Collapse
Affiliation(s)
- Wenjin Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Neema M, Navarro-Quiroga I, Chechlacz M, Gilliams-Francis K, Liu J, Lamonica K, Lin SL, Naegele JR. DNA damage and nonhomologous end joining in excitotoxicity: neuroprotective role of DNA-PKcs in kainic acid-induced seizures. Hippocampus 2006; 15:1057-71. [PMID: 16216017 DOI: 10.1002/hipo.20123] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DNA repair plays a critical, but imprecisely defined role in excitotoxic injury and neuronal survival throughout adulthood. We utilized an excitotoxic injury model to compare the location and phenotype of degenerating neurons in mice (strain 129-C57BL) deficient in the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), an enzyme required for nonhomologous end joining (NHEJ). Brains from untreated adult heterozygous and DNA-PKcs null mice displayed comparable cytoarchitecture and undetectable levels of cell death. By day 1, and extending through 4 days following kainic acid-induced seizures, brains from DNA-PKcs null mice showed widespread neurodegeneration that encompassed the entire hippocampal CA1-CA3 pyramidal cell layer, entorhinal cortex, and lateral septum, with relative sparing of the dentate gyrus granule cell layer and hilus, as judged by toluidine blue, Fluoro-Jade B, and terminal dUTP nick end labeling staining. In contrast, seizure-related neurodegeneration in heterozygous littermates was limited to the CA3 region of the hippocampus. NeuN and calbindin staining revealed a selective decrease in the number and density of NeuN-positive neurons in the pyramidal layers of degenerating regions in both heterozygous and DNA-PKcs null mice. To elucidate the mechanisms leading to cell death, we examined an involvement of the p53 pathway, known to be induced by DNA damage. Addition of pifithrin-alpha, a p53 inhibitor, or expression of a dominant-negative p53 rescued neurons from kainate-induced excitotoxic cell death in primary cortical cultures derived from wildtype, DNA-PKcs heterozygous, or DNA-PKcs null neonatal mice. Moreover, pifithrin-alpha prevented kainate-induced loss of mitochondrial membrane potential, dendrite degeneration, and cell death. Results suggest that NHEJ plays a neuroprotective role in excitotoxicity, within the perforant, Schaffer collateral, hippocampal-septal, and temperoammonic pathways, in part by repairing DNA damage that would otherwise result in activation of a p53-dependent apoptotic cascade.
Collapse
Affiliation(s)
- Mohit Neema
- Department of Biology and Program in Neuroscience and Behavior, Wesleyan University, Middletown, CT 06459-0170, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yalcin A, Kanit L, Durmaz G, Sargin S, Terek CH, Tanyolac B. Altered level of apurinic/apyrimidinic endonuclease/redox factor-1 (APE/REF-1) mRNA in the hippocampus of ovariectomized rats treated by raloxifene against kainic acid. Clin Exp Pharmacol Physiol 2005; 32:611-4. [PMID: 16120186 DOI: 10.1111/j.0305-1870.2005.04239.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Accumulated clinical evidence suggests that selective oestrogen receptor modulators (SERM), such as raloxifene, may be neuroprotective. Oxidative stress is a likely molecular mechanism in the neurotoxicity of kainic acid (KA), an excitotoxic substance. The expression levels of the apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1) gene seem to correlate with cellular sensitivity to reactive oxygen species (ROS) and a reduction in the expression of APE/Ref-1 may cause oxidative DNA damage. 2. The aim of the present study was to assess the effects of KA and raloxifene on the level of APE/Ref-1 mRNA in the hippocampus of ovariectomized rats. The expression of the APE/Ref-1 gene was quantified using reverse transcription followed by real-time polymerase chain reaction. 3. The results show that the level of APE/Ref-1 mRNA increased significantly in raloxifene-treated rats. However, raloxifene treatment did not affect the seizure severity induced by KA. We also observed that raloxifene treatment against simultaneous KA injection maintained the increased level of APE/Ref-1 mRNA in the hippocampus. 4. Therefore, the results of the present study seem to support previous data suggesting the potential significance of raloxifene in neuroprotection.
Collapse
Affiliation(s)
- Ayfer Yalcin
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
30
|
Lee SY, Lee JW, Lee H, Yoo HS, Yun YP, Oh KW, Ha TY, Hong JT. Inhibitory effect of green tea extract on beta-amyloid-induced PC12 cell death by inhibition of the activation of NF-kappaB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. ACTA ACUST UNITED AC 2005; 140:45-54. [PMID: 16153742 DOI: 10.1016/j.molbrainres.2005.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 06/11/2005] [Accepted: 07/09/2005] [Indexed: 11/18/2022]
Abstract
Beta-amyloid peptide (Abeta) is considered responsible for the pathogenesis of Alzheimer's disease (AD). Several lines of evidence support that Abeta-induced cytotoxicity is mediated through the generation of reactive oxygen species (ROS). Thus, agents that scavenge ROS level may usefully impede the development or progress of AD. Green tea extract has been known to have such antioxidant properties. Our previous studies demonstrate that green tea extract protected ischemia/reperfusion-induced brain cell death by scavenging oxidative damages of macromolecules. In this study, we investigated the effects of green tea extract on Abeta-induced oxidative cell death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with Abeta25-35 (10-50 microM) showed intracellular ROS elevation, the formation of 8-oxodG (an oxidized form of DNA), and underwent apoptotic cell death in a dose-dependent manner. Abeta(25-35) treatment upregulated pro-apoptotic p53 at the gene level, and Bax and caspase-3 at the protein level, but downregulated anti-apoptotic Bcl-2 protein. Interestingly, co-treated green tea extract (10-50 microg/ml) dose-dependently attenuated Abeta(25-35) (50 microM)-induced cell death, intracellular ROS levels, and 8-oxodG formation, in addition to p53, Bax, and caspase-3 expression, but upregulated Bcl-2. Furthermore, green tea extract prevented the Abeta(25-35)-induced activations of the NF-kappaB and ERK and p38 MAP kinase pathways. Our study suggests that green tea extract may usefully prevent or retard the development and progression of AD.
Collapse
Affiliation(s)
- Sun Young Lee
- College of Pharmacy, Chungbuk National University, 48, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chang AY, Wang CH, Chiu TH, Chi JW, Chen CF, Ho LT, Lin AMY. Hypoxic preconditioning attenuated in kainic acid-induced neurotoxicity in rat hippocampus. Exp Neurol 2005; 195:40-8. [PMID: 15950222 DOI: 10.1016/j.expneurol.2004.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 05/13/2004] [Accepted: 09/10/2004] [Indexed: 10/25/2022]
Abstract
The neuroprotective effect of hypoxic preconditioning on kainate (KA)-induced neurotoxicity, including apoptosis and necrosis, was investigated in rat hippocampus. Female Wistar-Kyoto rats were subjected to 380 mm Hg in an altitude chamber for 15 h/day for 28 days. Intrahippocampal infusion of KA was performed in chloral hydrate anesthetized rats, which acutely elevated 2,3-dihydroxybenzoic acid levels in normoxic rats. Seven days after the infusion, KA increased lipid peroxidation in the infused hippocampus and resulted in hippocampal CA3 neuronal loss. A 4-week hypoxic preconditioning attenuated KA-induced elevation in hydroxyl radical formation and lipid peroxidation as well as KA-induced neuronal loss. The effects of hypoxic preconditioning on KA-induced apoptosis and necrosis were investigated further. Two hours after KA infusion, cytosolic cytochrome c content was increased in the infused hippocampus. Twenty-four hours after KA infusion, pyknotic nuclei, cellular shrinkage, and cytoplasmic disintegration, but not TUNEL-positive staining, were observed in the CA3 region of hippocampus. Forty-eight hours after KA infusion, both DNA smear and DNA fragmentation were demonstrated in the infused hippocampus. Furthermore, TUNEL-positive cells, indicative of apoptosis, in the infused hippocampus were detected 72 h after KA infusion. Hypoxic pretreatment significantly reduced necrotic-like events in the KA-infused hippocampus. Moreover, hypoxic preconditioning attenuated apoptosis induced by KA infusion, including elevation in cytosolic cytochrome c content, TUNEL-positive cells, and DNA fragmentation. Our data suggest that hypoxic preconditioning may exert its neuroprotection of KA-induced oxidative injuries via attenuating both apoptosis and necrosis in rat hippocampus.
Collapse
Affiliation(s)
- A Y Chang
- Institute of Pharmaceutical Sciences, National Yang-Ming University, Taiwan
| | | | | | | | | | | | | |
Collapse
|
32
|
Juárez BI, Portillo-Salazar H, González-Amaro R, Mandeville P, Aguirre JR, Jiménez ME. Participation of N-methyl-D-aspartate receptors on methylmercury-induced DNA damage in rat frontal cortex. Toxicology 2005; 207:223-9. [PMID: 15596253 DOI: 10.1016/j.tox.2004.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 09/08/2004] [Accepted: 09/11/2004] [Indexed: 11/24/2022]
Abstract
Methylmercury (MeHg) inhibits glutamate uptake by astrocytes, which can contribute to neuronal loss through excitotoxicity. We explored the extent at which this phenomenon is involved in MeHg-induced DNA damage in the rat cortex. MeHg amounts that increase extracellular glutamate (1.5, 7.5 and 15 nmol, according to previous reports) were stereotaxically injected in the frontal cortex of adult rats before DNA-damage determination by means of a quantitative TUNEL assay. After either 24 or 48 h, the cortex of all exposed animals showed significant increments of damaged DNA, compared with rats that only received sterile saline. In parallel experiments, we found that the administration of a non competitive NMDA receptor antagonist (MK-801, 10 mg/kg, i.p.) 1 h before MeHg injection, significantly reduced DNA damage. These results demonstrate that activation of NMDA receptors contributes importantly to MeHg neurotoxicity.
Collapse
Affiliation(s)
- Bertha I Juárez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. V. Carranza 2405, 78210 San Luis Potosí, S.L.P., México
| | | | | | | | | | | |
Collapse
|
33
|
Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res 2005; 1039:30-6. [PMID: 15781043 DOI: 10.1016/j.brainres.2005.01.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 01/11/2005] [Accepted: 01/11/2005] [Indexed: 11/27/2022]
Abstract
Our previous studies have demonstrated that DNA injury occurs in the brain after intracerebral hemorrhage (ICH). DNA damage can result from at least two pathways, either endonuclease-mediated DNA fragmentation or oxidative injury. The present study investigated the occurrence of the latter after ICH and the role of iron in such injury. Male Sprague-Dawley rats received an infusion of autologous whole blood or ferrous iron into the right basal ganglia. Control rats just had a needle insertion (sham). The rats were sacrificed 1, 3, or 7 days later. 8-Hydroxyl-2'-deoxyguanosine (8-OHdG) was analyzed by immunohistochemistry while the number of apurnic/apyrimidinic abasic sites (AP sites) was also quantified. 8-OHdG and AP sites are two hallmarks of DNA oxidation. Dinitrophenyl (DNP) was measured by Western blotting to compare the time course of protein oxidative damage to that of DNA. DNA repair Ku proteins were measured by Western blot analysis. DNA damage was also examined using DNA polymerase I-mediated biotin-dATP nick translation (PANT) labeling. An increase of 8-OHdG, AP sites and DNP levels and a decrease of Ku levels were observed. Abundant PANT-positive cells were also observed in the perihematomal area 3 days after ICH. In addition, intracerebral infusion of iron increased brain DNP levels and resulted in DNA injury. These results suggest that oxidative stress contributes to DNA damage and brain injury after ICH. Reducing DNA oxidative damage (for example, through iron chelation) may be a therapeutic target for ICH.
Collapse
Affiliation(s)
- Takehiro Nakamura
- Department of Neurosurgery, University of Michigan, 5550 kresge I, Ann Arbor, MI 48109-0532, USA
| | | | | | | | | |
Collapse
|
34
|
Patel M. Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 2004; 37:1951-62. [PMID: 15544915 DOI: 10.1016/j.freeradbiomed.2004.08.021] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/27/2004] [Accepted: 08/27/2004] [Indexed: 11/27/2022]
Abstract
Mitochondrial dysfunction has been implicated as a contributing factor in diverse acute and chronic neurological disorders. However, its role in the epilepsies has only recently emerged. Animal studies show that epileptic seizures result in free radical production and oxidative damage to cellular proteins, lipids, and DNA. Mitochondria contribute to the majority of seizure-induced free radical production. Seizure-induced mitochondrial superoxide production, consequent inactivation of susceptible iron-sulfur enzymes, e.g., aconitase, and resultant iron-mediated toxicity may mediate seizure-induced neuronal death. Epileptic seizures are a common feature of mitochondrial dysfunction associated with mitochondrial encephalopathies. Recent work suggests that chronic mitochondrial oxidative stress and resultant dysfunction can render the brain more susceptible to epileptic seizures. This review focuses on the emerging role of oxidative stress and mitochondrial dysfunction both as a consequence and as a cause of epileptic seizures.
Collapse
Affiliation(s)
- Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| |
Collapse
|
35
|
Lan J, Li W, Zhang F, Sun FY, Nagayama T, O'Horo C, Chen J. Inducible repair of oxidative DNA lesions in the rat brain after transient focal ischemia and reperfusion. J Cereb Blood Flow Metab 2003; 23:1324-39. [PMID: 14600440 DOI: 10.1097/01.wcb.0000091540.60196.f2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To determine the role of oxidative DNA damage and repair in brain injury after focal ischemia and reperfusion, the authors investigated DNA base damage and DNA base excision repair (BER) capacity, the predominant repair mechanism for oxidative DNA lesions, in the rat model of temporary middle cerebral artery occlusion. Contents of 8-hydroxyl-2'-deoxyguanosine (8-oxodG) and apurinic/apyrimidinic abasic site (AP site), hallmarks of oxidative DNA damage, were quantitatively measured in nuclear DNA extracts from brains 0.25 to 72 hours after 1 hour of middle cerebral artery occlusion. In parallel to the detection of DNA lesions, the capacity for 8-oxodG- or AP site-dependent DNA repair synthesis was measured in nuclear protein extracts using specific in vitro DNA repair assays. After postischemic reperfusion, the levels of 8-oxodG and AP sites were markedly increased in ischemic tissues. In frontal/parietal cortex, regions that survived ischemia, 8-oxodG and AP sites were efficiently repaired during reperfusion. However, in the caudate, a region that was destined to infarct, the DNA lesions were poorly repaired. In consistent with the patterns of endogenous lesion repair, a markedly induced and long-lasting (at least 72 hours) BER activity was detected in the cortex but not in the caudate after ischemia. The induced BER activity in ischemic cortex was attributed to the upregulation of gene expression and activation of selective BER enzymes, particularly DNA polymerase-beta and OGG1. These results strongly suggest that inducible DNA BER constitutes an important endogenous mechanism that protects brain against ischemia-induced oxidative neuronal injury.
Collapse
Affiliation(s)
- Jing Lan
- Department of Neurology and Pittsburgh Institute of Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The mechanisms underlying the decreased vulnerability of the immature brain to seizure-induced neuronal death remain unknown. We asked whether oxidative stress plays a role in the resistance of immature animals to seizure-induced brain damage. Mitochondrial aconitase inactivation and 8-hydroxy-2-deoxyguanosine (8-OHdG) were used as indices of steady-state mitochondrial superoxide (O(2)(-)) production and oxidative DNA damage, respectively. Kainate-induced seizures resulted in increased mitochondrial aconitase inactivation and 8-OHdG formation in adult (postnatal day 30 or more), but not in immature rats (postnatal days 12 and 21). Kainate administration did not induce manganese superoxide dismutase (MnSOD) or CuZnSOD in immature or adult rats. This developmental increase in mitochondrial O(2)(-) production and oxidative DNA damage following kainate seizures suggests that mitochondrial oxidative stress may be a key factor that renders the developing brain resistant to seizure-induced brain damage.
Collapse
Affiliation(s)
- M Patel
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box C238, Denver, CO 80262, USA.
| | | |
Collapse
|
37
|
Tsuruya K, Furuichi M, Tominaga Y, Shinozaki M, Tokumoto M, Yoshimitsu T, Fukuda K, Kanai H, Hirakata H, Iida M, Nakabeppu Y. Accumulation of 8-oxoguanine in the cellular DNA and the alteration of the OGG1 expression during ischemia-reperfusion injury in the rat kidney. DNA Repair (Amst) 2003; 2:211-29. [PMID: 12531391 DOI: 10.1016/s1568-7864(02)00214-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During ischemia-reperfusion (I/R) injury in the rat kidney, apoptosis was observed in the distal tubules of the cortico-medullary region and outer medulla (OM) while severe necrosis was seen in the proximal straight tubules of the OM. The majority of these changes disappeared within 2 weeks. We examined the contents of 8-oxo-2'-deoxyguanosine (8-oxo-dG), which is a major type of oxidative damage in DNA, in the rat kidney during I/R injury, and also investigated the expression level of the OGG1 gene encoding the 8-oxoguanine DNA glycosylase. High-performance liquid chromatography with an MS/MS analysis of the nuclear DNA revealed an immediate accumulation of 8-oxo-dG in the nuclear DNA prepared from the cortex and OM of the kidney 1h after I/R, and an immunohistochemical analysis demonstrated the immediate accumulation of 8-oxo-dG in the nuclei of renal tubular cells both in the cortex and OM. A delayed increase of cytoplasmic staining with anti-8-oxo-dG was observed only in the cortico-medulla and OM, where the cytoplasmic staining in the proximal tubular cells is higher than in the distal tubular cells. The level of cytoplasmic staining representing 8-oxo-dG in mitochondrial DNA, peaked at 6h after I/R and preceded the necrosis of proximal tubular cells in the OM. An RNase protection assay showed a high level of OGG1 mRNA in the normal kidney, and the level decreased within 3h only in the OM, and increased thereafter 1-7 days of I/R both in the cortex and OM. In situ hybridization showed higher levels of OGG1 mRNA expression in the renal tubules in the OM than in the cortex of the normal kidney, which decreased rapidly within 3h of I/R. Thus, the accumulation of 8-oxo-dG in the mitochondrial DNA rather than in nuclear DNA is likely to be involved in the pathogenic responses such as necrosis of renal tubular cells during I/R injury of the kidney, together with an altered level of OGG1 expression.
Collapse
Affiliation(s)
- Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee YJ, Kim JH, Chen J, Song JJ. Enhancement of metabolic oxidative stress-induced cytotoxicity by the thioredoxin inhibitor 1-methylpropyl 2-imidazolyl disulfide is mediated through the ASK1-SEK1-JNK1 pathway. Mol Pharmacol 2002; 62:1409-17. [PMID: 12435809 DOI: 10.1124/mol.62.6.1409] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We observed previously that glucose deprivation induces cytotoxicity, increases the intracellular levels of hydroperoxide, and activates the stress-activated protein kinase (SEK) pathway. In this study, we hypothesized that 1-methylpropyl 2-imidazolyl disulfide (IV-2), a thioredoxin (TRX) inhibitor, augments glucose deprivation-induced cytotoxicity by promoting c-Jun N-terminal kinase (JNK) activation. Human prostatic carcinoma DU-145 cells were exposed to glucose-free medium containing various concentrations of IV-2 (10-50 microM). Glucose deprivation alone or IV-2 alone induced minimal cytotoxicity within 7 h. However, the combination of glucose deprivation and IV-2 increased cell death in a dose-dependent manner. The cytotoxicity was suppressed by treatment with an antioxidant, N-acetyl-L-cysteine or overexpressing TRX. The combined glucose deprivation and IV-2 treatment also promoted glucose deprivation-induced JNK1 activation by disrupting the interaction between TRX and apoptosis signal-regulating kinase 1 (ASK1). Overexpression of the JNK1 dominant-negative mutant inhibited the activation of the SEK pathway and protected cells from glucose deprivation and IV-2-induced cytotoxicity. Therefore, IV-2 enhances glucose deprivation-induced cytotoxicity by promoting glucose deprivation-induced activation of the ASK1-SEK1-JNK1 pathway.
Collapse
Affiliation(s)
- Yong J Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
39
|
Guetens G, De Boeck G, Highley M, van Oosterom AT, de Bruijn EA. Oxidative DNA damage: biological significance and methods of analysis. Crit Rev Clin Lab Sci 2002; 39:331-457. [PMID: 12385502 DOI: 10.1080/10408360290795547] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All forms of aerobic life are subjected constantly to oxidant pressure from molecular oxygen and also reactive oxygen species (ROS), produced during the biochemical utilization of O2 and prooxidant stimulation of O2 metabolism. ROS are thought to influence the development of human cancer and more than 50 other human diseases. To prevent oxidative DNA damage (protection) or to reverse damage, thereby preventing mutagenesis and cancer (repair), the aerobic cell possesses antioxidant defense systems and DNA repair mechanisms. During the last 20 years, many analytical techniques have been developed to monitor oxidative DNA base damage. High-performance liquid chromatography-electrochemical detection and gas chromatography-mass spectrometry are the two pioneering contributions to the field. Currently, the arsenal of methods available include the promising high-performance liquid chromatography-tandem mass spectrometry technique, capillary electrophoresis, 32P-postlabeling, fluorescence postlabeling, 3H-postlabeling, antibody-base immunoassays, and assays involving the use of DNA repair glycosylases such as the comet assay, the alkaline elution assay, and the alkaline unwinding method. Recently, the use of liquid chromatography-mass spectrometry has been introduced for the measurement of a number of modified nucleosides in oxidatively damaged DNA. The bulk of available chromatographic methods aimed at measuring individual DNA base lesions require either chemical hydrolysis or enzymatic digestion of oxidized DNA, following extraction from cells or tissues. The effect of experimental conditions (DNA isolation, hydrolysis, and/or derivatization) on the levels of oxidatively modified bases in DNA is enormous and has been studied intensively in the last 10 years.
Collapse
|
40
|
Liu PK, Robertson CS, Valadka A. The association between neuronal nitric oxide synthase and neuronal sensitivity in the brain after brain injury. Ann N Y Acad Sci 2002; 962:226-41. [PMID: 12076978 PMCID: PMC2751793 DOI: 10.1111/j.1749-6632.2002.tb04071.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injury to the central nervous system is the leading cause of disability in the United States. Neuronal death is one of the causes of disability. Among patients who survive this type of injury, various degrees of recovery in brain function are observed. The molecular basis of functional recovery is poorly understood. Clinical observations and research using experimental injury models have implicated several metabolites in the cascade of events that lead to neuronal degeneration. The levels of intracellular ATP (energy source) and pH are decreased, whereas levels of extracellular glutamate, intracellular calcium ions, and oxidative damage to RNA/DNA, protein, and lipid are increased. These initiating events can be associated with energy failure and mitochondrial dysfunction, resulting in functional or structural brain damage. The injured brain is known to express immediate early genes. Recent studies show that reactive oxygen species (ROS) cause lesions in genes from which mRNA is transcribed as part of the endogenous neuroprotective response. Although degenerating proteins and lipids may contribute to necrosis significantly after severe injury, abnormalities in genetic material, if not repaired, disturb cellular function at every level by affecting replication, transcription, and translation. These lesions include abnormal nucleic acids, known as oxidative lesions of DNA (ODLs) or of RNA (ORLs). In this review, we focus on our current understanding of the various effects of neuronal nitric oxide synthase on the formation of modified bases in DNA and RNA that are induced in the brain after injury, and how ODLs and ORLs affect cell function.
Collapse
Affiliation(s)
- Philip K Liu
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
41
|
Zucconi GG, Laurenzi MA, Semprevivo M, Torni F, Lindgren JA, Marinucci E. Microglia activation and cell death in response to diethyl-dithiocarbamate acute administration. J Comp Neurol 2002; 446:135-50. [PMID: 11932932 DOI: 10.1002/cne.10197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An increasing body of evidence suggests a role for activated microglia in the pathogenesis of neurodegenerative disorders. Hence, it would be useful to have a better understanding of the significance of microglial activation for neuronal damage. Unfortunately, most models of microglial activation use invasive or long-lasting insults, which make it difficult to evaluate the role played by microglia. We have instead developed a model for microglial activation by using brief exposure to the widely available neurotoxin diethyl-dithiocarbamate (DDTC). Despite evidence for the neurotoxic nature of this substance, microglia involvement has not been hitherto investigated. After acute i.p. administration of DDTC at two different doses, microglia were already activated in selected areas of the rat brain (hippocampal dentate gyrus, entorhinal-pyriform cortex and hypothalamus) after 1 hour, reaching a peak at 3-6 hours and subsided within 6-48 hours, depending on the brain region. Microglia activation was associated with interleukin-1 beta immunopositivity between 3 and 6 hours and with up-regulation of major histocompatibility complex class II expression between 24 and 48 hours. No significant changes in astrocyte immunostaining were detected between 6 hours and 6 days. The TUNEL procedure revealed the death of a limited number of cells in the above-mentioned structures that peaked at 6h and then declined rapidly. Cell death was detected in sites with major, minor, or no microglial activation, indicating that these two events can occur concomitantly or independently. The study shows that the administration of DDTC provides a useful model for studying the implications of region-specific reactivity of microglia and its differential interaction with neuronal damage.
Collapse
|
42
|
Abstract
The brain has the highest metabolic rate of all organs and depends predominantly on oxidative metabolism as a source of energy. Oxidative metabolism generates reactive oxygen species, which can damage all cellular components, including protein, lipids and nucleic acids. The processes of DNA repair normally remove spontaneous gene damage with few errors. However, cerebral ischemia followed by reperfusion leads to elevated oxidative stress and damage to genes in brain tissue despite a functional mechanism of DNA repair. These critical events occur at the same time as the expression of immediate early genes, the products of which trans-activate late effector genes that are important for sustaining neuronal viability. These findings open the possibility of applying genetic tools to identify molecular mechanisms of gene repair and to derive new therapies for stroke and brain injury.
Collapse
Affiliation(s)
- P K Liu
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
43
|
Chen M, Kochanek PM, Watkins SC, Jin KL, Draviam R, Nathaniel PD, Pinto R, Marion DW, Graham SH. Detection of single- and double-strand DNA breaks after traumatic brain injury in rats: comparison of in situ labeling techniques using DNA polymerase I, the Klenow fragment of DNA polymerase I, and terminal deoxynucleotidyl transferase. J Neurotrauma 2001; 18:675-89. [PMID: 11497094 DOI: 10.1089/089771501750357627] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA damage is a common sequela of traumatic brain injury (TBI). Available techniques for the in situ identification of DNA damage include DNA polymerase I-mediated biotin-dATP nick-translation (PANT), the Klenow fragment of DNA polymerase I-mediated biotin-dATP nick-end labeling (Klenow), and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). While TUNEL has been widely utilized to detect primarily double-strand DNA breaks, the use of PANT to detect primarily single-strand DNA breaks and Klenow to detect both single- and double-strand DNA breaks has not been reported after TBI. Accordingly, coronal brain sections from naive rats and rats at 0, 0.5, 1, 2, 6, 24, and 72 h (n = 3-5/group) after controlled cortical impact with imposed secondary insult were processed using the PANT, Klenow, and TUNEL methods. Cells with DNA breaks were detected by PANT in the ipsilateral hemisphere as early as 0.5 h after injury and were maximal at 6 h (cortex = 66.3+/-15.8, dentate gyrus 58.6+/-12.8, CA1 = 15.8+/-5.9, CA3 = 12.8+/-4.2 cells/x 400 field, mean +/- SEM, all p < 0.05 versus naive). Cells with DNA breaks were detected by Klenow as early as 30 min and were maximal at 24 h (cortex = 56.3+/-14.3, dentate gyrus 78.0+/-16.7, CA1 = 25.8+/-4.7, CA3 = 29.3+/-15.1 cells/x 400 field, all p < 0.05 versus naive). Cells with DNA breaks were not detected by TUNEL until 2 h and were maximal at 24 h (cortex = 47.7+/-21.4, dentate gyrus 63.0+/-11.9, CA1 = 5.6+/-5.4, CA3 = 6.9+/-3.7 cells/x 400 field, cortex and dentate gyrus p < 0.05 versus naive). Dual-label immunofluorescence revealed that PANT-positive cells were predominately neurons. These data demonstrate that TBI results in extensive DNA damage, which includes both single- and double-strand breaks in injured cortex and hippocampus. The presence of multiple types of DNA breaks implicate several pathways in the evolution of DNA damage after TBI.
Collapse
|
44
|
Lewén A, Sugawara T, Gasche Y, Fujimura M, Chan PH. Oxidative cellular damage and the reduction of APE/Ref-1 expression after experimental traumatic brain injury. Neurobiol Dis 2001; 8:380-90. [PMID: 11447995 DOI: 10.1006/nbdi.2001.0396] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The DNA repair enzyme, apurinic/apyrimidinic endonuclease (or redox effector factor-1, APE/Ref-1), is involved in base excision repair of apurinic/apyrimidinic sites after oxidative DNA damage. We investigated the expression of APE/Ref-1 and its relationship to oxidative stress after severe traumatic brain injury produced by controlled cortical impact in normal mice, and in mice over- or underexpressing copper-zinc superoxide dismutase (SOD1TG and SOD1KO, respectively). Oxygen free radical-mediated cellular injury was visualized with 8-hydroxyguanine immunoreactivity as a marker for DNA oxidation, and in situ hydroethidine oxidation as a marker for superoxide production. After trauma there was a reduced expression of APE/Ref-1 in the ipsilateral cortex and hippocampus that correlated with the gene dosage levels of cytosolic superoxide dismutase. The decrease in APE/Ref-1 expression preceded DNA fragmentation. There was also a close correlation between APE/Ref-1 protein levels 4 h after trauma and the volume of the lesion 1 week after injury. Our data have demonstrated that reduction of APE/Ref-1 protein levels correlates closely with the level of oxidative stress after traumatic brain injury. We suggest that APE/Ref-1 immunoreactivity is a sensitive marker for oxidative cellular injury.
Collapse
Affiliation(s)
- A Lewén
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
The objective of this study was to determine the role of mitochondrial superoxide radical-mediated oxidative damage in seizure-induced neuronal death. Using aconitase inactivation as an index of superoxide production, we found that systemic administration of kainate in rats increased mitochondrial superoxide production in the hippocampus at times preceding neuronal death. 8-Hydroxy-2-deoxyguanosine, an oxidative lesion of DNA, was also increased in the rat hippocampus following kainate administration. Manganese(III) tetrakis(4-benzoic acid)porphyrin, a catalytic antioxidant, inhibited kainate-induced mitochondrial superoxide production, 8-hydroxy-2-deoxyguanosine formation and neuronal loss in the rat hippocampus. Kainate-induced increases of mitochondrial superoxide production and hippocampal neuronal loss were attenuated in transgenic mice overexpressing mitochondrial superoxide dismutase-2. We propose that these results demonstrate a role for mitochondrial superoxide production in hippocampal pathology produced by kainate seizures.
Collapse
Affiliation(s)
- L P Liang
- Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | |
Collapse
|
46
|
|
47
|
Copani A, Uberti D, Sortino MA, Bruno V, Nicoletti F, Memo M. Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci 2001; 24:25-31. [PMID: 11163884 DOI: 10.1016/s0166-2236(00)01663-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cell-cycle-related proteins, such as cyclins or cyclin-dependent kinases, are re-expressed in neurons committed to death in response to a variety of insults, including excitotoxins, hypoxia and ischemia, loss of trophic support, or beta-amyloid peptide. In some of these conditions events that are typical of the mid-G1 phase, such as cyclin-dependent kinase 4/6 activation, are required for the induction of neuronal death. In other cases, the cycle must proceed further and recruit steps that are typical of the G1/S transition for death to occur. Finally, there are conditions in which cell-cycle proteins might be re-expressed, but do not contribute to neuronal death. We hypothesize that cell-cycle signaling becomes a mandatory component of neuronal demise when other mechanisms are not enough for neurons to reach the threshold for death. Under this scheme, the death threshold is set by the extent of DNA damage. Whenever the extent of DNA damage is below this threshold, a cell-cycle signaling becomes crucial for the induction of neuronal death through p53-dependent or -independent pathways.
Collapse
Affiliation(s)
- A Copani
- Dept of Pharmaceutical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Nagayama T, Lan J, Henshall DC, Chen D, O'Horo C, Simon RP, Chen J. Induction of oxidative DNA damage in the peri-infarct region after permanent focal cerebral ischemia. J Neurochem 2000; 75:1716-28. [PMID: 10987855 DOI: 10.1046/j.1471-4159.2000.0751716.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To address the role of oxidative DNA damage in focal cerebral ischemia lacking reperfusion, we investigated DNA base and strand damage in a rat model of permanent middle cerebral artery occlusion (MCAO). Contents of 8-hydroxyl-2'-deoxyguanosine (8-OHdG) and apurinic/apyrimidinic abasic sites (AP sites), hallmarks of oxidative DNA damage, were quantitatively measured in nuclear DNA extracts from brains obtained 4-72 h after MCAO. DNA single- and double-strand breaks were detected on coronal brain sections using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), respectively. Levels of 8-OHdG and AP sites were markedly elevated 16-72 h following MCAO in the frontal cortex, representing the peri-infarct region, but levels did not significantly change within the ischemic core regions of the caudateputamen and parietal cortex. PANT- and TUNEL-positive cells began to be detectable 4-8 h following MCAO in the caudate-putamen and parietal cortex and reached maximal levels at 72 h. PANT- and TUNEL-positive cells were also detected 16-72 h after MCAO in the lateral frontal cortex within the infarct border, where many cells also showed colocalization of DNA single-strand breaks and DNA fragmentation. In contrast, levels of PANT-positive cells alone were transiently increased (16 h after MCAO) in the medial frontal cortex, an area distant from the infarct zone. These data suggest that within peri-infarct brain regions, oxidative injury to nuclear DNA in the form of base and strand damage may be a significant and contributory cause of secondary expansion of brain damage following permanent focal ischemia.
Collapse
Affiliation(s)
- T Nagayama
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen D, Lan J, Pei W, Chen J. Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria. J Neurosci Res 2000; 61:225-36. [PMID: 10878595 DOI: 10.1002/1097-4547(20000715)61:2<225::aid-jnr13>3.0.co;2-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Endogenous oxidative damage to brain mitochondrial DNA and consequential disturbances of gene expression and mitochondrial dysfunction have long been implicated in aging and the pathogenesis of neurodegenerative diseases. It has yet to be determined, however, whether mitochondria in brain cells contain an active DNA repair system and, if so, how this system functions. Therefore, the capacity for the repair of defined types of oxidative DNA lesions has been investigated in adult rat brain mitochondria. Using in vitro DNA incorporation repair assay, we have detected base excision repair (BER) activity for the common oxidative DNA adduct 8-hydroxyl-2'-deoxyguanine (8-oxodG) in mitochondria protein extracts from cortical tissues and cultured primary cortical neurons and astrocytes. The levels of BER activity were both protein concentration-dependent and repair-incubation time-dependent. To resolve the BER pathway, the activity of essential BER enzymes was examined in mitochondria using oligonucleotide incision assay, DNA polymerase assay, and DNA ligase assay employing specific DNA substrates. Mitochondrial extracts were able to remove specifically 8-oxodG, uracil, and the apurinic/apyrimidinic abasic site from substrates. Moreover, a gamma-like DNA polymerase activity and a DNA ligase activity were detected in mitochondiral extracts, based on the formation of specific repair products. These results demonstrate that adult brain mitochondria possess an active BER system for repairing oxidative DNA lesions. This repair system appears to function by sequential actions of DNA repair enzymes that are homologous to, but not identical to, that in the nucleus. Thus, BER may represent an endogenous protective mechanism against oxidative damage to mitochondrial, as well as nuclear, genomes in brain cells.
Collapse
Affiliation(s)
- D Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|