1
|
Picart T, Gautheron A, Caredda C, Ray C, Mahieu-Williame L, Montcel B, Guyotat J. Fluorescence-Guided Surgical Techniques in Adult Diffuse Low-Grade Gliomas: State-of-the-Art and Emerging Techniques: A Systematic Review. Cancers (Basel) 2024; 16:2698. [PMID: 39123426 PMCID: PMC11311317 DOI: 10.3390/cancers16152698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Diffuse low-grade gliomas are infiltrative tumors whose margins are not distinguishable from the adjacent healthy brain parenchyma. The aim was to precisely examine the results provided by the intraoperative use of macroscopic fluorescence in diffuse low-grade gliomas and to describe the new fluorescence-based techniques capable of guiding the resection of low-grade gliomas. Only about 20% and 50% of low-grade gliomas are macroscopically fluorescent after 5-amino-levulinic acid (5-ALA) or fluorescein sodium intake, respectively. However, 5-ALA is helpful for detecting anaplastic foci, and thus choosing the best biopsy targets in diffuse gliomas. Spectroscopic detection of 5-ALA-induced fluorescence can detect very low and non-macroscopically visible concentrations of protoporphyrin IX, a 5-ALA metabolite, and, consequently, has excellent performances for the detection of low-grade gliomas. Moreover, these tumors have a specific spectroscopic signature with two fluorescence emission peaks, which is useful for distinguishing them not only from healthy brain but also from high-grade gliomas. Confocal laser endomicroscopy can generate intraoperative optic biopsies, but its sensitivity remains limited. In the future, the coupled measurement of autofluorescence and induced fluorescence, and the introduction of fluorescence detection technologies providing a wider field of view could result in the development of operator-friendly tools implementable in the operative routine.
Collapse
Affiliation(s)
- Thiebaud Picart
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France
- Cancer Research Centre of Lyon (CRCL) Inserm 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
| | - Arthur Gautheron
- Laboratoire Hubert Curien UMR 5516, Institut d’Optique Graduate School, CNRS, Université Jean Monnet Saint-Etienne, 42023 Saint-Etienne, France;
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Charly Caredda
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Cédric Ray
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Laurent Mahieu-Williame
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Bruno Montcel
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Jacques Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| |
Collapse
|
2
|
Xiang J, Keep RF. Proton-Coupled Oligopeptide Transport (Slc15) in the Brain: Past and Future Research. Pharm Res 2023; 40:2533-2540. [PMID: 37308743 DOI: 10.1007/s11095-023-03550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
This mini-review describes the role of the solute carrier (SLC)15 family of proton-coupled oligopeptide transporters (POTs) and particularly Pept2 (Slc15A2) and PhT1 (Slc15A4) in the brain. That family transports endogenous di- and tripeptides and peptidomimetics but also a number of drugs. The review focuses on the pioneering work of David E. Smith in the field in identifying the impact of PepT2 at the choroid plexus (the blood-CSF barrier) as well as PepT2 and PhT1 in brain parenchymal cells. It also discusses recent findings and future directions in relation to brain POTs including cellular and subcellular localization, regulatory pathways, transporter structure, species differences and disease states.
Collapse
Affiliation(s)
- Jianming Xiang
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Kim HM, Lee MH, Lee TK. Delayed Detection of a 5-Aminolevulinic Acid In Vivo: A Case of Metastatic Breast Cancer. Brain Tumor Res Treat 2023; 11:216-218. [PMID: 37550822 PMCID: PMC10409620 DOI: 10.14791/btrt.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
A 44-year-old female patient who had been diagnosed with breast cancer visited our oncology department. She had developed right-side weakness and mild dysarthria, and MRI revealed a 4-cm cystic-enhancing lesion in her left frontal lobe. Her surgery was postponed 48 hours after receiving 5-aminolevulinic acid (5-ALA), because a problem with thyroid function that had not been noticed before was discovered. The main lesion was enhanced on navigation and appeared to be a gross tumor; its 5-ALA uptake was very high. Specimens obtained from this location were histologically confirmed to contain tumor cells. The operation was completed, and removal of all enhancing lesions was confirmed by MRI within 24 hours postoperatively. The pathology report confirmed metastatic ductal carcinoma. The clinical efficacy of 5-ALA was confirmed even 48 hours after administration into a metastatic brain tumor from breast cancer.
Collapse
Affiliation(s)
- Hyung Min Kim
- Department of Neurosurgery, Uijeongbu St. Mary's Hospital, School of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Ho Lee
- Department of Neurosurgery, Uijeongbu St. Mary's Hospital, School of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Tae-Kyu Lee
- Department of Neurosurgery, Uijeongbu St. Mary's Hospital, School of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Pischik E, Baumann K, Karpenko A, Kauppinen R. Pathogenesis of acute encephalopathy in acute hepatic porphyria. J Neurol 2023; 270:2613-2630. [PMID: 36757574 PMCID: PMC10129990 DOI: 10.1007/s00415-023-11586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
Acute encephalopathy (AE) can be a manifestation of an acute porphyric attack. Clinical data were studied in 32 patients during AE with or without polyneuropathy (PNP) together with 12 subjects with PNP but no AE, and 17 with dysautonomia solely. Brain neuroimaging was done in 20 attacks during AE, and PEPT2 polymorphisms were studied in 56 subjects, 24 with AE. AE manifested as a triad of seizures, confusion and/or blurred vision. Symptoms lasting 1-5 days manifested 3-19 days from the onset of an attack. 55% of these patients had acute PNP independent of AE. Posterior reversible encephalopathy syndrome (PRES) was detected in 42% of the attacks. These patients were severely affected and hyponatremic (88%). Reversible segmental vasoconstriction was rare. There was no statistical difference in hypertension or urinary excretion of porphyrin precursors among the patients with or without AE. In 94% of the attacks with AE, liver transaminases were elevated significantly (1.5 to fivefold, P = 0.034) compared to a normal level in 87% of the attacks with dysautonomia, or in 25% of patients with PNP solely. PEPT2*2/2 haplotype was less common among patients with AE than without (8.3% vs. 25.8%, P = 0.159) and in patients with PNP than without (9.5% vs. 22.9%, P = 0.207), suggesting a minor role, if any, in acute neurotoxicity. In contrast, PEPT2*2/2 haplotype was commoner among patients with chronic kidney disease (P = 0.192). Acute endothelial dysfunction in porphyric encephalopathy could be explained by a combination of abrupt hypertension, SIADH, and acute metabolic and inflammatory factors of hepatic origin.
Collapse
Affiliation(s)
- Elena Pischik
- Department of Neurology, Consultative and Diagnostic Center with Polyclinics, St. Petersburg, Russia.,Department of Medicine, University Central Hospital of Helsinki, Helsinki, Finland
| | - Katrin Baumann
- Department of Gynecology and Obstetrics, University Central Hospital of Helsinki, Helsinki, Finland
| | - Alla Karpenko
- Department of Radiology, Consultative and Diagnostic Center with Polyclinics, St. Petersburg, Russia.,High Technology Institution, North-Western State Medical University, St. Petersburg, Russia
| | - Raili Kauppinen
- Department of Medicine, University Central Hospital of Helsinki, Helsinki, Finland. .,Biomedicum-Helsinki2, Tukholmankatu 8C, 00029 HUS, Helsinki, Finland.
| |
Collapse
|
5
|
Ihata T, Nonoguchi N, Fujishiro T, Omura N, Kawabata S, Kajimoto Y, Wanibuchi M. The effect of hypoxia on photodynamic therapy with 5-aminolevulinic acid in malignant gliomas. Photodiagnosis Photodyn Ther 2022; 40:103056. [PMID: 35944845 DOI: 10.1016/j.pdpdt.2022.103056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a high-grade, poor prognosis tumor that is resistant to standard treatment. The presence of a small number of glioma stem cells (GSCs) surviving in the harsh microenvironment is responsible for their refractoriness. This study aimed to investigate the effect of a hypoxic environment on the sensitivity of GSCs to photodynamic therapy with 5-aminolevulinic acid (ALA-PDT). MATERIALS AND METHODS Six human GSC lines, Mesenchymal types HGG13, HGG30, HGG1123, and Proneural types HGG146, HGG157, HGG528, were divided into two groups: normoxia (O2 21%)-cultured cells (Normoxia-GSCs), and hypoxia (O2 5%)-cultured cells (Hypoxia-GSCs). To compare the effects of different oxygen partial pressures on photoporphyrin Ⅸ (PpⅨ) biosynthetic activity, PpⅨ biosynthetic enzyme and transporter expression levels were examined by qRT-PCR; the intracellular PpⅨ concentration was determined using flow cytometry. Additionally, the sensitivity of these two groups of cells to ALA-PDT was evaluated in vitro. RESULTS Hypoxia-GSCs showed higher mRNA levels of FECH (ferrochelatase), which is required for iron synthesis to convert PpⅨ to heme, compared with Normoxia-GSCs. Flow cytometry revealed that the accumulation of PpⅨ in Hypoxia-GSCs reduced upon incubation with ALA. However, Hypoxia-GSCs showed less reduction in sensitivity to ALA-PDT than Normoxia-GSCs. CONCLUSION Hypoxia-GSCs had lower intracellular PpⅨ accumulation than Normoxia-GSCs due to increased gene expression of FECH, and that their sensitivity to ALA-PDT was reduced less, despite accumulating lower concentrations of PpⅨ. ALA-PDT is a potentially effective therapy for hypoxia-tolerant GSCs that exist in hypoxia at 5% oxygen concentration.
Collapse
Affiliation(s)
- Tomohiro Ihata
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Takahiro Fujishiro
- Department of Neurosurgery, Tanabe Neurosurgical Hospital, Fujiidera, Osaka, Japan
| | - Naoki Omura
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| | - Shinji Kawabata
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| | - Yoshinaga Kajimoto
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
6
|
Suero Molina E, Black D, Kaneko S, Müther M, Stummer W. Double dose of 5-aminolevulinic acid and its effect on protoporphyrin IX accumulation in low-grade glioma. J Neurosurg 2022; 137:943-952. [PMID: 35213830 DOI: 10.3171/2021.12.jns211724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Administration of 5-aminolevulinic acid (5-ALA) does not regularly elicit fluorescence in low-grade glioma (LGG) at currently established doses and timing of administration. One explanation may be differences in blood-brain barrier (BBB) integrity compared to high-grade glioma. The authors hypothesized that for a BBB semipermeable to 5-ALA there might be a relationship between plasma 5-ALA concentration and its movement into the brain. A higher dose would elicit more 5-ALA conversion into protoporphyrin IX (PPIX). The authors present a case series of patients harboring LGG who received higher doses of 5-ALA. METHODS Patients undergoing surgery for indeterminate glioma later diagnosed as LGG were included in this study. 5-ALA was administered at a standard dose of 20 mg/kg body weight (bw) 4 hours prior to induction of anesthesia. A subgroup of patients received a higher dose of 40 mg/kg bw. Fluorescence was evaluated visually and PPIX concentration (cPPIX) was determined ex vivo by hyperspectral measurements in freshly extracted tissue. All adverse events were recorded. RESULTS A total of 23 patients harboring diffuse low-grade astrocytomas (n = 19) and oligodendrogliomas (n = 4) were analyzed. Thirteen patients received 20 mg/kg bw, and 10 patients received 40 mg/kg bw of 5-ALA. In the 20 mg/kg group, 30.8% (4 of 13) of tumors harbored areas of visible fluorescence, compared to 60% of cases (n = 6 of 10) with 40 mg/kg bw. The threshold to visibility was 1 μg/ml in both groups. Measured over all biopsies, the mean cPPIX was significantly higher in the double-dose group (1.8 vs 0.45 μg/ml; p < 0.001). In non-visibly fluorescent tissue the mean cPPIX was 0.146 μg/ml in the 20 mg/kg and 0.347 μg/ml in the 40 mg/kg group, indicating an increase of 138% (p < 0.001). CONCLUSIONS These observations demonstrate different regions with different levels of PPIX accumulation in LGG. With higher 5-ALA doses cPPIX increases, leading to more regions surpassing the visibility threshold of 1 μg/ml. These observations can be explained by the fact that the BBB in LGG is semipermeable to 5-ALA. Higher 5-ALA doses result in more PPIX conversion, an observation with implications for future dosing in LGG.
Collapse
Affiliation(s)
| | - David Black
- 2Carl Zeiss Meditec AG, Oberkochen, Germany
- 3Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Sadahiro Kaneko
- 1Department of Neurosurgery, University Hospital of Münster
- 4Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Michael Müther
- 1Department of Neurosurgery, University Hospital of Münster
| | - Walter Stummer
- 1Department of Neurosurgery, University Hospital of Münster
| |
Collapse
|
7
|
Wang C, Chu C, Ji X, Luo G, Xu C, He H, Yao J, Wu J, Hu J, Jin Y. Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells 2022; 11:cells11182874. [PMID: 36139448 PMCID: PMC9497230 DOI: 10.3390/cells11182874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide transporter 2 (PepT2) in mammals plays essential roles in the reabsorption and conservation of peptide-bound amino acids in the kidney and in maintaining neuropeptide homeostasis in the brain. It is also of significant medical and pharmacological significance in the absorption and disposing of peptide-like drugs, including angiotensin-converting enzyme inhibitors, β-lactam antibiotics and antiviral prodrugs. Understanding the structure, function and regulation of PepT2 is of emerging interest in nutrition, medical and pharmacological research. In this review, we provide a comprehensive overview of the structure, substrate preferences and localization of PepT2 in mammals. As PepT2 is expressed in various organs, its function in the liver, kidney, brain, heart, lung and mammary gland has also been addressed. Finally, the regulatory factors that affect the expression and function of PepT2, such as transcriptional activation and posttranslational modification, are also discussed.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
| | - Chu Chu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiang Ji
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guoliang Luo
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Chunling Xu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Houhong He
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jian Wu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
- Correspondence: (J.H.); (Y.J.)
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Correspondence: (J.H.); (Y.J.)
| |
Collapse
|
8
|
Khavinson V, Linkova N, Kozhevnikova E, Dyatlova A, Petukhov M. Transport of Biologically Active Ultrashort Peptides Using POT and LAT Carriers. Int J Mol Sci 2022; 23:ijms23147733. [PMID: 35887081 PMCID: PMC9323678 DOI: 10.3390/ijms23147733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Ultrashort peptides (USPs), consisting of 2–7 amino-acid residues, are a group of signaling molecules that regulate gene expression and protein synthesis under normal conditions in various diseases and ageing. USPs serve as a basis for the development of drugs with a targeted mechanism of action. The purpose of this review is to systematize the available data on USP transport involving POT and LAT transporters in various organs and tissues under normal, pathological and ageing conditions. The carriers of the POT family (PEPT1, PEPT2, PHT1, PHT2) transport predominantly di- and tripeptides into the cell. Methods of molecular modeling and physicochemistry have demonstrated the ability of LAT1 to transfer not only amino acids but also some di- and tripeptides into the cell and out of it. LAT1 and 2 are involved in the regulation of the antioxidant, endocrine, immune and nervous systems’ functions. Analysis of the above data allows us to conclude that, depending on their structure, di- and tripeptides can be transported into the cells of various tissues by POT and LAT transporters. This mechanism is likely to underlie the tissue specificity of peptides, their geroprotective action and effectiveness in the case of neuroimmunoendocrine system disorders.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Correspondence: or ; Tel.: +7-(921)-9110800
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
- The Laboratory “Problems of Aging”, Belgorod National Research University, 308015 Belgorod, Russia
| | - Ekaterina Kozhevnikova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Anastasiia Dyatlova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (N.L.); (E.K.); (A.D.)
| | - Mikhael Petukhov
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;
- Peter the Great St. Petersburg Group of Biophysics, Higher Engineering and Technical School, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
9
|
Mazurek M, Szczepanek D, Orzyłowska A, Rola R. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review. Int J Mol Sci 2022; 23:ijms23020926. [PMID: 35055109 PMCID: PMC8779265 DOI: 10.3390/ijms23020926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.
Collapse
|
10
|
Ricci A, Di Pierro E, Marcacci M, Ventura P. Mechanisms of Neuronal Damage in Acute Hepatic Porphyrias. Diagnostics (Basel) 2021; 11:diagnostics11122205. [PMID: 34943446 PMCID: PMC8700611 DOI: 10.3390/diagnostics11122205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023] Open
Abstract
Porphyrias are a group of congenital and acquired diseases caused by an enzymatic impairment in the biosynthesis of heme. Depending on the specific enzyme involved, different types of porphyrias (i.e., chronic vs. acute, cutaneous vs. neurovisceral, hepatic vs. erythropoietic) are described, with different clinical presentations. Acute hepatic porphyrias (AHPs) are characterized by life-threatening acute neuro-visceral crises (acute porphyric attacks, APAs), featuring a wide range of neuropathic (central, peripheral, autonomic) manifestations. APAs are usually unleashed by external "porphyrinogenic" triggers, which are thought to cause an increased metabolic demand for heme. During APAs, the heme precursors δ-aminolevulinic acid (ALA) and porphobilinogen (PBG) accumulate in the bloodstream and urine. Even though several hypotheses have been developed to explain the protean clinical picture of APAs, the exact mechanism of neuronal damage in AHPs is still a matter of debate. In recent decades, a role has been proposed for oxidative damage caused by ALA, mitochondrial and synaptic ALA toxicity, dysfunction induced by relative heme deficiency on cytochromes and other hemeproteins (i.e., nitric oxide synthases), pyridoxal phosphate functional deficiency, derangements in the metabolic pathways of tryptophan, and other factors. Since the pathway leading to the biosynthesis of heme is inscribed into a complex network of interactions, which also includes some fundamental processes of basal metabolism, a disruption in any of the steps of this pathway is likely to have multiple pathogenic effects. Here, we aim to provide a comprehensive review of the current evidence regarding the mechanisms of neuronal damage in AHPs.
Collapse
Affiliation(s)
- Andrea Ricci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.)
| | - Elena Di Pierro
- Dipartimento di Medicina Interna, Fondazione IRCSS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Matteo Marcacci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.)
| | - Paolo Ventura
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.)
- Correspondence: ; Tel.: +39-059-4225-542
| |
Collapse
|
11
|
Palmieri G, Cofano F, Salvati LF, Monticelli M, Zeppa P, Perna GD, Melcarne A, Altieri R, La Rocca G, Sabatino G, Barbagallo GM, Tartara F, Zenga F, Garbossa D. Fluorescence-Guided Surgery for High-Grade Gliomas: State of the Art and New Perspectives. Technol Cancer Res Treat 2021; 20:15330338211021605. [PMID: 34212784 PMCID: PMC8255554 DOI: 10.1177/15330338211021605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas are aggressive tumors that require multimodal management and gross total resection is considered to be the first crucial step of treatment. Because of their infiltrative nature, intraoperative differentiation of neoplastic tissue from normal parenchyma can be challenging. For these reasons, in the recent years, neurosurgeons have increasingly performed this surgery under the guidance of tissue fluorescence. Sodium fluoresceine and 5-aminolevulinic acid represent the 2 main compounds that allow real-time identification of residual malignant tissue and have been associated with improved gross total resection and radiological outcomes. Though presenting different profiles of sensitivity and specificity and further investigations concerning cost-effectiveness are need, Sodium fluoresceine, 5-aminolevulinic acid and new phluorophores, such as Indocyanine green, represent some of the most important tools in the neurosurgeon’s hands to achieve gross total resection.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Fabio Cofano
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy.,Neurosurgery/Spine Surgery, Humanitas Gradenigo Hospital, Turin, Italy
| | - Luca Francesco Salvati
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Matteo Monticelli
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Pietro Zeppa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Giuseppe Di Perna
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Antonio Melcarne
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giuseppe Maria Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Fulvio Tartara
- Unit of Neurosurgery, Istituto Clinico Città Studi, Milan, Italy
| | - Francesco Zenga
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Diego Garbossa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| |
Collapse
|
12
|
Takano T, Satoh K, Doki T. Possible Antiviral Activity of 5-Aminolevulinic Acid in Feline Infectious Peritonitis Virus (Feline Coronavirus) Infection. Front Vet Sci 2021; 8:647189. [PMID: 33644160 PMCID: PMC7903937 DOI: 10.3389/fvets.2021.647189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a life-threatening infectious disease of cats caused by virulent feline coronavirus (FIP virus: FIPV). For the treatment of FIP, several effective antivirals were recently reported, but many of these are not available for practical use. 5-amino levulinic acid (5-ALA) is a low-molecular-weight amino acid synthesized in plant and animal cells. 5-ALA can be synthesized in a large amount, and it is widely applied in the medical and agricultural fields. We hypothesized that 5-ALA inhibits FIPV infection. Therefore, we evaluated its antiviral activity against FIPV in felis catus whole fetus-4 cells and feline primary macrophages. FIPV infection was significantly inhibited by 250 μM 5-ALA. Our study suggested that 5-ALA is applicable for the treatment and prevention of FIPV infection.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, Department of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kumi Satoh
- Laboratory of Veterinary Infectious Disease, Department of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, Department of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
13
|
Traylor JI, Pernik MN, Sternisha AC, McBrayer SK, Abdullah KG. Molecular and Metabolic Mechanisms Underlying Selective 5-Aminolevulinic Acid-Induced Fluorescence in Gliomas. Cancers (Basel) 2021; 13:cancers13030580. [PMID: 33540759 PMCID: PMC7867275 DOI: 10.3390/cancers13030580] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary 5-aminolevulinic acid (5-ALA) is a medication that produces fluorescence in certain cancers, which enables surgeons to visualize tumor margins during surgery. Gliomas are brain tumors that can be difficult to fully resect due to their infiltrative nature. In this review we explored what is known about the mechanism of 5-ALA, recent discoveries that increase our understanding of that mechanism, and potential targets to increase fluorescence in lower grade gliomas. Abstract 5-aminolevulinic acid (5-ALA) is a porphyrin precursor in the heme synthesis pathway. When supplied exogenously, certain cancers consume 5-ALA and convert it to the fluorogenic metabolite protoporphyrin IX (PpIX), causing tumor-specific tissue fluorescence. Preoperative administration of 5-ALA is used to aid neurosurgical resection of high-grade gliomas such as glioblastoma, allowing for increased extent of resection and progression free survival for these patients. A subset of gliomas, especially low-grade tumors, do not accumulate PpIX intracellularly or readily fluoresce upon 5-ALA administration, making gross total resection difficult to achieve in diffuse lesions. We review existing literature on 5-ALA metabolism and PpIX accumulation to explore potential mechanisms of 5-ALA-induced glioma tissue fluorescence. Targeting the heme synthesis pathway and understanding its dysregulation in malignant tissues could aid the development of adjunct therapies to increase intraoperative fluorescence after 5-ALA treatment.
Collapse
Affiliation(s)
- Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
| | - Mark N. Pernik
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
| | - Alex C. Sternisha
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (S.K.M.); (K.G.A.); Tel.: +1-(214)-648-3730 (S.K.M.); +1-(214)-645-2300 (K.G.A.)
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
- Correspondence: (S.K.M.); (K.G.A.); Tel.: +1-(214)-648-3730 (S.K.M.); +1-(214)-645-2300 (K.G.A.)
| |
Collapse
|
14
|
Konovalov NA, Timonin SY, Zelenkov PV, Goryainov SA, Asyutin DS, Zakirov BA, Kaprovoy SV. [Visual fluorescence combined with laser spectroscopy in surgery for intramedullary spinal cord tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:5-14. [PMID: 33306295 DOI: 10.17116/neiro2020840615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Surgical treatment of intramedullary spinal cord tumors is aimed at total resection of tumor with maximum preservation of neurological and functional status. In some cases, intramedullary tumors have unclear dissection plane or gliosis zone. This area is not a tumor and does not require resection. However, it is difficult to distinguish visually intact spinal cord tissue and tumor at the last surgical stages. Thus, we evaluated the effectiveness of fluorescence combined with laser spectroscopy in surgical treatment of intramedullary spinal cord tumors. OBJECTIVE To determine the effectiveness of visual fluorescence combined with laser spectroscopy in surgery for intramedullary spinal cord tumors. MATERIAL AND METHODS There were 850 patients with intramedullary spinal cord tumors for the period 2001-2019. In 35 cases, intraoperative fluoroscopy with laser spectroscopy were used. All patients underwent a comprehensive pre- and postoperative clinical and instrumental examination (general and neurological status, McCormick grade, spinal cord MRI). Carl Zeiss OPMI Pentero microscope with a fluorescent module was used for intraoperative fluorescence diagnosis. A domestic preparation 5-ALA «ALASENS» (State Research Center NIOPIK, Moscow, Russia) was used for induction of visible fluorescence. Laser spectroscopy was carried out using a LESA-01-BIOSPEK spectrum analyzer. Morphological analysis of intramedullary spinal cord tumors was performed in the neuromorphology laboratory of the Burdenko Neurosurgery Center. RESULTS Intramedullary anaplastic ependymoma and astrocytoma, as well as conventional ependymoma were characterized by the highest index of 5-ALA accumulation. Intramedullary hemangioblastoma and cavernoma do not accumulate 5-aminolevulinic acid due to morphological structure of these tumors. In particular, there are no cells capable of capturing and processing 5-ALA in these tumors. Sensitivity of visual fluorescence combined with laser spectroscopy varies from 0% to 100% depending on the histological type of tumor: hemangiogblastoma and cavernoma - 0%, low-grade astrocytoma - 70%, high-grade astrocytoma - 80%, ependymoma - 92%, anaplastic ependymoma 100%. Dissection plane is absent in anaplastic ependymoma, high-grade astrocytoma. We often observed gliosis during resection of ependymoma. This tissue is not a part of tumor. Intraoperative metabolic navigation with neurophysiological monitoring are advisable for total tumor resection in case of unclear dissection plane and peritumoral gliosis. CONCLUSION Visual fluorescence combined with laser spectroscopy is a perspective method for intraoperative imaging of tumor remnants and total resection of intramedullary spinal cord tumors with minimum risk of neurological impairment.
Collapse
Affiliation(s)
| | | | | | | | - D S Asyutin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - B A Zakirov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
15
|
Ma L, Tian Y, Peng C, Zhang Y, Zhang S. Recent advances in the epidemiology and genetics of acute intermittent porphyria. Intractable Rare Dis Res 2020; 9:196-204. [PMID: 33139978 PMCID: PMC7586877 DOI: 10.5582/irdr.2020.03082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Acute intermittent porphyria (AIP) is a dominant inherited disorder with a low penetrance that is caused by mutations in the gene coding for hydroxymethylbilane synthase (HMBS). Information about the epidemiology and molecular genetic features of this rare disorder is crucial to clinical research, and particularly to the evaluation of new treatments. Variations in the prevalence and penetrance of AIP in various studies may due to the different inclusion criteria and methods of assessment. Here, the prevalence and penetrance of AIP are analyzed systematically, and the genetic traits of different populations and findings regarding the genotype-phenotype correlation are summarized. In addition, quite a few studies have indicated that AIP susceptibility was affected by other factors, such as modifying genes. Findings regarding possible modifying genes are documented here, helping to reveal the pathogenesis of and treatments for AIP. The status of research on AIP in China reveals the lack of epidemiological and genetic studies of the Chinese population, a situation that needs to be promptly remedied.
Collapse
Affiliation(s)
- Liyan Ma
- Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu Tian
- Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chenxing Peng
- Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiran Zhang
- School of First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Songyun Zhang
- Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
16
|
Lai HW, Nakayama T, Ogura SI. Key transporters leading to specific protoporphyrin IX accumulation in cancer cell following administration of aminolevulinic acid in photodynamic therapy/diagnosis. Int J Clin Oncol 2020; 26:26-33. [PMID: 32875514 DOI: 10.1007/s10147-020-01766-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
The administration of aminolevulinic acid allow the formation and accumulation of protoporphyrin IX specifically in cancer cells, which then lead to photocytotoxicity following light irradiation. This compound, when accumulated at high levels, could also be used in cancer diagnosis as it would emit red fluorescence when being light irradiated. The concentration of protoporphyrin IX is pivotal in ensuring the effectiveness of the therapy. Studies have been carried out and showed the importance of various transporters in regulating the amount of these substrates by controlling the transport of various related metabolites in and out of the cell. There are many transporters involved and their expression levels are dependent on various factors, such as oxygen availability and iron ions. It is also important to note that these transporters may also have different expression levels depending on their organ. Understanding the mechanisms and the roles of these transporters are essential to ensure maximum accumulation of protoporphyrin IX, leading to higher efficiency in photodynamic therapy/diagnosis. In this review, we would like to discuss the roles of various transporters in protoporphyrin IX accumulation and how their involvement directly affect cancerous microenvironment.
Collapse
Affiliation(s)
- Hung Wei Lai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Taku Nakayama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan
| | - Shun-Ichiro Ogura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan. .,Center for Photodynamic Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi, 783-8505, Japan.
| |
Collapse
|
17
|
Yamamoto J, Kitagawa T, Miyaoka R, Suzuki K, Takamatsu S, Saito T, Nakano Y. 5-Aminolevulinic Acid: Pitfalls of Fluorescence-guided Resection for Malignant Gliomas and Application for Malignant Glioma Therapy. J UOEH 2020; 42:27-34. [PMID: 32213740 DOI: 10.7888/juoeh.42.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
5-Aminolevulinic acid (ALA) has been widely used as an intravital fluorescence marker in the fluorescence-guided resection of malignant gliomas. Although not a photosensitizer itself, 5-ALA is a prodrug that accumulates protoporphyrin IX (PpIX) in the mitochondria of glioma cells; PpIX acts as a photosensitizer. Fluorescence-guided resection for malignant gliomas has some pitfalls. Moreover, 5-ALA is not merely a fluorescence marker but has potential as a mitochondria-targeting drug for malignant glioma therapy. In this article, we review the literature related to 5-ALA, discuss the pitfalls of fluorescence-guided resection using 5-ALA for malignant gliomas, and describe the application of 5-ALA for malignant glioma therapy with personal opinions.
Collapse
Affiliation(s)
- Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Japan
| | - Takehiro Kitagawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Japan
| | - Ryo Miyaoka
- Department of Neurosurgery, University of Occupational and Environmental Health, Japan
| | - Kohei Suzuki
- Department of Neurosurgery, University of Occupational and Environmental Health, Japan
| | - Seishiro Takamatsu
- Department of Neurosurgery, University of Occupational and Environmental Health, Japan
| | - Takeshi Saito
- Department of Neurosurgery, University of Occupational and Environmental Health, Japan
| | - Yoshiteru Nakano
- Department of Neurosurgery, University of Occupational and Environmental Health, Japan
| |
Collapse
|
18
|
Bonkovsky HL, Dixon N, Rudnick S. Pathogenesis and clinical features of the acute hepatic porphyrias (AHPs). Mol Genet Metab 2019; 128:213-218. [PMID: 30987916 PMCID: PMC6754303 DOI: 10.1016/j.ymgme.2019.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/27/2022]
Abstract
The acute hepatic porphyrias include four disorders: acute intermittent porphyria [AIP], hereditary coproporphyria [HCP], variegate porphyria [VP], and the rare porphyria due to severe deficiency of ALA dehydratase [ADP]. In the USA, AIP is the most severe and most often symptomatic. AIP, HCP, and VP are due to autosomal dominant genetic abnormalities, in which missense, nonsense, or other mutations of genes of normal hepatic heme biosynthesis, in concert with other environmental, nutritional, hormonal and genetic factors, may lead to a critical deficiency of heme, the end-product of the pathway, in a small but critical 'regulatory pool' within hepatocytes. This deficiency leads to de-repression of the first and normally rate-controlling enzyme of the heme synthetic pathway, delta- or 5-aminolevulinic acid [ALA] synthase-1, and thus to marked up-regulation of this key enzyme and to marked hepatic overproduction of ALA. In addition, except for ADP, there is marked overproduction as well of porphobilinogen [PBG], the intermediate immediately downstream of ALA in the synthetic chain, and, especially in HCP and VP, also porphyrinogens and porphyrins farther down the pathway. The major clinical features of the acute porphyrias are attacks of severe neuropathic-type pain. Pain is felt first and foremost in the abdomen but may also occur in the back, chest, and extremities. Attacks are more common in women than in men [ratio of about 4:1], often accompanied by nausea, vomiting, constipation, tachycardia, and arterial hypertension. Hyponatremia may also occur. Some patients also describe chronic symptoms of pain, anxiety, insomnia, and others.
Collapse
Affiliation(s)
- Herbert L Bonkovsky
- Section on Gastroenterology & Hepatology, and Molecular Medicine & Translational Science, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, NC 27157, United States of America.
| | - Natalia Dixon
- Section on Hematology & Oncology, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, NC 27157, United States of America
| | - Sean Rudnick
- Section on Gastroenterology & Hepatology, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, NC 27157, United States of America
| |
Collapse
|
19
|
Picart T, Berhouma M, Dumot C, Pallud J, Metellus P, Armoiry X, Guyotat J. Optimization of high-grade glioma resection using 5-ALA fluorescence-guided surgery: A literature review and practical recommendations from the neuro-oncology club of the French society of neurosurgery. Neurochirurgie 2019; 65:164-177. [PMID: 31125558 DOI: 10.1016/j.neuchi.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND When feasible, the surgical resection is the standard first step of the management of high-grade gliomas. 5-ALA fluorescence-guided-surgery (5-ALA-FGS) was developed to ease the intra-operative delineation of tumor borders in order to maximize the extent of resection. METHODS A Medline electronic database search was conducted. English language studies from January 1998 until July 2018 were included, following the PRISMA guidelines. RESULTS 5-ALA can be considered as a specific tool for the detection of tumor remnant but has a weaker sensibility (level 2). 5-ALA-FGS is associated with a significant increase in the rate of gross total resection reaching more than 90% in some series (level 1). Consistently, 5-ALAFGS improves progression-free survival (level 1). However, the gain in overall survival is more debated. The use of 5-ALA-FGS in eloquent areas is feasible but requires simultaneous intraoperative electrophysiologic functional brain monitoring to precisely locate and preserve eloquent areas (level 2). 5-ALA is usable during the first resection of a glioma but also at recurrence (level 2). From a practical standpoint, 5-ALA is orally administered 3 hours before the induction of anesthesia, the recommended dose being 20 mg/kg. Intra-operatively, the procedure is performed as usually with a central debulking and a peripheral dissection during which the surgeon switches from white to blue light. Provided that some precautions are observed, the technique does not expose the patient to particular complications. CONCLUSION Although 5-ALA-FGS contributes to improve gliomas management, there are still some limitations. Future methods will be developed to improve the sensibility of 5-ALA-FGS.
Collapse
Affiliation(s)
- T Picart
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; Inserm 1052, UMR 5286,Team ATIP/AVENIR Transcriptomic diversity of stem cells, centre de cancérologie de Lyon, centre Léon-Bérard, 69008 Lyon, France.
| | - M Berhouma
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; CREATIS Laboratory, Inserm U1206, UMR 5220, université de Lyon, 69100 Villeurbanne, France
| | - C Dumot
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; CREATIS Laboratory, Inserm U1206, UMR 5220, université de Lyon, 69100 Villeurbanne, France
| | - J Pallud
- Département de neurochirurgie, hôpital Sainte-Anne, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France; IMA-Brain, Inserm U894, institut de psychiatrie et neurosciences de Paris, 7013 Paris, France
| | - P Metellus
- Hôpital Privé Clairval, Ramsay général de santé, 13009 Marseille, France; UMR 7051, institut de neurophysiopathologie, université d'Aix-Marseille, 13344 Marseille, France
| | - X Armoiry
- MATEIS (Team I2B), University of Lyon, Lyon school of pharmacy, 69008 Lyon, France; Édouard-Herriot Hospital, Pharmacy Department, 69008 Lyon, France; University of Warwick, Warwick Medical School, Coventry, UK
| | - J Guyotat
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France
| |
Collapse
|
20
|
Identification of PEPT2 as an important candidate molecule in 5-ALA-mediated fluorescence-guided surgery in WHO grade II/III gliomas. J Neurooncol 2019; 143:197-206. [PMID: 30929128 DOI: 10.1007/s11060-019-03158-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery (FGS) appears to be a promising treatment for glioma. However, 5-ALA-mediated fluorescence cannot always be detected in grade II/III gliomas. We hypothesized that gene expression patterns in the Protoporphyrin IX (PpIX) synthesis pathway may be associated with intraoperative fluorescence status of grade II/III gliomas, and then attempted to identify the key molecule of 5-ALA-mediated fluorescence. METHODS Using 50 surgically obtained specimens, which were diagnosed as grade II and III gliomas, we analyzed gene expression within the PpIX synthesis pathway to identify candidate molecules according to intraoperative 5-ALA-mediated fluorescence status. The most likely candidate gene was selected and confirmed by protein expression analysis. To evaluate the biological function of the molecule in PpIX synthesis, functional analysis was performed using specific, small interference (si)RNA in the SW-1783 human grade III glioma cell line. RESULTS Among the genes involved in the porphyrin synthesis pathway, the mRNA expression of Peptide transporter 2 (PEPT2) in FGS fluorescence-positive gliomas was significantly higher than that in fluorescence-negative gliomas. Protein expression of PEPT2 was also significantly higher in the fluorescence-positive gliomas, which was confirmed by western blot analysis and immunofluorescence analysis. The siRNA-mediated downregulation of the mRNA and protein expression of PEPT2 led to decreased PpIX fluorescence intensity, as confirmed by fluorescence spectrum analysis. CONCLUSIONS The results suggest PEPT2 is an important candidate molecule in 5-ALA-mediated FGS in grade II/III gliomas. As the overexpression of PEPT2 was associated with higher PpIX fluorescence intensity, PEPT2 may improve fluorescence-guided resection in grade II/III gliomas.
Collapse
|
21
|
Fujishiro T, Nonoguchi N, Pavliukov M, Ohmura N, Kawabata S, Park Y, Kajimoto Y, Ishikawa T, Nakano I, Kuroiwa T. 5-Aminolevulinic acid-mediated photodynamic therapy can target human glioma stem-like cells refractory to antineoplastic agents. Photodiagnosis Photodyn Ther 2018; 24:58-68. [PMID: 29990642 DOI: 10.1016/j.pdpdt.2018.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a highly malignant lethal brain cancer. Accumulated evidence suggests that elevated resistance of GBM to both chemo- and radio-therapy is, at least in part, due to the presence of a small population of glioma stem cells (GSC). In the present study, we aimed to determine the sensitivity of GSCs to 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT). METHODS For this purpose, we established GSC-enriched cell cultures (termed glioma stem-like cells or GSLCs) from A172 human GBM cell line. Under our cultivation conditions, GSLCs formed floating spheroid clusters that contained increased population of CD133/Sox2 expressing cells. Firstly, to compare the activity of protoporphyrin IX (PpIX) biosynthesis in the GSLCs and the parental A172 glioma cells, we examined the expression levels of biosynthesis enzymes and transporters for PpIX using qRT-PCR, and investigated the intracellular levels of PpIX with use of flow cytometry analysis. Then, we evaluated the sensitivity of these cells to ALA-PDT in vitro. Finally, to confirm the therapeutic impact of ALA-PDT on GSLCs with more clinically relevant model, we performed the same experiment using three different patient-derived glioma sphere lines, which cultivated them either in stem cell media or under differentiation conditions in the presence of serum. RESULTS AND CONCLUSION GSLCs expressed higher mRNA levels of PpIX biosynthesis enzymes and its transporters PEPT1/2 and ABCB6, when compared to the parental A172 glioma cells. Consistently, flow cytometry analysis revealed that upon incubation with ALA, GSLCs accumulate a higher level of PpIX. Finally, we showed that GSLCs were more sensitive to ALA-PDT than the original A172 cells, and confirmed that all patient-derived glioma sphere lines also showed significantly increased sensitivity to ALA-PDT if cultivated under the pro-stem cell condition. Our data indicate that ALA-PDT has potential as a novel clinically useful treatment that might eliminate GBM stem cells that are highly resistant to current chemo- and radio-therapy.
Collapse
Affiliation(s)
- Takahiro Fujishiro
- Department of Neurosurgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical College, Takatsuki, Osaka, Japan.
| | - Marat Pavliukov
- Department of Neurological Surgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Naoki Ohmura
- Department of Neurosurgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Yangtae Park
- Department of Neurosurgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Yoshinaga Kajimoto
- Department of Neurosurgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Toshihisa Ishikawa
- Department of Neurosurgery, Osaka Medical College, Takatsuki, Osaka, Japan; NGO Personalized Medicine & Healthcare, Yokohama, Kanagawa, Japan
| | - Ichiro Nakano
- Department of Neurological Surgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
22
|
Stepp H, Stummer W. 5‐ALA in the management of malignant glioma. Lasers Surg Med 2018; 50:399-419. [DOI: 10.1002/lsm.22933] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Stepp
- LIFE Center and Department of UrologyUniversity Hospital of MunichFeodor‐Lynen‐Str. 1981377MunichGermany
| | - Walter Stummer
- Department of NeurosurgeryUniversity Clinic MünsterAlbert‐Schweitzer‐Campus 1, Gebäude A148149MünsterGermany
| |
Collapse
|
23
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
24
|
Cordova JS, Gurbani SS, Holder CA, Olson JJ, Schreibmann E, Shi R, Guo Y, Shu HKG, Shim H, Hadjipanayis CG. Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery. Mol Imaging Biol 2017; 18:454-62. [PMID: 26463215 DOI: 10.1007/s11307-015-0900-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Glioblastoma (GBM) neurosurgical resection relies on contrast-enhanced MRI-based neuronavigation. However, it is well-known that infiltrating tumor extends beyond contrast enhancement. Fluorescence-guided surgery (FGS) using 5-aminolevulinic acid (5-ALA) was evaluated to improve extent of resection (EOR) of GBMs. Preoperative morphological tumor metrics were also assessed. PROCEDURES Thirty patients from a phase II trial evaluating 5-ALA FGS in newly diagnosed GBM were assessed. Tumors were segmented preoperatively to assess morphological features as well as postoperatively to evaluate EOR and residual tumor volume (RTV). RESULTS Median EOR and RTV were 94.3 % and 0.821 cm(3), respectively. Preoperative surface area to volume ratio and RTV were significantly associated with overall survival, even when controlling for the known survival confounders. CONCLUSIONS This study supports claims that 5-ALA FGS is helpful at decreasing tumor burden and prolonging survival in GBM. Moreover, morphological indices are shown to impact both resection and patient survival.
Collapse
Affiliation(s)
- J Scott Cordova
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Saumya S Gurbani
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Chad A Holder
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Eduard Schreibmann
- Department of Radiation Oncology, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Ran Shi
- Department of Biostatistics, Emory University School of Public Health, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Ying Guo
- Department of Biostatistics, Emory University School of Public Health, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Hui-Kuo G Shu
- Department of Radiation Oncology, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Hyunsuk Shim
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA. .,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Costas G Hadjipanayis
- Department of Neurosurgery, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA. .,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA. .,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 10 Union Square, 5th Floor, Suite 5E, New York, NY, 10003, USA.
| |
Collapse
|
25
|
Roth J, Constantini S. 5ALA in pediatric brain tumors is not routinely beneficial. Childs Nerv Syst 2017; 33:787-792. [PMID: 28293736 DOI: 10.1007/s00381-017-3371-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/28/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE Over recent years, 5-aminoluvolinic acid (5ALA) has been increasingly used for resection guidance in adult high-grade gliomas. However, amongst pediatric patients, publication of intraoperative fluorescence has been limited, with inconsistent outcomes. We describe our experience and intraoperative finding amongst children with various brain tumors that were given 5ALA prior to tumor resection. METHODS Since October 2014, data regarding intraoperative findings amongst children that received 5ALA prior to tumor resection were prospectively collected. Inclusion criteria included any intracranial tumor amongst children 3-18 years of age. Data included intraoperative findings (regarding fluorescence of the tumor), as well as postoperative follow-up and documentation of complications. RESULTS Fourteen children were included, covering a wide pathological spectrum: pilocytic astrocytoma (PA) (6), medulloblastoma (2), and one each of DNET, hemangiopericytoma, hemangioblastoma, ganglioneuroblastoma, oligodendroglioma grade II (OD), and ganglioglioma grade I. Fluorescence was clearly visible in one case (PA), and in a heterogeneous and slighter degree in two (PA, OD). One patient had a rash, fever, and leukocytosis 6 days after surgery and died 1 month later from extensive tumor progression (large cell medulloblastoma with leptomeningeal spread). CONCLUSION 5ALA showed a low rate of fluorescence amongst this pediatric brain tumor cohort. These findings are consistent with the literature, where the role of 5ALA in guidance of pediatric brain tumor resection is limited mainly to glioblastoma multiforme. This stems not only from the low rate of significant fluorescence, but also from inherent structural properties of these lesions such as color, consistency, and invasion.
Collapse
Affiliation(s)
- Jonathan Roth
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv University, 6 Weizman Street, 64239, Tel Aviv, Israel.
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv University, 6 Weizman Street, 64239, Tel Aviv, Israel
| |
Collapse
|
26
|
Valdés PA, Roberts DW, Lu FK, Golby A. Optical technologies for intraoperative neurosurgical guidance. Neurosurg Focus 2016; 40:E8. [PMID: 26926066 DOI: 10.3171/2015.12.focus15550] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.
Collapse
Affiliation(s)
- Pablo A Valdés
- Departments of 1 Neurosurgery and.,Department of Neurosurgery, Harvard Medical School, Boston Children's Hospital, Boston
| | - David W Roberts
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Alexandra Golby
- Departments of 1 Neurosurgery and.,Radiology, and.,Dana Farber Cancer Institute, Harvard Medical School, Brigham and Women's Hospital
| |
Collapse
|
27
|
Selective 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in Gliomas. Acta Neurochir (Wien) 2016; 158:1935-41. [PMID: 27496021 DOI: 10.1007/s00701-016-2897-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
Malignant gliomas are locally invasive tumors that offer a poor prognosis. Evidence shows that complete resection of the tumor at the time of surgery confers a significant improvement in overall survival. In recent years, 5- aminolevulinic acid (ALA)-induced fluorescence has been used by neurosurgeons to good effect in increasing the rate of complete resection. Despite the considerable interest in the use of 5-ALA in fluorescence-guided neurosurgery, the mechanisms behind the accumulation of Protoporphyrin IX (PpIX) in neoplastic tissue are unclear. In this review, we summarize the evidence in the literature on the mechanisms underlying the selective production of PpIX with a specific focus on gliomas.
Collapse
|
28
|
Lavandera J, Rodríguez J, Ruspini S, Meiss R, Zuccoli JR, Martínez MDC, Gerez E, Batlle A, Buzaleh AM. Pleiotropic effects of 5-aminolevulinic acid in mouse brain. Biochem Cell Biol 2016; 94:297-305. [DOI: 10.1139/bcb-2015-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage.
Collapse
Affiliation(s)
- Jimena Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Rodríguez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - Silvina Ruspini
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - Roberto Meiss
- Departamento de Patología, Instituto de Estudios Oncológicos, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Johanna Romina Zuccoli
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - María del Carmen Martínez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Esther Gerez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
| | - Ana María Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
29
|
Kuzmin NV, Wesseling P, Hamer PCDW, Noske DP, Galgano GD, Mansvelder HD, Baayen JC, Groot ML. Third harmonic generation imaging for fast, label-free pathology of human brain tumors. BIOMEDICAL OPTICS EXPRESS 2016; 7:1889-904. [PMID: 27231629 PMCID: PMC4871089 DOI: 10.1364/boe.7.001889] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 05/07/2023]
Abstract
In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.
Collapse
Affiliation(s)
- N. V. Kuzmin
- LaserLab Amsterdam, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - P. Wesseling
- Dept. of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Dept. of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid, 6525 GA Nijmegen, The Netherlands
- Amsterdam Brain Tumor Center, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - P. C. de Witt Hamer
- Dept. of Neurosurgery, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Brain Tumor Center, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - D. P. Noske
- Dept. of Neurosurgery, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Brain Tumor Center, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - G. D. Galgano
- LaserLab Amsterdam, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - H. D. Mansvelder
- Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - J. C. Baayen
- Dept. of Neurosurgery, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - M. L. Groot
- LaserLab Amsterdam, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
30
|
Ewelt C, Nemes A, Senner V, Wölfer J, Brokinkel B, Stummer W, Holling M. Fluorescence in neurosurgery: Its diagnostic and therapeutic use. Review of the literature. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:302-309. [PMID: 26000742 DOI: 10.1016/j.jphotobiol.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/27/2022]
Abstract
Fluorescent agents, e.g. 5-aminolevulinic acid (5-ALA), fluorescein and indocyanine green (ICG) are in common use in neurosurgery for tumor resection and neurovascular surgery. Protoporphyrine IX (PPIX) as major metabolite of 5-ALA is a strong fluorescent substance accumulated within malignant glioma tissue and a very sensitive and specific tool for visualizing high grade glioma tissue during surgery. Furthermore, 5-ALA or rather PPIX also offers an intratumoral therapeutic option stimulated by laser light in specific wavelength. Fluorescein was demonstrated to show similar fluorescent reactions in neurosurgery, but is controversial in its use, especially in high grade tumor surgery. Intraoperative angiography during resection of arterio-venous malformations, extracranial-intracranial-bypass or aneurysm surgery is supported by ICG fluorescence. Generally ICG will provide beneficial information for both, exposure of the pathology and illustration of healthy structures. This manuscript shows an overview of the literature focussing fluorescence in neurosurgery.
Collapse
Affiliation(s)
- Christian Ewelt
- Department of Neurosurgery, University Hospital, Münster, Germany.
| | - Andrei Nemes
- Institute of Neuropathology, University Hospital, Münster, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital, Münster, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital, Münster, Germany
| | | | - Walter Stummer
- Department of Neurosurgery, University Hospital, Münster, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital, Münster, Germany
| |
Collapse
|
31
|
|
32
|
Abstract
Primary brain tumors occur in around 250,000 people per year globally. Survival rates in primary brain tumors depend on the type of tumor, patient's age, the extent of surgical tumor removal, and other factors. Photodynamic diagnosis (PDD) is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma and meningiomas, whereas clinical application of photodynamic therapy (PDT) to brain tumor therapy has just recently started. Both PDD and PDT are achieved by a photon-induced physicochemical reaction, which is induced by the excitation of porphyrins exposed to light. In fluorescence-guided gross-total resection, PDD can be achieved by the administration of 5-aminolevulinic acid (5-ALA) as the precursor of protoporphyrin IX (PpIX). Exogenously administered ALA induces biosynthesis and accumulation of PpIX, a natural photosensitizer, in cancer cells. However, ATP-binding cassette transporter ABCG2 plays a critical role in regulating the cellular accumulation of porphyrins in cancer cells and thereby its expression and function can affect the efficacy of PDD and PDT. In response to the photoreaction of porphyrins leading to oxidative stress, the nuclear factor erythroid-derived 2-related transcription factor can transcriptionally upregulate ABCG2, which may reduce the efficacy of PDD and PDT. On the other hand, certain protein kinase inhibitors potentially enhance the efficacy of PDD and PDT by blocking ABCG2-mediated porphyrin efflux from cancer cells. In this context, it is of great interest to develop ABCG2 inhibitors that can be applied to PDD or PDT for the therapy of brain tumor and other tumors.
Collapse
|
33
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
34
|
Hu Y, Xie Y, Keep RF, Smith DE. Divergent developmental expression and function of the proton-coupled oligopeptide transporters PepT2 and PhT1 in regional brain slices of mouse and rat. J Neurochem 2014; 129:955-65. [PMID: 24548120 DOI: 10.1111/jnc.12687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/26/2014] [Accepted: 02/13/2014] [Indexed: 01/22/2023]
Abstract
This study evaluated the developmental gene and protein expression of proton-coupled oligopeptide transporters (POTs: peptide transporter, PepT1 and PepT2; peptide-histidine transporter, PhT1 and PhT2) in different regions of rodent brain, and the age-dependent uptake of a POT substrate, glycylsarcosine (GlySar), in brain slices. Slices were obtained from cerebral cortex, cerebellum and hippocampus of wildtype and PepT2 null mice, and from rats at different ages. Gene and protein expression were determined by real-time PCR and immunoblot analyses. Brain slice uptakes of radiolabeled glycylsarcosine were determined in the absence and presence of excess unlabeled glycylsarcosine or l-histidine, the latter being an inhibitor of PhT1/2 but not PepT1/2. As PepT2 and PhT1 transcripts were abundantly expressed in all three regions of mouse brain, little to no expression was observed for PepT1 and PhT2. PhT1 protein was present in brain regions of adult but not neonatal mice and expression levels increased with age in rats. Glycylsarcosine uptake, inhibition and transporter dominance did not show regional brain or species differences. However, there were clear age-related differences in functional activity, with PepT2 dominating in neonatal mice and rats, and PhT1 dominating in adult rodents. These developmental changes may markedly impact the neural activity of both endogenous and exogenous (drug) peptides/mimetics. Developmental gene and protein expression of peptide transporters was evaluated in various regions of rodent brain, along with age-dependent uptake of dipeptide. We found marked changes in protein expression and functional activity of PhT1 and PepT2, the former predominating in adult and the latter in neonate. These developmental changes may markedly impact the neural activity of endogenous and exogenous peptides/mimetics.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
35
|
Takada T, Tamura M, Yamamoto T, Matsui H, Matsumura A. Selective accumulation of hematoporphyrin derivative in glioma through proton-coupled folate transporter SLC46A1. J Clin Biochem Nutr 2013; 54:26-30. [PMID: 24426187 PMCID: PMC3882491 DOI: 10.3164/jcbn.13-87] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 12/26/2022] Open
Abstract
The mechanism of tumor-specific porphyrin accumulation is not clear. We investigated the expression of proton-coupled folate transporter SLC46A1 in glioma and aimed to clarify the relationship between tumor fluorescence and SLC46A1 expression.We confirmed the expression of SLC46A1 in surgical specimens from 24 glioma patients by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). We also investigated SLC46A1 expression in glioma cell lines by RT-PCR. The cellular uptake of hematoporphyrin derivative in vitro was measured with a microplate reader and fluorescence microscope. In these experiments, we used three human malignant glioma cell lines: U87, U251 and T98G. Immunohistochemistry showed SLC46A1 positivity in the malignant tumor lesion of each specimen. Strong positive SLC46A1 expression was observed in 33% of grade IV, 22% of grade III and 17% of grade II gliomas. All four randomly obtained malignant glioma frozen sections expressed SLC46A1 mRNA by RT-PCR. In vitro, U87 showed the least SLC46A1 expression, U251 was intermediate, and T98G showed the most expression. The amount of hematoporphyrin derivative (HpD) cellular uptake correlated with SLC46A1 expression. These results suggest that the accumulation of HpD in glioma cells is related to SLC46A1 function and SLC46A1 is involved in the mechanism of glioma fluorescence.
Collapse
Affiliation(s)
- Tomoya Takada
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8573, Japan
| | - Masato Tamura
- Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hirofumi Matsui
- Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8573, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
36
|
Experimental Study to Understand Nonspecific Protoporphyrin IX Fluorescence in Brain Tissues Near Tumors After 5-Aminolevulinic Acid Administration. Photomed Laser Surg 2013; 31:428-33. [DOI: 10.1089/pho.2012.3469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Suzuki C, Kato K, Tsuji AB, Kikuchi T, Zhang MR, Arano Y, Saga T. Synthesis and in vitro cellular uptake of 11C-labeled 5-aminolevulinic acid derivative to estimate the induced cellular accumulation of protoporphyrin IX. Bioorg Med Chem Lett 2013; 23:4567-70. [DOI: 10.1016/j.bmcl.2013.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 11/27/2022]
|
38
|
Sun D, Tan F, Fang D, Wang Y, Zeng S, Jiang H. Expression of proton-coupled oligopeptide transporter (POTs) in prostate of mice and patients with benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Prostate 2013; 73:287-95. [PMID: 22887093 DOI: 10.1002/pros.22568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/03/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Proton-coupled oligopeptide transporters (POTs) serve as integral membrane protein for the cellular uptake of di/tripeptide. Prostate has a large requirement of nutriment for its function to produce and secrete prostatic fluid. Besides, prostate suffered from limited therapy effect of drug treatment. Thus present study was performed to evaluate the expression of POTs in prostate of mice and human with the aim to provide information for potential role of POTs in absorption of nutriment and peptidomimetic drugs in prostate. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot methods were applied to study the mRNA, protein expression of POTs in prostate, human prostate cancer cells (PC-3), and human prostate epithelial cells (RWPE-1). RESULTS qRT-PCR study showed different characteristic of POTs mRNA expression in mouse prostate. Among these transporters, protein expression of PepT2 was detected and increasing during the development of mouse prostate, while PepT1, PHT1, and PHT2 protein was not detected. Furthermore, different characteristic of regulation by inflammation on POTs mRNA expression was found in RWPE-1 and PC-3. In addition, mRNA expression of PepT2 and PHT1 in prostate of patients with PCa was demonstrated be lower compared with BPH. CONCLUSIONS These findings provide the first evidence for the expression of POTs in prostate of mice and patients with BPH or PCa and suggest that POTs are likely to play a role in the transport of di/tripeptides and peptidomimetics in prostate.
Collapse
Affiliation(s)
- Dongli Sun
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
39
|
Kobuchi H, Moriya K, Ogino T, Fujita H, Inoue K, Shuin T, Yasuda T, Utsumi K, Utsumi T. Mitochondrial localization of ABC transporter ABCG2 and its function in 5-aminolevulinic acid-mediated protoporphyrin IX accumulation. PLoS One 2012. [PMID: 23189181 PMCID: PMC3506543 DOI: 10.1371/journal.pone.0050082] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Accumulation of protoporphyrin IX (PpIX) in malignant cells is the basis of 5-aminolevulinic acid (ALA)-mediated photodynamic therapy. We studied the expression of proteins that possibly affect ALA-mediated PpIX accumulation, namely oligopeptide transporter-1 and -2, ferrochelatase and ATP-binding cassette transporter G2 (ABCG2), in several tumor cell lines. Among these proteins, only ABCG2 correlated negatively with ALA-mediated PpIX accumulation. Both a subcellular fractionation study and confocal laser microscopic analysis revealed that ABCG2 was distributed not only in the plasma membrane but also intracellular organelles, including mitochondria. In addition, mitochondrial ABCG2 regulated the content of ALA-mediated PpIX in mitochondria, and Ko143, a specific inhibitor of ABCG2, enhanced mitochondrial PpIX accumulation. To clarify the possible roles of mitochondrial ABCG2, we characterized stably transfected-HEK (ST-HEK) cells overexpressing ABCG2. In these ST-HEK cells, functionally active ABCG2 was detected in mitochondria, and treatment with Ko143 increased ALA-mediated mitochondrial PpIX accumulation. Moreover, the mitochondria isolated from ST-HEK cells exported doxorubicin probably through ABCG2, because the export of doxorubicin was inhibited by Ko143. The susceptibility of ABCG2 distributed in mitochondria to proteinase K, endoglycosidase H and peptide-N-glycosidase F suggested that ABCG2 in mitochondrial fraction is modified by N-glycans and trafficked through the endoplasmic reticulum and Golgi apparatus and finally localizes within the mitochondria. Thus, it was found that ABCG2 distributed in mitochondria is a functional transporter and that the mitochondrial ABCG2 regulates ALA-mediated PpIX level through PpIX export from mitochondria to the cytosol.
Collapse
Affiliation(s)
- Hirotsugu Kobuchi
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hefti M, Albert I, Luginbuehl V. Phenytoin reduces 5-aminolevulinic acid-induced protoporphyrin IX accumulation in malignant glioma cells. J Neurooncol 2012; 108:443-50. [DOI: 10.1007/s11060-012-0857-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/22/2012] [Indexed: 11/24/2022]
|
41
|
Hagiya Y, Endo Y, Yonemura Y, Takahashi K, Ishizuka M, Abe F, Tanaka T, Okura I, Nakajima M, Ishikawa T, Ogura SI. Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro. Photodiagnosis Photodyn Ther 2012; 9:204-14. [PMID: 22959800 DOI: 10.1016/j.pdpdt.2011.12.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/05/2011] [Accepted: 12/05/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Recently, 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is being widely used in cancer therapy owing to the tumor-specific accumulation of photosensitizing protoporphyrin IX (PpIX) after the administration of ALA. In the present study, by focusing on genes involved in the porphyrin biosynthesis pathway, we aimed to explore biomarkers that are predictive for the efficacy of ALA-PDT. METHODS We used five lines of human gastric cancer cells to measure the ALA-based photocytotoxicity. ALA-induced production of PpIX in cancer cells was quantified by fluorescence spectrophotometry. To examine the potential involvement of PEPT1 and ABCG2 in the ALA-PDT sensitivity, stable cell lines overexpressing PEPT1 were established and ABCG2-specific siRNA used. RESULTS We observed that three cell lines were photosensitive, whereas the other two cell lines were resistant to ALA-based photocytotoxicity. The ALA-based photocytotoxicity was found to be well correlated with intracellular PpIX levels, which suggests that certain enzymes and/or transporters involved in ALA-induced PpIX production are critical determinants. We found that high expression of the peptide transporter PEPT1 (ALA influx transporter) and low expression of the ATP-binding cassette transporter ABCG2 (porphyrin efflux transporter) determined ALA-induced PpIX production and cellular photosensitivity in vitro. CONCLUSION PEPT1 and ABCG2 are key players in regulating intracellular PpIX levels and determining the efficacy of ALA-based photocytotoxicity against gastric cancer cells in vitro. Evaluation of the expression levels of PEPT1 and ABCG2 genes could be useful to predict the efficacy of ALA-PDT. Primers specific to those target genes are practical and useful biomarkers for predicting the photo-sensitivity to ALA-PDT.
Collapse
Affiliation(s)
- Yuichiro Hagiya
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
δ-Aminolevulinic acid and its methyl ester induce the formation of Protoporphyrin IX in cultured sensory neurones. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:583-602. [PMID: 21947250 DOI: 10.1007/s00210-011-0683-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/14/2011] [Indexed: 12/20/2022]
Abstract
Application of δ-aminolevulinic acid (ALA) or its methyl ester (MAL) onto cutaneous tumours increases intracellular Protoporphyrin IX (PpIX), serving as photosensitizer in photodynamic therapy (PDT). While PDT is highly effective as treatment of neoplastic skin lesions, it may induce severe pain in some patients. Here, we investigated ALA and MAL uptake and PpIX formation in sensory neurones as potential contributor to the pain. PpIX formation was induced in cultured sensory neurones from rat dorsal root ganglion by incubation with ALA or MAL. Using inhibitors of GABA transporters (GAT), a pharmacological profile of ALA and MAL uptake was assessed. GAT mRNA expression in the cultures was determined by RT-PCR. Cultured sensory neurones synthesised Protoporphyrin IX (PpIX) from extracellularly administered ALA and MAL. PpIX formation was dose- and time-dependent with considerably different kinetics for both compounds. While partial inhibition occurred using L-arginine, PpIX formation from both ALA and MAL could be fully blocked by the GABA-Transporter (GAT)-2/3 inhibitor (S)-SNAP 5114 with similar K (i) (ALA: 195 ± 6 μM; MAL: 129 ± 13 μM). GAT-1 and GAT-3 could be detected in sensory neurons using RT-PCR on mRNA level and using [³H]-GABA uptake on protein level. Cultured sensory neurones take up ALA and MAL and synthesize PpIX from both, enabling a direct impact of photodynamic therapy on cutaneous free nerve endings. The pharmacological profile of ALA and MAL uptake in our test system was very similar and suggests uptake via GABA and amino acid transporters.
Collapse
|
43
|
Ishikawa T, Takahashi K, Ikeda N, Kajimoto Y, Hagiya Y, Ogura SI, Miyatake SI, Kuroiwa T. Transporter-Mediated Drug Interaction Strategy for 5-Aminolevulinic Acid (ALA)-Based Photodynamic Diagnosis of Malignant Brain Tumor: Molecular Design of ABCG2 Inhibitors. Pharmaceutics 2011; 3:615-35. [PMID: 24310600 PMCID: PMC3857086 DOI: 10.3390/pharmaceutics3030615] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/16/2011] [Accepted: 09/09/2011] [Indexed: 12/16/2022] Open
Abstract
Photodynamic diagnosis (PDD) is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma. PDD is achieved by a photon-induced physicochemical reaction which is induced by excitation of protoporphyrin IX (PpIX) exposed to light. Fluorescence-guided gross-total resection has recently been developed in PDD, where 5-aminolevulinic acid (ALA) or its ester is administered as the precursor of PpIX. ALA induces the accumulation of PpIX, a natural photo-sensitizer, in cancer cells. Recent studies provide evidence that adenosine triphosphate (ATP)-binding cassette (ABC) transporter ABCG2 plays a pivotal role in regulating the cellular accumulation of porphyrins in cancer cells and thereby affects the efficacy of PDD. Protein kinase inhibitors are suggested to potentially enhance the PDD efficacy by blocking ABCG2-mediated porphyrin efflux from cancer cells. It is of great interest to develop potent ABCG2-inhibitors that can be applied to PDD for brain tumor therapy. This review article addresses a pivotal role of human ABC transporter ABCG2 in PDD as well as a new approach of quantitative structure-activity relationship (QSAR) analysis to design potent ABCG2-inhibitors.
Collapse
Affiliation(s)
- Toshihisa Ishikawa
- Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu R, Tang AMY, Tan YL, Limenta LMG, Lee EJD. Effects of Sodium Bicarbonate and Ammonium Chloride Pre-treatments on PEPT2 (SLC15A2) Mediated Renal Clearance of Cephalexin in Healthy Subjects. Drug Metab Pharmacokinet 2011; 26:87-93. [DOI: 10.2133/dmpk.dmpk-10-rg-039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Intraoperative 5-aminolevulinic-acid-induced fluorescence in meningiomas. Acta Neurochir (Wien) 2010; 152:1711-9. [PMID: 20535506 DOI: 10.1007/s00701-010-0708-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/28/2010] [Indexed: 10/19/2022]
Abstract
OBJECT 5-aminolevulinic acid (5-ALA) has gained importance as an intraoperative photodynamic diagnostic agent for the extirpation of malignant gliomas. The application of this technique for resection of meningiomas has barely been explored. The aim of this study was to evaluate the utility of 5-ALA-induced fluorescence as a visual tool in meningioma resection and its correlation with histological findings. METHODS A total of 33 consecutive patients undergoing resection of intracranial meningiomas from December 2007 to August 2009 were included in this study. After confirmation of normal liver function, 5-ALA was administered orally (20 mg/kg) within 3-5 h prior to skin incision. All cases were operated on using standard microsurgical and neuronavigation-guided techniques. Intraoperative 440 nm fluorescence was applied periodically during and at the end of resection in order to detect tumor-infiltrated sites. The fluorescence of the tumor was evaluated intraoperatively by the surgeon and confirmed by subsequent video analysis. RESULTS A total of 32 (97%) patients presented with benign meningiomas (WHO I-II). In 1 (3%) patient, histological anaplastic signs (WHO III) could be demonstrated. 5-ALA-induced fluorescence of the tumor was confirmed in a total of 31 (94%) patients. The fluorescence did not correlate with the histological findings (n = 30 WHO I-II, n = 1 WHO grade III) or with preoperative brain edema and administration of steroids. A total resection could be postoperatively demonstrated in 25 (76%) patients. No adverse effects attributable to 5-ALA occurred. CONCLUSIONS 5-ALA-induced fluorescence is a useful and promising intraoperative tool for the visualization of meningioma tissue. The novel findings demonstrated in this study in terms of high fluorescence and poor correlation with histological findings highlight the usefulness of this technique as a routine visual tool to achieve optimal resection of meningiomas.
Collapse
|
46
|
Hayashi Y, Nakada M, Tanaka S, Uchiyama N, Hayashi Y, Kita D, Hamada JI. Implication of 5-aminolevulinic acid fluorescence of the ventricular wall for postoperative communicating hydrocephalus associated with cerebrospinal fluid dissemination in patients with glioblastoma multiforme: a report of 7 cases. J Neurosurg 2010; 112:1015-9. [PMID: 19747042 DOI: 10.3171/2009.8.jns09516] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) has been broadly recognized as a beneficial tool for the resection of glioblastoma multiforme (GBM). Fluorescence in the ventricular walls, which were apparently free of macroscopic tumor or MR imaging enhancement indicative of CSF dissemination, was detected during surgery for GBM. To evaluate the clinical significance of the 5-ALA fluorescence, the authors resected ventricle wall tissue together with the adjacent tumors for pathological examination and then followed up the clinical courses of the patients. METHODS Seven consecutive GBMs located near the lateral ventricle were surgically treated using a fluorescence-guided technique with 5-ALA at the authors' hospital since acquiring instrumentation for the detection of 5-ALA fluorescence in 2007. All of the procedures were performed using a ventricular entry, and 5-ALA fluorescence of the ventricular wall was detected despite the absence of macroscopic tumor invasion of the wall. RESULTS A pathological examination of the resected ventricular wall tissues revealed tumor cells in 6 of the 7 cases and disruption of the ependymal cell layer in all 7 cases. Delayed communicating hydrocephalus followed surgery in all 7 patients, and ventricular wall enhancements on MR imaging were demonstrated after hydrocephalus in 2 of the patients. CONCLUSIONS Data in this study suggest that 5-ALA fluorescence of the ventricular wall may be predictive of postoperative hydrocephalus associated with CSF dissemination even in cases without evidence of CSF dissemination on MR imaging studies before surgery. The authors also speculate that postoperative radiotherapy covering the whole ventricular system may be a better therapeutic option for these patients.
Collapse
Affiliation(s)
- Yutaka Hayashi
- Department of Neurosurgery, Kanazawa University Hospital, Kanazawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2010; 60:543-85. [DOI: 10.1211/jpp.60.5.0002] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractPeptide transport is currently a prominent topic in membrane research. The transport proteins involved are under intense investigation because of their physiological importance in protein absorption and also because peptide transporters are possible vehicles for drug delivery. Moreover, in many tissues peptide carriers transduce peptidic signals across membranes that are relevant in information processing. The focus of this review is on the pharmaceutical relevance of the human peptide transporters PEPT1 and PEPT2. In addition to their physiological substrates, both carriers transport many β-lactam antibiotics, valaciclovir and other drugs and prodrugs because of their sterical resemblance to di- and tripeptides. The primary structure, tissue distribution and substrate specificity of PEPT1 and PEPT2 have been well characterized. However, there is a dearth of knowledge on the substrate binding sites and the three-dimensional structure of these proteins. Until this pivotal information becomes available by X-ray crystallography, the development of new drug substrates relies on classical transport studies combined with molecular modelling. In more than thirty years of research, data on the interaction of well over 700 di- and tripeptides, amino acid and peptide derivatives, drugs and prodrugs with peptide transporters have been gathered. The aim of this review is to put the reports on peptide transporter-mediated drug uptake into perspective. We also review the current knowledge on pharmacogenomics and clinical relevance of human peptide transporters. Finally, the reader's attention is drawn to other known or proposed human peptide-transporting proteins.
Collapse
Affiliation(s)
- Matthias Brandsch
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Ilka Knütter
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Eva Bosse-Doenecke
- Institute of Biochemistry/Biotechnology, Faculty of Science I, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|
48
|
Frølund S, Marquez OC, Larsen M, Brodin B, Nielsen CU. Delta-aminolevulinic acid is a substrate for the amino acid transporter SLC36A1 (hPAT1). Br J Pharmacol 2010; 159:1339-53. [PMID: 20128809 DOI: 10.1111/j.1476-5381.2009.00620.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE delta-Aminolevulinic acid (ALA) is used in cancer patients for photodynamic diagnosis or therapy. Oral administration of ALA has been used in patients with prostate and bladder cancer. The present aim was to investigate the mechanism of intestinal absorption of ALA and its transport via the amino acid transporter SLC36A1. EXPERIMENTAL APPROACH In vitro investigations of ALA affinity for and uptake via SLC36A1 and SLC15A1 were performed in Caco-2 cell monolayers. Interaction of ALA with SLC15A1 was investigated in MDCK/SLC15A1 cells, whereas interactions with SLC36A1 were investigated in COS-7 cells transiently expressing SLC36A1. KEY RESULTS ALA inhibited SLC36A1-mediated L-[(3)H]Pro and SLC15A1-mediated [(14)C]Gly-Sar uptake in Caco-2 cell monolayers with IC(50) values of 11.3 and 2.1 mM respectively. In SLC36A1-expressing COS-7 cells, the uptake of [(14)C]ALA was saturable with a K(m) value of 6.8 +/- 3.0 mM and a V(max) of 96 +/- 13 pmol x cm(-2) x min(-1). Uptake of [(14)C]ALA was pH and concentration dependent, and could be inhibited by glycine, proline and GABA. In a membrane potential assay, translocation of ALA via SLC36A1 was concentration dependent, with a K(m) value of 3.8 +/- 1.0 mM. ALA is thus a substrate for SLC36A1. In Caco-2 cells, apical [(14)C]ALA uptake was pH dependent, but Na(+) independent, and completely inhibited by 5-hydroxy-L-tryptophan and L-4,4'-biphenylalanyl-l-proline. CONCLUSIONS AND IMPLICATIONS. ALA was a substrate for SLC36A1, and the apical absorption in Caco-2 cell was only mediated by SLC36A1 and SLC15A1. This advances our understanding of intestinal absorption mechanisms of ALA, as well as its potential for drug interactions.
Collapse
Affiliation(s)
- S Frølund
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
49
|
Nabavi A, Thurm H, Zountsas B, Pietsch T, Lanfermann H, Pichlmeier U, Mehdorn M. FIVE-AMINOLEVULINIC ACID FOR FLUORESCENCE-GUIDED RESECTION OF RECURRENT MALIGNANT GLIOMAS. Neurosurgery 2009; 65:1070-6; discussion 1076-7. [DOI: 10.1227/01.neu.0000360128.03597.c7] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Tsurubuchi T, Zaboronok A, Yamamoto T, Nakai K, Yoshida F, Shirakawa M, Matsuda M, Matsumura A. The optimization of fluorescence imaging of brain tumor tissue differentiated from brain edema—In vivo kinetic study of 5-aminolevulinic acid and talaporfin sodium. Photodiagnosis Photodyn Ther 2009; 6:19-27. [DOI: 10.1016/j.pdpdt.2009.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/29/2009] [Accepted: 03/30/2009] [Indexed: 11/17/2022]
|