1
|
Jia F, Yu W, Li X, Chen Y, Wang Y, Ji J. Microneedles loaded with glutathione-scavenging composites for nitric oxide enhanced photodynamic therapy of melanoma. Bioeng Transl Med 2023; 8:e10352. [PMID: 36684091 PMCID: PMC9842046 DOI: 10.1002/btm2.10352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
Photodynamic therapy (PDT) represents an attractive promising route for melanoma treatment. However, its therapeutic efficacy is compromised by inefficient drug delivery and high glutathione (GSH) levels in cancer cells. To overcome these challenges, microneedles (MNs) system loaded with GSH-scavenging nanocomposites was presented for nitric oxide (NO) enhanced PDT. The nanocomposites consisted of S-nitroso-N-acrylate penicillamine (SNAP; a NO donor) grafted fourth-generation polyamide amine dendrimer (G4) and chlorin e6 (Ce6). Upon local insertion of polyvinylpyrrolidone MNs, G4-SNAP/Ce6 composites were fast delivered and significantly amplified the therapeutic effects during PDT, via GSH depletion and reactive nitrogen species generation. Even with a single administration and low power light exposure, MNs with G4-SNAP/Ce6 effectively halt the tumor progression. The system demonstrated better cancer ablation efficacy than Ce6 alone toward melanoma. The strategy may inspire new ideas for future PDT-related therapy for skin tumors.
Collapse
Affiliation(s)
- Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiangChina
| | - Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiangChina
| | - Xinfang Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiangChina
| | - Yonghang Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiangChina
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiangChina
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
2
|
Castro KADF, Prandini JA, Biazzotto JC, Tomé JPC, da Silva RS, Lourenço LMO. The Surprisingly Positive Effect of Zinc-Phthalocyanines With High Photodynamic Therapy Efficacy of Melanoma Cancer. Front Chem 2022; 10:825716. [PMID: 35360535 PMCID: PMC8964275 DOI: 10.3389/fchem.2022.825716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
Phthalocyanine (Pc) dyes are photoactive molecules that can absorb and emit light in the visible spectrum, especially in the red region of the spectrum, with great potential for biological scopes. For this target, it is important to guarantee a high Pc solubility, and the use of suitable pyridinium units on their structure can be a good strategy to use effective photosensitizers (PSs) for photodynamic therapy (PDT) against cancer cells. Zn(II) phthalocyanines (ZnPcs) conjugated with thiopyridinium units (1–3) were evaluated as PS drugs against B16F10 melanoma cells, and their photophysical, photochemical, and in vitro photobiological properties were determined. The photodynamic efficiency of the tetra- and octa-cationic ZnPcs 1–3 was studied and compared at 1, 2, 5, 10, and 20 µM. The different number of charge units, and the presence/absence of a-F atoms on the Pc structure, contributes for their PDT efficacy. The 3-(4′,5′-dimethylthiazol-2′-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays on B16F10 melanoma cells show a moderate to high capacity to be photoinactivated by ZnPcs 1–3 (ZnPc 1 > ZnPc 2 > ZnPc 3). The best PDT conditions were found at a Pc concentration of 20 μM, under red light (λ = 660 ± 20 nm) at an irradiance of 4.5 mW/cm2 for 667 s (light dose of 3 J/cm2). In these conditions, it is noteworthy that the cationic ZnPc 1 shows a promising photoinactivation ratio, reaching the detection limit of the MTT method. Moreover, these results are comparable to the better ones in the literature.
Collapse
Affiliation(s)
- Kelly A. D. F. Castro
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana A. Prandini
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Cristina Biazzotto
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João P. C. Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Roberto S. da Silva
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Roberto S. da Silva, ; Leandro M. O. Lourenço,
| | - Leandro M. O. Lourenço
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
- *Correspondence: Roberto S. da Silva, ; Leandro M. O. Lourenço,
| |
Collapse
|
3
|
Castro KADF, Costa LD, Prandini JA, Biazzotto JC, Tomé AC, Hamblin MR, da Graça P M S Neves M, Faustino MAF, da Silva RS. The Photosensitizing Efficacy of Micelles Containing a Porphyrinic Photosensitizer and KI against Resistant Melanoma Cells. Chemistry 2021; 27:1990-1994. [PMID: 33185284 PMCID: PMC7921759 DOI: 10.1002/chem.202004389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Indexed: 11/07/2022]
Abstract
Photodynamic therapy (PDT) is a promising alternative to overcome the resistance of melanoma to conventional therapies. Currently applied photosensitizers (PS) are often based on tetrapyrrolic macrocycles like porphyrins. Unfortunately, in some cases the use of this type of derivative is limited due to their poor solubility in the biological environment. Feasible approaches to surpass this drawback are based on lipid formulations. Besides that, and inspired in the efficacy of potassium iodide (KI) for antimicrobial photodynamic therapy (aPDT), the combined effect of singlet oxygen (1 O2 ) with KI was assessed in this work, as an alternative strategy to potentiate the effect of PDT against resistant melanoma cells.
Collapse
Affiliation(s)
- Kelly A D F Castro
- Department of Physics and Chemistry, Faculty of, Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Letícia D Costa
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Juliana A Prandini
- Department of Physics and Chemistry, Faculty of, Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana C Biazzotto
- Department of Physics and Chemistry, Faculty of, Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Roberto S da Silva
- Department of Physics and Chemistry, Faculty of, Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Pires L, Demidov V, Wilson BC, Salvio AG, Moriyama L, Bagnato VS, Vitkin IA, Kurachi C. Dual-Agent Photodynamic Therapy with Optical Clearing Eradicates Pigmented Melanoma in Preclinical Tumor Models. Cancers (Basel) 2020; 12:cancers12071956. [PMID: 32708501 PMCID: PMC7409296 DOI: 10.3390/cancers12071956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment using light-activated photosensitizers (photodynamic therapy, PDT) has shown limited efficacy in pigmented melanoma, mainly due to the poor penetration of light in this tissue. Here, an optical clearing agent (OCA) was applied topically to a cutaneous melanoma model in mice shortly before PDT to increase the effective treatment depth by reducing the light scattering. This was used together with cellular and vascular-PDT, or a combination of both. The effect on tumor growth was measured by longitudinal ultrasound/photoacoustic imaging in vivo and by immunohistology after sacrifice. In a separate dorsal window chamber tumor model, angiographic optical coherence tomography (OCT) generated 3D tissue microvascular images, enabling direct in vivo assessment of treatment response. The optical clearing had minimal therapeutic effect on the in control, non-pigmented cutaneous melanomas but a statistically significant effect (p < 0.05) in pigmented lesions for both single- and dual-photosensitizer treatment regimes. The latter enabled full-depth eradication of tumor tissue, demonstrated by the absence of S100 and Ki67 immunostaining. These studies are the first to demonstrate complete melanoma response to PDT in an immunocompromised model in vivo, with quantitative assessment of tumor volume and thickness, confirmed by (immuno) histological analyses, and with non-pigmented melanomas used as controls to clarify the critical role of melanin in the PDT response. The results indicate the potential of OCA-enhanced PDT for the treatment of pigmented lesions, including melanoma.
Collapse
Affiliation(s)
- Layla Pires
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Valentin Demidov
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Correspondence: ; Tel.: +1-416-634-8778
| | | | - Lilian Moriyama
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| | - I. Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; (V.D.); (I.A.V.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, Sao Carlos-SP 13566-590, Brazil; (L.P.); (L.M.); (V.S.B.); (C.K.)
| |
Collapse
|
5
|
Montaseri H, Kruger CA, Abrahamse H. Recent Advances in Porphyrin-Based Inorganic Nanoparticles for Cancer Treatment. Int J Mol Sci 2020; 21:E3358. [PMID: 32397477 PMCID: PMC7247422 DOI: 10.3390/ijms21093358] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy-PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa; (H.M.); (C.A.K.)
| |
Collapse
|
6
|
Fu C, Kuang BH, Qin L, Zeng XY, Wang BC. Efficacy and safety of photodynamic therapy with amino-5-laevulinate nanoemulsion versus methyl-5-aminolaevulinate for actinic keratosis: A meta-analysis. Photodiagnosis Photodyn Ther 2019; 27:408-414. [PMID: 31310826 DOI: 10.1016/j.pdpdt.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Photodynamic therapy is an effective treatment for actinic keratosis. 5-aminolevulinic acid nanoemulsion (BF-200 ALA) and methyl-5-aminolevulinate (MAL) are both prodrugs for the treatment of actinic keratosis with photodynamic therapy. A comparison of the efficacy and safety between the drugs is critical for clinical practice. OBJECTIVES To investigate if photodynamic therapy in combination with BF-200 ALA is superior to photodynamic therapy with MAL for actinic keratosis. METHODS We performed a meta-analysis to investigate the combination of photodynamic therapy with BF-200 ALA and with MAL. The PubMed, Cochrane Library, Web of Science and EMBASE databases were searched to select eligible randomized controlled trials. Our search was conducted on April 1, 2019, and included the search terms "5-aminolevulinic acid nanoemulsion or BF-200 ALA", "methyl-5-aminolevulinate or methyl aminolaevulinate" and "actnic keratosis". Cochrane Risk of Bias Tool was used to estimate the risk of bias. RESULTS The meta-analysis consisted of 5988 actinic keratosis lesions in five eligible randomized controlled trials, with a total of 2953 actinic keratosis lesions treated with BF-200 ALA and 3035 actinic keratosis lesions treated with MAL. BF-200 ALA in combination with photodynamic therapy showed significantly higher overall complete clearance rates (RR: 1.07, 95% CI 1.02-1.12, p = 0.01) and 3 month complete clearance rates (RR: 1.09, 95% CI 1.06-1.12, p < 0.00001) compared to MAL. A subgroup analysis was performed for photodynamic therapy combined with BF-200 ALA, revealing increased complete clearance rates of grade II-III lesions in comparison with MAL (RR: 1.24, 95% CI 1.05-1.46, p = 0.01). Compared with MAL, the pooled relative risk for the meta-analysis for recurrence was 0.67 (95% CI 0.48-0.92, p = 0.01) at 12 month after BF-200 ALA treatment. CONCLUSION Photodynamic therapy with BF-200 ALA has a 9% better chance of complete clearance at 3 months and a 24% better chance of grade II-III lesions after treatment than with MAL for patients with actinic keratosis.
Collapse
Affiliation(s)
- Chen Fu
- Department of Dermatology, the First Hospital of Wuhan, Wuhan 430022, China
| | - Bo-Hua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Qin
- Department of Dermatology, the First Hospital of Wuhan, Wuhan 430022, China
| | - Xian-Yu Zeng
- Department of Dermatology, the First Hospital of Wuhan, Wuhan 430022, China
| | - Bi-Cheng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Baldea I, Giurgiu L, Teacoe ID, Olteanu DE, Olteanu FC, Clichici S, Filip GA. Photodynamic Therapy in Melanoma - Where do we Stand? Curr Med Chem 2019; 25:5540-5563. [PMID: 29278205 DOI: 10.2174/0929867325666171226115626] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malignant melanoma is one of the most aggressive malignant tumors, with unpredictable evolution. Despite numerous therapeutic options, like chemotherapy, BRAF inhibitors and immunotherapy, advanced melanoma prognosis remains severe. Photodynamic therapy (PDT) has been successfully used as the first line or palliative therapy for the treatment of lung, esophageal, bladder, non melanoma skin and head and neck cancers. However, classical PDT has shown some drawbacks that limit its clinical application in melanoma. OBJECTIVE The most important challenge is to overcome melanoma resistance, due to melanosomal trapping, presence of melanin, enhanced oxidative stress defense, defects in the apoptotic pathways, immune evasion, neoangiogenesis stimulation. METHOD In this review we considered: (1) main signaling molecular pathways deregulated in melanoma as potential targets for personalized therapy, including PDT, (2) results of the clinical studies regarding PDT of melanoma, especially advanced metastatic stage, (3) progresses made in the design of anti-melanoma photosensitizers (4) inhibition of tumor neoangiogenesis, as well as (5) advantages of the derived therapies like photothermal therapy, sonodynamic therapy. RESULTS PDT represents a promising alternative palliative treatment for advanced melanoma patients, mainly due to its minimal invasive character and low side effects. Efficient melanoma PDT requires: (1) improved, tumor targeted, NIR absorbing photosensitizers, capable of inducing high amounts of different ROS inside tumor and vasculature cells, possibly allowing a theranostic approach; (2) an efficient adjuvant immune therapy. CONCLUSION Combination of PDT with immune stimulation might be the key to overcome the melanoma resistance and to obtain better, sustainable clinical results.
Collapse
Affiliation(s)
- Ioana Baldea
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Lorin Giurgiu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Ioana Diana Teacoe
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Florin Catalin Olteanu
- Industrial Engineering and Management Department, Transylvania University, Brasov, Romania
| | - Simona Clichici
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Rady M, Gomaa I, Afifi N, Abdel-Kader M. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model. Int J Pharm 2018; 548:480-490. [DOI: 10.1016/j.ijpharm.2018.06.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022]
|
9
|
Melanogenesis and DNA damage following photodynamic therapy in melanoma with two meso-substituted porphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:402-10. [DOI: 10.1016/j.jphotobiol.2016.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
|
10
|
Lee KL, Carpenter BL, Wen AM, Ghiladi RA, Steinmetz NF. High Aspect Ratio Nanotubes Formed by Tobacco Mosaic Virus for Delivery of Photodynamic Agents Targeting Melanoma. ACS Biomater Sci Eng 2016; 2:838-844. [PMID: 28713855 DOI: 10.1021/acsbiomaterials.6b00061] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is a highly aggressive cancer that is unresponsive to many traditional therapies. Recently, photodynamic therapy has shown promise in its treatment as an adjuvant therapy. However, conventional photosensitizers are limited by poor solubility and limited accumulation within target tissue. Here, we report the delivery of a porphyrin-based photosensitizer encapsulated within a plant viral nanoparticle. Specifically, we make use of the hollow, high aspect ratio nanotubes formed by the nucleoprotein components of tobacco mosaic virus (TMV) to encapsulate the drug for delivery and targeting of cancer cells. The cationic photosensitizer was successfully and stably loaded into the interior channel of TMV via electrostatic interactions. Cell uptake and efficacy were evaluated using a model of melanoma. The resulting TMV-photosensitizer exhibited improved cell uptake and efficacy when compared to free photosensitizer, making it a promising platform for improved therapy of melanoma.
Collapse
Affiliation(s)
- Karin L Lee
- Department of Biomedical Engineering, Schools of Medicine and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Bradley L Carpenter
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Amy M Wen
- Department of Biomedical Engineering, Schools of Medicine and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Schools of Medicine and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Radiology, Schools of Medicine and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Materials Science and Engineering, Schools of Medicine and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Macromolecular Science and Engineering, Schools of Medicine and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Schools of Medicine and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
11
|
Baldea I, Olteanu DE, Bolfa P, Ion RM, Decea N, Cenariu M, Banciu M, Sesarman AV, Filip AG. Efficiency of photodynamic therapy on WM35 melanoma with synthetic porphyrins: Role of chemical structure, intracellular targeting and antioxidant defense. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:142-52. [DOI: 10.1016/j.jphotobiol.2015.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023]
|
12
|
Cerman E, Çekiç O. Clinical use of photodynamic therapy in ocular tumors. Surv Ophthalmol 2015; 60:557-74. [PMID: 26079736 DOI: 10.1016/j.survophthal.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023]
Abstract
Although the introduction of intravitreal anti-vascular endothelial growth factor drugs reduced the indications for photodynamic therapy in ophthalmology, it may still be used in various ocular tumors. Although many studies have shown that photodynamic therapy is effective in ocular tumors, the literature consists of case reports and series. In this review, we systematically performed a meta-analysis for the use of photodynamic therapy in circumscribed choroidal hemangioma, diffuse choroidal hemangioma, retinal capillary hemangioma, von Hippel-Lindau angiomatosis, choroidal melanoma, retinal astrocytoma, retinoblastoma, eyelid tumors, conjunctival tumors, and choroidal metastasis.
Collapse
Affiliation(s)
- Eren Cerman
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| | - Osman Çekiç
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
13
|
Banerjee S, Pillai MRA, Knapp FFR. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 2015; 115:2934-74. [PMID: 25865818 DOI: 10.1021/cr500171e] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - M R A Pillai
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - F F Russ Knapp
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| |
Collapse
|
14
|
Sharma SK, Huang YY, Hamblin MR. Melanoma Resistance to Photodynamic Therapy. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Huang YY, Vecchio D, Avci P, Yin R, Garcia-Diaz M, Hamblin MR. Melanoma resistance to photodynamic therapy: new insights. Biol Chem 2014; 394:239-50. [PMID: 23152406 DOI: 10.1515/hsz-2012-0228] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/06/2012] [Indexed: 01/11/2023]
Abstract
Melanoma is the most dangerous form of skin cancer, with a steeply rising incidence and a poor prognosis in its advanced stages. Melanoma is highly resistant to traditional chemotherapy and radiotherapy, although modern targeted therapies such as BRAF inhibitors are showing some promise. Photodynamic therapy (PDT, the combination of photosensitizing dyes and visible light) has been tested in the treatment of melanoma with some promising results, but melanoma is generally considered to be resistant to it. Optical interference by the highly-pigmented melanin, the antioxidant effect of melanin, the sequestration of photosensitizers inside melanosomes, defects in apoptotic pathways, and the efflux of photosensitizers by ATP-binding cassette transporters have all been implicated in melanoma resistance to PDT. Approaches to overcoming melanoma resistance to PDT include: the discovery of highly active photosensitizers absorbing in the 700-800-nm near infrared spectral region; interventions that can temporarily reduce the amount or pigmentation of the melanin; compounds that can reverse apoptotic defects or inhibit drug-efflux of photosensitizers; and immunotherapy approaches that can take advantage of the ability of PDT to activate the host immune system against the tumor being treated.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
16
|
Luo W, Liu RS, Zhu JG, Li YC, Liu HC. Subcellular location and photodynamic therapeutic effect of chlorin e6 in the human tongue squamous cell cancer Tca8113 cell line. Oncol Lett 2014; 9:551-556. [PMID: 25621023 PMCID: PMC4301477 DOI: 10.3892/ol.2014.2720] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/30/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the distribution and photodynamic therapeutic effect of chlorin e6 (Ce6) in the human tongue squamous cell carcinoma Tca8113 cell line in vitro. The distribution of Ce6 in the Tca8113 cells was observed in situ combined with mitochondrial and lysosomal fluorescent probes. Next, 630-nm semiconductor laser irradiation was performed. The MTS colorimetric method was used to determine cell survival. Annexin V fluorescein isothiocyanate/propidium iodide (PI) double staining was used to detect early apoptosis following photodynamic therapy (PDT). The flow cytometer was used to analyze the DNA content subsequent to PI-staining. It was observed that Ce6 could combine with the cellular membrane following 30 min of incubation with the Tca8113 cells. As the length of incubation increased, Ce6 gradually entered the cells in a particular distribution and reached saturation by 3 h. Co-localization analysis demonstrated that Ce6 was more likely to be present in the mitochondria than in the lysosomes. The cells incubated with 5 μg/ml Ce6 for 24 h exhibited a low toxicity of 5%, however, following light irradiation, Ce6-PDT was able to kill the Tca8113 cells in vitro. The cell toxicity was positively correlated with Ce6 concentration and light dose, therefore, the effect of Ce6 was concentration/dose-dependent (P<0.01). The lower Ce6 concentrations and light doses could significantly induce apoptosis in the Tca8113 cells, while higher doses increased necrosis/percentage of dead cells. In summary, Ce6 saturated the Tca8113 cells following 3 h of incubation. Furthermore, Ce6-PDT effectively killed the cultured Tca8113 cells in vitro at a safe concentration. At a low concentration and light dose, Ce6 is more likely to induce cell apoptosis via the mitochondria than the lysosomes.
Collapse
Affiliation(s)
- Wei Luo
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Rong-Sen Liu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jian-Guo Zhu
- Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Ying-Chao Li
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hong-Chen Liu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
17
|
Monge-Fuentes V, Muehlmann LA, de Azevedo RB. Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. NANO REVIEWS 2014; 5:24381. [PMID: 25317253 PMCID: PMC4152551 DOI: 10.3402/nano.v5.24381] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/14/2023]
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has been traditionally considered difficult to treat. The worldwide incidence of melanoma has been increasing faster than any other type of cancer. Early detection, surgery, and adjuvant therapy enable improved outcomes; nonetheless, the prognosis of metastatic melanoma remains poor. Several therapies have been investigated for the treatment of melanoma; however, current treatment options for patients with metastatic disease are limited and non-curative in the majority of cases. Photodynamic therapy (PDT) has been proposed as a promising minimally invasive therapeutic procedure that employs three essential elements to induce cell death: a photosensitizer, light of a specific wavelength, and molecular oxygen. However, classical PDT has shown some drawbacks that limit its clinical application. In view of this, the use of nanotechnology has been considered since it provides many tools that can be applied to PDT to circumvent these limitations and bring new perspectives for the application of this therapy for different types of diseases. On that ground, this review focuses on the potential use of developing nanotechnologies able to bring significant benefits for anticancer PDT, aiming to reach higher efficacy and safety for patients with malignant melanoma.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| | - Luis Alexandre Muehlmann
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| | - Ricardo Bentes de Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
18
|
Saavedra R, Rocha LB, Dąbrowski JM, Arnaut LG. Modulation of Biodistribution, Pharmacokinetics, and Photosensitivity with the Delivery Vehicle of a Bacteriochlorin Photosensitizer for Photodynamic Therapy. ChemMedChem 2013; 9:390-8. [DOI: 10.1002/cmdc.201300449] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 11/10/2022]
|
19
|
Photodynamic therapy in treatment of cutaneous and choroidal melanoma. Photodiagnosis Photodyn Ther 2013; 10:503-9. [DOI: 10.1016/j.pdpdt.2013.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/15/2013] [Accepted: 05/19/2013] [Indexed: 01/10/2023]
|
20
|
Slastnikova TA, Rosenkranz AA, Lupanova TN, Gulak PV, Gnuchev NV, Sobolev AS. Study of efficiency of the modular nanotransporter for targeted delivery of photosensitizers to melanoma cell nuclei in vivo. DOKL BIOCHEM BIOPHYS 2012; 446:235-7. [PMID: 23132717 DOI: 10.1134/s1607672912050146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 11/23/2022]
Affiliation(s)
- T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012; 2:916-66. [PMID: 23082103 PMCID: PMC3475217 DOI: 10.7150/thno.4571] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 02/07/2023] Open
Abstract
Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.
Collapse
|
22
|
DECREAU RICHARD, RICHARD MARIEJEANNE, JULLIARD MICHEL. Photodynamic therapy against achromic M6 melanocytes: phototoxicity of lipophilic axially substituted aluminum phthalocyanines and hexadecahalogenated zinc phthalocyanines. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1002/jpp.343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lipophilic and axially substituted tri-n-hexylsiloxy aluminum phthalocyanine and cholesteryloxy diphenylsiloxy aluminum phthalocyanine were synthesized and assayed in PDT against M6 melanocytes. In the conditions used (λ > 480 nm , 10 mW cm-2, egg-yolk lecithin or cremophor EL formulation) they both exhibited a higher photodynamic effect than chloroaluminum phthalocyanine. They displayed 2% to 3.5% cell viability at 10-5M dose for 20 min irradiation. Hexadecafluoro zinc phthalocyanine was synthesized to increase the lipophilicity of zinc phthalocyanine, hexadecachloro zinc phthalocyanine was also included because it would theoretically enhance the phototoxicity. In all the delivery systems used, their photodynamic effect against M6 melanocytes was lower in comparison with zinc phthalocyanine and axially substituted aluminum phthalocyanines. A 2 h irradiation treatment with 3 × 10-6 M hexadecafluoro zinc phthalocyanine and 10-5 M hexadecachloro zinc phthalocyanine led to 60% and 15% cell viability respectively. In all cases, the cell killing effect was light-and dose-dependent and was higher in cremophor EL micelles than in the egg-yolk lecithin formulation.
Collapse
Affiliation(s)
- RICHARD DECREAU
- Laboratoire AM3: Activation, Mécanismes, Modélisation Moléculaire, Faculté des Sciences Saint Jérôme, F-13397 Marseille Cédex 20, France
| | - MARIE-JEANNE RICHARD
- Laboratoire de Biochimie C, Centre Hospitalier Universitaire A. Michallon, BP 217X, F-38043 Grenoble Cédex, France
| | - MICHEL JULLIARD
- Laboratoire AM3: Activation, Mécanismes, Modélisation Moléculaire, Faculté des Sciences Saint Jérôme, F-13397 Marseille Cédex 20, France
| |
Collapse
|
23
|
MODY TARAKD, SESSLER JONATHANL. Texaphyrins: a new approach to drug development. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1002/jpp.326] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The texaphyrins are prototypical metal-coordinating expanded porphyrins. They represent a burgeoning class of pharmacological agents that show promise for an array of medical applications. Currently, two different water-soluble lanthanide texaphyrins, namely motexafin gadolinium ( Gd-Tex , 1) and motexafin lutetium ( Lu-Tex , 2), are involved in multi-center clinical trials for a variety of indications. The first of these agents, XCYTRIN® (motexafin gadolinium) Injection, is being evaluated as a potential X-ray radiation enhancer in a randomized Phase III clinical trial in patients with brain metastases. The second, in various formulations, is being evaluated as a photosensitizer for use in: (i) the photodynamic treatment of recurrent breast cancer (LUTRIN® Injection; now in Phase IIb clinical trials); (ii) photoangioplastic reduction of atherosclerosis involving peripheral and coronary arteries (ANTRIN® Injection; now in Phase II and Phase I clinical trials, respectively); and (iii) light-based age-related macular degeneration (OPTRIN™ Injection; currently under Phase II clinical evaluation), a vision-threatening disease of the retina. In this article, these developments, along with fundamental aspects of the underlying chemistry are reviewed.
Collapse
Affiliation(s)
- TARAK D. MODY
- Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, CA 94085, USA
| | - JONATHAN L. SESSLER
- Department of Chemistry & Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
24
|
Abstract
The current state of pharmaceutical development of porphyrin-type macrocycles in medicine is highlighted. Currently, several porphyrinoid-based drugs are under various stages of development as phototherapeutic agents, X-ray radiation enhancers and boron neutron capture agents. These compounds represent a burgeoning class of pharmacological agents that are potentially useful in an array of treatment areas.
Collapse
Affiliation(s)
- TARAK D. MODY
- Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, CA 94086, USA
| |
Collapse
|
25
|
Affiliation(s)
- IAN J. MACDONALD
- Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - THOMAS J. DOUGHERTY
- Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
26
|
Slastnikova TA, Rosenkranz AA, Gulak PV, Schiffelers RM, Lupanova TN, Khramtsov YV, Zalutsky MR, Sobolev AS. Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery. Int J Nanomedicine 2012; 7:467-82. [PMID: 22346349 PMCID: PMC3277434 DOI: 10.2147/ijn.s28249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Modular nanotransporters (MNT) are recombinant multifunctional polypeptides created to exploit a cascade of cellular processes, initiated with membrane receptor recognition to deliver selective short-range and highly cytotoxic therapeutics to the cell nucleus. This research was designed for in vivo concept testing for this drug delivery platform using two modular nanotransporters, one targeted to the α-melanocyte-stimulating hormone (αMSH) receptor overexpressed on melanoma cells and the other to the epidermal growth factor (EGF) receptor overexpressed on several cancers, including glioblastoma, and head-and-neck and breast carcinoma cells. Methods In vivo targeting of the modular nanotransporter was determined by immuno-fluorescence confocal laser scanning microscopy and by accumulation of 125I-labeled modular nanotransporters. The in vivo therapeutic effects of the modular nanotransporters were assessed by photodynamic therapy studies, given that the cytotoxicity of photosensitizers is critically dependent on their delivery to the cell nucleus. Results Immunohistochemical analyses of tumor and neighboring normal tissues of mice injected with multifunctional nanotransporters demonstrated preferential uptake in tumor tissue, particularly in cell nuclei. With 125I-labeled MNT{αMSH}, optimal tumor:muscle and tumor:skin ratios of 8:1 and 9.8:1, respectively, were observed 3 hours after injection in B16-F1 melanoma-bearing mice. Treatment with bacteriochlorin p-MNT{αMSH} yielded 89%–98% tumor growth inhibition and a two-fold increase in survival for mice with B16-F1 and Cloudman S91 melanomas. Likewise, treatment of A431 human epidermoid carcinoma-bearing mice with chlorin e6- MNT{EGF} resulted in 94% tumor growth inhibition compared with free chlorin e6, with 75% of animals surviving at 3 months compared with 0% and 20% for untreated and free chlorin e6-treated groups, respectively. Conclusion The multifunctional nanotransporter approach provides a new in vivo functional platform for drug development that could, in principle, be applicable to any combination of cell surface receptor and agent (photosensitizers, oligonucleotides, radionuclides) requiring nuclear delivery to achieve maximum effectiveness.
Collapse
Affiliation(s)
- Tatiana A Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The photosensitizing and pharmacokinetic properties of porphyrin-type compounds have been investigated for nearly a century. In the last decade, two porphyrin derivatives were approved in the U.S.A. and in several other countries for the photodynamic treatment of various lesions. An overview of the different mechanisms for preferential porphyrinoid localization in malignant tumors is presented herein. Several uptake pathways are possible for each photosensitizer, which are determined by its structure, mode of delivery and tumor type. Comparisons of the different mechanisms and correlations with the structure of the sensitizer are presented. Current delivery systems for porphyrin sensitizers are described, as well as recent strategies for enhancing their tumor-specificity, including conjugation to a carrier system that selectively targets a tumor-associated receptor or antigen.
Collapse
Affiliation(s)
- Jens Osterloh
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
28
|
Photodynamic therapy and the development of metal-based photosensitisers. Met Based Drugs 2011; 2008:276109. [PMID: 18815617 PMCID: PMC2535827 DOI: 10.1155/2008/276109] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/30/2007] [Indexed: 11/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that has been used in the successful treatment of a number of diseases and disorders, including age-related macular degeneration (AMD), psoriasis, and certain cancers. PDT uses a combination of a selectively localised light-sensitive drug (known as a photosensitiser) and light of an appropriate wavelength. The light-activated form of the drug reacts with molecular oxygen to produce reactive oxygen species (ROS) and radicals; in a biological environment these toxic species can interact with cellular constituents causing biochemical disruption to the cell. If the homeostasis of the cell is altered significantly then the cell enters the process of cell death. The first photosensitiser to gain regulatory approval for clinical PDT was Photofrin. Unfortunately, Photofrin has a number of associated disadvantages, particularly pro-longed patient photosensitivity. To try and overcome these disadvantages second and third generation photosensitisers have been developed and investigated. This Review highlights the key photosensitisers investigated, with particular attention paid to the metallated and non-metallated cyclic tetrapyrrolic derivatives that have been studied in vitro and in vivo; those which have entered clinical trials; and those that are currently in use in the clinic for PDT.
Collapse
|
29
|
Glazer ES, Zhu C, Massey KL, Thompson CS, Kaluarachchi WD, Hamir AN, Curley SA. Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin Cancer Res 2011; 16:5712-21. [PMID: 21138869 DOI: 10.1158/1078-0432.ccr-10-2055] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Pancreatic carcinoma is one of the deadliest cancers with few effective treatments. Gold nanoparticles (AuNP) are potentially therapeutic because of the safety demonstrated thus far and their physiochemical characteristics. We used the astounding heating rates of AuNPs in nonionizing radiofrequency (RF) radiation to investigate human pancreatic xenograft destruction in a murine model. EXPERIMENTAL DESIGN Weekly, Panc-1 and Capan-1 human pancreatic carcinoma xenografts in immunocompromised mice were exposed to an RF field 36 hours after treatment (intraperitoneal) with cetuximab- or PAM4 antibody-conjugated AuNPs, respectively. Tumor sizes were measured weekly, whereas necrosis and cleaved caspase-3 were investigated with hematoxylin-eosin staining and immunofluorescence, respectively. In addition, AuNP internalization and cytotoxicity were investigated in vitro with confocal microscopy and flow cytometry, respectively. RESULTS Panc-1 cells demonstrated increased apoptosis with decreased viability after treatment with cetuximab-conjugated AuNPs and RF field exposure (P = 0.00005). Differences in xenograft volumes were observed within 2 weeks of initiating therapy. Cetuximab- and PAM4-conjugated AuNPs demonstrated RF field-induced destruction of Panc-1 and Capan-1 pancreatic carcinoma xenografts after 6 weeks of weekly treatment (P = 0.004 and P = 0.035, respectively). There was no evidence of injury to murine organs. Cleaved caspase-3 and necrosis were both increased in treated tumors. CONCLUSIONS This study demonstrates a potentially novel cancer therapy by noninvasively inducing intracellular hyperthermia with targeted AuNPs in an RF field. While the therapy is dependent on the specificity of the targeting antibody, normal tissues were without toxicity despite systemic therapy and whole-body RF field exposure.
Collapse
Affiliation(s)
- Evan S Glazer
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhao B, He YY. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev Anticancer Ther 2011; 10:1797-809. [PMID: 21080805 DOI: 10.1586/era.10.154] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) is a noninvasive procedure that involves a photosensitizing drug and its subsequent activation by light to produce reactive oxygen species that specifically destroy target cells. Recently, PDT has been widely used in treating non-melanoma skin malignancies, the most common cancer in the USA, with superior cosmetic outcomes compared with conventional therapies. The topical 'photosensitizers' commonly used are 5-aminolevulinic acid (ALA) and its esterified derivative methyl 5-aminolevulinate, which are precursors of the endogenous photosensitizer protoporphyrin IX. After treatment with ALA or methyl 5-aminolevulinate, protoporphyrin IX preferentially accumulates in the lesion area of various skin diseases, which allows not only PDT treatment but also fluorescence diagnosis with ALA-induced porphyrins. Susceptible lesions include various forms of non-melanoma skin cancer such as actinic keratosis, basal cell carcinoma and squamous cell carcinoma. The most recent and promising developments in PDT include the discovery of new photosensitizers, the exploitation of new drug delivery systems and the combination of other modalities, which will all contribute to increasing PDT therapeutic efficacy and improving outcome. This article summarizes the main principles of PDT and its current clinical use in the management of non-melanoma skin cancers, as well as recent developments and possible future research directions.
Collapse
Affiliation(s)
- Baozhong Zhao
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
31
|
Dąbrowski JM, Urbanska K, Arnaut LG, Pereira MM, Abreu AR, Simões S, Stochel G. Biodistribution and photodynamic efficacy of a water-soluble, stable, halogenated bacteriochlorin against melanoma. ChemMedChem 2011; 6:465-75. [PMID: 21265022 DOI: 10.1002/cmdc.201000524] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Indexed: 12/31/2022]
Abstract
The in vitro phototoxicity of a photostable, synthetic, water-soluble, halogenated bacteriochlorin, 5,10,15,20-tetrakis(2-chloro-5-sulfophenyl)bacteriochlorin (TCPBSO3H), toward mouse melanoma (S91) cells is ∼60-fold higher than that of the analogous porphyrin, and is associated with very weak toxicity in the dark; 90% of S91 cells were killed in response to a light dose of 0.26 J cm(-2) in the presence of [TCPBSO3H]=5 μM. In vivo toxicity toward DBA mice is very low, even at doses of 20 mg kg(-1). In vivo pharmacokinetics and biodistribution of TCPBSO3H were studied in DBA mice with S91 tumors; 24 h after intraperitoneal injection of 10 mg kg(-1), TCPBSO3H demonstrated preferential accumulation in S91 mouse melanoma, with tumor-to-normal tissue ratios of 3 and 5 for muscle and skin, respectively. Photodynamic therapy (PDT) performed under these conditions, with 90 mW cm(-2) diode laser irradiation at λ 750 nm for 20 min (total light dose of 108 J cm(-2)), resulted in tumor regression. Tumor recurrence was observed only approximately two months after treatment, confirming the efficacy of this PDT against melanoma.
Collapse
Affiliation(s)
- Janusz M Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Otake E, Sakuma S, Torii K, Maeda A, Ohi H, Yano S, Morita A. Effect and Mechanism of a New Photodynamic Therapy with Glycoconjugated Fullerene. Photochem Photobiol 2010; 86:1356-63. [DOI: 10.1111/j.1751-1097.2010.00790.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Wawrzyńska M, Kałas W, Biały D, Zioło E, Arkowski J, Mazurek W, Strzadała L. In vitro photodynamic therapy with chlorin e6 leads to apoptosis of human vascular smooth muscle cells. Arch Immunol Ther Exp (Warsz) 2010; 58:67-75. [PMID: 20077143 PMCID: PMC2816260 DOI: 10.1007/s00005-009-0054-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 07/15/2009] [Indexed: 10/29/2022]
Abstract
Percutaneous coronary intervention has become the most common and widely implemented method of heart revascularization. However, the development of restenosis remains the major limitation of this method. Photodynamic therapy (PDT) recently emerged as a new and promising method for the prevention of arterial restenosis. Here the efficacy of chlorin e6 in PDT was investigated in vitro using human vascular smooth muscle cells (TG/HA-VSMCs) as one of the cell types crucial in the development of restenosis. PDT-induced cell death was studied on many levels,including annexin V staining, measurement of the generation reactive oxygen species (ROS) and caspase-3 activity,and assessment of changes in mitochondrial membrane potential and fragmentation of DNA. Photosensitization of TG/HA-VSMCs with a 170 lM of chlorin e6 and subsequent illumination with the light of a 672-nm diode laser(2 J/cm2) resulted in the generation of ROS, a decrease in cell membrane polarization, caspase-3 activation, as well as DNA fragmentation. Interestingly, the latter two apoptotic events could not be observed in photosensitized and illuminated NIH3T3 fibroblasts, suggesting different outcomes of the model of PDT in various types of cells. The results obtained with human VSMCs show that chlorin e6 may be useful in the PDT of aerial restenosis, but its efficacy still needs to be established in an animal model.
Collapse
|
34
|
Mroz P, Huang YY, Szokalska A, Zhiyentayev T, Janjua S, Nifli AP, Sherwood ME, Ruzié C, Borbas KE, Fan D, Krayer M, Balasubramanian T, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR. Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB J 2010; 24:3160-70. [PMID: 20385618 DOI: 10.1096/fj.09-152587] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma remains a therapeutic challenge, and patients with advanced disease have limited survival. Photodynamic therapy (PDT) has been successfully used to treat many malignancies, and it may show promise as an antimelanoma modality. However, high melanin levels in melanomas can adversely affect PDT effectiveness. Herein the extent of melanin contribution to melanoma resistance to PDT was investigated in a set of melanoma cell lines that markedly differ in the levels of pigmentation; 3 new bacteriochlorins successfully overcame the resistance. Cell killing studies determined that bacteriochlorins are superior at (LD(50) approximately 0.1 microM) when compared with controls such as the FDA-approved Photofrin (LD(50) approximately 10 microM) and clinically tested LuTex (LD(50) approximately 1 microM). The melanin content affects PDT effectiveness, but the degree of reduction is significantly lower for bacteriochlorins than for Photofrin. Microscopy reveals that the least effective bacteriochlorin localizes predominantly in lysosomes, while the most effective one preferentially accumulates in mitochondria. Interestingly all bacteriochlorins accumulate in melanosomes, and subsequent illumination leads to melanosomal damage shown by electron microscopy. Fluorescent probes show that the most effective bacteriochlorin produces significantly higher levels of hydroxyl radicals, and this is consistent with the redox properties suggested by molecular-orbital calculations. The best in vitro performing bacteriochlorin was tested in vivo in a mouse melanoma model using spectrally resolved fluorescence imaging and provided significant survival advantage with 20% of cures (P<0.01).
Collapse
Affiliation(s)
- Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom St., Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
O'Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009; 85:1053-74. [PMID: 19682322 DOI: 10.1111/j.1751-1097.2009.00585.x] [Citation(s) in RCA: 838] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) is now a well-recognized modality for the treatment of cancer. While PDT has developed progressively over the last century, great advances have been observed in the field in recent years. The concept of dual selectivity of PDT agents is now widely accepted due to the relative specificity and selectivity of PDT along with the absence of harmful side effects often encountered with chemotherapy or radiotherapy. Traditionally, porphyrin-based photosensitizers have dominated the PDT field but these first generation photosensitizers have several disadvantages, with poor light absorption and cutaneous photosensitivity being the predominant side effects. As a result, the requirement for new photosensitizers, including second generation porphyrins and porphyrin derivatives as well as third generation photosensitizers has arisen, with the aim of alleviating the problems encountered with first generation porphyrins and improving the efficacy of PDT. The investigation of nonporphyrin photosensitizers for the development of novel PDT agents has been considerably less extensive than porphyrin-based compounds; however, structural modification of nonporphyrin photosensitizers has allowed for manipulation of the photochemotherapeutic properties. The aim of this review is to provide an insight into PDT photosensitizers clinically approved for application in oncology, as well as those which show significant potential in ongoing preclinical studies.
Collapse
Affiliation(s)
- Aisling E O'Connor
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
36
|
Matsumoto J, Tanimura SI, Shiragami T, Yasuda M. Water-solubilization of alkyloxo(methoxo)porphyrinatoantimony bromides. Phys Chem Chem Phys 2009; 11:9766-71. [DOI: 10.1039/b911227h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Chen Y, Zheng W, Li Y, Zhong J, Ji J, Shen P. Apoptosis induced by methylene-blue-mediated photodynamic therapy in melanomas and the involvement of mitochondrial dysfunction revealed by proteomics. Cancer Sci 2008; 99:2019-27. [PMID: 19016762 PMCID: PMC11159616 DOI: 10.1111/j.1349-7006.2008.00910.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 11/30/2022] Open
Abstract
Methylene blue (MB) is a widely studied agent currently under investigation for its properties relating to photodynamic therapy (PDT). Recent studies have demonstrated that MB exhibits profound phototoxicity affecting a variety of tumor cell lines. However, the mechanistic explanation for methylene-blue-mediated photodynamic therapy (MB-PDT) in the context of melanoma therapy is still obscure. In the present study, B16F1 melanoma cells were treated by MB-PDT under different conditions, and thereafter subjected to cell viability detection assays. MB-PDT could induce intense apoptotic cell death through a series of steps beginning with the photochemical generation of reactive oxygen species that activate the caspase-9/caspase-3 apoptosis pathway. Blocking activation of caspase-3 and induction of oxidative stress by caspase inhibitor and by glutathione, respectively, markedly reduced apoptotic cell death in vitro. Importantly, proteomics study defining altered protein expression in treated cells suggests the involvement of several mitochondrial proteins playing important roles in electron transfer chain, implying mitochondrial dysfunction during the treatment. Furthermore, a transplantable mouse melanoma model was utilized to estimate the effectiveness of MB-PDT in vivo. The treated mice displayed decreased tumor size and prolonged survival days, which was associated with enhanced apoptotic cell death. These results, offering solid evidence of the induction of mitochondria-related apoptosis in tumor cells, reveal new aspects of MB-PDT having potential to be a palliative treatment of melanoma.
Collapse
Affiliation(s)
- Yongjun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
38
|
Zhu TC, Dimofte A, Finlay JC, Stripp D, Busch T, Miles J, Whittington R, Malkowicz SB, Tochner Z, Glatstein E, Hahn SM. Optical Properties of Human Prostate at 732 nm Measured In Vivo During Motexafin Lutetium-mediated Photodynamic Therapy¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01527.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Feofanov A, Sharonov G, Grichine A, Karmakova T, Pljutinskaya A, Lebedeva V, Ruziyev R, Yakubovskaya R, Mironov A, Refregier M, Maurizot JC, Vigny P. Comparative Study of Photodynamic Properties of 13, 15-N-cycloimide Derivatives of chlorin p6¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00007.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Wang HW, Finlay JC, Lee K, Zhu TC, Putt ME, Glatstein E, Koch CJ, Evans SM, Hahn SM, Busch TM, Yodh AG. Quantitative comparison of tissue oxygen and motexafin lutetium uptake by ex vivo and noninvasive in vivo techniques in patients with intraperitoneal carcinomatosis. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:034023. [PMID: 17614731 DOI: 10.1117/1.2743082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Near-infrared diffuse reflectance spectroscopy (DRS) has been used to noninvasively monitor optical properties during photodynamic therapy (PDT). This technique has been extensively validated in tissue phantoms; however, validation in patients has been limited. This pilot study compares blood oxygenation and photosensitizer tissue uptake measured by multiwavelength DRS with ex vivo assays of the hypoxia marker, 2-(2-nitroimida-zol-1[H]-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5), and the photosensitizer (motexafin lutetium, MLu) from tissues at the same tumor site of three tumors in two patients with intra-abdominal cancers. Similar in vivo and ex vivo measurements of MLu concentration are carried out in murine radiation-induced fibrosarcoma (RIF) tumors (n=9). The selection of optimal DRS wavelength range and source-detector separations is discussed and implemented, and the association between in vivo and ex vivo measurements is examined. The results demonstrate a negative correlation between blood oxygen saturation (StO(2)) and EF5 binding, consistent with published relationships between EF5 binding and electrode measured pO(2), and between electrode measured pO(2) and StO(2). A tight correspondence is observed between in vivo DRS and ex vivo measured MLu concentration in the RIF tumors; similar data are positively correlated in the human intraperitoneal tumors. These results further demonstrate the potential of in vivo DRS measurements in clinical PDT.
Collapse
Affiliation(s)
- Hsing-Wen Wang
- University of Pennsylvania, Department of Physics, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Feofanov A, Grichine A, Karmakova T, Pljutinskaya A, Lebedeva V, Filyasova A, Yakubovskaya R, Mironov A, Egret-Charlier M, Vigny P. Near-infrared Photosensitizer Based on a Cycloimide Derivative of Chlorin p6: 13,15-N-(3′-Hydroxypropyl)Cycloimide Chlorin p6¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750633nipboa2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Mody TD, Fu L, Sessler JL. Texaphyrins: Synthesis and Development of a Novel Class of Therapeutic Agents. PROGRESS IN INORGANIC CHEMISTRY 2007. [DOI: 10.1002/9780470166512.ch5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
43
|
Du KL, Mick R, Busch TM, Zhu TC, Finlay JC, Yu G, Yodh AG, Malkowicz SB, Smith D, Whittington R, Stripp D, Hahn SM. Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer. Lasers Surg Med 2007; 38:427-34. [PMID: 16788929 DOI: 10.1002/lsm.20341] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Interstitial photodynamic therapy (PDT) is an emerging modality for the treatment of solid organ disease. Our group at the University of Pennsylvania has performed extensive studies that demonstrate the feasibility of interstitial PDT for prostate cancer. Our preclinical and clinical experience is herein detailed. STUDY DESIGN/MATERIALS AND METHODS We have treated 16 canines in preclinical studies, and 16 human subjects in a Phase I study, using motexafin lutetium-mediated PDT for recurrent prostate adenocarcinoma. Dosimetry of light fluence, drug level and oxygen distribution for these patients were performed. RESULTS We demonstrate the safe and comprehensive treatment of the prostate using PDT. However, there is significant variability in the dose distribution and the subsequent tissue necrosis throughout the prostate. CONCLUSIONS PDT is an attractive option for the treatment of prostate adenocarcinoma. However, the observed variation in PDT dose distribution translates into uncertain therapeutic reproducibility. Our future focus will be on the development of an integrated system that is able to both detect and compensate for dose variations in real-time, in order to deliver a consistent overall PDT dose distribution.
Collapse
Affiliation(s)
- K L Du
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hahn SM, Fraker DL, Mick R, Metz J, Busch TM, Smith D, Zhu T, Rodriguez C, Dimofte A, Spitz F, Putt M, Rubin SC, Menon C, Wang HW, Shin D, Yodh A, Glatstein E. A phase II trial of intraperitoneal photodynamic therapy for patients with peritoneal carcinomatosis and sarcomatosis. Clin Cancer Res 2006; 12:2517-25. [PMID: 16638861 DOI: 10.1158/1078-0432.ccr-05-1625] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A previous phase I trial of i.p. photodynamic therapy established the maximally tolerated dose of Photofrin (Axcan Pharma, Birmingham, AL)-mediated photodynamic therapy and showed encouraging efficacy. The primary objectives of this phase II study were to determine the efficacy and toxicities of i.p. photodynamic therapy in patients with peritoneal carcinomatosis and sarcomatosis. EXPERIMENTAL DESIGN Patients received Photofrin 2.5 mg/kg i.v. 48 hours before debulking surgery. Intraoperative laser light was delivered to the peritoneal surfaces of the abdomen and pelvis. The outcomes of interest were (a) complete response, (b) failure-free survival time, and (c) overall survival time. Photosensitizer levels in tumor and normal tissues were measured. RESULTS One hundred patients were enrolled into one of three strata (33 ovarian, 37 gastrointestinal, and 30 sarcoma). Twenty-nine patients did not receive light treatment. All 100 patients had progressed by the time of statistical analysis. The median failure-free survival and overall survival by strata were ovarian, 2.1 and 20.1 months; gastrointestinal cancers, 1.8 and 11.1 months; sarcoma, 3.7 and 21.9 months. Substantial fluid shifts were observed postoperatively, and the major toxicities were related to volume overload. Two patients died in the immediate postoperative period from bleeding, sepsis, adult respiratory distress syndrome, and cardiac ischemia. CONCLUSIONS Intraperitoneal Photofrin-mediated photodynamic therapy is feasible but does not lead to significant objective complete responses or long-term tumor control. Heterogeneity in photosensitizer uptake and tumor oxygenation, lack of tumor specificity for photosensitizer uptake, and the heterogeneity in tissue optical properties may account for the lack of efficacy observed.
Collapse
Affiliation(s)
- Stephen M Hahn
- Department of Radiation Oncology, Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Finlay JC, Zhu TC, Dimofte A, Stripp D, Malkowicz SB, Busch TM, Hahn SM. Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy. Photochem Photobiol 2006; 82:1270-8. [PMID: 16808592 PMCID: PMC4475578 DOI: 10.1562/2005-10-04-ra-711] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The in vivo fluorescence emission from human prostates was measured before and after motexafin lutetium (MLu)-mediated photodynamic therapy (PDT). A single side-firing optical fiber was used for both the delivery of 465 nm light-emitting diode excitation light and the collection of emitted fluorescence. It was placed interstitially within the prostate via a closed transparent plastic catheter. Fitting of the collected fluorescence emission spectra using the known fluorescence spectrum of 1 mg/kg MLu in an intralipid phantom yields a quantitative measure of the local MLu concentration. We found that an additional correction factor is needed to account for the reduction of the MLu fluorescence intensity measured in vivo due to strong optical absorption in the prostate. We have adopted an empirical correction formula given by C = (3.1 cm(-1)/micro's) exp (microeff x 0.97 cm), which ranges from approximately 3 to 16, with a mean of 9.3 +/-4.8. Using a computer-controlled step motor to move the probe incrementally along parallel tracks within the prostate we can determine one-dimensional profiles of the MLu concentration. The absolute MLu concentration and the shape of its distribution are confirmed by ex vivo assay and by diffuse absorption measurements, respectively. We find significant heterogeneity in photosensitizer concentration within and among five patients. These variations occur over large enough spatial scales compared with the sampling volume of the fluorescence emission that mapping the distribution in three dimensions is possible.
Collapse
Affiliation(s)
- Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Stylli SS, Kaye AH. Photodynamic therapy of cerebral glioma – A review Part II – Clinical studies. J Clin Neurosci 2006; 13:709-17. [PMID: 16567094 DOI: 10.1016/j.jocn.2005.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 11/27/2005] [Indexed: 01/02/2023]
Abstract
Photodynamic therapy (PDT) is a binary treatment modality that has been used to treat malignant brain tumours for 25 years. The treatment involves the selective uptake of a photosensitizer (PS) by the tumour cells followed by irradiation of the tumour with light of the appropriate wavelength to excite and activate the PS resulting in selective tumour destruction and is a potentially valuable adjunct to surgical excision and other conventional therapies. PDT has undergone extensive laboratory studies and clinical trials with a variety of PS and tumour models. These are discussed with reference mainly to clinical studies involving the PDT of brain tumours.
Collapse
Affiliation(s)
- Stanley S Stylli
- Department of Neurosurgery, Department of Surgery, 5th Floor Clinical Sciences Building, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
47
|
Ross HM, Smelstoys JA, Davis GJ, Kapatkin AS, Del Piero F, Reineke E, Wang H, Zhu TC, Busch TM, Yodh AG, Hahn SM. Photodynamic therapy with motexafin lutetium for rectal cancer: a preclinical model in the dog. J Surg Res 2006; 135:323-30. [PMID: 16650871 DOI: 10.1016/j.jss.2006.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 01/12/2006] [Indexed: 11/17/2022]
Abstract
PURPOSE Local recurrence of rectal cancer remains a significant clinical problem despite multi-modality therapy. Photodynamic Therapy (PDT) is a cancer treatment which generates tumor kill through the production of singlet oxygen in cells containing a photosensitizing drug when exposed to laser light of a specific wavelength. PDT is a promising modality for prevention of local recurrence of rectal cancer for several reasons: tumor cells may selectively retain photosensitizer at higher levels than normal tissues, the pelvis after mesorectal excision is a fixed space amenable to intra-operative illumination, and PDT can generate toxicity in tissues up to 1 cm thick. This study evaluated the safety, tissue penetration of 730 nm light, normal tissue toxicity and surgical outcome in a dog model of rectal resection after motexafin lutetium-mediated photodynamic therapy. METHODS Ten mixed breed dogs were used. Eight dogs underwent proctectomy and low rectal end to end stapled anastomosis. Six dogs received the photosensitizing agent motexafin lutetium (MLu, Pharmacyclics, Inc., Sunnyvale, CA) of 2 mg/kg preoperatively and underwent subsequent pelvic illumination of the transected distal rectum of 730 nm light with light doses ranging from 0.5 J/cm(2) to 10 J/cm(2) three hours after drug delivery. Two dogs received light, but no drug, and underwent proctectomy and low-rectal stapled anastomosis. Two dogs underwent midline laparotomy and pelvic illumination. Light penetration in tissues was determined for small bowel, rectum, pelvic sidewall, and skin. Clinical outcomes were recorded. Animals were sacrificed at 14 days and histological evaluation was performed. RESULTS All dogs recovered uneventfully. No dog suffered an anastomotic leak. Severe tissue toxicity was not seen. Histological findings at necropsy revealed mild enteritis in all dogs. The excitation light penetration depths were 0.46 +/- 0.18, 0.46 +/- 0.15, and 0.69 +/- 0.39 cm, respectively, for rectum, small bowel, and peritoneum in dogs that had received MLu. For control dogs without photosensitizer MLu, the optical penetration depths were longer: 0.92 +/- 0.63, 0.67 +/- 0.10, and 1.1 +/- 0.80 cm for rectum, small bowel, and peritoneum, respectively. CONCLUSION Low rectal stapled anastomosis is safe when performed with MLu-mediated pelvic PDT in a dog model. Significant tissue penetration of 730 nm light into the rectum and pelvic sidewall was revealed without generation of significant toxicity or histological sequelae. Penetration depths of 730 nm light in pelvic tissue suggest that microscopic residual disease of less than 5 mm are likely to be treated adequately with MLu-mediated PDT. This approach merits further investigation as an adjuvant to total mesorectal excision and chemoradiation for rectal cancer.
Collapse
Affiliation(s)
- H M Ross
- Department of Surgery, Division of Colon and Rectal Surgery, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19096, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Karmakova T, Feofanov A, Pankratov A, Kazachkina N, Nazarova A, Yakubovskaya R, Lebedeva V, Ruziyev R, Mironov A, Maurizot JC, Vigny P. Tissue distribution and in vivo photosensitizing activity of 13,15-[N-(3-hydroxypropyl)]cycloimide chlorin p6 and 13,15-(N-methoxy)cycloimide chlorin p6 methyl ester. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 82:28-36. [PMID: 16236520 DOI: 10.1016/j.jphotobiol.2005.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/08/2005] [Accepted: 08/16/2005] [Indexed: 11/21/2022]
Abstract
Photosensitizers 13,15-[N-(3-hydroxypropyl)]cycloimide chlorin p6 (HPC) and 13,15-(N-methoxy)cycloimide chlorin p6 methyl ester (MMC) absorb at 711 nm and possess high photoinduced cytotoxicity in vitro. Here we report, that photodynamic therapy with HPC and MMC provide considerable antitumor effect in mice bearing subcutaneous P338 lymphoma. The highest antitumor effect was achieved at a dose of 4 micromol/kg when 1.5 h delay between dye injection and light irradiation (drug-light interval) was used. According to the confocal spectral imaging studies of tissue sections this drug-light interval corresponds to a maximum of tumor accumulation of MMC and HPC (tumor to skin accumulation ratio is 8-10). Short (15 min) drug-light interval can be used for efficient vasculature-targeted photodynamic therapy with HPC at a dose of 1 micromol/kg, whereas MMC is ineffective at the short drug-light interval. Relationships between the features of tissue distribution and efficacy of photodynamic therapy at different drug-light intervals are discussed for HPC and MMC.
Collapse
Affiliation(s)
- Tatyana Karmakova
- Hertsen Moscow Oncological Institute, 2nd Botkinskiy pr., 3, Moscow 125284, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhu TC, Dimofte A, Finlay JC, Stripp D, Busch T, Miles J, Whittington R, Malkowicz SB, Tochner Z, Glatstein E, Hahn SM. Optical properties of human prostate at 732 nm measured in mediated photodynamic therapy. Photochem Photobiol 2005; 81:96-105. [PMID: 15535736 PMCID: PMC4474534 DOI: 10.1562/2004-06-25-ra-216] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Characterization of the tissue light penetration in prostate photodynamic therapy (PDT) is important to plan the arrangement and weighting of light sources so that sufficient light fluence is delivered to the treatment volume. The optical properties (absorption [mu(a)], transport scattering [mu(s)'] and effective attenuation [mu(eff)] coefficients) of 13 patients with locally recurrent prostate cancer were measured in situ using interstitial isotropic detectors. Measurements were made at 732 nm before and after motexafin lutetium (MLu)-mediated PDT in four quadrants. Optical properties were derived by applying the diffusion theory to the fluence rates measured at several distances (0.5-5 cm) from a point source. mu(a) and mu(s)' varied between 0.07 and 1.62 cm(-1) (mean 0.37 +/- 0.24 cm(-1)) and 1.1 and 44 cm(-1) (mean 14 +/- 11 cm(-1)), respectively. mu(a) was proportional to the concentration of MLu measured by an ex vivo fluorescence assay. We have observed, on average, a reduction of the MLu concentration after PDT, presumably due to the PDT consumption of MLu. mu(eff) varied between 0.91 and 6.7 cm(-1) (mean 2.9 +/- 0.7 cm(-1)), corresponding to an optical penetration depth (delta = 1/micro(eff)) of 0.1-1.1 cm (mean 0.4 +/- 0.1 cm). The mean penetration depth at 732 nm in human prostate is at least two times smaller than that found in normal canine prostates, which can be explained by a four times increase of the mean value of mu(s)' in human prostates. The mean light fluence rate per unit source strength at 0.5 cm from a point source was 1.5 +/- 1.1 cm(-2), excluding situations when bleeding occurs. The total number of measurements was N = 121 for all mean quantities listed above. This study showed significant inter- and intraprostatic differences in the optical properties, suggesting that a real-time dosimetry measurement and feedback system for monitoring light fluences during treatment should be considered for future PDT studies.
Collapse
Affiliation(s)
- Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, 3400 Spruce Street/2 Donner, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhu TC, Dimofte A, Finlay JC, Stripp D, Busch T, Miles J, Whittington R, Malkowicz SB, Tochner Z, Glatstein E, Hahn SM. Optical Properties of Human Prostate at 732 nm Measured In Vivo During Motexafin Lutetium–mediated Photodynamic Therapy¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-06-25-ra-216.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|