1
|
Carvalho C, Silva R, Melo TMVDPE, Inga A, Saraiva L. P53 and the Ultraviolet Radiation-Induced Skin Response: Finding the Light in the Darkness of Triggered Carcinogenesis. Cancers (Basel) 2024; 16:3978. [PMID: 39682165 DOI: 10.3390/cancers16233978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review delves into the significant cellular and molecular responses triggered by UVR exposure in human skin, emphasizing the pivotal role of mutant p53 (mutp53) in the carcinogenic process elicited by radiation. By underlining the role of a functional p53 in safeguarding skin cells from UVR-induced damage, this work underscores the potential significance of targeting mutp53, aiming to restore its wild-type-like activity (reactivation), as a protective strategy against skin cancer (SC), particularly NMSC. Most importantly, an interesting crosstalk between p53 and its vitamin D receptor (VDR) transcriptional target is also highlighted in the suppression of skin carcinogenesis, which opens the way to promising chemopreventive strategies involving synergistic combinations between mutp53 reactivators and vitamin D. Collectively, this review not only opens new avenues for future research, but also offers promising prospects for the development of novel beneficial approaches in the field of SC.
Collapse
Affiliation(s)
- Carla Carvalho
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Silva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
DePasquale JA. Visible light potentiates rapid cell destruction and death by curcumin in vitro. Photochem Photobiol Sci 2024; 23:1893-1914. [PMID: 39333349 DOI: 10.1007/s43630-024-00639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Curcumin, a small molecule derived from the plant Curcuma longa, is a pleiotropic agent with widely varying pharmacological activities attributed to it. In addition to its anti-cancer activity curcumin is also known to be cytotoxic upon photoactivation. Time-lapse DIC and correlative fluorescence microscopy were used to evaluate the effects of curcumin, combined with continuous exposure to visible light, on cellular components of RTG-2 cells. Curcumin combined with visible light resulted in rapid and dramatic destruction of cells. F-actin and microtubule cytoskeletons were drastically altered, both showing fragmentation and overall loss from cells. Nuclei exhibited granulated nucleoplasm, condensed DNA, and physical shrinkage. Mitochondria rapidly fragmented along their length and disappeared from cells. Plasma membrane was breached based on lipophilic dye staining and the entrance of otherwise impermeant small molecules into the cell. Grossly distorted morphology hallmarked by significant swelling and coarse granulation of the cytoplasm was consistently observed. All of these effects were dependent on visible light as the same cellular targets in curcumin-treated cells outside the illuminated area were always unperturbed. The combination of curcumin and continuous exposure to visible light enables rapid and irreversible cellular destruction which can be monitored in real-time. Real-time monitoring of this structural disintegration suggests a new approach to applying curcumin in photodynamic treatments, where the progression of cell and tissue destruction might be simultaneously evaluated through optical means.
Collapse
|
3
|
Yu N, Fu Y, Fan Q, Lin L, Ning Z, Leng D, Hu M, She T. Antitumor properties of griseofulvin and its toxicity. Front Pharmacol 2024; 15:1459539. [PMID: 39314753 PMCID: PMC11417533 DOI: 10.3389/fphar.2024.1459539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Griseofulvin (GF), which is mainly extracted from Penicillium griseofulvum, is a heat-resistant, chlorine-containing non-polyene antifungal antibiotic. Previous research shows that GF has a variety of pharmacological effects, such as anti-inflammatory, antifungal, antiviral, and antitumor effects. In recent years, GF has received extensive attention for its antitumor effects as a natural compound, offering a low price, a wide range of uses, and other beneficial characteristics. However, no comprehensive review of GF pharmacological activity in tumors has been published so far. In order to fully elucidate the antitumor activities of GF, this review focuses on the antitumor potential and toxicity of GF and its derivatives, based on a literature search using PubMed, Web of Science, and other databases, to lay a good foundation for further research of GF and the development of new drugs for antitumor activities.
Collapse
Affiliation(s)
- Nanqiong Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yixiao Fu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingkui Fan
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Dongze Leng
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tonghui She
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
4
|
Sharma D, Singh N, Srivastava S. Skin Cancer: An Insight on its Association with Aging, Pathogenesis and Treatment Strategies. Curr Drug Res Rev 2024; 16:134-144. [PMID: 37366353 DOI: 10.2174/2589977515666230627154048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Skin cancer is one of the deadly diseases of the skin characterized by pain and uncontrolled growth of cells. The pathogenesis of skin cancer involves the uncontrolled division of abnormal cells in the part of the body affected by an accumulation of genome variation over the course of a lifetime. The incidence of skin cancer has been increasing all over the world and has been reported more in old-aged persons. Furthermore, aging plays a vital role in promoting malignancy. Cancer necessitates lifelong administration of drugs to maintain the quality of life. The major challenge of treatment is the side effects associated with these drugs. Novel and targeted approaches are now formulated to explore as an alternative measure to treat cancer. The current review summarizes the pathogenesis of cancer and its treatment strategies. These approaches are discussed with regard to the drugs, mechanism of action, causative factors, distribution of cancer, mortality rate, and treatment strategies.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201306, India
- PDM Faculty of Engineering & Technology, Bahadurgarh, Haryana, 124507, India
| | - Nikhil Singh
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201306, India
| | - Shikha Srivastava
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201306, India
- Institute of Pharmacy, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| |
Collapse
|
5
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
6
|
Abdel-Azeem AM, Abdel-Rehiem ES, Farghali AA, Khidr FK, Abdul-Hamid M. Ameliorative role of nanocurcumin against the toxicological effects of novel forms of Cuo as nanopesticides: a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26270-26291. [PMID: 36355242 PMCID: PMC9995535 DOI: 10.1007/s11356-022-23886-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Copper oxide nanoparticles (CuONPs) have a wide range of uses in agricultural applications. Nanocurcumin (NCur) acts as an antioxidant treatment. The goal of the study is to reduce the toxicity resulting from the use of CuONPs as nanopesticides on living organisms by inducing changes in the morphological shape of CuONPs or treating it with NCur. So, we induced a comparative study between three shapes of CuONPs: CuO nanosphere (CuONSp), CuO nanosheet (CuONS), and CuO nanoflower (CuONF). We characterize each nano-form by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (HRTEM), and Zetasizer HT device; 36 rats were divided into six groups (n = 6): 1st group was the control group; 2nd group received 50 mg/kg/day of NCur orally for 30 days; 3rd, 4th, and 5th groups received orally 50 mg/kg/day of CuONSp, CuONS, and CuONF, respectively, for 30 days; 6th group received 50 mg/kg/day CuONSp plus 50 mg/kg/day of NCur orally for 30 days. An elevation occurred in malondialdehyde (MDA), liver and kidney functions, tumor necrosis factor-alpha (TNF-α), and B-cell lymphoma 2 (Bcl2) by CuONSp > CuONS > CuONF, respectively. An inhibition occurred in glutathione (GSH), superoxidase (SOD) catalase (CAT), apoptotic Bax gene (Bax), histopathological, and ultrastructural alterations by CuONSp < CuONS < CuONF, respectively. NCur ameliorated these alternations. In conclusion, CuONF is a better form compared to other forms of nanopesticide in agriculture due to its lower toxicity. NCur decreased the biological alternations which induced by CuONSp due to its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Abeer M Abdel-Azeem
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. BOX 62521, Beni-Suef, Egypt
| | - Eman S Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, P.O. Box 62511, Beni-Suef, Egypt
| | - Fatma K Khidr
- Animal Research Department, Plant Protection Research Institute, Agricultural Research Center, Cairo, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. BOX 62521, Beni-Suef, Egypt.
| |
Collapse
|
7
|
Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Adv Colloid Interface Sci 2022; 300:102582. [PMID: 34953375 DOI: 10.1016/j.cis.2021.102582] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
Nanoparticles have emerged as promising drug delivery systems for the treatment of several diseases. Novel cancer therapies have exploited these particles as alternative adjuvant therapies to overcome the traditional limitations of radio and chemotherapy. Curcumin is a natural bioactive compound found in turmeric, that has been reported to show anticancer activity against several types of tumors. Despite some biological limitations regarding its absorption in the human body, curcumin encapsulation in poly(lactic-co-glycolic acid) (PLGA), a non-toxic, biodegradable and biocompatible polymer, represents an effective strategy to deliver a drug to a tumor site. Furthermore, PLGA nanoparticles can be engineered with targeting moieties to reach specific cancer cells, thus enhancing the antitumor effects of curcumin. We herein aim to bring an up-to-date summary of the recently developed strategies for curcumin delivery to different types of cancer cells through encapsulation in PLGA nanoparticles, correlating their effects with those of curcumin on the biological capabilities acquired by cancer cells (cancer hallmarks). We discuss the targeting strategies proposed for advanced curcumin delivery and the respective improvements achieved for each cancer cell analyzed, in addition to exploring the encapsulation techniques employed. The conjugation of correct encapsulation techniques with tumor-oriented targeting design can result in curcumin-loaded PLGA nanoparticles that can successfully integrate the elaborate network of development of alternative cancer treatments along with traditional ones. Finally, the current challenges and future demands to launch these nanoparticles in oncology are comprehensively examined.
Collapse
|
8
|
Li Y, Gao S, Du X, Ji J, Xi Y, Zhai G. Advances in autophagy as a target in the treatment of tumours. J Drug Target 2021; 30:166-187. [PMID: 34319838 DOI: 10.1080/1061186x.2021.1961792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a multi-step lysosomal degradation process, which regulates energy and material metabolism and has been used to maintain homeostasis. Autophagy has been shown to be involved in the regulation of health and disease. But at present, there is no consensus on the relationship between autophagy and tumour, and we consider that it plays a dual role in the occurrence and development of tumour. That is to say, under certain conditions, it can inhibit the occurrence of tumour, but it can also promote the process of tumour. Therefore, autophagy could be used as a target for tumour treatment. The regulation of autophagy plays a synergistic role in the radiotherapy, chemotherapy, phototherapy and immunotherapy of tumour, and nano drug delivery system provides a promising strategy for improving the efficacy of autophagy regulation. This review summarised the progress in the regulatory pathways and factors of autophagy as well as nanoformulations as carriers for the delivery of autophagy modulators.
Collapse
Affiliation(s)
- Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yanwei Xi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
9
|
Abrams SL, Akula SM, Martelli AM, Cocco L, Ratti S, Libra M, Candido S, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS, McCubrey JA. Sensitivity of pancreatic cancer cells to chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals can be regulated by WT-TP53. Adv Biol Regul 2021; 79:100780. [PMID: 33451973 DOI: 10.1016/j.jbior.2020.100780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy. Approximately 85% of pancreatic cancers are classified as PDACs. The survival of PDAC patients is very poor and only 5-10% of patients survive 5 years after diagnosis. Mutations at the KRAS and TP53 gene are frequently observed in PDAC patients. The PANC-28 cell line lacks wild-type (WT) TP53. In the following study, we have investigated the effects of restoration of WT TP53 activity on the sensitivity of PANC-28 pancreatic cancer cells to various drugs which are used to treat PDAC patients as well as other cancer patients. In addition, we have examined the effects of signal transduction inhibitors which target critical pathways frequently deregulated in cancer. The effects of the anti-diabetes drug metformin and the anti-malarial drug chloroquine were also examined as these drugs may be repurposed to treat other diseases. Finally, the effects of certain nutraceuticals which are used to treat various ailments were also examined. Introduction of WT-TP53 activity in PANC-28 PDAC cells, can increase their sensitivity to various drugs. Attempts are being made clinically to increase TP53 activity in various cancer types which will often inhibit cell growth by multiple mechanisms.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834.
| |
Collapse
|
10
|
Zhai K, Brockmüller A, Kubatka P, Shakibaei M, Büsselberg D. Curcumin's Beneficial Effects on Neuroblastoma: Mechanisms, Challenges, and Potential Solutions. Biomolecules 2020; 10:biom10111469. [PMID: 33105719 PMCID: PMC7690450 DOI: 10.3390/biom10111469] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a natural polyphenolic compound derived from the South Asian turmeric plant (Curcuma longa), has well-characterized antioxidant, anti-inflammatory, anti-protein-aggregate, and anticancer properties. Neuroblastoma (NB) is a cancer of the nervous system that arises primarily in pediatric patients. In order to reduce the multiple disadvantages and side effects of conventional oncologic modalities and to potentially overcome cancer drug resistance, natural substances such as curcumin are examined as complementary and supportive therapies against NB. In NB cell lines, curcumin by itself promotes apoptosis and cell cycle arrest through the suppression of serine–threonine kinase Akt and nuclear factor kappa of activated B-cells (NF-κB) signaling, induction of mitochondrial dysfunction, and upregulation of p53 and caspase signaling. While curcumin demonstrates anti-NB efficacy in vitro, cross-validation between NB cell types is currently lacking for many of its specific mechanistic activities. Furthermore, curcumin’s low bioavailability by oral administration, poor absorption, and relative insolubility in water pose challenges to its clinical introduction. Numerous curcumin formulations, including nanoparticles, nanocarriers, and microemulsions, have been developed, with these having some success in the treatment of NB. In the future, standardization and further basic and preclinical trials will be required to ensure the safety of curcumin formulations. While the administration of curcumin is clinically safe even at high doses, clinical trials are necessary to substantiate the practical efficacy of curcumin in the prevention and treatment of NB.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Aranka Brockmüller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.B.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
- Correspondence: ; Tel.: +974-4492-8334
| |
Collapse
|
11
|
DiMarco-Crook C, Rakariyatham K, Li Z, Du Z, Zheng J, Wu X, Xiao H. Synergistic anticancer effects of curcumin and 3',4'-didemethylnobiletin in combination on colon cancer cells. J Food Sci 2020; 85:1292-1301. [PMID: 32144766 DOI: 10.1111/1750-3841.15073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
Chemoprevention strategies employing the use of multiple dietary bioactive components and their metabolites in combination offer advantages due to their low toxicity and potential synergistic interactions. Herein, for the first time, we studied the combination of curcumin and 3',4'-didemethylnobiletin (DDMN), a primary metabolite of nobiletin, to determine their combinatory effects in inhibiting growth of human colon cancer cells. Isobologram analysis revealed a synergistic interaction between curcumin and DDMN in the inhibition of cell growth of HCT116 colon cancer cells. The combination treatment induced significant G2 -M cell-cycle arrest and extensive apoptosis, which greatly exceeded the effects of individual treatments with curcumin or DDMN. Proteins associated with these heightened anticarcinogenic effects were p53, p21, HO-1, c-poly(ADP-ribose) polymerase, Cdc2, and Cdc25c; each of the proteins was confirmed to be substantially impacted by the combination treatment, more than by individual treatments alone. Interestingly, an increase in the stability of curcumin was also observed with the presence of DDMN in cell culture medium, which could offer an explanation in part for the synergistic interaction between curcumin and DDMN. This newly identified synergy between curcumin and DDMN should be explored further to determine its chemopreventive potential against colon cancer in vivo. PRACTICAL APPLICATION: This study identifies for the first time the synergistic inhibition of colon cancer cell growth by the dietary component curcumin present in turmeric, in combination with a metabolite of nobiletin, a unique citrus flavonoid. The synergism of the combination may be due to cell-cycle arrest and apoptosis induced by the combination as well as an improvement in the stability of curcumin as a result of the antioxidant property of the nobiletin metabolite. These significant findings of synergism between curcumin and the nobiletin metabolite could offer potential chemopreventive value against colon cancer.
Collapse
Affiliation(s)
| | | | - Zhengze Li
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| | - Zheyuan Du
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| | - Jinkai Zheng
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA.,Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xian Wu
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA.,Dept. of Kinesiology and Health, Miami Univ., Oxford, OH, 45056, USA
| | - Hang Xiao
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
12
|
Lindsay C, Kostiuk M, Conrad D, O’Connell DA, Harris J, Seikaly H, Biron VL. Antitumour effects of metformin and curcumin in human papillomavirus positive and negative head and neck cancer cells. Mol Carcinog 2019; 58:1946-1959. [DOI: 10.1002/mc.23087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Cameron Lindsay
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
- Otolaryngology‐Head and Neck Surgery Research Laboratory of AlbertaUniversity of Alberta Edmonton Alberta Canada
| | - Morris Kostiuk
- Otolaryngology‐Head and Neck Surgery Research Laboratory of AlbertaUniversity of Alberta Edmonton Alberta Canada
| | - Dustin Conrad
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
| | - Daniel A. O’Connell
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
| | - Jeffrey Harris
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
| | - Hadi Seikaly
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
- Otolaryngology‐Head and Neck Surgery Research Laboratory of AlbertaUniversity of Alberta Edmonton Alberta Canada
| | - Vincent L. Biron
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
- Otolaryngology‐Head and Neck Surgery Research Laboratory of AlbertaUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
13
|
Candido S, Abrams SL, Steelman LS, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Bueno-Silva B, de Alencar SM, Lombardi P, Mao W, Montalto G, Cervello M, Rakus D, Gizak A, Lin HL, Libra M, Akula SM, McCubrey JA. Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals. Adv Biol Regul 2019; 72:22-40. [PMID: 30898612 DOI: 10.1016/j.jbior.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Mutations at the TP53 gene are readily detected (approximately 50-75%) in pancreatic ductal adenocarcinoma (PDAC) patients. TP53 was previously thought to be a difficult target as it is often mutated, deleted or inactivated on both chromosomes in certain cancers. In the following study, the effects of restoration of wild-type (WT) TP53 activity on the sensitivities of MIA-PaCa-2 pancreatic cancer cells to the MDM2 inhibitor nutlin-3a in combination with chemotherapy, targeted therapy, as well as, nutraceuticals were examined. Upon introduction of the WT-TP53 gene into MIA-PaCa-2 cells, which contain a TP53 gain of function (GOF) mutation, the sensitivity to the MDM2 inhibitor increased. However, effects of nutlin-3a were also observed in MIA-PaCa-2 cells lacking WT-TP53, as upon co-treatment with nutlin-3a, the sensitivity to certain inhibitors, chemotherapeutic drugs and nutraceuticals increased. Interestingly, co-treatment with nutlin-3a and certain chemotherapeutic drug such as irinotecan and oxaliplatin resulted in antagonistic effects in cells both lacking and containing WT-TP53 activity. These studies indicate the sensitizing abilities that WT-TP53 activity can have in PDAC cells which normally lack WT-TP53, as well as, the effects that the MDM2 inhibitor nutlin-3a can have in both cells containing and lacking WT-TP53 to various therapeutic agents.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Kvin Lertpiriyapong
- Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Bruno Bueno-Silva
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil; Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese, 20026, Italy
| | - Weifeng Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Giuseppe Montalto
- Dipartimento di Promozione Della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Agnieska Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Heng-Liang Lin
- Catholic Fu Jen University Hospital, New Taipei City, Taiwan
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834.
| |
Collapse
|
14
|
O’Connor NA, Einbond LS, Redenti S, Sauane M, Jitianu A. A Self-degradable Curcumin Polymer with Anti-cancer Activity. J Appl Polym Sci 2018; 135:46867. [PMID: 30555179 PMCID: PMC6289511 DOI: 10.1002/app.46867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022]
Abstract
Curcumin is a widely researched and utilized natural product used for a variety of ailments including as a gastrointestinal aide and an anticancer agent. Curcumin however suffers from poor bioavailability. A strategy to circumvent poor bioavailability is to administer with an adjuvant or by synthetic modification. Herein we demonstrate the incorporation of curcumin into a self-degradable polymer by condensation with N,N'-di-Boc-L-cystine. The polymer is made self-degradable upon deprotection of the cystine amines. Degradation is confirmed by thermogravimetric analysis and differential scanning calorimetry. Curcumin retains its anti-cancer activity within the polymer showing activity against HT29 human colon cancer cells and DU-145 prostate cancer cells. The self-degrading polymer showed enhanced activity against HT29 cells compared to that of curcumin.
Collapse
Affiliation(s)
- Naphtali A. O’Connor
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016
| | - Linda S. Einbond
- Department of Biology, Lehman College of the City University of New York, Bronx, NY 10468
| | - Stephen Redenti
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016
- Department of Biology, Lehman College of the City University of New York, Bronx, NY 10468
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016
| | - Moira Sauane
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016
- Department of Biology, Lehman College of the City University of New York, Bronx, NY 10468
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016
| | - Andrei Jitianu
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016
| |
Collapse
|
15
|
Baghi N, Bakhshinejad B, Keshavarz R, Babashah S, Sadeghizadeh M. Dendrosomal nanocurcumin and exogenous p53 can act synergistically to elicit anticancer effects on breast cancer cells. Gene 2018; 670:55-62. [PMID: 29753810 DOI: 10.1016/j.gene.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 01/07/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes an important histological subtype of breast cancer with a highly metastatic phenotype. The aim of the current study was to investigate the possible synergism between dendrosomal nanocurcumin (DNC) and exogenously delivered p53 in producing anticancer effects on a TNBC cell line. MTT assay was exploited to determine the viability of MDA-MB-231 cells against DNC and measure the impact of p53 overexpresssion on DNC-related cytotoxicity. Annexin-V/PI staining followed by flow cytometry and wound healing assay were used to evaluate the effects of DNC and exogenous p53, alone and in combination, on apoptosis induction and migratory capacity of MDA-MB-231 cells, respectively. Also, quantitative real-time PCR was applied to analyze the transcript levels of EMT- and metastasis-associated genes. Cell viability measurements demonstrated that DNC suppresses the proliferation of MDA-MB-231 cells in a time- and dose-dependent mode and exogenous p53 elevates the sensitivity of cells to DNC-mediated cytotoxic effects. Apoptosis and wound healing assays indicated that combination treatment with DNC and exogenous p53 leads to significantly increased apoptosis and decreased migration of breast cancer cells, compared with single treatment. The results of gene expression analysis highlighted the high potency of combination strategy to significantly reduce the expression of ZEB1 and BMI1 transcript levels. Altogether, our findings reveal that DNC and exogenous p53 act in a synergistic manner to elicit anticancer effects on MDA-MB-231 breast cancer cells. Therefore, our combination approach might be considered as a promising strategy for the development of new therapeutic modalities against breast cancer.
Collapse
Affiliation(s)
- Narges Baghi
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran
| | - Reihaneh Keshavarz
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Trabiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Abstract
Turmeric (Curcuma longa L.) is an integral part of Asian culture and cuisine. It has been used in traditional medicine since centuries. A myriad of health benefits have been attributed to it. Curcumin, the most biologically active curcuminoid in turmeric, is being investigated in pre-clinical and clinical trials for its role in disease prevention and cure. It has antioxidant, anti-inflammatory, antineoplastic, anti-proliferative and antimicrobial effects. We review the chemistry of this plant, its cultural relevance in Indian skin care, and its uses in dermatology.
Collapse
Affiliation(s)
- Hima Gopinath
- Department of Dermatology, Venereology and Leprosy, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry University, Puducherry, India
| | - Kaliaperumal Karthikeyan
- Department of Dermatology, Venereology and Leprosy, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry University, Puducherry, India
| |
Collapse
|
17
|
Abrams SL, Lertpiriyapong K, Yang LV, Martelli AM, Cocco L, Ratti S, Falasca M, Murata RM, Rosalen PL, Lombardi P, Libra M, Candido S, Montalto G, Cervello M, Steelman LS, McCubrey JA. Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Adv Biol Regul 2018; 69:16-34. [PMID: 29980405 DOI: 10.1016/j.jbior.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10%. Mutations at the TP53 gene are readily detected in pancreatic tumors isolated from PDAC patients. We have investigated the effects of restoration of wild-type (WT) TP53 activity on the sensitivity of pancreatic cancer cells to: chemotherapy, targeted therapy, as well as, nutraceuticals. Upon introduction of the WT-TP53 gene into the MIA-PaCa-2 pancreatic cancer cell line, the sensitivity to drugs used to treat pancreatic cancer cells such as: gemcitabine, fluorouracil (5FU), cisplatin, irinotecan, oxaliplatin, and paclitaxel increased significantly. Likewise, the sensitivity to drugs used to treat other cancers such as: doxorubicin, mitoxantrone, and 4 hydroxy tamoxifen (4HT) also increased upon introduction of WT-TP53 into MIA-PaCa-2 cells. Furthermore, the sensitivity to certain inhibitors which target: PI3K/mTORC1, PDK1, SRC, GSK-3, and biochemical processes such as proteasomal degradation and the nutraceutical berberine as increased upon introduction of WT-TP53. Furthermore, in some cases, cells with WT-TP53 were more sensitive to the combination of drugs and suboptimal doses of the MDM2 inhibitor nutlin-3a. However, TP53-independent effects of nutlin-3a were observed upon treatment with either a proteasomal or a PI3K/mTOR inhibitor. These studies indicate the sensitizing effects that WT-TP53 can have in PDAC cells which normally lack WT-TP53 to various therapeutic agents and suggest approaches to improve PDAC therapy.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
18
|
Characteristics of Curcumin-Loaded Bacterial Cellulose Films and Anticancer Properties against Malignant Melanoma Skin Cancer Cells. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071188] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Curcumin-loaded bacterial cellulose films were developed in this study. Curcumin was absorbed into never-dried bacterial cellulose pellicles by 24-h immersion in solutions of curcumin in the range of 0.2–1.0 mg /mL. The curcumin-loaded bacterial cellulose pellicles were then air-dried and characterized. The mechanical properties of curcumin-loaded bacterial cellulose films, particularly the stretching properties, appeared to be lower than those of bacterial cellulose film. This was especially evident when the loading concentration of curcumin was higher than 0.4 mg/mL. Fourier-transform infrared spectroscopy analysis indicated an interaction between bacterial cellulose microfibrils and curcumin. Controlled release of curcumin was achieved in buffer solutions containing Tween 80 and methanol additives, at pH 5.5 and 7.4. Curcumin-loaded bacterial cellulose films prepared with curcumin solutions at concentrations of 0.5 and 1.0 mg/mL displayed antifungal activities against Aspergillus niger. They also exhibited anticancer activity against A375 malignant melanoma cells. No significant cytotoxic effect was observed against normal dermal cells, specifically, human keratinocytes and human dermal fibroblasts.
Collapse
|
19
|
Vinothkumar R, Ceasar SA, Divyarupa A. Chemosuppressive effect of plumbagin on human non-small lung cancer cell xenotransplanted zebrafish. Indian J Cancer 2018; 54:253-256. [PMID: 29199700 DOI: 10.4103/0019-509x.219580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Plumbagin (5-hydroxy-2-methyl-1,4-napthoquinone) derived from Plumbago species is a potential anti-tumour agent. Plumbagin has been tested for anti-cancer activity in vitro and in vivo using mice model. AIM To study the tumour suppressing efficacy of plumbagin using zebrafish model. MATERIALS AND METHODS Human Non-small lung cancer cell line were cultured in vitro and transplanted in to zebrafish. The development of tumour was confirmed by performing histology. The tumour was then allowed to progress in vivo and the fishes were administered with plumbagin orally for three continuous days. The tumour suppression capacity was monitored subsequently using transcriptosome analysis. STATISTICAL METHODS The pixel integrated density obtained was converted into relative gene expression using IBM SPSS. RESULTS The administration of plumbagin had an ability to suppress tumour and the size of the tumour were relatively lesser when compared with the control sample; it has also increased p53 gene expression. CONCLUSION The study helps to conclude that plumbagin is an effective anti-tumour agent against human cancer cells based on the study in vivo in zebrafish.
Collapse
Affiliation(s)
- R Vinothkumar
- Department of Biotechnology, St. Peter's Engineering College, Avadi, Chennai - 600054, India
| | - S A Ceasar
- Department of Biotechnology, St. Peter's Engineering College, Avadi, Chennai - 600054, India
| | - A Divyarupa
- Department of Biotechnology, St. Peter's Engineering College, Avadi, Chennai - 600054, India
| |
Collapse
|
20
|
Perna A, De Luca A, Adelfi L, Pasquale T, Varriale B, Esposito T. Effects of different extracts of curcumin on TPC1 papillary thyroid cancer cell line. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:63. [PMID: 29448931 PMCID: PMC5815247 DOI: 10.1186/s12906-018-2125-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The thyroid gland is one of the largest endocrine glands in the body. The vast majority of TCs (> 90%) originate from follicular cells and are defined as differentiated thyroid cancers (DTC) and the two histological subtypes are the papillary TC with its variants and the follicular TC. Curcumin possesses a wide variety of biological functions, and thanks to its properties, it has gained considerable attention due to its profound medicinal values (Prasad, Gupta, Tyagi, and Aggarwal, Biotechnol Adv 32:1053-1064, 2014). We have undertaken the present work in order to define the possible role of curcumin in modulating the genetic expression of cell markers and to understand the effectiveness of this nutraceutical in modulating the regression of cancer phenotype. METHODS As a template we used the TPC-1 cells treated with the different extracts of turmeric, and examined the levels of expression of different markers (proliferative, inflammatory, antioxidant, apoptotic). RESULTS Treatment with the three different curcumin extracts displays anti-inflammatory, antioxidant properties and it is able to influence cell cycle with slightly different effects upon the extracts. Furthermore curcumin is able to influence cell metabolic activity vitality. CONCLUSIONS In conclusion curcumin has the potential to be developed as a safe therapeutic but further studies are needed to verify its antitumor ability in vivo.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Laura Adelfi
- Department of Experimental Medicine, Section of Human Physiology, and Unit of Dietetic and Sport Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Tammaro Pasquale
- Department of Experimental Medicine, Section of Human Physiology, and Unit of Dietetic and Sport Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Bruno Varriale
- Department of Experimental Medicine, Molecular Genetics Laboratory, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy.
| | - Teresa Esposito
- Department of Experimental Medicine, Section of Human Physiology, and Unit of Dietetic and Sport Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
21
|
Imran M, Ullah A, Saeed F, Nadeem M, Arshad MU, Suleria HAR. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit Rev Food Sci Nutr 2017; 58:1271-1293. [PMID: 27874279 DOI: 10.1080/10408398.2016.1252711] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurmin, a naturally yellow component isolated from turmeric, ability to prevent various life-style related disorders. The current review article mainly emphasizes on different anticancer perspectives of cucurmin, i.e., colon, cervical, uterine, ovarian, prostate head and neck, breast, pulmonary, stomach and gastric, pancreatic, bladder oral, oesophageal, and bone cancer. It holds a mixture of strong bioactive molecule known as cucurminoids that has ability to reduce cancer/tumor at initial, promotion and progression stages of tumor development. In particular, these compounds block several enzymes required for the growth of tumors and may therefore involve in tumor treatments. Moreover, it modulates an array of cellular progressions, i.e., nitric oxide synthetase activity, protein kinase C activity, epidermal growth factor (EGF) receptor intrinsic kinase activity, nuclear factor kappa (NF-kB) activity, inhibiting lipid peroxidation and production of reactive oxygen species. However, current manuscript summarizes most of the recent investigations of cucurmin but still further research should be conducted to explore the role of curcumin to mitigate various cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- a Department of Diet and Nutritional Sciences , Imperial College of Business Studies , Lahore , Pakistan.,b National Institute of Food Science and Technology , University of Agriculture Faisalabad , Pakistan
| | - Azmat Ullah
- e Department of Food Science and Human Nutrition , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farhan Saeed
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | - Muhammad Nadeem
- d Department of Environmental Sciences , COMSATS Institute of Information Technology Vehari , Pakistan
| | - Muhammad Umair Arshad
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | | |
Collapse
|
22
|
Panda AK, Chakraborty D, Sarkar I, Khan T, Sa G. New insights into therapeutic activity and anticancer properties of curcumin. J Exp Pharmacol 2017; 9:31-45. [PMID: 28435333 PMCID: PMC5386596 DOI: 10.2147/jep.s70568] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural compounds obtained from plants are capable of garnering considerable attention from the scientific community, primarily due to their ability to check and prevent the onset and progress of cancer. These natural compounds are primarily used due to their nontoxic nature and the fewer side effects they cause compared to chemotherapeutic drugs. Furthermore, such natural products perform even better when given as an adjuvant along with traditional chemotherapeutic drugs, thereby enhancing the potential of chemotherapeutics and simultaneously reducing their undesired side effects. Curcumin, a naturally occurring polyphenol compound found in the plant Curcuma longa, is used as an Indian spice. It regulates not only the various pathways of the immune system, cell cycle checkpoints, apoptosis, and antioxidant response but also numerous intracellular targets, including pathways and protein molecules controlling tumor progression. Many recent studies conducted by major research groups around the globe suggest the use of curcumin as a chemopreventive adjuvant molecule to maximize and minimize the desired effects and side effects of chemotherapeutic drugs. However, low bioavailability of a curcumin molecule is the primary challenge encountered in adjuvant therapy. This review explores different therapeutic interactions of curcumin along with its targeted pathways and molecules that are involved in the regulation of onset and progression of different types of cancers, cancer treatment, and the strategies to overcome bioavailability issues and new targets of curcumin in the ever-growing field of cancer.
Collapse
Affiliation(s)
- Abir Kumar Panda
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | | | - Irene Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Tila Khan
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Gessner DK, Winkler A, Koch C, Dusel G, Liebisch G, Ringseis R, Eder K. Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract. BMC Genomics 2017; 18:253. [PMID: 28335726 PMCID: PMC5364584 DOI: 10.1186/s12864-017-3638-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Background It was recently reported that dairy cows fed a polyphenol-rich grape seed and grape marc meal extract (GSGME) during the transition period had an increased milk yield, but the underlying reasons remained unclear. As polyphenols exert a broad spectrum of metabolic effects, we hypothesized that feeding of GSGME influences metabolic pathways in the liver which could account for the positive effects of GSGME in dairy cows. In order to identify these pathways, we performed genome-wide transcript profiling in the liver and lipid profiling in plasma of dairy cows fed GSGME during the transition period at 1 week postpartum. Results Transcriptomic analysis of the liver revealed 207 differentially expressed transcripts, from which 156 were up- and 51 were down-regulated, between cows fed GSGME and control cows. Gene set enrichment analysis of the 155 up-regulated mRNAs showed that the most enriched gene ontology (GO) biological process terms were dealing with cell cycle regulation and the most enriched Kyoto Encyclopedia of Genes and Genomes pathways were p53 signaling and cell cycle. Functional analysis of the 43 down-regulated mRNAs revealed that a great part of these genes are involved in endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and inflammatory processes. Accordingly, protein folding, response to unfolded protein, unfolded protein binding, chemokine activity and heat shock protein binding were identified as one of the most enriched GO biological process and molecular function terms assigned to the down-regulated genes. In line with the transcriptomics data the plasma concentrations of the acute phase proteins serum amyloid A (SAA) and haptoglobin were reduced in cows fed GSGME compared to control cows. Lipidomic analysis of plasma revealed no differences in the concentrations of individual species of major and minor lipid classes between cows fed GSGME and control cows. Conclusions Analysis of hepatic transcript profile in cows fed GSGME during the transition period at 1 week postpartum indicates that polyphenol-rich feed components are able to inhibit ER stress-induced UPR and inflammatory processes, both of which are considered to contribute to liver-associated diseases and to impair milk performance in dairy cows, in the liver of dairy cows during early lactation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3638-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Anne Winkler
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, Muenchweiler an der Alsenz, 67728, Germany
| | - Christian Koch
- Department Life Sciences and Engineering, University of Applied Sciences, Bingen am Rhein, 55411, Germany
| | - Georg Dusel
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, Muenchweiler an der Alsenz, 67728, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany.
| |
Collapse
|
24
|
Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C. Anticancer Activity of Curcumin and Its Analogues: Preclinical and Clinical Studies. Cancer Invest 2016; 35:1-22. [PMID: 27996308 DOI: 10.1080/07357907.2016.1247166] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin has been shown to have a wide variety of therapeutic effects, ranging from anti-inflammatory, chemopreventive, anti-proliferative, and anti-metastatic. This review provides an overview of the recent research conducted to overcome the problems with the bioavailability of curcumin, and of the preclinical and clinical studies that have reported success in combinatorial strategies coupling curcumin with other treatments. Research on the signaling pathways that curcumin treatment targets shows that it potently acts on major intracellular components involved in key processes such as genomic modulations, cell invasion and cell death pathways. Curcumin is a promising molecule for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Vanessa Innao
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Sabina Russo
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Demetrio Gerace
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Andrea Alonci
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| | - Caterina Musolino
- a Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy , University of Messina , Messina , Italy
| |
Collapse
|
25
|
El-Houseini ME, El-Agoza IA, Sakr MM, El-Malky GM. Novel protective role of curcumin and taurine combination against experimental hepatocarcinogenesis. Exp Ther Med 2016; 13:29-36. [PMID: 28123463 PMCID: PMC5244977 DOI: 10.3892/etm.2016.3952] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 07/22/2016] [Indexed: 01/11/2023] Open
Abstract
Hepatocarcinogenesis is a prerequisite to hepatocellular carcinoma (HCC), which is one of the most common cancers among humans. Therefore, it is important to search for agents that protect against hepatocarcinogenesis. The present study aimed to investigate the protective effects of a combination of taurine and curcumin against experimental hepatocarcinogenesis induced by diethyl nitrosamine (DENA) in a rat model. A total of 100 rats were divided into eight groups. Eight weeks following DENA injection and treatment with curcumin and taurine, the rats were sacrificed to obtain blood and hepatic tissue samples for the evaluation of various markers and histopathological observations. Serum levels of interleukin-2 (IL-2), interferon-γ (IFN-γ), α-fetoprotein (AFP) and α-L-fucosidase (AFU) were determined. Rats injected with DENA for eight weeks showed a high percentage of malignant changes in hepatic tissues, as well as a significant increases in the serum levels of AFP and AFU and significant reductions in the serum levels of IL-2 and IFN-γ. Treatment with curcumin and taurine markedly reduced the extent of malignant changes in the rat liver tissues, with their liver tissues showing patterns similar to that of the normal control rats. In addition, this combination resulted in normal serum levels of IL-2, IFN-γ, AFP and AFU. The results of the present study suggested that a combination of curcumin and taurine may be a novel prophylactic agent against hepatocarcinogenesis in high-risk groups exposed to chemical hepatocarcinogens.
Collapse
Affiliation(s)
- Motawa Eisa El-Houseini
- Department of Tumor Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt; Department of Pathology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | | | - Mona Mohamed Sakr
- Department of Tumor Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt; Department of Pathology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | | |
Collapse
|
26
|
Keshavarz R, Bakhshinejad B, Babashah S, Baghi N, Sadeghizadeh M. Dendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:1353-1362. [PMID: 28096969 PMCID: PMC5220242 DOI: 10.22038/ijbms.2016.7923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Glioblastoma is the most lethal tumor of the central nervous system. Here, we aimed to evaluate the effects of exogenous delivery of p53 and a nanoformulation of curcumin called dendrosomal curcumin (DNC), alone and in combination, on glioblastoma tumor cells. MATERIALS AND METHODS MTT assay was exploited to measure the viability of U87-MG cells against DNC treatment. Cells were separately subjected to DNC treatment and transfected with p53-containing vector and then were co-exposed to DNC and p53 overexpression[A GA1][B2]. Annexin-V-FLUOS staining followed by flow cytometry and real-time PCR were applied to examine apoptosis and analyze the expression levels of the genes involved in cell cycle and oncogenesis, respectively. RESULTS The results of cell viability assay through MTT indicated that DNC inhibits the proliferation of U87-MG cells in a time- and dose-dependent manner. Apoptosis evaluation revealed that p53 overexpression accompanied by DNC treatment can act in a synergistic manner to significantly enhance the number of apoptotic cells (90%) compared with their application alone (15% and 38% for p53 overexpression and DNC, respectively). Also, real-time PCR data showed that the concomitant exposure of cells to both DNC and p53 overexpression leads to an enhanced expression of GADD45 and a reduced expression of NF-κB and c-Myc. CONCLUSION The findings of the current study suggest that our combination strategy, which merges two detached gene (p53) and drug (curcumin) delivery systems into an integrated platform, may represent huge potential as a novel and efficient modality for glioblastoma treatment.
Collapse
Affiliation(s)
- Reihaneh Keshavarz
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Baghi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Zhang X, Wu J, Ye B, Wang Q, Xie X, Shen H. Protective effect of curcumin on TNBS-induced intestinal inflammation is mediated through the JAK/STAT pathway. Altern Ther Health Med 2016; 16:299. [PMID: 27544348 PMCID: PMC4992287 DOI: 10.1186/s12906-016-1273-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022]
Abstract
Background Curcumin displays a protective role in rat models of intestinal inflammation. However, the mechanism of how curcumin affects on intestinal inflammation is less known. The purpose of the current study is to explore the signal pathway in which the curcumin protecting rat from intestinal inflammation. Methods The intestinal inflammation rat models were made by TNBS treatment. Curcumin was added to their diet 5 days before the TNBS instillation. After that, body weight change, score of macroscopic assessment of disease activity and microscopic scoring were utilized to analyse the severity of the induced inflammation. In addition, the level of pro-inflammatory cytokines and anti-inflammatory were detected to determine the effect of curcumin on intestinal inflammation. The JAK/STAT pathway of pro-inflammation response was also evaluated. Finally, the impact of curcumin on apoptosis in intestinal inflammation was assessed by TUNEL staining. Results Rats pretreated with curcumin significantly reversed the decrease of body weight and increase of colon weight derived from TNBS-induced colitis. Histological improvement was observed in response to curcumin. In addition, curcumin attenuated TNBS-induced secretion of pro-inflammatory cytokines and M1/M2 ratio, while stimulated the secretion of anti-inflammatory cytokines. The inhibition of pro-inflammation response was mediated by SOCS-1, which could efficiently suppress JAK/STAT pathways. Furthermore, curcumin efficiently suppressed the TNBS-induced apoptosis, and reduced the accumulation of cytochrome C in cytosol. Conclusion The anti-inflammatory effect of curcumin is realized by enhancing SOCS-1 expression and inhibiting JAK/STAT pathways. Curcumin also plays an anti-apoptotic role in TNBS-induced intestinal inflammation. We propose that curcumin may have therapeutic implications for human intestinal inflammation.
Collapse
|
28
|
Kasi PD, Tamilselvam R, Skalicka-Woźniak K, Nabavi SF, Daglia M, Bishayee A, Pazoki-toroudi H, Nabavi SM. Molecular targets of curcumin for cancer therapy: an updated review. Tumour Biol 2016; 37:13017-13028. [DOI: 10.1007/s13277-016-5183-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/13/2016] [Indexed: 01/27/2023] Open
|
29
|
Huang SW, Chang SH, Mu SW, Jiang HY, Wang ST, Kao JK, Huang JL, Wu CY, Chen YJ, Shieh JJ. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line. J Dermatol Sci 2016; 81:182-91. [DOI: 10.1016/j.jdermsci.2015.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022]
|
30
|
Zhang L, Cheng X, Gao Y, Zhang C, Bao J, Guan H, Yu H, Lu R, Xu Q, Sun Y. Curcumin inhibits metastasis in human papillary thyroid carcinoma BCPAP cells via down-regulation of the TGF-β/Smad2/3 signaling pathway. Exp Cell Res 2016; 341:157-65. [PMID: 26826337 DOI: 10.1016/j.yexcr.2016.01.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 01/07/2023]
Abstract
Thyroid cancers usually possess a good prognosis while the risks of recurrence and metastasis turn out to be a disturbing issue. Curcumin [bis(4-hydroxy-3-methoxy-phenyl)-1,6-heptadiene-3,5-dione] is a natural polyphenolic compound mainly found in turmeric (Curcuma longa). Our previous studies have demonstrated that curcumin showed proliferation-inhibitory and apoptosis-inducing effects on K1 papillary thyroid cancer cells. However, the mechanism underlying the inhibition effects of curcumin on thyroid cancer cells remains unclear. Herein, we demonstrated that curcumin remarkably increased the expression of the epithelial marker E-cadherin and repressed the expression of the mesenchymal marker vimentin in human papillary thyroid carcinoma BCPAP cells. Curcumin also suppressed multiple metastatic steps of BCPAP cells, including cell attachment, spreading as well as migration. In addition, the transcription, secretion and activation of matrix metalloproteinases (MMPs) induced by transforming growth factor-β1 (TGF-β1) in BCPAP cells were mitigated upon curcumin treatment. Further evidence showed that curcumin decreased TGF-β1-mediated phosphorylation of Smad2 and Smad3. These results revealed that curcumin inhibited the TGF-β1-induced epithelial-mesenchymal transition (EMT) via down-regulation of Smad2/3 signaling pathways. Our findings provide new evidence that the anti-metastatic and anti-EMT activities of curcumin may contribute to the development of chemo-preventive agents for thyroid cancer treatment.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Xian Cheng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yanyan Gao
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Chiyu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiandong Bao
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Haixia Guan
- Department of Endocrinology & Metabolism and Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Rongrong Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
31
|
Natural Compounds Modulating Mitochondrial Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:527209. [PMID: 26167193 PMCID: PMC4489008 DOI: 10.1155/2015/527209] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022]
Abstract
Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS). In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu), resveratrol (RSV), and curcumin (Cur) being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation), by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications.
Collapse
|
32
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
33
|
Masuelli L, Stefano ED, Fantini M, Mattera R, Benvenuto M, Marzocchella L, Sacchetti P, Focaccetti C, Bernardini R, Tresoldi I, Izzi V, Mattei M, Frajese GV, Lista F, Modesti A, Bei R. Resveratrol potentiates the in vitro and in vivo anti-tumoral effects of curcumin in head and neck carcinomas. Oncotarget 2014; 5:10745-62. [PMID: 25296980 PMCID: PMC4279407 DOI: 10.18632/oncotarget.2534] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/25/2014] [Indexed: 12/12/2022] Open
Abstract
The survival rate of head and neck squamous cell carcinomas (HNSCC) patients has not considerably changed over the last two decades. Polyphenols inhibit the growth of cancer cells. We determined whether the combination of Resveratrol (RES) and Curcumin (CUR) enhanced their in vitro and in vivo antitumor activities on HNSCC cell lines compared to the single compounds. We provide evidence that RES potentiated the apoptotic effect and reduced the IC50 of CUR on HNSCC cell lines. The model of compounds interaction indicated the onset of an additive effect of the two compounds compared to the single treatment after decrease of their concentrations. RES+CUR compared to CUR increased the PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of LC3 II simultaneously with the formation of autophagic vacuoles. RES and CUR induced cytoplasmic NF-κB accumulation. RES+CUR administrations were safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) more efficiently than CUR. Overall, combinations of CUR and RES was more effective in inhibiting in vivo and in vitro cancer growth than the treatment with CUR. Additional studies will be needed to define the therapeutic potential of these compounds in combination.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Massimo Fantini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Rosanna Mattera
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Laura Marzocchella
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Pamela Sacchetti
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | | | | | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Valerio Izzi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Florigio Lista
- Centro Studi e Ricerche Sanità e Veterinaria Esercito, Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
34
|
LI MINGYING, WU ZHENXUAN, NIU WENYI, WAN YONGGAN, ZHANG LIGONG, SHI GUANGCAN, XI XIU. The protective effect of curcumin against the 19-kDa Mycobacterium tuberculosis protein-induced inflammation and apoptosis in human macrophages. Mol Med Rep 2014; 10:3261-7. [DOI: 10.3892/mmr.2014.2615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 05/14/2014] [Indexed: 11/05/2022] Open
|
35
|
M.Y. L, H.L. W, J. H, G.C. S, Y.G. W, J.X. W, X.E. X. Curcumin inhibits 19-kDa lipoprotein of Mycobacterium tuberculosis induced macrophage apoptosis via regulation of the JNK pathway. Biochem Biophys Res Commun 2014; 446:626-32. [DOI: 10.1016/j.bbrc.2014.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
|
36
|
Singh PK, Wani K, Kaul-Ghanekar R, Prabhune A, Ogale S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Adv 2014. [DOI: 10.1039/c4ra07300b] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Pal A, Sung B, Bhanu Prasad BA, Schuber PT, Prasad S, Aggarwal BB, Bornmann WG. Curcumin glucuronides: assessing the proliferative activity against human cell lines. Bioorg Med Chem 2014; 22:435-9. [PMID: 24280069 PMCID: PMC4128398 DOI: 10.1016/j.bmc.2013.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 01/06/2023]
Abstract
A gram scale synthesis of the glucuronide metabolites of curcumin were completed in four steps. The newly synthesized curcumin glucuronide compounds 2 and 3 along with curcumin 1 were tested and their anti-proliferative effects against KBM-5, Jurkat cell, U266, and A549 cell lines were reported. Biological data revealed that as much as 1 μM curcumin 1 exhibited anticancer activity and almost 100% cell kill was noted at 10 μM on two out of four cell lines; while curcumin mono-glucuronide 2 as well as di-glucuronide 3 displayed no suppression of cell proliferation.
Collapse
Affiliation(s)
- Ashutosh Pal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bokyung Sung
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Basvoju A Bhanu Prasad
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul T Schuber
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - William G Bornmann
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Li Y, Shi X, Zhang J, Zhang X, Martin RCG. Hepatic protection and anticancer activity of curcuma: a potential chemopreventive strategy against hepatocellular carcinoma. Int J Oncol 2013; 44:505-13. [PMID: 24270742 PMCID: PMC3898719 DOI: 10.3892/ijo.2013.2184] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/01/2013] [Indexed: 12/14/2022] Open
Abstract
Malignant transformation of hepatocellular carcinoma (HCC) occurs through repetitive liver injury in a context of inflammation and oxidative DNA damage. A spectrum of natural sesquiterpenoids from curcuma oil has displayed anti-oxidant, anti-inflammatory and anti-carcinogenic properties. The aim of the study was to investigate the hepatoprotective and anti-HCC effects of curcuma oil in vivo and in vitro. Mice were pretreated with curcuma oil (100 mg/kg) for 3 days, then treated with Concanavalin A (30 mg/kg). The hepatic tissue was evaluated for histology, CD4+ cell, interferon-γ, apoptosis, lipid peroxidation, 8-hydroxy-deoxyguanosine and MnSOD. C57L/J mice were treated with curcuma oil and 107 Hepa1-6 cells directly inoculated into liver lobes. The effects of curcuma oil on cell growth and cell death were evaluated. In addition, MnSOD, HSP60, catalase, NF-κB and caspase-3 were also investigated in the Hepa1-6 cells treated with curcuma oil. Pretreatment with curcuma oil significantly attenuates inflammation and oxidative damage by Concanavalin A. Treatment with curcuma oil can decrease the incidence of HCC. Curcuma oil inhibits cell growth and induces cell death in Hepa1-6 cells. Curcuma protected mice with hepatic injury from inflammatory and oxidative stress. Curcuma oil can inhibit hepatoma cell growth in vivo and in vitro.
Collapse
Affiliation(s)
- Yan Li
- Division of Surgical Oncology, University of Louisville, Louisville, KY 40202, USA
| | - Xue Shi
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA
| | - Jingwen Zhang
- Division of Gastroenterology/Hepatology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA
| | - Robert C G Martin
- Division of Surgical Oncology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
39
|
Esposito E, Ravani L, Mariani P, Contado C, Drechsler M, Puglia C, Cortesi R. Curcumin containing monoolein aqueous dispersions: a preformulative study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4923-34. [PMID: 24094206 DOI: 10.1016/j.msec.2013.08.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 08/13/2013] [Indexed: 12/22/2022]
Abstract
The present study describes the production and characterization of monoolein aqueous dispersions (MAD) as drug delivery systems for curcumin (CR). MAD based on monoolein and different emulsifiers have been produced and characterized. Morphology and dimensional distribution have been investigated by Cryogenic Transmission Electron Microscopy (cryo-TEM), X-ray and Photon Correlation Spectroscopy (PCS). Monoolein in different mixtures with sodium cholate, sodium caseinate, bentonite and poloxamer resulted in heterogeneous dispersions constituted of unilamellar vesicles, cubosomes and sponge type phases, depending on the employed components, as found by cryo-TEM and X-ray studies. CR was encapsulated with entrapment efficiencies depending on the MAD composition, particularly the highest was reached in the case of monoolein/poloxamer/sodium cholate mixture. The same mixture was able to maintain CR stability also after 6 months. CR release modalities were in vitro investigated in order to mimic a possible subcutaneous administration of MAD. It was found that MAD constituted of monoolein/poloxamer and monoolein/poloxamer/sodium cholate mixtures were able to sustain CR release. MAD viscous vehicles were produced by xanthan gum. CR percutaneous absorption has been studied in vitro using excised human skin membranes [stratum corneum epidermis (SCE)] mounted into Franz cells. It was found that fluxes (Fn) of CR incorporated in MAD are influenced by the presence of monoolein based nanosystems. In particular xanthan gum based MAD better control CR diffusion from MAD.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Botanical agents for the treatment of nonmelanoma skin cancer. Dermatol Res Pract 2013; 2013:837152. [PMID: 23983679 PMCID: PMC3741697 DOI: 10.1155/2013/837152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022] Open
Abstract
Nonmelanoma skin cancers, including basal cell carcinoma and squamous cell carcinoma, are common neoplasms worldwide and are the most common cancers in the United States. Standard therapy for cutaneous neoplasms typically involves surgical removal. However, there is increasing interest in the use of topical alternatives for the prevention and treatment of nonmelanoma skin cancer, particularly superficial variants. Botanicals are compounds derived from herbs, spices, stems, roots, and other substances of plant origin and may be used in the form of dried or fresh plants, extracted plant material, or specific plant-derived chemicals. They possess multiple properties including antioxidant, anti-inflammatory, and immunomodulatory properties and are, therefore, believed to be possible chemopreventive agents or substances that may suppress or reverse the process of carcinogenesis. Here, we provide a review of botanical agents studied for the treatment and prevention of nonmelanoma skin cancers.
Collapse
|
41
|
William BM, Goodrich A, Peng C, Li S. Curcumin inhibits proliferation and induces apoptosis of leukemic cells expressing wild-type or T315I-BCR-ABL and prolongs survival of mice with acute lymphoblastic leukemia. Hematology 2013; 13:333-43. [DOI: 10.1179/102453308x343437] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
| | | | - Cong Peng
- The Jackson LaboratoryBar Harbor, Maine, USA
| | | |
Collapse
|
42
|
Assessing dose-dependent differences in DNA-damage, p53 response and genotoxicity for quercetin and curcumin. Toxicol In Vitro 2013; 27:1877-87. [PMID: 23764886 DOI: 10.1016/j.tiv.2013.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 01/01/2023]
Abstract
As part of a longer-term goal to create a quantitative mechanistic model of the p53-Mdm2 DNA-damage pathway, we are studying cellular responses to compounds causing DNA-damage by various modes-of action, including two natural polyphenols: quercetin (QUE) and curcumin (CUR). QUE and CUR are weak mutagens in some in vitro assays and possess both anti- or pro-oxidant effects depending on dose. This study examines the dose-response of DNA-damage pathway to these compounds in HT1080 cells (a human cell line with wild-type p53) at doses relevant to human exposure. CUR was more potent in causing reactive oxygen species, DNA damage (measured as phospho-H2AX) and p53 induction, with lowest observed effect levels (LOELs; 3-8 μM) approximately three-fold lower than QUE (20-30 μM). CUR showed a strong G2/M arrest and apoptosis at ≈ 10 μM. QUE caused S phase arrest at low doses (8 μM) and apoptosis was only induced at much higher doses (60 μM). At concentrations with similar levels of p-H2AX and p53 biomarkers, CUR caused greater micronuclei frequency. CUR induced clear increases micronuclei at 3-6 μM, while QUE had a weaker micronuclei response even at the highest doses. Thus, even with two compounds sharing common chemistries, DNA-damage response patterns differed significantly in terms of dose and cell fate.
Collapse
|
43
|
p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells. Toxicol Appl Pharmacol 2013; 267:113-24. [DOI: 10.1016/j.taap.2012.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/23/2012] [Accepted: 12/05/2012] [Indexed: 12/19/2022]
|
44
|
Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors 2013; 39:37-55. [PMID: 22996381 DOI: 10.1002/biof.1041] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 12/26/2022]
Abstract
Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin.
Collapse
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
45
|
Heng MCY. Signaling pathways targeted by curcumin in acute and chronic injury: burns and photo-damaged skin. Int J Dermatol 2012; 52:531-43. [PMID: 23231506 DOI: 10.1111/j.1365-4632.2012.05703.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorylase kinase (PhK) is a unique enzyme in which the spatial arrangements of the specificity determinants can be manipulated to allow the enzyme to recognize substrates of different specificities. In this way, PhK is capable of transferring high energy phosphate bonds from ATP to serine/threonine and tyrosine moieties in serine/threonine kinases and tyrosine kinases, thus playing a key role in the activation of multiple signaling pathways. Phosphorylase kinase is released within five minutes following injury and is responsible for activating inflammatory pathways in injury-activated scarring following burns. In photo-damaged skin, PhK plays an important role in promoting photocarcinogenesis through activation of NF-kB-dependent signaling pathways with inhibition of apoptosis of photo-damaged cells, thus promoting the survival of precancerous cells and allowing for subsequent tumor transformation. Curcumin, the active ingredient in the spice, turmeric, is a selective and non-competitive PhK inhibitor. By inhibition of PhK, curcumin targets multiple PhK-dependent pathways, with salutary effects on a number of skin diseases induced by injury. In this paper, we show that curcumin gel produces rapid healing of burns, with little or no residual scarring. Curcumin gel is also beneficial in the repair of photo-damaged skin, including pigmentary changes, solar elastosis, thinning of the skin with telangiectasia (actinic poikiloderma), and premalignant lesions such as actinic keratoses, dysplastic nevi, and advanced solar lentigines, but the repair process takes many months.
Collapse
|
46
|
Huang FJ, Lan KC, Kang HY, Liu YC, Hsuuw YD, Chan WH, Huang KE. Effect of curcumin on in vitro early post-implantation stages of mouse embryo development. Eur J Obstet Gynecol Reprod Biol 2012; 166:47-51. [PMID: 23021938 DOI: 10.1016/j.ejogrb.2012.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/28/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES This study was designed to examine the embryotoxic potential of the curcumin at the blastocyst stage and during early post-implantation development of mouse embryos in vitro. STUDY DESIGN Curcumin was administered to ICR mice embryos at a dose of 0, 6, 12, 24 μM throughout in vitro culture. A total of 1015 embryos were randomly assigned to the different dosage groups. The embryotoxic effects were studied by the exposure of curcumin at the blastocyst, implanted blastocyst and early egg cylinder stages, respectively. For assessment of implantation in vitro and further embryonic differentiation, blastocysts were cultured for 8 days. The cell proliferation of outgrowth blastocysts was analysed by Giemsa staining. RESULTS Exposure to 24 μM of curcumin at the implanted blastocyst stage or early egg stage cause adverse effects on development. The percentage of embryos in the later stages of development was changed depending upon the dose of curcumin used. Furthermore, exposure to 24 μM of curcumin at the blastocyst stage was lethal to all embryos. The number of nuclei per outgrowth of the blastocyst decreased significantly after curcumin pre-treatment. The percentage of trophoblastic giant cells per outgrowth increased significantly after curcumin pre-treatment. CONCLUSIONS These findings demonstrate that curcumin exerts an adverse effect on mouse embryos during the early post-implantation stages of development, equivalent to day 3-day 8 of gestation in vivo. Curcumin treatment or administration should be used carefully at the early post-implantation stage of gestation.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen CC, Chan WH. Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis. Int J Mol Sci 2012; 13:4655-4672. [PMID: 22606002 PMCID: PMC3344238 DOI: 10.3390/ijms13044655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/31/2012] [Accepted: 04/09/2012] [Indexed: 11/16/2022] Open
Abstract
Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.
Collapse
Affiliation(s)
| | - Wen-Hsiung Chan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-3-2653515; Fax: +886-3-2653599
| |
Collapse
|
48
|
Zheng YY, Viswanathan B, Kesarwani P, Mehrotra S. Dietary agents in cancer prevention: an immunological perspective. Photochem Photobiol 2012; 88:1083-98. [PMID: 22372381 DOI: 10.1111/j.1751-1097.2012.01128.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Skin cancer is the most common form of cancer diagnosed in the United States. Exposure to solar ultraviolet (UV) radiations is believed to be the primary cause for skin cancer. Excessive UV radiation can lead to genetic mutations and damage in the skin's cellular DNA that in turn can lead to skin cancer. Lately, chemoprevention by administering naturally occurring non-toxic dietary compounds has proven to be a potential strategy to prevent the occurrence of tumors. Attention has been drawn toward several natural dietary agents such as resveratrol, one of the major components found in grapes, red wines, berries and peanuts, proanthocyanidins from grape seeds, (-)-epigallocatechin-3-gallate from green tea, etc. However, the effect these dietary agents have on the immune system and the immunological mechanisms involved therein are still being explored. In this review, we shall focus on the role of key chemopreventive agents on various immune cells and discuss their potential as antitumor agents with an immunological perspective.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
49
|
Nakhjiri M, Safavi M, Alipour E, Emami S, Atash AF, Jafari-Zavareh M, Ardestani SK, Khoshneviszadeh M, Foroumadi A, Shafiee A. Asymmetrical 2,6-bis(benzylidene)cyclohexanones: Synthesis, cytotoxic activity and QSAR study. Eur J Med Chem 2012; 50:113-23. [PMID: 22341788 DOI: 10.1016/j.ejmech.2012.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/23/2012] [Accepted: 01/23/2012] [Indexed: 01/17/2023]
Abstract
In order to develop novel anti-cancer agents, a series of asymmetrical 2,6-bis (benzylidene)cyclohexanone derivatives containing nitrobenzylidene moiety were synthesized and their cytotoxic activity were determined in vitro against MDA-MB 231, MCF-7 and SK-N-MC cell lines using MTT assay. Among the tested compounds, the highest activity against MDA-MB 231 cells was achieved by 2-(3-bromo-5-methoxy-4-propoxybenzylidene)-6-(2-nitrobenzylidene)cyclohexanone (compound 5d). Whereas, compound 5j (the 3-nitro analog of compound 5d) was the most potent compound against MCF-7 and SK-N-MC cell lines. The results indicated that the cytotoxic activity profile against different tumor cells can be optimized by desired 4-alkoxy-3-bromo-5-methoxybenzylidene scaffold.
Collapse
Affiliation(s)
- Maryam Nakhjiri
- Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells. Toxicol Appl Pharmacol 2012; 258:199-207. [DOI: 10.1016/j.taap.2011.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/30/2011] [Accepted: 11/03/2011] [Indexed: 01/20/2023]
|