1
|
Thompson DA, Cubillos FA. Natural gene expression variation studies in yeast. Yeast 2016; 34:3-17. [PMID: 27668700 DOI: 10.1002/yea.3210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 11/06/2022] Open
Abstract
The rise of sequence information across different yeast species and strains is driving an increasing number of studies in the emerging field of genomics to associate polymorphic variants, mRNA abundance and phenotypic differences between individuals. Here, we gathered evidence from recent studies covering several layers that define the genotype-phenotype gap, such as mRNA abundance, allele-specific expression and translation efficiency to demonstrate how genetic variants co-evolve and define an individual's genome. Moreover, we exposed several antecedents where inter- and intra-specific studies led to opposite conclusions, probably owing to genetic divergence. Future studies in this area will benefit from the access to a massive array of well-annotated genomes and new sequencing technologies, which will allow the fine breakdown of the complex layers that delineate the genotype-phenotype map. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Francisco A Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Nucleus for Fungal Integrative and Synthetic Biology.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
2
|
Morhenn VB, Nahm WJ, Mansbridge JN. Psoriatic keratinocytes are resistant to tumor necrosis factor alpha's induction of mRNA for the NMDA-R2C subunit. Exp Dermatol 2014; 22:750-1. [PMID: 24102971 DOI: 10.1111/exd.12242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2013] [Indexed: 11/29/2022]
Abstract
Psoriatic individuals demonstrate accelerated healing and the Koebner phenomenon, suggesting that psoriatic proliferation of keratinocytes is not inhibited appropriately after skin injury. Serial analysis of gene expression in TNFα-exposed keratinocytes shows the greatest alteration in expression of NMDA-R2C. Expression of the NMDA receptor is altered in diseased skin containing TNFα, and TNFα plays a prominent role in psoriasis. An abnormality in induction of NMDA-R2C by TNFα in psoriatic keratinocytes may explain their lack of growth inhibition. We compared the capacity of TNFα to induce expression of NMDA-R2C in normal and psoriatic (involved and uninvolved) keratinocytes in vitro. After 72 h of incubation with TNFα, normal keratinocytes demonstrated a significant induction of NMDA-R2C mRNA compared with control cultures, whereas psoriatic keratinocytes showed no induction. In an in vitro model of wounding (scratches on monolayers), TNFα inhibited migration/proliferation of keratinocytes only at the edge of NMDA-R2C expressing wounded monolayers of normal keratinocytes.
Collapse
|
3
|
Morhenn VB, Nelson TE, Gruol DL. The rate of wound healing is increased in psoriasis. J Dermatol Sci 2013; 72:87-92. [PMID: 23819987 PMCID: PMC4445836 DOI: 10.1016/j.jdermsci.2013.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/28/2013] [Accepted: 06/02/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Psoriasis shares many features with wound healing, a process that involves switching keratinocytes from growth to differentiation. Ca2+ is known to regulate this process. The N-methyl-d-aspartate receptor (NMDAR), an ionotropic glutamate receptor found on keratinocytes, is expressed abnormally in psoriasis in vivo. OBJECTIVES The goals of this study are to determine whether the rate of healing in the skin of psoriatic individuals differs from that observed in normal skin and whether the keratinocyte hyperproliferation found in psoriasis correlates with expression of specific NMDAR subunits. METHODS Three mm punch biopsies were performed on the skin of normal, as well as, involved and uninvolved skin of subjects with psoriasis. On day 0, as well as, on day 6 after the biopsy, photographs were taken and the size of the wounds determined using ImageJ. Using immunohistochemistry, the biopsy material was stained for NMDAR and its subunits. RESULTS Involved and uninvolved skin of individuals with psoriasis shows significantly more rapid healing than normal. The NR2C subunit of NMDAR is down-regulated in the basal cell layer of involved and uninvolved epidermis of psoriatic subjects compared to controls. By contrast, cells in the basal cell layer of the uninvolved epidermis showed a significantly greater percent strong staining for NR2D compared to those cells in normal epidermis. CONCLUSIONS Wound healing is significantly accelerated in psoriasis compared to normal. Immunohistochemistry showed that the relative intensity of strong immunostaining for subunits of the NMDAR is altered in the basal cell layer in psoriatic skin compared to normal controls. We suggest that these alterations may contribute to the increased rate of wound healing in psoriasis.
Collapse
Affiliation(s)
- V B Morhenn
- Therapeutics Clinical Research, San Diego, CA, United States.
| | | | | |
Collapse
|
4
|
Mattiuzzo NR, Toulza E, Jonca N, Serre G, Guerrin M. A large-scale multi-technique approach identifies forty-nine new players of keratinocyte terminal differentiation in human epidermis. Exp Dermatol 2011; 20:113-8. [PMID: 21255089 DOI: 10.1111/j.1600-0625.2010.01188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
At the latest stage of terminal differentiation in the epidermis, granular keratinocytes (GKs) undergo cornification, a programmed cell death required for the establishment of a functional skin barrier. A complex genetic regulatory network orchestrates the underlying biochemical modifications, but very few transcription factors specific to this programme have been identified to date. Here, we describe a large-scale, multi-technique approach performed on cells purified from normal human epidermis, primarily focusing on the identification of regulators. We combined data from microarray analysis of cell fractions enriched in GKs or basal keratinocytes, from an expressed sequence tag (EST) library built from GKs and from an in silico promoter analysis of 52 differentiation-associated genes. Among 3576 genes potentially expressed in GK, 298 candidates were selected, and half were directly profiled for the first time in the different layers of the epidermis by quantitative real-time PCR. Forty-nine genes upregulated during terminal differentiation, associated with numerous function of GK including lipid synthesis and secretion, were identified. Of 94 transcription factors detected, 37 were found to be either positively or negatively regulated, suggesting their involvement as regulators of gene expression in the GKs. These results largely extend the number of genes known as involved in the latest step of the terminal differentiation of human epidermis as well as the number of transcription factors known to control the expression of these genes.
Collapse
Affiliation(s)
- Nicolas R Mattiuzzo
- UMR 5165 Epidermis Differentiation and Rheumatoid Autoimmunity, CNRS - University of Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
5
|
Nascimento CS, Machado MA, Guimarães SEF, Guimarães MFM, Peixoto JO, Furlong J, Prata MCA, Verneque RS, Teodoro RL, Lopes PS. Differential expression of genes in resistant versus susceptible Gyr x Holstein cattle challenged with the tick Rhipicephalus (Boophilus) microplus. GENETICS AND MOLECULAR RESEARCH 2010; 9:1974-9. [PMID: 20927715 DOI: 10.4238/vol9-4gmr905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The bovine tick Rhipicephalus (Boophilus) microplus causes major losses in cattle production systems in tropical regions. Bos indicus breeds are more resistant to ticks than B. taurus breeds. Resistance genes could be an alternative to control this parasite. We examined the pattern of gene expression of three calcium-binding-protein genes: translationally controlled tumor protein 1 (TPT1), allergen Bos d3 (S100A7), calcium channel protein transient receptor potential vanilloid 6 (TRPV6), and the cysteine proteinase inhibitor gene (CST6). These genes were selected from cDNA libraries prepared from skin biopsies taken from resistant and susceptible Gyr x Holstein F₂ animals. These biopsies were also used to study the expression level of these genes through real-time PCR analysis. The relative expression levels of the S100A7, TPT1, TRPV6, and CST6 genes were 2.01 ± 0.6, 1.32 ± 0.9, 1.53 ± 1.2, and 2.03 ± 0.7 times higher in the susceptible group, respectively. Skin lesion tissue from the susceptible animals showed significantly more mRNA transcripts of these genes in comparison with the resistant animals (P = 0.001). However, this hypersensitivity does not seem to protect the susceptible animals against tick infestation.
Collapse
Affiliation(s)
- C S Nascimento
- Departamento de Zootecnia, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee JS, Kim MR, Kim NS, Kim YS, Yang JM, Cho AY, Lee Y, Kim CD, Lee JH. Expression profiling of calcium induced genes in cultured human keratinocytes. J Korean Med Sci 2010; 25:619-25. [PMID: 20358008 PMCID: PMC2844606 DOI: 10.3346/jkms.2010.25.4.619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 07/27/2009] [Indexed: 11/20/2022] Open
Abstract
Terminal differentiation of skin keratinocytes is a vertically directed multi-step process that is tightly controlled by the sequential expression of a variety of genes. To examine the gene expression profile in calcium-induced keratinocyte differentiation, we constructed a normalized cDNA library using mRNA isolated from these calcium-treated keratinocytes. After sequencing about 10,000 clones, we were able to obtain 4,104 independent genes. They consisted of 3,699 annotated genes and 405 expressed sequence tags (ESTs). Some were the genes involved in constituting epidermal structures and others were unknown genes that are probably associated with keratinocytes. In particular, we were able to identify genes located at the chromosome 1q21, the locus for the epidermal differentiation complex, and 19q13.1, another probable locus for epidermal differentiation-related gene clusters. One EST located at the chromosome 19q13.1 showed increased expression by calcium treatment, suggesting a novel candidate gene relevant to keratinocyte differentiation. These results demonstrate the complexity of the transcriptional profile of keratinocytes, providing important clues on which to base further investigations of the molecular events underlying keratinocyte differentiation.
Collapse
Affiliation(s)
- Jung-Suk Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Mi-Rang Kim
- Human Genomics Laboratory, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Nam-Soon Kim
- Human Genomics Laboratory, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yong Sung Kim
- Human Genomics Laboratory, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Ah Young Cho
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
7
|
Zeeuwen PLJM, Cheng T, Schalkwijk J. The biology of cystatin M/E and its cognate target proteases. J Invest Dermatol 2009; 129:1327-38. [PMID: 19262604 DOI: 10.1038/jid.2009.40] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cystatin M/E is a member of a superfamily of evolutionarily-related cysteine protease inhibitors that provide regulatory and protective functions against uncontrolled proteolysis by cysteine proteases. Although most cystatins are ubiquitously expressed, high levels of cystatin M/E expression are mainly restricted to the epithelia of the skin (epidermis, hair follicles, sebaceous glands, and sweat glands) and to a few extracutaneous tissues. The identification of its physiological targets and the localization of these proteases in skin have suggested a regulatory role for cystatin M/E in epidermal differentiation. In vitro biochemical approaches as well as the use of in vivo mouse models have revealed that cystatin M/E is a key molecule in a biochemical pathway that controls skin barrier formation by the regulation of both crosslinking and desquamation of the stratum corneum. Cystatin M/E directly controls the activity of cathepsin V, cathepsin L, and legumain, thereby regulating the processing of transglutaminases. Misregulation of this pathway by unrestrained protease activity, as seen in cystatin M/E-deficient mice, leads to abnormal stratum corneum and hair follicle formation, as well as to severe disturbance of skin barrier function. Here, we review the current knowledge on cystatin M/E in skin barrier formation and its potential role as a tumor suppressor gene.
Collapse
Affiliation(s)
- Patrick L J M Zeeuwen
- Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
8
|
Hayashi N, Kido J, Kido R, Wada C, Kataoka M, Shinohara Y, Nagata T. Regulation of calprotectin expression by interleukin-1? and transforming growth factor-? in human gingival keratinocytes. J Periodontal Res 2007; 42:1-7. [PMID: 17214633 DOI: 10.1111/j.1600-0765.2005.00857.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Calprotectin, a heterodimer of S100A8 and S100A9 with antimicrobial properties, is expressed in gingival keratinocytes and plays an important role in innate immunity. Because calprotectin expression is localized in the spinous cell layer of the gingival epithelium, we hypothesized that the expression of calprotectin in keratinocytes is related to the differentiation stage. The aim of the present study was to investigate the relationship between calprotectin expression and keratinocyte differentiation using some factors that regulated its differentiation. MATERIAL AND METHODS Normal human gingival keratinocytes were isolated from gingival tissues obtained at the extraction of wisdom teeth, and were cultured in serum-free keratinocyte medium supplemented with interleukin-1alpha or calcium, which promote keratinocyte differentiation, and transforming frowth factor-beta (TGF-beta) or retinoic acid, which suppress its differentiation. The expression of S100A8/A9 mRNA and the production of calprotectin in normal human gingival keratinocytes were examined by northern blotting and enzyme-linked immunosorbent assay, respectively. The expression of cytokeratin 14, involucrin and filaggrin (marker proteins of keratinocyte differentiation) was investigated by immunohistochemical staining, and the DNA-binding activity of CCAAT/enhancer binding protein alpha (C/EBPalpha), a transcription factor, was examined by electrophoretic mobility shift assay. RESULTS The expression of S100A8/A9 mRNA and the production of calprotectin were increased by interleukin-1alpha and calcium, but decreased by TGF-beta. RA inhibited the expression of S100A8/A9 and keratinocyte differentiation, which were induced by interleukin-1alpha. C/EBPalpha DNA-binding activity in normal human gingival keratinocytes was enhanced by interleukin-1alpha and calcium, but suppressed by TGF-beta. CONCLUSION The present study suggests that calprotectin expression is related to keratinocyte differentiation and that C/EBPalpha is a regulator of calprotectin expression in keratinocytes.
Collapse
Affiliation(s)
- N Hayashi
- Department of Periodontology and Endodontology, Oral and Maxillofacial Dentistry, Division of Medico-Dental Dynamics and Reconstruction, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Frankova J, Kubala L, Velebny V, Ciz M, Lojek A. The effect of hyaluronan combined with KI3 complex (Hyiodine wound dressing) on keratinocytes and immune cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:891-8. [PMID: 16977386 DOI: 10.1007/s10856-006-0179-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 10/24/2005] [Indexed: 05/11/2023]
Abstract
Hyiodine (high molecular weight hyaluronan combined with KI3 complex) is a new non-adhesive wound dressing which significantly improves the healing process. The aim of the study was to investigate the effects of Hyoidine on functional properties of isolated human keratinocytes and leukocytes, and on those of U937 and HL60 cell lines. While KI3 complex inhibited the viability and proliferation of the cells tested, Hyiodine did not have any significant effect. The expression of CD11b, CD62L and CD69 on PMNL, monocytes and lymphocytes, as well as the oxidative burst of blood neutrophils, were not changed. On the contrary, Hyiodine inhibited the PMA-activated oxidative burst and significantly increased the production of IL-6 and TNF-alpha by lymphocytes. It was concluded that hyaluronan content of Hyiodine reduces the toxic effect of KI3 complex on cells and speeds up the wound healing process by increasing the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Jana Frankova
- CPN spol. s r o, Dolni Dobrouc 401, 562 01, Dolni Dobrouc, Czech Republic.
| | | | | | | | | |
Collapse
|
10
|
Smiley AK, Klingenberg JM, Aronow BJ, Boyce ST, Kitzmiller WJ, Supp DM. Microarray analysis of gene expression in cultured skin substitutes compared with native human skin. J Invest Dermatol 2006; 125:1286-301. [PMID: 16354201 DOI: 10.1111/j.0022-202x.2005.23971.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cultured skin substitutes (CSS), prepared using keratinocytes, fibroblasts, and biopolymers, can facilitate closure of massive burn wounds by increasing the availability of autologous tissue for grafting. But because they contain only two cell types, skin substitutes cannot replace all of the functions of native human skin. To better understand the physiological and molecular differences between CSS and native skin, we undertook a comprehensive analysis of gene expression in native skin, cultured keratinocytes, cultured fibroblasts, and skin substitutes using Affymetrix gene chip microarrays. Hierarchical tree clustering identified six major clusters of coordinately regulated genes, using a list of 1030 genes that were the most differentially expressed between groups. These clusters correspond to biomarker pools representing expression signatures for native skin, fibroblasts, keratinocytes, and cultured skin. The expression analysis revealed that entire clusters of genes were either up- or downregulated upon combination of fibroblasts and keratinocytes in cultured skin grafts. Further, several categories of genes were overexpressed in CSS compared with native skin, including genes associated with hyperproliferative skin or activated keratinocytes. The observed pattern of expression indicates that CSS in vitro, which display a well-differentiated epidermal layer, exhibit a hyperproliferative phenotype similar to wounded native skin.
Collapse
Affiliation(s)
- Andrea K Smiley
- Research Department, Shriners Hospitals for Children, Cincinnati Burns Hospital, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
11
|
de Jongh GJ, Zeeuwen PLJM, Kucharekova M, Pfundt R, van der Valk PG, Blokx W, Dogan A, Hiemstra PS, van de Kerkhof PC, Schalkwijk J. High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J Invest Dermatol 2006; 125:1163-73. [PMID: 16354186 DOI: 10.1111/j.0022-202x.2005.23935.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recently, it was shown that lesional skin of atopic dermatitis patients expresses low levels of some antimicrobial peptides, compared with psoriasis patients. Here we performed microarray analysis on mRNA from purified lesional epidermal cells of patients with chronic plaque psoriasis and chronic atopic dermatitis, to investigate whether this is a general phenomenon for host defense proteins, and how specific it is for this class of molecules. Microarray data were confirmed on a selected set of genes by quantitative PCR and at the protein level by immunohistochemistry. We found overexpression of many antimicrobial proteins in keratinocytes from psoriatic skin compared with atopic dermatitis skin. Interestingly, we observed that markers of normal differentiation and the activated/hyperproliferative epidermal phenotype were expressed at equal levels. Chronic lesions of psoriasis and atopic dermatitis patients are remarkably similar with respect to cellular proliferation. We conclude that psoriatic epidermis expresses high levels of host defense proteins compared with atopic dermatitis epidermis, and this phenomenon appears to be specific for these proteins. It remains to be investigated whether this is caused by genetic polymorphisms in pathways leading to an epidermal antimicrobial response, or by differences in the cellular infiltrate in psoriasis compared with atopic dermatitis.
Collapse
Affiliation(s)
- Gys J de Jongh
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vos JB, Datson NA, van Kampen AH, Luyf AC, Verhoosel RM, Zeeuwen PL, Olthuis D, Rabe KF, Schalkwijk J, Hiemstra PS. A molecular signature of epithelial host defense: comparative gene expression analysis of cultured bronchial epithelial cells and keratinocytes. BMC Genomics 2006; 7:9. [PMID: 16420688 PMCID: PMC1382211 DOI: 10.1186/1471-2164-7-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 01/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epithelia are barrier-forming tissues that protect the organism against external noxious stimuli. Despite the similarity in function of epithelia, only few common protective mechanisms that are employed by these tissues have been systematically studied. Comparative analysis of genome-wide expression profiles generated by means of Serial Analysis of Gene Expression (SAGE) is a powerful approach to yield further insight into epithelial host defense mechanisms. We performed an extensive comparative analysis of previously published SAGE data sets of two types of epithelial cells, namely bronchial epithelial cells and keratinocytes, in which the response to pro-inflammatory cytokines was assessed. These data sets were used to elucidate a common denominator in epithelial host defense. RESULTS Bronchial epithelial cells and keratinocytes were found to have a high degree of overlap in gene expression. Using an in silico approach, an epithelial-specific molecular signature of gene expression was identified in bronchial epithelial cells and keratinocytes comprising of family members of keratins, small proline-rich proteins and proteinase inhibitors. Whereas some of the identified genes were known to be involved in inflammation, the majority of the signature represented genes that were previously not associated with host defense. Using polymerase chain reaction, presence of expression of selected tissue-specific genes was validated. CONCLUSION Our comparative analysis of gene transcription reveals that bronchial epithelial cells and keratinocytes both express a subset of genes that is likely to be essential in epithelial barrier formation in these cell types. The expression of these genes is specific for bronchial epithelial cells and keratinocytes and is not seen in non-epithelial cells. We show that bronchial epithelial cells, similar to keratinocytes, express components that are able to form a cross-linked protein envelope that may contribute to an effective barrier against noxious stimuli and pathogens.
Collapse
Affiliation(s)
- Joost B Vos
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Nicole A Datson
- Dept. of Medical Pharmacology, Leiden Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Antoine H van Kampen
- Bioinformatics Laboratory, Academic Medical Center, PO Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Angela C Luyf
- Bioinformatics Laboratory, Academic Medical Center, PO Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Renate M Verhoosel
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Patrick L Zeeuwen
- Dept. of Dermatology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Diana Olthuis
- Dept. of Dermatology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Klaus F Rabe
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Joost Schalkwijk
- Dept. of Dermatology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pieter S Hiemstra
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
13
|
Ranamukhaarachchi DG, Unger ER, Vernon SD, Lee D, Rajeevan MS. Gene expression profiling of dysplastic differentiation in cervical epithelial cells harboring human papillomavirus 16. Genomics 2005; 85:727-38. [PMID: 15885499 DOI: 10.1016/j.ygeno.2005.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2004] [Revised: 01/25/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Molecular events occurring with high-risk human papillomavirus (HPV)-associated dysplastic differentiation of cervical epithelial cells are largely unknown. This study used differential display PCR to identify expression changes between nondifferentiating monolayer and differentiated organotypic (raft) cultures of W12 keratinocytes. These cells were originally derived from a clinical biopsy of HPV 16-positive dysplastic cervical epithelium and retain high-risk HPV 16 and the ability to differentiate, albeit with dysplastic morphology. Using this model system we identified 84 genes with changed expression during dysplastic differentiation. Most (70/84, approximately 80%) were down-regulated with differentiation, consistent with a restriction of expression during terminal differentiation. Twenty-two genes had no known function and 6 novel expressed sequence tags were identified among this group. Of the 62 genes with known functions, 25 belonged to transcription-, translation-, and posttranslation-related categories and 30 had functions associated with neoplastic initiation/progression, calcium signaling, epithelial differentiation, and structure remodeling. Some of the genes with altered expression identified in this model of dysplastic differentiation may be useful biomarkers for early detection of cervical neoplasia and other HPV-associated oropharyngeal and anogenital cancers.
Collapse
Affiliation(s)
- Daya G Ranamukhaarachchi
- Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service/US DHHS, Atlanta, GA 30333, USA
| | | | | | | | | |
Collapse
|
14
|
Pérez-Plasencia C, Riggins G, Vázquez-Ortiz G, Moreno J, Arreola H, Hidalgo A, Piña-Sanchez P, Salcedo M. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE). BMC Genomics 2005; 6:130. [PMID: 16171524 PMCID: PMC1261262 DOI: 10.1186/1471-2164-6-130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 09/19/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Serial Analysis of Gene Expression (SAGE) is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE), useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mainly by cervical keratinocytes which are the targets of human papilloma virus (HPV), where persistent HPV infection of cervical epithelium is associated with an increase risk for developing cervical carcinomas (CC). RESULTS We report here a transcriptome analysis of cervical tissue by SAGE, derived from 30,418 sequenced tags that provide a wealth of information about the gene products involved in normal cervical epithelium physiology, as well as genes not previously found in uterine cervix tissue involved in the process of epidermal differentiation. CONCLUSION This first comprehensive and profound analysis of uterine cervix transcriptome, should be useful for the identification of genes involved in normal cervix uterine function, and candidate genes associated with cervical carcinoma.
Collapse
Affiliation(s)
- Carlos Pérez-Plasencia
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN Siglo XXI-IMSS, Mexico
| | - Gregory Riggins
- John Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Guelaguetza Vázquez-Ortiz
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN Siglo XXI-IMSS, Mexico
| | - José Moreno
- Unidad de Investigación Médica en Enfermedades Autoinmunes, Hospital de Especialidades, CMN Siglo XXI-IMSS México
| | - Hugo Arreola
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN Siglo XXI-IMSS, Mexico
| | - Alfredo Hidalgo
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN Siglo XXI-IMSS, Mexico
| | - Patricia Piña-Sanchez
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN Siglo XXI-IMSS, Mexico
| | - Mauricio Salcedo
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN Siglo XXI-IMSS, Mexico
| |
Collapse
|
15
|
Abstract
Dermatological diseases range from minor cosmetic problems to life-threatening conditions, as seen in some severe disorders of keratinization and cornification. These disorders are commonly due to abnormal epidermal differentiation processes, which result in disturbed barrier function of human skin. Elucidation of the cellular differentiation programs that regulate the formation and homeostasis of the epidermis is therefore of great importance for the understanding and therapy of these disorders. Much of the barrier function of human epidermis against the environment is provided by the cornified cell envelope (CE), which is assembled by transglutaminase (TGase)-mediated cross-linking of several structural proteins and lipids during the terminal stages of normal keratinocyte differentiation. The major constituents of the stratum corneum and the current knowledge on the formation of the stratum corneum will be briefly reviewed here. The discovery of mutations that underlie several human diseases caused by genetic defects in the protein or lipid components of the CE, and recent analyses of mouse mutants with defects in the structural components of the CE, catalyzing enzymes, and lipid processing, have highlighted their essential function in establishing the epidermal barrier. In addition, recent findings have provided evidence that a disturbed protease-antiprotease balance could cause faulty differentiation processes in the epidermis and hair follicle. The importance of regulated proteolysis in epithelia is well demonstrated by the recent identification of the SPINK5 serine proteinase inhibitor as the defective gene in Netherton syndrome, cathepsin C mutations in Papillon-Lefevre syndrome, cathepsin L deficiency infurless mice, targeted ablation of the serine protease Matriptase/MTSP1, targeted ablation of the aspartate protease cathepsin D, and the phenotype of targeted epidermal overexpression of stratum corneum chymotryptic enzyme in mice. Notably, our recent findings on the role of cystatin M/E and legumain as a functional dyad in skin and hair follicle cornification, a paradigm example of the regulatory functions exerted by epidermal proteases, will be discussed.
Collapse
Affiliation(s)
- Patrick L J M Zeeuwen
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Vos JB, van Sterkenburg MA, Rabe KF, Schalkwijk J, Hiemstra PS, Datson NA. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense. Physiol Genomics 2005; 21:324-36. [PMID: 15701729 DOI: 10.1152/physiolgenomics.00289.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or heat-inactivated Pseudomonas aeruginosa. Because molecular mechanisms of epithelial innate host defense are not fully understood, the open-ended expression-profiling technique SAGE was applied to construct gene expression profiles covering 30,000 genes: 292 genes were found to be differentially expressed. Expression of seven genes was confirmed by real-time qPCR. Among differentially expressed genes, four classes or families were identified: keratins, proteinase inhibitors, S100 calcium-binding proteins, and IL-1 family members. Marked transcriptional changes were observed for keratins that form a key component of the cytoskeleton in epithelial cells. Expression of antimicrobial proteinase inhibitors SLPI and elafin was elevated after microbial or cytokine exposure. Interestingly, expression of numerous S100 family members was observed, and eight members, including S100A8 and S100A9, were among the most differentially expressed genes. Differential expression was also observed for the IL-1 family members IL-1beta, IL-1 receptor antagonist, and IL-1F9, a newly discovered IL-1 family member. Clustering of differentially expressed genes into biological processes revealed that the early inflammatory response in airway epithelial cells to IL-1beta-TNF-alpha and P. aeruginosa is characterized by expression of genes involved in epithelial barrier formation and host defense.
Collapse
Affiliation(s)
- Joost B Vos
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Morhenn VB, Murakami M, O'Grady T, Nordberg J, Gallo RL. Characterization of the expression and function of N-methyl-D-aspartate receptor in keratinocytes. Exp Dermatol 2005; 13:505-11. [PMID: 15265015 DOI: 10.1111/j.0906-6705.2004.00186.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is expressed on neural tissue where it gates calcium ion entry upon stimulation. Using immunohistochemistry, it has been demonstrated in this study that the NMDAR1 receptor is also expressed on keratinocytes (KCs) in normal human skin and inflamed psoriatic skin in vivo. Furthermore, the NMDA receptor was functional as demonstrated by the ability of this receptor to trigger Ca++ influx in KCs. Incubation of cultured, human KCs with MK-801 decreases the cell growth and induces an increase in apoptosis. These findings demonstrate that the KC expression of NMDA receptor is a mechanism through which the influx of Ca++ into the cell can be regulated and suggest that the expression of this receptor may play a role in the regulation of KC growth and differentiation.
Collapse
Affiliation(s)
- V B Morhenn
- Division of Dermatology, University of California, San Diego, CA, USA.
| | | | | | | | | |
Collapse
|
18
|
Lemaître G, Lamartine J, Pitaval A, Vaigot P, Garin J, Bouet S, Petat C, Soularue P, Gidrol X, Martin MT, Waksman G. Expression profiling of genes and proteins in HaCaT keratinocytes: Proliferating versus differentiated state. J Cell Biochem 2004; 93:1048-62. [PMID: 15389883 DOI: 10.1002/jcb.20212] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The knowledge of the mechanism of keratinocyte differentiation in culture is still uncompleted. The emergence of new technologies, such as cDNA microarrays or 2D electrophoresis followed by mass spectrometry analysis, has allowed the identification of genes and proteins expressed in biological processes in keratinocytes. Here, we report a genome wide analysis of proliferating versus differentiated human HaCaT keratinocytes. We found that genes and proteins which take part in the cell cycle control, carbohydrate metabolism, cell auto-immunity, adhesion and cytokine signal transduction pathways were regulated in differentiated HaCaT keratinocytes. In addition, we identified seven proteins and 33 transcripts that had not been previously described as differentially expressed in proliferating versus differentiated HaCaT cells. Furthermore, some of these transcripts or proteins were similarly regulated in human primary keratinocytes and in human epidermis. The present study opens new areas of investigation in the comprehension of keratinocyte differentiation.
Collapse
Affiliation(s)
- Gilles Lemaître
- Service de Génomique Fonctionnelle, CEA, Département de Radiobiologie et Radiopathologie, Evry, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jura J, Wegrzyn P, Zarebski A, Władyka B, Koj A. Identification of changes in the transcriptome profile of human hepatoma HepG2 cells stimulated with interleukin-1 beta. Biochim Biophys Acta Mol Basis Dis 2004; 1689:120-33. [PMID: 15196593 DOI: 10.1016/j.bbadis.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/27/2004] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
Interleukin-1 (IL-1) is the principal pro-inflammatory cytokine participating in the initiation of acute phase response. Human hepatoma HepG2 cells were exposed to 15 ng/ml of IL-1beta for times ranging from 1 to 24 h and the total RNA was isolated. Then cDNA was obtained and used for differential display with 10 arbitrary primers and 9 oligo(dT) primers designed by Clontech. Validation of observed changes of differentially expressed known genes was carried out by RT-PCR or Northern blot analysis. Out of 90 cDNA strands modulated by IL-1, 46 have been successfully reamplified and their sequencing indicates that they represent 36 different cDNA templates. By GenBank search, 26 cDNA clones were identified as already known genes while 10 showed no homology to any known gene. The identified transcripts modulated by IL-1 in HepG2 cells code for intracellular proteins of various function: trafficking/motor proteins (3 genes), proteins participating in the translation machinery or posttranscriptional/posttranslational modifications (7 genes), proteases (1 gene), proteins involved in metabolism (6 genes), activity modulators (3 genes), proteins of the cell cycle machinery (2 genes) and those functionally unclassified (4 genes). Majority of genes responded to IL-1 within 1 to 6 h (early genes), while two were late response genes (12-24 h) and four showed prolonged response over the whole 24-h period. Most of the observed changes of expression were in the range of two- to threefold increase in comparison to control untreated cells. Among identified genes, no typical secretory acute phase protein was found. The obtained results suggest that IL-1 affects the expression of several genes in HepG2 cells, especially those engaged in the synthesis and modifications of proteins.
Collapse
Affiliation(s)
- Jolanta Jura
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | | | | | | | | |
Collapse
|
20
|
Jansen BJH, van Ruissen F, Cerneus S, Cloin W, Bergers M, van Erp PEJ, Schalkwijk J. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes. J Invest Dermatol 2004; 121:1433-9. [PMID: 14675194 DOI: 10.1046/j.1523-1747.2003.12636.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis in transformed and tumor cell lines, but usually not in other cells. Here we present a study on the effect of TRAIL on cultured keratinocytes. It is shown that differentiated and undifferentiated keratinocytes undergo apoptosis after addition of TRAIL to the medium as determined by morphologic and biochemical criteria, such as cellular shrinkage and activation of caspases. The sensitivity for TRAIL differs greatly between undifferentiated and differentiating keratinocytes, however, with undifferentiated cells being much more susceptible to apoptosis. Commitment to terminal differentiation in the absence of TRAIL does not in itself induce apoptosis. In contrast to the promyelocytic cell line HL60, internucleosomal DNA fragmentation is not observed in keratinocytes, as assessed by flow cytometric analysis and agarose gel electrophoresis. Interestingly, the prime effector of DNA fragmentation, DNA fragmentation factor of 40 kDa (DFF40), is expressed in keratinocytes, yet internucleosomal cleavage fails to occur. Our data indicate that programmed cell death during keratinocyte differentiation is distinct from receptor-mediated apoptosis in response to a death ligand.
Collapse
Affiliation(s)
- Bastiaan J H Jansen
- Department of Dermatology, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tuteja R, Tuteja N. Serial Analysis of Gene Expression: Applications in Human Studies. J Biomed Biotechnol 2004; 2004:113-120. [PMID: 15240922 PMCID: PMC548805 DOI: 10.1155/s1110724304308119] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serial analysis of gene expression (SAGE) is a powerful tool, which provides quantitative and comprehensive expression profile of genes in a given cell population. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The frequency of each SAGE tag in the cloned multimers directly reflects the transcript abundance. Therefore, SAGE results in an accurate picture of gene expression at both the qualitative and the quantitative levels. It does not require a hybridization probe for each transcript and allows new genes to be discovered. This technique has been applied widely in human studies and various SAGE tags/SAGE libraries have been generated from different cells/tissues such as dendritic cells, lung fibroblast cells, oocytes, thyroid tissue, B-cell lymphoma, cultured keratinocytes, muscles, brain tissues, sciatic nerve, cultured Schwann cells, cord blood-derived mast cells, retina, macula, retinal pigment epithelial cells, skin cells, and so forth. In this review we present the updated information on the applications of SAGE technology mainly to human studies.
Collapse
Affiliation(s)
- Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
- *Renu Tuteja:
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
22
|
Pedersen TX, Leethanakul C, Patel V, Mitola D, Lund LR, Danø K, Johnsen M, Gutkind JS, Bugge TH. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma. Oncogene 2003; 22:3964-76. [PMID: 12813470 DOI: 10.1038/sj.onc.1206614] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Keratinocytes undergo a dramatic phenotypic conversion during reepithelialization of skin wounds to become hyperproliferative, migratory, and invasive. This transient healing response phenotypically resembles malignant transformation of keratinocytes during squamous cell carcinoma progression. Here we present the first analysis of global changes in keratinocyte gene expression during skin wound healing in vivo, and compare these changes to changes in gene expression during malignant conversion of keratinized epithelium. Laser capture microdissection was used to isolate RNA from wound keratinocytes from incisional mouse skin wounds and adjacent normal skin keratinocytes. Changes in gene expression were determined by comparative cDNA array analyses, and the approach was validated by in situ hybridization. The analyses identified 48 candidate genes not previously associated with wound reepithelialization. Furthermore, the analyses revealed that the phenotypic resemblance of wound keratinocytes to squamous cell carcinoma is mimicked at the level of gene expression, but notable differences between the two tissue-remodeling processes were also observed. The combination of laser capture microdissection and cDNA array analysis provides a powerful new tool to unravel the complex changes in gene expression that underlie physiological and pathological remodeling of keratinized epithelium.
Collapse
Affiliation(s)
- Tanja Xenia Pedersen
- Proteases and Tissue Remodeling Unit, Oral & Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 211, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
van Ruissen F, Jansen BJH, de Jongh GJ, Zeeuwen PLJM, Schalkwijk J. A partial transcriptome of human epidermis. Genomics 2002; 79:671-8. [PMID: 11991716 DOI: 10.1006/geno.2002.6756] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serial analysis of gene expression (SAGE) is a powerful technique for global expression profiling without prior knowledge of the genes of interest. We carried out SAGE analysis of purified keratinocytes derived from human skin biopsy specimens, resulting in a partial transcriptome of human epidermis. We identified 7645 unique SAGE tags with quantitative information from 15,131 collected SAGE tags obtained from approximately 3 x 10(6) epidermal cells. This catalog contains a large number of genes that were not previously known to be expressed by human epidermis. Comparison with the databases of all known human SAGE tags allowed us to identify a number of keratinocyte-specific tags that putatively correspond to formerly unknown genes. Surprisingly, human epidermal keratinocytes in vivo show relatively low expression levels of genes typically associated with epidermal differentiation, whereas the expression levels of housekeeping genes are considerably higher than in cultured keratinocytes. This study provides a first step toward a transcriptome of human epidermis and, as such, harbors a wealth of information to identify genes involved in skin function, and candidate genes for genetic skin disorders.
Collapse
Affiliation(s)
- Fred van Ruissen
- Neurozintuigen Laboratory, Academic Medical Center, 1100 D Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
van Ruissen F, Jansen BJH, de Jongh GJ, van Vlijmen-Willems IMJJ, Schalkwijk J. Differential gene expression in premalignant human epidermis revealed by cluster analysis of serial analysis of gene expression (SAGE) libraries. FASEB J 2002; 16:246-8. [PMID: 11772949 DOI: 10.1096/fj.01-0618fje] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serial analysis of gene expression (SAGE) has been used for quantitative analysis of gene expression. We applied cluster analysis on multiple SAGE libraries derived from premalignant epidermal tissue (actinic keratosis), normal human epidermis, and cultured keratinocytes. The samples were obtained from skin biopsies without contamination by dermal tissue or blood. A total of 60,000 transcripts (tags) were analyzed. Two-way cluster analysis was applied to both the transcripts and the tissues, resulting in separation of the cultured cells from the epidermal samples, and clustering of many, presumably coregulated, genes. Two clusters of genes, strongly up-regulated in the tumor tissue compared with normal epidermis, were investigated in more detail. The differential expression of genes could be confirmed in actinic keratosis from four patients. Several of these genes have been previously associated with carcinogenesis or are likely to be important on the basis of their presumed function. Automated literature search tools show that a subgroup of these genes is coexpressed in other tissues and is part of an epidermal differentiation gene cluster on chromosome 1q21. We conclude that cluster analysis on large data sets uncovers clear partitions and correlations that could be confirmed by independent methods. We predict that these partitions will lead to biological interpretations that can be relevant for understanding the processes of carcinogenesis and tumor progression.
Collapse
Affiliation(s)
- Fred van Ruissen
- Department of Dermatology, University Medical Center, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Zeeuwen PL, Van Vlijmen-Willems IM, Jansen BJ, Sotiropoulou G, Curfs JH, Meis JF, Janssen JJ, Van Ruissen F, Schalkwijk J. Cystatin M/E Expression is Restricted to Differentiated Epidermal Keratinocytes and Sweat Glands: a New Skin-Specific Proteinase Inhibitor that is a Target for Cross-Linking by Transglutaminase. J Invest Dermatol 2001; 116:693-701. [PMID: 11348457 DOI: 10.1046/j.1523-1747.2001.01309.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using serial analysis of gene expression on cultured human keratinocytes we found high expression levels of genes putatively involved in host protection and defense, such as proteinase inhibitors and antimicrobial proteins. One of these expressed genes was the recently discovered cysteine proteinase inhibitor cystatin M/E that has not been characterized so far at the protein level with respect to tissue distribution and additional biologic properties. Here we report that cystatin M/E has a tissue-specific expression pattern in which high expression levels are restricted to the stratum granulosum of normal human skin, the stratum granulosum/spinosum of psoriatic skin, and the secretory coils of eccrine sweat glands. Low expression levels were found in the nasal cavity. The presence of cystatin M/E in skin and the lack of expression in a variety of other tissues was verified both at the protein level by immunohistochemistry or western blotting, and at the mRNA level by reverse transcriptase polymerase chain reaction or northern blotting. Using biotinylated hexapeptide probes we found that cystatin M/E is an efficient substrate for tissue type transglutaminase and for transglutaminases extracted from stratum corneum, and that it acts as an acyl acceptor but not as an acyl donor. Western blot analysis showed that recombinant cystatin M/E could be cross-linked to a variety of proteins extracted from stratum corneum. In vitro, we found that cystatin M/E expression in cultured keratinocytes is upregulated at the mRNA and protein level, upon induction of differentiation. We demonstrate that cystatin M/E, which has a putative signal peptide, is indeed a secreted protein and is found in vitro in culture supernatant and in vivo in human sweat by enzyme-linked immunosorbent assay or western blotting. Cystatin M/E showed moderate inhibition of cathepsin B but was not active against cathepsin C. We speculate that cystatin M/E is unlikely to be a physiologically relevant inhibitor of intracellular lysosomal cysteine proteinases but rather functions as an inhibitor of self and nonself cysteine proteinases that remain to be identified.
Collapse
Affiliation(s)
- P L Zeeuwen
- Departments of Dermatology, Medical Microbiology, and Ophthalmology, University Medical Center St Radboud, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|