1
|
Diep TN, Liu H, Yan LJ. Beneficial Effects of Butyrate on Kidney Disease. Nutrients 2025; 17:772. [PMID: 40077642 PMCID: PMC11901450 DOI: 10.3390/nu17050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The gut microbiota influences and contributes to kidney health and disease. Butyrate, a short-chain fatty acid molecule generated via the fermentation of gut bacterial catabolism of nondigestible dietary fiber, has been shown to exert numerous beneficial effects on kidney disorders. The objective of this review was to discuss the latest findings on the protective effects of butyrate on a variety of animal models of kidney injury. We conducted a PubMed search using the title word "butyrate" and keyword "kidney" to generate our literature review sources. The animal models covered in this review include ischemia-reperfusion renal injury, cisplatin- and folic acid-induced kidney injury, septic kidney injury, diabetic kidney disease (DKD), high-fat diet (HFD)-induced glomerulopathy, adenine-induced chronic kidney disease (CKD), high-salt-induced renal injury, and T-2 toxin-induced kidney injury in birds. The protective mechanisms of butyrate that are most shared among these animal model studies include antioxidative stress, anti-fibrosis, anti-inflammation, and anti-cell death. This review ends with suggestions for future studies on potential approaches that may modulate gut microbiota butyrate production for the well-being of kidneys with the kidney disorders covered in this review.
Collapse
Affiliation(s)
| | | | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (T.N.D.); (H.L.)
| |
Collapse
|
2
|
Nieto-Bona MP, Carrasco AG, Medina-Gomez G, Bosch RJ, Izquierdo-Lahuerta A. PTHrP Promotes RBP4 Expression Under the Control of PPARγ in the Kidney. Int J Mol Sci 2024; 26:142. [PMID: 39795999 PMCID: PMC11719952 DOI: 10.3390/ijms26010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Parathyroid hormone-related protein (PTHrP) and retinol-binding protein 4 (RBP4) have been associated with a worse prognosis of kidney disease. Recently, the direct interconnection between PTHrP and the peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor whose activation is nephroprotective, has been discovered. The aim of this study was to analyze the relationship between PTHrP, PPARγ, and RBP4. For this purpose, we analyzed the levels of these proteins, which were studied in the kidneys of five experimental groups of mice at 6 weeks of age: controls, diabetics, insulin-treated diabetics, transgenic mice overexpressing PTHrP at the renal level, and the latter mice that were also induced with diabetes. In addition, we also analyzed the expression levels of these molecules in two mouse podocyte cell lines, controls and PPARγKO, subjected to a lipotoxic insult by palmitic acid. We found that RBP4 and PTHrP are increased in the kidney in pathological conditions and that insulin and PPARγ act regulating PTHrP and RBP4 expression, suggesting that the regulation of this system is critical for the maintenance of renal homeostasis and how it becomes imbalanced in different pathophysiological conditions.
Collapse
Affiliation(s)
- María Paz Nieto-Bona
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain; (M.P.N.-B.); (A.G.C.)
| | - Almudena G. Carrasco
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain; (M.P.N.-B.); (A.G.C.)
| | - Gema Medina-Gomez
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain; (M.P.N.-B.); (A.G.C.)
| | - Ricardo J. Bosch
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud Nacional II, Universidad de Alcalá, Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain;
| | - Adriana Izquierdo-Lahuerta
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain; (M.P.N.-B.); (A.G.C.)
| |
Collapse
|
3
|
Yan L. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021; 4:329-342. [PMID: 34977484 PMCID: PMC8690981 DOI: 10.1002/ame2.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
Collapse
Affiliation(s)
- Liang‐Jun Yan
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
4
|
Yuan Q, Lv Y, Ding H, Ke Q, Shi C, Luo J, Jiang L, Yang J, Zhou Y. CPT1α maintains phenotype of tubules via mitochondrial respiration during kidney injury and repair. Cell Death Dis 2021; 12:792. [PMID: 34392303 PMCID: PMC8364553 DOI: 10.1038/s41419-021-04085-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
Impaired energy metabolism in proximal tubular epithelial cells (PTECs) is strongly associated with various kidney diseases. Here, we characterized proximal tubular phenotype alternations during kidney injury and repair in a mouse model of folic acid nephropathy, in parallel, identified carnitine palmitoyltransferase 1α (CPT1α) as an energy stress response accompanied by renal tubular dedifferentiation. Genetic ablation of Cpt1α aggravated the tubular injury and interstitial fibrosis and hampered kidney repair indicate that CPT1α is vital for the preservation and recovery of tubular phenotype. Our data showed that the lipid accumulation and mitochondrial mass reduction induced by folic acid were persistent and became progressively more severe in PTECs without CPT1α. Interference of CPT1α reduced capacities of mitochondrial respiration and ATP production in PTECs, and further sensitized cells to folic acid-induced phenotypic changes. On the contrary, overexpression of CPT1α protected mitochondrial respiration and prevented against folic acid-induced tubular cell damage. These findings link CPT1α to intrinsic mechanisms regulating the mitochondrial respiration and phenotype of kidney tubules that may contribute to renal pathology during injury and repair.
Collapse
Affiliation(s)
- Qi Yuan
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yunhui Lv
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Ding
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingqing Ke
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caifeng Shi
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Luo
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Small intestine resection increases oxalate and citrate transporter expression and calcium oxalate crystal formation in rat hyperoxaluric kidneys. Clin Sci (Lond) 2021; 134:2565-2580. [PMID: 33006369 PMCID: PMC7557498 DOI: 10.1042/cs20200973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Short bowel (SB) increases the risk of kidney stones. However, the underlying mechanism is unclear. Here, we examined how SB affected renal oxalate and citrate handlings for in vivo hyperoxaluric rats and in vitro tubular cells. SB was induced by small intestine resection in male Wistar rats. Sham-operated controls had no resection. After 7 days of recovery, the rats were divided into control, SB (both fed with distilled water), ethylene glycol (EG), and SB+EG (both fed with 0.75% EG for hyperoxaluric induction) groups for 28 days. We collected the plasma, 24 h of urine, kidney, and intestine tissues for analysis. Hypocitraturia was found and persisted up to 28 days for the SB group. Hypocalcemia and high plasma parathyroid hormone (PTH) levels were found in the 28-day SB rats. SB aggravated EG-mediated oxalate nephropathy by fostering hyperoxaluria and hypocitraturia, and increasing the degree of supersaturation and calcium oxalate (CaOx) crystal deposition. These effects were associated with renal up-regulations of the oxalate transporter solute carrier family 26 (Slc26)a6 and citrate transporter sodium-dependent dicarboxylate cotransporter-1 (NaDC-1) but not Slc26a2. The effects of PTH on the SB kidneys were then examined in NRK-52E tubular cells. Recombinant PTH attenuated oxalate-mediated cell injury and up-regulated NaDC-1 via protein kinase A (PKA) activation. PTH, however, showed no additive effects on oxalate-induced Slc26a6 and NaDC-1 up-regulation. Together, these results demonstrated that renal NaDC-1 upregulation-induced hypocitraturia weakened the defense against Slc26a6-mediated hyperoxaluria in SB kidneys for excess CaOx crystal formation. Increased tubular NaDC-1 expression caused by SB relied on PTH.
Collapse
|
6
|
Ortega A, Olea-Herrero N, Arenas MI, Vélez-Vélez E, Moreno-Gómez-Toledano R, Muñoz-Moreno C, Lázaro A, Esbrit P, Tejedor A, Bosch RJ. Urinary excretion of parathyroid hormone-related protein correlates with renal function in control rats and rats with cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2019; 317:F874-F880. [DOI: 10.1152/ajprenal.00091.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) and its receptor are abundantly expressed throughout the renal parenchyma, where PTHrP exerts a modulatory action on renal function. PTHrP upregulation is a common event associated with the mechanism of renal injury and repair. However, no study has yet explored the putative excretion of PTHrP in urine, including its potential relationship with renal function. In the present study, we tested this hypothesis by studying the well-known rat model of acute renal injury induced by the chemotherapeutic agent cisplatin. Using Western blot analysis, we could detect a single protein band, corresponding to intact PTHrP, in the urine of both control and cisplatin-injected rats, whose levels were significantly higher in the latter group. PTHrP was detected in rat urine by dot blot, and its quantification with two specific ELISA kits showed that, compared with control rats, those treated with cisplatin displayed a significant increase in urinary PTHrP (expressed as the PTHrP-to-creatinine ratio or 24-h excretion). In addition, a positive correlation between urinary PTHrP excretion and serum creatinine was found in these animals. In conclusion, our data demonstrate that PTHrP is excreted in rat urine and that this excretion is higher with the decrease of renal function. This suggests that urinary PTHrP levels might be a renal function marker.
Collapse
Affiliation(s)
- Arantxa Ortega
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| | - Nuria Olea-Herrero
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| | - M. Isabel Arenas
- Department of Biomedicine and Biotechnology, University of Alcala, Madrid, Spain
| | - Esperanza Vélez-Vélez
- Fundación Jiménez Díaz School of Nursing, Autonomous University of Madrid, Jiménez Díaz Foundation IDC Salud, Madrid, Spain
| | - Rafael Moreno-Gómez-Toledano
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| | - Carmen Muñoz-Moreno
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro Esbrit
- Bone and Cartilage Unit, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Madrid, Spain
| | - Alberto Tejedor
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo J. Bosch
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| |
Collapse
|
7
|
Braun K, Atmanspacher F, Schreckenberg R, Grgic I, Schlüter K. Effect of free running wheel exercise on renal expression of parathyroid hormone receptor type 1 in spontaneously hypertensive rats. Physiol Rep 2018; 6:e13842. [PMID: 30198211 PMCID: PMC6129773 DOI: 10.14814/phy2.13842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
An active lifestyle is generally recommended for hypertensive patients to prevent subsequent end-organ damage. However, experimental data on long-term effects of exercise on hypertension are insufficient and underlying mechanisms are not well understood. This study was aimed to investigate the effect of exercise on renal expression of parathyroid hormone-related protein (PTHrP) and parathyroid hormone receptor type 1 (PTHR1) in spontaneously hypertensive rats (SHR). Twenty-four rats started free running wheel exercise at the age of 1.5 months (pre-hypertensive state) and proceeded for 1.5, 3.0, 6.0, and 10.0 months. Thirty rats kept under standard housing conditions were used as sedentary controls. Kidney function was assessed by measuring plasma creatinine levels and urine albumin-to-creatinine ratios. Renal expression of PTHrP and PTHR1 was analyzed by qRT-PCR and western blot. Renal expression of PTHR1 was markedly increased between the 6th and 10th months in sedentary rats and this increase was significantly lower in SHRs with high physical activity on mRNA (-30%) and protein level (-27%). At the same time, urine albumin-to-creatinine ratio increased (from 65 to 231 mg/g) but somehow lower in exercise performing SHRs (48-196 mg/g). Our data suggest that enhanced exercise, stimulated by allocation of a free running wheel, is associated with lower PTHR1 expression in SHRs and this may contribute to preserved kidney function.
Collapse
Affiliation(s)
- Katja Braun
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | | | | | - Ivica Grgic
- Klinik für Innere Medizin und NephrologiePhilipps‐Universität MarburgMarburgGermany
| | | |
Collapse
|
8
|
Lee M, Katerelos M, Gleich K, Galic S, Kemp BE, Mount PF, Power DA. Phosphorylation of Acetyl-CoA Carboxylase by AMPK Reduces Renal Fibrosis and Is Essential for the Anti-Fibrotic Effect of Metformin. J Am Soc Nephrol 2018; 29:2326-2336. [PMID: 29976587 DOI: 10.1681/asn.2018010050] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Expression of genes regulating fatty acid metabolism is reduced in tubular epithelial cells from kidneys with tubulointerstitial fibrosis (TIF), thus decreasing the energy produced by fatty acid oxidation (FAO). Acetyl-CoA carboxylase (ACC), a target for the energy-sensing AMP-activating protein kinase (AMPK), is the major controller of the rate of FAO within cells. Metformin has a well described antifibrotic effect, and increases phosphorylation of ACC by AMPK, thereby increasing FAO. METHODS We evaluated phosphorylation of ACC in cell and mouse nephropathy models, as well as the effects of metformin administration in mice with and without mutations that reduce ACC phosphorylation. RESULTS Reduced phosphorylation of ACC on the AMPK site Ser79 occurred in both tubular epithelial cells treated with folate to mimic cellular injury and in wild-type (WT) mice after induction of the folic acid nephropathy model. When this effect was exaggerated in mice with knock-in (KI) Ser to Ala mutations of the phosphorylation sites in ACC, lipid accumulation and fibrosis increased significantly compared with WT. The effect of ACC phosphorylation on fibrosis was confirmed in the unilateral ureteric obstruction model, which showed significantly increased lipid accumulation and fibrosis in the KI mice. Metformin use was associated with significantly reduced fibrosis and lipid accumulation in WT mice. In contrast, in the KI mice, the drug was associated with worsened fibrosis. CONCLUSIONS These data indicate that reduced phosphorylation of ACC after renal injury contributes to the development of TIF, and that phosphorylation of ACC is required for metformin's antifibrotic action in the kidney.
Collapse
Affiliation(s)
- Mardiana Lee
- Kidney Laboratory, Department of Nephrology, and.,Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia
| | | | - Kurt Gleich
- Kidney Laboratory, Department of Nephrology, and
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; and
| | - Bruce E Kemp
- Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia.,St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; and.,Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Peter F Mount
- Kidney Laboratory, Department of Nephrology, and.,Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia.,The Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - David A Power
- Kidney Laboratory, Department of Nephrology, and .,Department of Medicine, The University of Melbourne, Heidelberg and Fitzroy, Victoria, Australia.,The Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
9
|
Dual roles of parathyroid hormone related protein in TGF-β1 signaling and fibronectin up-regulation in mesangial cells. Biosci Rep 2017; 37:BSR20171061. [PMID: 28954822 PMCID: PMC5665616 DOI: 10.1042/bsr20171061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/15/2023] Open
Abstract
Little is known about the cross-talk between parathyroid hormone (PTH) related protein (PTHrP) and TGF-β1 in mesangial cells (MCs). Our results showed that PTHrP treatment (≤3 h) induced internalization of PTH1R (PTH/PTHrP receptor)–TβRII (TGF-β type 2 receptor) complex and suppressed TGF-β1-mediated Smad2/3 activation and fibronectin (FN) up-regulation. However, prolonged PTHrP treatment (12–48 h) failed to induce PTH1R–TβRII association and internalization. Total protein levels of PTH1R and TβRII were unaffected by PTHrP treatment. These results suggest that internalization of PTH1R and TβRII after short PTHrP treatment might not lead to their proteolytic destruction, allowing the receptors to be recycled back to the plasma membrane during prolonged PTHrP exposure. Receptor re-expression at the cell surface allows PTHrP to switch from its initial inhibitory effect to promote induction of FN. Our study thus demonstrates the dual roles of PTHrP on TGF-β1 signaling and FN up-regulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for diabetic kidney disease (DKD).
Collapse
|
10
|
Burgos-Silva M, Semedo-Kuriki P, Donizetti-Oliveira C, Costa PB, Cenedeze MA, Hiyane MI, Pacheco-Silva A, Câmara NOS. Adipose Tissue-Derived Stem Cells Reduce Acute and Chronic Kidney Damage in Mice. PLoS One 2015; 10:e0142183. [PMID: 26565621 PMCID: PMC4643882 DOI: 10.1371/journal.pone.0142183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/19/2015] [Indexed: 02/05/2023] Open
Abstract
Acute and chronic kidney injuries (AKI and CKI) constitute syndromes responsible for a large part of renal failures, and are today still associated with high mortality rates. Given the lack of more effective therapies, there has been intense focus on the use stem cells for organ protective and regenerative effects. Mesenchymal stem cells (MSCs) have shown great potential in the treatment of various diseases of immune character, although there is still debate on its mechanism of action. Thus, for a greater understanding of the role of MSCs, we evaluated the effect of adipose tissue-derived stem cells (AdSCs) in an experimental model of nephrotoxicity induced by folic acid (FA) in FVB mice. AdSC-treated animals displayed kidney functional improvement 24h after therapy, represented by reduced serum urea after FA. These data correlated with cell cycle regulation and immune response modulation via reduced chemokine expression and reduced neutrophil infiltrate. Long-term analyses, 4 weeks after FA, indicated that AdSC treatment reduced kidney fibrosis and chronic inflammation. These were demonstrated by reduced interstitial collagen deposition and tissue chemokine and cytokine expression. Thus, we concluded that AdSC treatment played a protective role in the framework of nephrotoxic injury via modulation of inflammation and cell cycle regulation, resulting in reduced kidney damage and functional improvement, inhibiting organ fibrosis and providing long-term immune regulation.
Collapse
Affiliation(s)
- Marina Burgos-Silva
- Nephrology Division, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Immunology-Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | | | - Meire Ioshie Hiyane
- Department of Immunology-Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alvaro Pacheco-Silva
- Nephrology Division, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Nephrology Division, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Immunology-Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Hochane M, Raison D, Coquard C, Imhoff O, Massfelder T, Moulin B, Helwig JJ, Barthelmebs M. Parathyroid hormone-related protein is a mitogenic and a survival factor of mesangial cells from male mice: role of intracrine and paracrine pathways. Endocrinology 2013; 154:853-64. [PMID: 23284101 DOI: 10.1210/en.2012-1802] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glomerulonephritis is characterized by the proliferation and apoptosis of mesangial cells (MC). The parathyroid-hormone related protein (PTHrP) is a locally active cytokine that affects these phenomena in many cell types, through either paracrine or intracrine pathways. The aim of this study was to evaluate the effect of both PTHrP pathways on MC proliferation and apoptosis. In vitro studies were based on MC from male transgenic mice allowing PTHrP-gene excision by a CreLoxP system. MC were also transfected with different PTHrP constructs: wild type PTHrP, PTHrP devoid of its signal peptide, or of its nuclear localization sequence. The results showed that PTHrP deletion in MC reduced their proliferation even in the presence of serum and increased their apoptosis when serum-deprived. PTH1R activation by PTHrP(1-36) or PTH(1-34) had no effect on proliferation but improved MC survival. Transfection of MC with PTHrP devoid of its signal peptide significantly increased their proliferation and minimally reduced their apoptosis. Overexpression of PTHrP devoid of its nuclear localization sequence protected cells from apoptosis without changing their proliferation. Wild type PTHrP transfection conferred both mitogenic and survival effects, which seem independent of midregion and C-terminal PTHrP fragments. PTHrP-induced MC proliferation was associated with p27(Kip1) down-regulation and c-Myc/E2F1 up-regulation. PTHrP increased MC survival through the activation of cAMP/protein kinase A and PI3-K/Akt pathways. These results reveal that PTHrP is a cytokine of multiple roles in MC, acting as a mitogenic factor only through an intracrine pathway, and reducing apoptosis mainly through the paracrine pathway. Thus, PTHrP appears as a probable actor in MC injuries.
Collapse
Affiliation(s)
- Mazène Hochane
- Institut National de la Santé et de la Recherche Médicale U682, Equipe Cancer du Rein et Physiopathologie Rénale, Faculté de Médecine, 11 rue Humann, F-67085 Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Parathyroid hormone-related protein protects renal tubuloepithelial cells from apoptosis by activating transcription factor Runx2. Kidney Int 2013; 83:825-34. [PMID: 23364519 DOI: 10.1038/ki.2012.476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Runx2 is a key transcription factor in bone development regulating several processes, including osteoblast apoptosis. The antiapoptotic effects of parathyroid hormone (PTH) in osteoblasts depend on Runx2-mediated transcription of prosurvival genes. In the kidney, PTH-related protein (PTHrP) promotes tubulointerstitial cell survival by activating the PTH/PTHrP type 1 receptor. We found that Runx2 is expressed in renal tubuloepithelial MCT and HK2 cell lines in vitro and in the mouse kidney tubuloepithelium in vivo. The 1-36 amino-acid fragment of PTHrP was found to increase the expression and nuclear translocation of Runx2 in both cell lines in a dose- and time-dependent manner. PTHrP(1-36) protected renal tubuloepithelial cells from folic acid toxicity and serum deprivation, an effect inhibited by a dominant-negative Runx2 construct or a Runx2 siRNA. Furthermore, PTHrP(1-36) upregulated the antiapoptotic proteins Bcl-2 and osteopontin, and these effects were abolished by Runx2 siRNA. Runx2, osteopontin, and Bcl-2 were increased in tubuloepithelial cells from transgenic mice with PTHrP overexpression and in wild-type mice with acute or chronic renal failure. Thus, PTHrP regulates renal tubuloepithelial cell survival via Runx2 in the mammalian kidney.
Collapse
|
13
|
Romero M, Ortega A, Olea N, Arenas MI, Izquierdo A, Bover J, Esbrit P, Bosch RJ. Novel role of parathyroid hormone-related protein in the pathophysiology of the diabetic kidney: evidence from experimental and human diabetic nephropathy. J Diabetes Res 2013; 2013:162846. [PMID: 23984429 PMCID: PMC3747478 DOI: 10.1155/2013/162846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 07/04/2013] [Indexed: 11/17/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) and its receptor type 1 (PTH1R) are extensively expressed in the kidney, where they are able to modulate renal function. Renal PTHrP is known to be overexpressed in acute renal injury. Recently, we hypothesized that PTHrP involvement in the mechanisms of renal injury might not be limited to conditions with predominant damage of the renal tubulointerstitium and might be extended to glomerular diseases, such as diabetic nephropathy (DN). In experimental DN, the overexpression of both PTHrP and the PTH1R contributes to the development of renal hypertrophy as well as proteinuria. More recent data have shown, for the first time, that PTHrP is upregulated in the kidney from patients with DN. Collectively, animal and human studies have shown that PTHrP acts as an important mediator of diabetic renal cell hypertrophy by a mechanism which involves the modulation of cell cycle regulatory proteins and TGF- β 1. Furthermore, angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be responsible for PTHrP upregulation in these conditions. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.
Collapse
Affiliation(s)
- Montserrat Romero
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Arantxa Ortega
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Nuria Olea
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Isabel Arenas
- Department of Biomedicine and Biotechnology/Cell Biology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Adriana Izquierdo
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Jordi Bover
- Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - Pedro Esbrit
- Bone and Mineral Metabolism Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Ricardo J. Bosch
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Department of Biomedicine and Biotechnology/Cell Biology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
- *Ricardo J. Bosch:
| |
Collapse
|
14
|
Ortega A, Romero M, Izquierdo A, Troyano N, Arce Y, Ardura JA, Arenas MI, Bover J, Esbrit P, Bosch RJ. Parathyroid hormone-related protein is a hypertrophy factor for human mesangial cells: Implications for diabetic nephropathy. J Cell Physiol 2012; 227:1980-7. [DOI: 10.1002/jcp.22926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
A transgenic mouse model for studying the role of the parathyroid hormone-related protein system in renal injury. J Biomed Biotechnol 2010; 2011:290874. [PMID: 21052497 PMCID: PMC2967837 DOI: 10.1155/2011/290874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/11/2010] [Indexed: 01/15/2023] Open
Abstract
Parathyroid hormone- (PTH-) related protein (PTHrP) and its receptor, the PTH1 receptor (PTH1R), are widely expressed in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several experimental nephropathies such as acute renal failure (ARF), obstructive nephropathy (ON) as well as diabetic nephropathy (DN). In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.
Collapse
|
16
|
Romero M, Ortega A, Izquierdo A, López-Luna P, Bosch RJ. Parathyroid hormone-related protein induces hypertrophy in podocytes via TGF-beta(1) and p27(Kip1): implications for diabetic nephropathy. Nephrol Dial Transplant 2010; 25:2447-57. [PMID: 20200004 DOI: 10.1093/ndt/gfq104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hypertrophy of podocytes is characteristic in diabetic nephropathy (DN). Previously, we observed the upregulation of parathyroid hormone-related protein (PTHrP) and its receptor PTH1R, in experimental DN, associated with renal hypertrophy. Herein, we test the hypothesis that PTHrP participates in the mechanism of high glucose (HG)-induced podocyte hypertrophy. METHODS On mouse podocytes, hypertrophy was assessed by protein content/cell and [H(3)]leucine incorporation. Podocytes were stimulated with HG (25 mM), PTHrP(1-36) (100 nM), angiotensin II (AngII) (100 nM) or TGF-beta(1) (5 ng/mL) in the presence or absence of PTHrP-neutralizing antibodies (alpha-PTHrP), the PTH1R antagonist JB4250 (10 microM), PTHrP silencer RNA (siRNA) or TGF-beta(1) siRNA. Protein expression was analysed by western blot and immunohistochemistry. RESULTS HG-induced hypertrophy was abolished in the presence of either alpha-PTHrP or PTHrP siRNA. This effect was associated with an inhibition of the upregulation of TGF-beta(1) and p27(Kip1). JB4250 also inhibited HG-induced p27(Kip1) upregulation. Interestingly, whilst HG and AngII were unable to stimulate the expression of p27(Kip1) on PTHrP siRNA-transfected podocytes, TGF-beta(1) was still able to upregulate p27(Kip1) in these cells. Moreover, HG and PTHrP-induced hypertrophy as well as p27(Kip1) upregulation were abolished on TGF-beta(1) siRNA-transfected podocytes. Furthermore, the glomeruli of transgenic PTHrP-overexpressing mice showed a constitutive overexpression of TGF-beta(1) and p27(Kip1) to a degree similar to that of diabetic animals. CONCLUSIONS PTHrP seems to participate in the hypertrophic signalling triggered by HG. In this condition, AngII induces the upregulation of PTHrP, which might induce the expression of TGF-beta(1) and p27(Kip1). These findings provide new insights into the protective effects of AngII antagonists in DN, opening new paths for intervention.
Collapse
Affiliation(s)
- Montserrat Romero
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Physiology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Jin QR, Shim WS, Choi MK, Tian GY, Song IS, Yang SG, Kim DD, Chung SJ, Shim CK. Decreased urinary secretion of belotecan in folic acid-induced acute renal failure rats due to down-regulation of Oat1 and Bcrp. Xenobiotica 2009; 39:711-21. [DOI: 10.1080/00498250903026458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Rámila D, Ardura J, Esteban V, Ortega A, Ruiz-Ortega M, Bosch R, Esbrit P. Parathyroid hormone-related protein promotes inflammation in the kidney with an obstructed ureter. Kidney Int 2008; 73:835-47. [DOI: 10.1038/sj.ki.5002775] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Welsch S, Schordan E, Coquard C, Massfelder T, Fiaschi-Taesch N, Helwig JJ, Barthelmebs M. Abnormal renovascular parathyroid hormone-1 receptor in hypertension: Primary defect or secondary to angiotensin ii type 1 receptor activation? Endocrinology 2006; 147:4384-91. [PMID: 16728497 DOI: 10.1210/en.2005-1517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that PTHrP-induced renal vasodilation is impaired in mature spontaneously hypertensive rats (SHR) through down-regulation of the type 1 PTH/PTHrP receptor (PTH1R), a feature that contributes to the high renal vascular resistance in SHR. Here we asked whether this defect represents a prime determinant in genetic hypertension or whether it is secondary to angiotensin II (Ang II) and/or the mechanical forces exerted on the vascular wall. We found that the treatment of SHR with established hypertension by the Ang II type 1 receptor antagonist, losartan, reversed the down-regulation of PTH1R expression in intrarenal small arteries and restored PTHrP-induced vasodilation in ex vivo perfused kidneys. In contrast, the PTH1R deregulation was not found in intrarenal arteries isolated from prehypertensive SHR. Moreover, this defect, which is not seen in extrarenal vessels (aorta, mesenteric arteries) from mature SHR appeared kidney specific in accordance with the acknowledged enrichment of interstitial Ang II in this organ and its enhancement in SHR. In deoxycorticosterone-acetate-salt rats, an Ang II-independent model of hypertension, renovascular PTH1R expression and related vasodilation were not altered. In SHR-derived renovascular smooth muscle cells (RvSMCs), the PTH1R was spontaneously down-regulated and its transcript destabilized, compared with Wistar RvSMCs, both effects being antagonized by losartan. Exogenous Ang II elicited down-regulation of PTH1R mRNA in RvSMCs from Wistar rats. Together, these data demonstrate that Ang II acts via the Ang II type 1 receptor to destabilize PTH1R mRNA in the renal vessel in the SHR model of genetic hypertension. This process is kidney specific and independent from blood pressure increase.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Arteries/chemistry
- Arteries/metabolism
- Cells, Cultured
- Desoxycorticosterone
- Down-Regulation/drug effects
- Hypertension/chemically induced
- Hypertension/drug therapy
- Hypertension/genetics
- Kidney/blood supply
- Losartan/therapeutic use
- Male
- Parathyroid Hormone-Related Protein/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Inbred SHR
- Rats, Wistar
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Sandra Welsch
- Institut National de la Santé et de la Recherche Médicale, Unité 727, Strasbourg F-67085 France
| | | | | | | | | | | | | |
Collapse
|
20
|
Izquierdo A, López-Luna P, Ortega A, Romero M, Guitiérrez-Tarrés MA, Arribas I, Alvarez MJR, Esbrit P, Bosch RJ. The parathyroid hormone-related protein system and diabetic nephropathy outcome in streptozotocin-induced diabetes. Kidney Int 2006; 69:2171-7. [PMID: 16783882 DOI: 10.1038/sj.ki.5000195] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathophysiology of the diabetic kidney (e.g., hypertrophy, increase urinary albumin excretion (UAE) is still ill-defined. Parathyroid hormone-related protein (PTHrP) is overexpressed in several nephropathies, but its role remains unclear. We evaluated the effect of high glucose on PTHrP and the PTH1 receptor (PTH1R) protein (by Western blot and immunohistochemistry) in the kidney of mice ith streptozotocin-induced diabetes, and in several mouse renal cells in vitro. Diabetic mice showed a significantly increased renal expression of PTHrP and PTH1R proteins with 2-8 weeks from the onset of diabetes. These animals exhibited an intense immunostaining for both proteins in the renal tubules and glomeruli. Using transgenic mice overexpressing PTHrP targeted to the renal proximal tubule, we found a significant increase in the renal hypertrophy index and in UAE in these diabetic mice relative to their control littermates. Moreover, logistic regression analysis showed a significant association between both PTHrP and PTH1R protein levels and UAE in all diabetic mice throughout the study. High-glucose (25 mm) medium was found to increase PTHrP and PTH1R in tubuloepithelial cells, mesangial cells and podocytes in vitro. Moreover, this increase in PTHrP (but not that of PTH1R) was inhibited by the AT1 receptor antagonist losartan. Collectively, these results indicate that the renal PTHrP/PTH1R system is upregulated in streptozotozin-induced diabetes in mice, and appears to adversely affect the outcome of diabetic renal disease. Our findings also suggest that angiotensin II might have a role in the PTHrP upregulation in this condition.
Collapse
MESH Headings
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blood Glucose/physiology
- Blotting, Western
- Cell Line
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/physiopathology
- Epithelial Cells/chemistry
- Epithelial Cells/pathology
- Epithelial Cells/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Hypertrophy/pathology
- Hypertrophy/physiopathology
- Immunohistochemistry
- Kidney Tubules/chemistry
- Kidney Tubules/pathology
- Kidney Tubules/physiopathology
- Losartan/pharmacology
- Mesangial Cells/chemistry
- Mesangial Cells/pathology
- Mesangial Cells/physiology
- Mice
- Mice, Transgenic
- Parathyroid Hormone-Related Protein/analysis
- Parathyroid Hormone-Related Protein/drug effects
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/physiology
- Podocytes/chemistry
- Podocytes/pathology
- Podocytes/physiology
- Receptor, Parathyroid Hormone, Type 1/analysis
- Receptor, Parathyroid Hormone, Type 1/drug effects
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/physiology
Collapse
Affiliation(s)
- A Izquierdo
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Physiology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ortega A, Rámila D, Ardura JA, Esteban V, Ruiz-Ortega M, Barat A, Gazapo R, Bosch RJ, Esbrit P. Role of parathyroid hormone-related protein in tubulointerstitial apoptosis and fibrosis after folic acid-induced nephrotoxicity. J Am Soc Nephrol 2006; 17:1594-603. [PMID: 16672315 DOI: 10.1681/asn.2005070690] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) is shortly upregulated in acute renal injury, but its pathophysiologic role is unclear. Investigated was whether PTHrP might act as a profibrogenic factor in mice that do or do not overexpress PTHrP in the proximal tubule after folic acid (FA) nephrotoxicity, a model of acute renal damage followed by partial regeneration and patchy tubulointerstitial fibrosis. It was found that constitutive PTHrP overexpression in these animals conveyed a significant increase in tubulointerstitial fibrosis, associated with both fibroblast activation (as alpha-smooth muscle actin staining) and macrophage influx, compared with control littermates at 2 to 3 wk after FA damage. Cell proliferation and survival was higher (P<0.01) in the renal interstitium of PTHrP-overexpressing mice than in control littermates within this period after injury. Moreover, the former mice had a constitutive Bcl-XL protein overexpression. In vitro studies in renal tubulointerstitial and fibroblastic cells strongly suggest that PTHrP (1-36) (100 nM) reduced FA-induced apoptosis through a dual mechanism involving Bcl-XL upregulation and Akt and Bad phosphorylation. PTHrP (1-36) also stimulated monocyte chemoattractant protein-1 expression in tubuloepithelial cells, as well as type-1 procollagen gene expression and fibronectin (mRNA levels and protein secretion) in these cells and renal fibroblastic cells. Our findings indicate that this peptide, by interaction with the PTH1 receptor, can increase tubulointerstitial cell survival and seems to act as a proinflammatory and profibrogenic factor in the FA-damaged kidney.
Collapse
Affiliation(s)
- Arantxa Ortega
- Laboratorio de Metabolismo Mineral y Oseo, Pathology Department, Fundación Jiménez and Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Talon I, Lindner V, Sourbier C, Schordan E, Rothhut S, Barthelmebs M, Lang H, Helwig JJ, Massfelder T. Antitumor effect of parathyroid hormone-related protein neutralizing antibody in human renal cell carcinoma in vitro and in vivo. Carcinogenesis 2005; 27:73-83. [PMID: 16081513 DOI: 10.1093/carcin/bgi203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene occurs in 40-80% of human conventional renal cell carcinomas (RCCs). We showed recently that VHL-deficient RCCs expressed large amounts of parathyroid hormone-related protein (PTHrP), and that PTHrP, acting through the PTH1 receptor (PTH1R), plays an essential role in tumor growth. We also showed that PTHrP expression is negatively regulated by the VHL gene products (pVHL). Our goal was to determine whether blocking the PTHrP/PTH1R system might be of therapeutic value against RCC, independent of VHL status and PTHrP expression levels. The antitumor activity of PTHrP neutralizing antibody and of PTH1R antagonist were evaluated in vitro and in vivo in a panel of human RCC lines expressing or not pVHL. PTHrP is upregulated compared with normal tubular cells. In vitro, tumor cell growth and viability was decreased by up to 80% by the antibody in all cell lines. These effects resulted from apoptosis. Exogenously added PTHrP had no effect on cell growth and viability, but reversed the inhibitory effects of the antibody. The growth inhibition was reproduced by a specific PTH1R antagonist in all cell lines. In vivo, the treatment of nude mice bearing the Caki-1 RCC tumor with the PTHrP antibody inhibited tumor growth by 80%, by inducing apoptosis. Proliferation and neovascularization were not affected by the antiserum. Anti-PTHrP treatment induced no side effects as assessed by animal weight and blood chemistries. Current therapeutic strategies are only marginally effective against metastatic RCC, and adverse effects are common. This study provides a rationale for evaluating the blockade of PTHrP signaling as therapy for human RCC in a clinical setting.
Collapse
Affiliation(s)
- Isabelle Talon
- INSERM U727, Section of Renal Pharmacology and Physiopathology, University Louis Pasteur, School of Medicine, and Department of Pathology, Hôpitaux Universitaires de Strasbourg, Strasbourg, 67091 France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ortega A, Rámila D, Izquierdo A, González L, Barat A, Gazapo R, Bosch RJ, Esbrit P. Role of the Renin-Angiotensin System on the Parathyroid Hormone–Related Protein Overexpression Induced by Nephrotoxic Acute Renal Failure in the Rat. J Am Soc Nephrol 2005; 16:939-49. [PMID: 15728788 DOI: 10.1681/asn.2004040328] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP), a mitogenic factor for renal cells, is overexpressed in acute renal failure (ARF). Recent data support an association between PTHrP and the renin-angiotensin system in the damaged kidney. The effects of angiotensin II (Ang II) inhibitors (quinapril, enalapril, and/or losartan) on PTHrP and the PTH1 receptor (PTH1R) expression in rats with either folic acid (FA)- or gentamicin-induced ARF were analyzed. The decreased renal function and the PTHrP upregulation and PTH1R downregulation induced by the nephrotoxins were inhibited by the Ang II blockers. In tubuloepithelial cells NRK-52E, the rapid (10 min) increase in PTHrP mRNA by FA, associated with a perinuclear relocalization of Ang II/AT1 receptor, was inhibited by losartan but not candesartan, which traps Ang II receptors at the cell surface. Maximal PTHrP protein overexpression by FA (at 24 to 72 h)-or by exogenous Ang II-was abolished by both Ang II antagonists. PTHrP upregulation by FA was preceded by increased extracellular signal-regulated kinase (ERK) phosphorylation and inhibited by the ERK inhibitor PD098059. FA also activated cAMP response element-binding (CREB) protein, and this was prevented by losartan in these cells. Moreover, PTHrP mRNA overexpression by either FA or Ang II occurred in NRK 52E that were transfected with a CREB construct but not the dominant-negative CREB133 construct. These findings demonstrate that the decreased renal function and PTHrP overexpression in nephrotoxin-damaged kidney depends on renin-angiotensin system. In this setting, intracellular Ang II/AT1 receptor recycling seems to be related to PTHrP induction through ERK and CREB activation in tubuloepithelial cells.
Collapse
Affiliation(s)
- Arantxa Ortega
- Bone and Mineral Metabolism Laboratory, Fundación Jiménez Díaz UTE, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Long M, Qiu D, Li F, Johnson F, Luft B. Flavonoid ofDrynaria fortunei protects against acute renal failure. Phytother Res 2005; 19:422-7. [PMID: 16106396 DOI: 10.1002/ptr.1606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The flavonoid fraction (FF) from Drynaria fortunei was investigated to determine its biological activity expression in three acute renal failure animal models. Guinea pigs received 100 mg/kg of gentamicin (GM group), 100 mg/kg of GM plus 10 mg/kg of FF (GMFF group), 10 mg/kg of FF (FF group) or saline (saline group) intramuscularly for 14 days. The blood urea nitrogen (BUN) and creatinine levels were found to be significantly higher in the GM group (22.70+/-3.84 mg/dL, 0.68+/-0.05 mg/dL) than in the GMFF group (17.10+/-1.04 mg/dL, 0.58+/-0.09 mg/dL), the FF group (17.40+/-1.01 mg/dL, 0.49+/-0.20 mg/dL) and the saline group (17.50+/-1.22 mg/dL, 0.50+/-0.02 mg/dL). Mice were treated once with 6 mg/kg of mercuric chloride, followed by 10 mg/kg of FF or saline. On days 3, 4 and 5, BUN and creatinine levels were found to be significantly higher in the HgCl2-saline group (74.00+/-39.20 mg/dL, 59.30+/-31.20 mg/dL, 74.00+/-37.30 mg/dL and 0.53+/-0.17 mg/dL, 0.48+/-0.15 mg/dL 0.33+/-0.15 mg/dL) than in the HgCl2-FF group (19.50+/-4.90 mg/dL, 43.00+/-26.30 mg/dL, 38.50+/-13.80 mg/dL and 0.23+/-0.05 mg/dL, 0.30+/-0.12 mg/dL, 0.15+/-0.06 mg/dL).After surgery for 5/6-nephrectomy, ten mice received FF at a dose of 10 mg/kg/day and eight received saline for 42 days. The saline group survived for 12-62 days and the FF group survived for 20-320 days. The FF group had a significantly longer survival time than the saline group (p<0.05). Regeneration of kidney tubular cells and significantly enlarged convoluted tubules were noted in the pathology study of the FF group. In conclusion, the present study suggests that FF prevents nephrotoxicity, improves kidney function and promotes kidney primary epithelial tubular cell regeneration.
Collapse
Affiliation(s)
- Mian Long
- Department of Medicine, State University of New York at Stony Brook, 11794-8160, USA.
| | | | | | | | | |
Collapse
|
25
|
Yoshino J, Monkawa T, Tsuji M, Hayashi M, Saruta T. Leukemia inhibitory factor is involved in tubular regeneration after experimental acute renal failure. J Am Soc Nephrol 2004; 14:3090-101. [PMID: 14638908 DOI: 10.1097/01.asn.0000101180.96787.02] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is known to play a crucial role in the conversion of mesenchyme into epithelium during nephrogenesis. This study was carried out to test the hypothesis that LIF and LIF receptor (LIFR) are involved in the renal epithelial regeneration after acute renal failure. First, the authors investigated the spatiotemporal expression of LIF and LIFR in fetal and adult rat kidney. In developing kidney, LIF was expressed in the ureteric buds and LIFR was located in nephrogenic mesenchyme and the ureteric buds; in adult kidney, LIF and LIFR expression was confined to the collecting ducts. Next, the authors examined the expression of LIF and LIFR during the recovery phase after ischemia-reperfusion injury. Real-time PCR analysis revealed that LIF mRNA expression was significantly increased from day 1 to day 7 after reperfusion and that LIFR mRNA was upregulated from day 4 to day 14. Histologic analysis demonstrated that the increased expression of LIF mRNA and protein was most marked in the outer medulla, especially in the S3 segment of the proximal tubules. To elucidate the mitogenic role of LIF in the regeneration process, cultured rat renal epithelial (NRK 52E) cells were subjected to ATP depletion (an in vitro model of acute renal failure), and LIF expression was found to be enhanced during recovery after ATP depletion. Blockade of endogenous LIF with a neutralizing antibody significantly reduced the cell number and DNA synthesis during the recovery period. These results suggest that LIF participates in the regeneration process after tubular injury.
Collapse
Affiliation(s)
- Jun Yoshino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 2003; 286:F552-63. [PMID: 14600030 DOI: 10.1152/ajprenal.00285.2002] [Citation(s) in RCA: 463] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nephrotoxicity is a common side effect of therapeutic interventions, environmental insults, and exposure to toxicants in the workplace. Although biomarkers for nephrotoxicity are available, they often lack sensitivity and are not specific as indicators of epithelial cell injury. Kidney injury molecule-1 (Kim-1) is a type 1 membrane protein with extracellular immunoglobulin and mucin domains. The mRNA and protein for Kim-1 are expressed at very low levels in normal rodent kidney, but expression increases dramatically after injury in proximal tubule epithelial cells in postischemic rodent kidney and in humans during ischemic acute renal failure. To evaluate the utility of Kim-1 as a biomarker for other types of renal injury, we analyzed tissue and urinary expression in response to three different types of nephrotoxicants in the rat: S-(1,1,2,2-tetrafluoroethyl)-l-cysteine (TFEC), folic acid, and cisplatin. Marked increases in Kim-1 expression were confirmed by immunoblotting in all three models. The protein was shown to be localized to the proximal tubule epithelial cell by immunofluorescence. Furthermore, Kim-1 protein was detected in urine of toxicant-treated rats. The temporal pattern of expression in response to TFEC is similar to the Kim-1 expression pattern in the postischemic kidney. In folic acid-treated kidneys, Kim-1 is clearly localized to the apical brush border of the well-differentiated proximal tubular epithelial cells. After folic acid treatment, expression of Kim-1 is present in the urine despite no significant increase in serum creatinine. Cisplatin treatment results in early detection of urinary Kim-1 protein and diffuse Kim-1 expression in S3 cells of the proximal tubule. Kim-1 can be detected in the tissue and urine on days 1 and 2 after cisplatin administration, occurring before an increase in serum creatinine. The upregulation of expression of Kim-1 and its presence in the urine in response to exposure to various types of nephrotoxicants suggest that this protein may serve as a general biomarker for tubular injury and repair processes.
Collapse
Affiliation(s)
- Takaharu Ichimura
- Medical Services, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
27
|
Massfelder T, Helwig JJ. The parathyroid hormone-related protein system: more data but more unsolved questions. Curr Opin Nephrol Hypertens 2003; 12:35-42. [PMID: 12496664 DOI: 10.1097/00041552-200301000-00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The present review focuses on recent studies that might be considered as the most relevant advances in the parathyroid hormone-related protein field, with special emphasis on proven functions in renovascular and cardiovascular systems, in physiological as well as pathological conditions. Thus, the questions as to whether and how parathyroid hormone-related protein intervenes in vascular development and homeostasis and in vascular diseases such as hypertension, atherosclerosis, restenosis and heart failure have begun to be unraveled. RECENT FINDINGS Since its discovery from hypercalcemia-associated tumors in 1987, it has become clear that parathyroid hormone-related protein is a ubiquitously expressed poly-hormone and plays crucial roles in normal life. The early lethality to parathyroid hormone-related protein knockout mice emphasizes the crucial roles of the protein in development but has limited the use of these models. However, data accumulated from transgenic animals overexpressing the protein in particular cells have provided considerable support to its physiological and pathological relevance. The recent demonstration that nascent parathyroid hormone-related protein not only follows the secretory pathways, but also directly translocates to the nucleus, is beginning to uncover new actions for the protein in a number of physiological systems such as bone, mammary gland and vascular smooth muscle, as well as in pathological situations, such as cancer, osteoporosis, sepsis, atherosclerosis and hypertension. SUMMARY The development of mice with conditionally deleted parathyroid hormone-related protein or parathyroid hormone-1 receptor alleles will allow the creation of cell- or tissue-specific parathyroid hormone-related protein knockout mice which will greatly facilitate the determination of the biological relevance of this protein in a specific cell or tissue type, particularly in the cardiovascular system.
Collapse
Affiliation(s)
- Thierry Massfelder
- Division of Renovascular Pharmacology and Physiology, INSERM-ULP, University of Louis Pastuer Medical School, Strasbourg, France
| | | |
Collapse
|
28
|
Lorenzo O, Ruiz-Ortega M, Esbrit P, Rupérez M, Ortega A, Santos S, Blanco J, Ortega L, Egido J. Angiotensin II increases parathyroid hormone-related protein (PTHrP) and the type 1 PTH/PTHrP receptor in the kidney. J Am Soc Nephrol 2002; 13:1595-607. [PMID: 12039989 DOI: 10.1097/01.asn.0000015622.33198.bf] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Angiotensin II (AngII) participates in the pathogenesis of kidney damage. Parathyroid hormone (PTH)-related protein (PTHrP), a vasodilator and mitogenic agent, is upregulated during renal injury. The aim of this study was to investigate the potential relation between AngII and PTHrP system in the kidney. Different methods were used to find that both rat mesangial and mouse tubuloepithelial cells express PTHrP and the type 1 PTH/PTHrP receptor (PTH1R). In these cells, AngII increased PTHrP mRNA and protein production. In contrast, PTH1R mRNA was increased in mesangial cells and downregulated in tubular cells, but its protein levels were unmodified in both cells. AT(1) antagonist, but not AT(2), abolished AngII effects on PTHrP/PTH1R. The in vivo effect of AngII was further investigated by systemic infusion (a low dose of 50 ng/kg per min) into normal rats. In controls, PTHrP immunostaining was mainly detected in renal tubules. In AngII-infused rats, PTHrP staining increased in renal tubules and appeared in the glomerulus and the renal vessels. After AngII infusion, PTHR1 staining was markedly increased in all these renal structures at day 3 but remained elevated only in tubules at day 7. The AT(1) antagonist, but not the AT(2), significantly diminished AngII-induced PTHrP and PTHR1 overexpression in the renal tissue, associated with a decrease in tubular damage and fibrosis. The results indicate that AngII regulates renal PTHrP/PTH1R system via AT(1) receptors. These findings demonstrate that PTHrP upregulation occurs in association with the mechanisms of AngII-induced kidney injury.
Collapse
Affiliation(s)
- Oscar Lorenzo
- Laboratory of Vascular and Renal Research, and Laboratory of Bone and Mineral Metabolism, Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|