1
|
Kanoo S, Goodluck H, Kim YC, Garrido AN, Crespo-Masip M, Lopez N, Zhang H, Gonzalez-Villalobos RA, Ma LJ, Vallon V. Deletion, but Not Heterozygosity, of eNOS Raises Blood Pressure and Aggravates Nephropathy in BTBR ob/ob Mice. Nephron Clin Pract 2024; 148:631-642. [PMID: 38301618 PMCID: PMC11291698 DOI: 10.1159/000536522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION ob/ob mice are a leptin-deficient type 2 diabetes mellitus model, which, on a BTBR background, mimics the glomerular pathophysiology of diabetic nephropathy (DN). Since leptin deficiency reduces blood pressure (BP) and endothelial nitric oxide synthase (eNOS) lowers BP and is kidney protective, we attempted to develop a more robust DN model by introducing eNOS deficiency in BTBR ob/ob mice. METHODS Six experimental groups included littermate male and female BTBR ob/ob or wild-type for ob (control) as well as wild-type (WT), heterozygote (HET), or knockout (KO) for eNOS. Systolic BP (by automated tail-cuff) and GFR (by FITC-sinistrin plasma kinetics) were determined in awake mice at 27-30 weeks of age, followed by molecular and histological kidney analyses. RESULTS Male and female ob/ob WT presented hyperglycemia and larger body and kidney weight, GFR, glomerular injury, and urine albumin to creatinine ratio (UACR) despite modestly lower BP versus control WT. These effects were associated with a higher tubular injury score and renal mRNA expression of NGAL only in males, whereas female ob/ob WT unexpectedly had lower KIM-1 and COL1A1 expression versus control WT, indicating sex differences. HET for eNOS did not consistently alter BP or renal outcome in control or ob/ob. In comparison, eNOS KO increased BP (15-25 mm Hg) and worsened renal markers of injury, inflammation and fibrosis, GFR, UACR, and survival rates, as observed in control and, more pronouncedly, in ob/ob mice and independent of sex. CONCLUSIONS Deletion, but not heterozygosity, of eNOS raises blood pressure and aggravates nephropathy in BTBR ob/ob mice.
Collapse
Affiliation(s)
- Sadhana Kanoo
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Helen Goodluck
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Young Chul Kim
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Aleix Navarro Garrido
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Maria Crespo-Masip
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Natalia Lopez
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Haiyan Zhang
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | | | - Li-Jun Ma
- CVMR&PH Discovery, Janssen Research and Development, LLC. Cambridge, MA and Spring House, PA
| | - Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| |
Collapse
|
2
|
Oe Y, Kim YC, Sidorenko VS, Zhang H, Kanoo S, Lopez N, Goodluck HA, Crespo-Masip M, Vallon V. SGLT2 inhibitor dapagliflozin protects the kidney in a murine model of Balkan nephropathy. Am J Physiol Renal Physiol 2024; 326:F227-F240. [PMID: 38031729 PMCID: PMC11198975 DOI: 10.1152/ajprenal.00228.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
Proximal tubular uptake of aristolochic acid (AA) forms aristolactam (AL)-DNA adducts, which cause a p53/p21-mediated DNA damage response and acute tubular injury. Recurrent AA exposure causes kidney function loss and fibrosis in humans (Balkan endemic nephropathy) and mice and is a model of (acute kidney injury) AKI to chronic kidney disease (CKD) transition. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. C57BL/6J mice (15-wk-old) were administered vehicle or AA every 3 days for 3 wk (10 and 3 mg/kg ip in females and males, respectively). Dapagliflozin (dapa, 0.01 g/kg diet) or vehicle was initiated 7 days prior to AA injections. All dapa effects were sex independent, including a robust glycosuria. Dapa lowered urinary kidney-injury molecule 1 (KIM-1) and albumin (both normalized to creatinine) after the last AA injection and kidney mRNA expression of early DNA damage response markers (p53 and p21) 3 wk later at the study end. Dapa also attenuated AA-induced increases in plasma creatinine as well as AA-induced up-regulation of renal pro-senescence, pro-inflammatory and pro-fibrotic genes, and kidney collagen staining. When assessed 1 day after a single AA injection, dapa pretreatment attenuated AL-DNA adduct formation by 10 and 20% in kidney and liver, respectively, associated with reduced p21 expression. Initiating dapa application after the last AA injection also improved kidney outcome but in a less robust manner. In conclusion, the first evidence is presented that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.NEW & NOTEWORTHY Recurrent exposure to aristolochic acid (AA) causes kidney function loss and fibrosis in mice and in humans, e.g., in the form of the endemic Balkan nephropathy. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. Here we provide the first evidence in a murine model that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.
Collapse
Affiliation(s)
- Yuji Oe
- Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Young Chul Kim
- Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States
| | - Haiyan Zhang
- Department of Pathology, University of California-San Diego, San Diego, California, United States
| | - Sadhana Kanoo
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Natalia Lopez
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Helen A Goodluck
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Maria Crespo-Masip
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Volker Vallon
- Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| |
Collapse
|
3
|
Verma N, Despa F. The association between renal accumulation of pancreatic amyloid-forming amylin and renal hypoxia. Front Endocrinol (Lausanne) 2023; 14:1104662. [PMID: 36875454 PMCID: PMC9978768 DOI: 10.3389/fendo.2023.1104662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic kidney disease (CKD) is increasing worldwide and is associated with diabetic states (obesity, prediabetes and type-2 diabetes mellitus). The kidney is intrinsically susceptible to low oxygen (hypoxia) and renal hypoxia plays a vital role in the progression of CKD. Recent studies suggest an association between CKD and renal deposition of amyloid-forming amylin secreted from the pancreas. Renal accumulation of amyloid-forming amylin is associated with hypertension, mitochondrial dysfunction, increased production of reactive oxygen species (ROS) and activation of hypoxia signaling in the kidney. In this review we will discuss potential associations between renal amylin amyloid accumulation, hypertension, and mechanism of hypoxia-induced kidney dysfunction, including activation of hypoxia-inducible factors (HIFs) and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
4
|
Bryan NS. Nitric oxide deficiency is a primary driver of hypertension. Biochem Pharmacol 2022; 206:115325. [DOI: 10.1016/j.bcp.2022.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/08/2022]
|
5
|
Age-Related Changes in Skeletal Muscle Oxygen Utilization. J Funct Morphol Kinesiol 2022; 7:jfmk7040087. [PMID: 36278748 PMCID: PMC9590092 DOI: 10.3390/jfmk7040087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cardiovascular and skeletal muscle systems are intrinsically interconnected, sharing the goal of delivering oxygen to metabolically active tissue. Deficiencies within those systems that affect oxygen delivery to working tissues are a hallmark of advancing age. Oxygen delivery and utilization are reflected as muscle oxygen saturation (SmO2) and are assessed using near-infrared resonance spectroscopy (NIRS). SmO2 has been observed to be reduced by ~38% at rest, ~24% during submaximal exercise, and ~59% during maximal exercise with aging (>65 y). Furthermore, aging prolongs restoration of SmO2 back to baseline by >50% after intense exercise. Regulatory factors that contribute to reduced SmO2 with age include blood flow, capillarization, endothelial cells, nitric oxide, and mitochondrial function. These mechanisms are governed by reactive oxygen species (ROS) at the cellular level. However, mishandling of ROS with age ultimately leads to alterations in structure and function of the regulatory factors tasked with maintaining SmO2. The purpose of this review is to provide an update on the current state of the literature regarding age-related effects in SmO2. Furthermore, we attempt to bridge the gap between SmO2 and associated underlying mechanisms affected by aging.
Collapse
|
6
|
Alavi P, Rathod AM, Jahroudi N. Age-Associated Increase in Thrombogenicity and Its Correlation with von Willebrand Factor. J Clin Med 2021; 10:4190. [PMID: 34575297 PMCID: PMC8472522 DOI: 10.3390/jcm10184190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells that cover the lumen of all blood vessels have the inherent capacity to express both pro and anticoagulant molecules. However, under normal physiological condition, they generally function to maintain a non-thrombogenic surface for unobstructed blood flow. In response to injury, certain stimuli, or as a result of dysfunction, endothelial cells release a highly adhesive procoagulant protein, von Willebrand factor (VWF), which plays a central role in formation of platelet aggregates and thrombus generation. Since VWF expression is highly restricted to endothelial cells, regulation of its levels is among the most important functions of endothelial cells for maintaining hemostasis. However, with aging, there is a significant increase in VWF levels, which is concomitant with a significant rise in thrombotic events. It is not yet clear why and how aging results in increased VWF levels. In this review, we have aimed to discuss the age-related increase in VWF, its potential mechanisms, and associated coagulopathies as probable consequences.
Collapse
Affiliation(s)
| | | | - Nadia Jahroudi
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada; (P.A.); (A.M.R.)
| |
Collapse
|
7
|
Kasacka I, Piotrowska Z, Domian N, Acewicz M, Lewandowska A. Canonical Wnt signaling in the kidney in different hypertension models. Hypertens Res 2021; 44:1054-1066. [PMID: 34226678 DOI: 10.1038/s41440-021-00689-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
There is a close relationship between the kidney and blood pressure. On the one hand, kidney dysfunction causes an increase in blood pressure; on the other hand, high blood pressure causes kidney dysfunction. Wnt/β-catenin signaling is a key pathway that regulates various cellular processes and tissue homeostasis and is also involved in damage and repair processes. In healthy organs, Wnt/β-catenin signaling is muted, but it is activated in pathological states. The purpose of the present study was to immunohistochemically evaluate and compare the expression of WNT4, WNT10A, Fzd8, β-catenin, and GSK-3ß (glycogen synthase kinase 3β) in the kidneys of rats with essential arterial hypertension (SHR), renal-renal hypertension (2K1C), and DOCA-salt-induced hypertension. The study was performed on five male WKY rats, seven SHRs, and twenty-four (n = 24) young male Wistar rats. The main results showed that during hypertension, there are changes in Wnt/β-catenin signaling in the kidneys of rats, and the severity of these changes depends on the type of hypertension. This study is the first to assess the levels of some elements of the canonical Wnt/β-catenin signal transduction pathway in various types of arterial hypertension by immunohistochemistry and may form the basis for further molecular and functional studies of this pathway in hypertension.
Collapse
Affiliation(s)
- Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland.
| | - Zaneta Piotrowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Natalia Domian
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Magdalena Acewicz
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Alicja Lewandowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
8
|
Shimizu S, Nagao Y, Kurabayashi A, Shimizu T, Higashi Y, Karashima T, Saito M. Aging-related severe hypertension induces detrusor underactivity in rats. Life Sci 2021; 283:119855. [PMID: 34314734 DOI: 10.1016/j.lfs.2021.119855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
AIMS Aging is an obvious risk factor for detrusor underactivity. We investigated the effects of aging on bladder function in spontaneously hypertensive rats. MAIN METHODS Male spontaneously hypertensive rats and Wistar Kyoto rats (used as normotensive controls) at the ages of 18, 36, 54, or 72 weeks were used. Bladder weight, blood pressure, bladder blood flow, and urodynamic and renal parameters were measured. Additionally, detrusor thickness and renal histology were evaluated. KEY FINDINGS In spontaneously hypertensive rats, significant increases were observed in bladder weight/body weight ratio, blood pressure, detrusor thickness, intercontraction interval, urine output, serum creatinine, and renal glomerular and tubular scores, and decreases in bladder blood flow and urine osmolality at 72 weeks as compared to those at 18 weeks. In spontaneously hypertensive rats, significant increases were observed in single voided volume, post voiding residual urine volume, and bladder capacity, with decrease in voiding efficiency were observed at 54 or 72 weeks than at 18 weeks. However, there were no significant differences in blood pressure, urodynamic and renal parameters, detrusor thickness and renal histology among Wistar Kyoto rats of different ages. SIGNIFICANCE In spontaneously hypertensive rats, aging induces significant increases in blood pressure, single voided volume, post voiding residual urine volume, intercontraction intervals and urine output, and decreases in voiding efficiency and bladder blood flow indicative of detrusor underactivity. Aging-related severe hypertension could induce voiding dysfunction such as detrusor underactivity via severe bladder ischemia and polyuria. Aged spontaneously hypertensive rats may be useful animal models for detrusor underactivity.
Collapse
Affiliation(s)
- Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Yoshiki Nagao
- Department of Pediatrics, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Atsushi Kurabayashi
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan.
| |
Collapse
|
9
|
Kawarazaki W, Fujita T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat Rev Nephrol 2021; 17:350-363. [PMID: 33627838 DOI: 10.1038/s41581-021-00399-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Dietary salt intake increases blood pressure (BP) but the salt sensitivity of BP differs between individuals. The interplay of ageing, genetics and environmental factors, including malnutrition and stress, contributes to BP salt sensitivity. In adults, obesity is often associated with salt-sensitive hypertension. The children of women who experience malnutrition during pregnancy are at increased risk of developing obesity, diabetes and salt-sensitive hypertension as adults. Similarly, the offspring of mice that are fed a low-protein diet during pregnancy develop salt-sensitive hypertension in association with aberrant DNA methylation of the gene encoding type 1A angiotensin II receptor (AT1AR) in the hypothalamus, leading to upregulation of hypothalamic AT1AR and renal sympathetic overactivity. Ageing is also associated with salt-sensitive hypertension. In aged mice, promoter methylation leads to reduced kidney production of the anti-ageing factor Klotho and a decrease in circulating soluble Klotho. In the setting of Klotho deficiency, salt-induced activation of the vascular Wnt5a-RhoA pathway leads to ageing-associated salt-sensitive hypertension, potentially as a result of reduced renal blood flow and increased peripheral resistance. Thus, kidney mechanisms and aberrant DNA methylation of certain genes are involved in the development of salt-sensitive hypertension during fetal development and old age. Three distinct paradigms of epigenetic memory operate on different timescales in prenatal malnutrition, obesity and ageing.
Collapse
Affiliation(s)
- Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. .,School of Medicine, Shinshu University, Matsumoto, Japan. .,Research Center for Social Systems, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
10
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
11
|
Singh RR, McArdle ZM, Booth LC, May CN, Head GA, Moritz KM, Schlaich MP, Denton KM. Increase in Bioavailability of Nitric Oxide After Renal Denervation Improves Kidney Function in Sheep With Hypertensive Kidney Disease. Hypertension 2021; 77:1299-1310. [PMID: 33641371 DOI: 10.1161/hypertensionaha.120.16718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Reetu R Singh
- From the Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia (R.R.S., Z.M.M., K.M.D.)
| | - Zoe M McArdle
- From the Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia (R.R.S., Z.M.M., K.M.D.)
| | - Lindsea C Booth
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (L.C.B., C.N.M.)
| | - Clive N May
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia (L.C.B., C.N.M.)
| | - Geoff A Head
- Baker Heart and Diabetes Institute, Melbourne, Australia (G.A.H., M.P.S.)
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia (K.M.M.)
| | - Markus P Schlaich
- Baker Heart and Diabetes Institute, Melbourne, Australia (G.A.H., M.P.S.).,and Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Australia (M.P.S.)
| | - Kate M Denton
- From the Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia (R.R.S., Z.M.M., K.M.D.)
| |
Collapse
|
12
|
Luo W, Wang Y, Yang H, Dai C, Hong H, Li J, Liu Z, Guo Z, Chen X, He P, Li Z, Li F, Jiang J, Liu P, Li Z. Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging (Albany NY) 2019; 10:1722-1744. [PMID: 30048241 PMCID: PMC6075439 DOI: 10.18632/aging.101506] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022]
Abstract
AIM Premature senescence of vascular endothelial cells is a leading cause of various cardiovascular diseases. Therapies targeting endothelial senescence would have important clinical implications. The present study was aimed to evaluate the potential of heme oxygenase-1 (HO-1) as a therapeutic target for endothelial senescence. METHODS AND RESULTS Upregulation of HO-1 by Hemin or adenovirus infection reversed H2O2-induced senescence in human umbilical vein endothelial cells (HUVECs); whereas depletion of HO-1 by siRNA or HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) triggered HUVEC senescence. Mechanistically, overexpression of HO-1 enhanced the interaction between HO-1 and endothelial nitric oxide synthase (eNOS), and promoted the interaction between eNOS and its upstream kinase Akt, thus resulting in an enhancement of eNOS phosphorylation at Ser1177 and a subsequent increase of nitric oxide (NO) production. Moreover, HO-1 induction prevented the decrease of eNOS dimer/monomer ratio stimulated by H2O2 via its antioxidant properties. Contrarily, HO-1 silencing impaired eNOS phosphorylation and accelerated eNOS uncoupling. In vivo, Hemin treatment alleviated senescence of endothelial cells of the aorta from spontaneously hypertensive rats, through upregulating eNOS phosphorylation at Ser1177. CONCLUSIONS HO-1 ameliorated endothelial senescence through enhancing eNOS activation and defending eNOS uncoupling, suggesting that HO-1 is a potential target for treating endothelial senescence.
Collapse
Affiliation(s)
- Wenwei Luo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Wang
- Infinitus (China) Co. Ltd, Guangzhou 510663, China
| | - Hanwei Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunmei Dai
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huiling Hong
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingyan Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiping Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhen Guo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinyi Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping He
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ziqing Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fang Li
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianmin Jiang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
13
|
Alfazema N, Barrier M, de Procé SM, Menzies RI, Carter R, Stewart K, Diaz AG, Moyon B, Webster Z, Bellamy CO, Arends MJ, Stimson RH, Morton NM, Aitman TJ, Coan PM. Camk2n1 Is a Negative Regulator of Blood Pressure, Left Ventricular Mass, Insulin Sensitivity, and Promotes Adiposity. Hypertension 2019; 74:687-696. [PMID: 31327268 PMCID: PMC6686962 DOI: 10.1161/hypertensionaha.118.12409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome is a cause of coronary artery disease and type 2 diabetes mellitus. Camk2n1 resides in genomic loci for blood pressure, left ventricle mass, and type 2 diabetes mellitus, and in the spontaneously hypertensive rat model of metabolic syndrome, Camk2n1 expression is cis-regulated in left ventricle and fat and positively correlates with adiposity. Therefore, we knocked out Camk2n1 in spontaneously hypertensive rat to investigate its role in metabolic syndrome. Compared with spontaneously hypertensive rat, Camk2n1-/- rats had reduced cardiorenal CaMKII (Ca2+/calmodulin-dependent kinase II) activity, lower blood pressure, enhanced nitric oxide bioavailability, and reduced left ventricle mass associated with altered hypertrophic networks. Camk2n1 deficiency reduced insulin resistance, visceral fat, and adipogenic capacity through the altered cell cycle and complement pathways, independent of CaMKII. In human visceral fat, CAMK2N1 expression correlated with adiposity and genomic variants that increase CAMK2N1 expression associated with increased risk of coronary artery disease and type 2 diabetes mellitus. Camk2n1 regulates multiple networks that control metabolic syndrome traits and merits further investigation as a therapeutic target in humans.
Collapse
Affiliation(s)
- Neza Alfazema
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| | - Marjorie Barrier
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| | - Sophie Marion de Procé
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| | - Robert I. Menzies
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Roderick Carter
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Kevin Stewart
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Ana Garcia Diaz
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.G.D., B.M., Z.W.)
| | - Ben Moyon
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.G.D., B.M., Z.W.)
| | - Zoe Webster
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.G.D., B.M., Z.W.)
| | - Christopher O.C. Bellamy
- Division of Pathology, Centre for Comparative Pathology, Edinburgh CRUK Cancer Centre, United Kingdom (C.O.C.B., M.J.A.)
| | - Mark J. Arends
- Division of Pathology, Centre for Comparative Pathology, Edinburgh CRUK Cancer Centre, United Kingdom (C.O.C.B., M.J.A.)
| | - Roland H. Stimson
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Nicholas M. Morton
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (R.I.M., R.C., K.S., R.H.S., N.M.M.)
| | - Timothy J. Aitman
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| | - Philip M. Coan
- From the MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom (N.A., M.B., S.M.d.P., T.J.A., P.M.C.)
| |
Collapse
|
14
|
|
15
|
Gawryś O, Baranowska I, Gawarecka K, Świeżewska E, Dyniewicz J, Olszyński KH, Masnyk M, Chmielewski M, Kompanowska-Jezierska E. Innovative lipid-based carriers containing cationic derivatives of polyisoprenoid alcohols augment the antihypertensive effectiveness of candesartan in spontaneously hypertensive rats. Hypertens Res 2018; 41:234-245. [PMID: 29440705 DOI: 10.1038/s41440-018-0011-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 11/09/2022]
Abstract
Novel lipid-based carriers, composed of cationic derivatives of polyisoprenoid alcohols (amino-prenols, APrens) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), were designed. The carriers, which were previously shown to be nontoxic to living organisms, were now tested if suitable for administration of candesartan, an antihypertensive drug. Spontaneously hypertensive rats (SHR) received injections of candesartan (0.1 mg/kg body weight per day; s.c.) in freshly prepared carriers for two weeks. The rats' arterial pressure was measured by telemetry. Urine and blood collection were performed in metabolic cages. In a separate group of SHR, the pharmacokinetics of the new formulation was evaluated after a single subcutaneous injection. The antihypertensive activity of candesartan administered in DOPE dispersions containing APrens was distinctly greater than that of candesartan dispersions composed of DOPE only or administered in the classic solvent (sodium carbonate). The pharmacokinetic parameters clearly demonstrated that candesartan in APren carriers reached the bloodstream more rapidly and in much greater concentration (almost throughout the whole observation) than the same drug administered in dispersions of DOPE only or in solvent. Serum creatinine (PCr) decreased significantly only in the group receiving candesartan in carriers with APrens (from 0.80 ± 0.04 to 0.66 ± 0.09 mg/dl; p < 0.05), whereas in the other groups PCr remained at the same level after treatment. Moreover, the new derivatives increased the loading capacity of the carriers, which is a valuable feature for any drug delivery system. Taken together, our findings led us to conclude that APrens are potentially valuable components of lipid-based drug carriers.
Collapse
Affiliation(s)
- Olga Gawryś
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| | - Iwona Baranowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Katarzyna Gawarecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego Street, 02-106, Warsaw, Poland
| | - Ewa Świeżewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego Street, 02-106, Warsaw, Poland
| | - Jolanta Dyniewicz
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Krzysztof H Olszyński
- Behaviour and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Marek Masnyk
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Street, 01-224, Warsaw, Poland
| | - Marek Chmielewski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Street, 01-224, Warsaw, Poland
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| |
Collapse
|
16
|
Fitri LE, Rosmarwati E, Rizky Y, Budiarti N, Samsu N, Mintaroem K. Strong renal expression of heat shock protein 70, high mobility group box 1, inducible nitric oxide synthase, and nitrotyrosine in mice model of severe malaria. Rev Soc Bras Med Trop 2017; 50:489-498. [PMID: 28954070 DOI: 10.1590/0037-8682-0049-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/10/2017] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Renal damage is a consequence of severe malaria, and is generally caused by sequestration of Plasmodium falciparum -infected erythrocytes in the renal microcirculation, which leads to obstruction, hypoxia, and ischemia. This triggers high mobility group box 1 (HMGB1) to send a danger signal through toll-like receptors 2 and 4. This signal up-regulates inducible nitric oxide (iNOS) and nitrotyrosine to re-perfuse the tissue, and also increases heat shock protein 70 (HSP70) expression. As no study has examined the involvement of intracellular secondary molecules in this setting, the present study compared the renal expressions of HSP70, HMGB1, iNOS, and nitrotyrosine between mice suffered from severe malaria and normal mice. METHODS C57BL/6 mice were divided into an infected group (intraperitoneal injection of 10 6 P. berghei ANKA) and a non-infected group. Renal damage was evaluated using hematoxylin eosin staining, and immunohistochemistry was used to evaluate the expressions of HSP70, HMGB1, iNOS, and nitrotyrosine. RESULTS Significant inter-group differences were observed in the renal expressions of HSP70, HMGB1, and iNOS (p=0.000, Mann-Whitney test), as well as nitrotyrosine (p=0.000, independent t test). The expressions of HSP70 and HMGB1 were strongly correlated (p=0.000, R=1.000). No correlations were observed between iNOS and HMGB, HMGB1 and nitrotyrosine, HSP70 and nitrotyrosine, or iNOS and nitrotyrosine. CONCLUSIONS It appears that HMGB1, HSP70, iNOS, and nitrotyrosine play roles in the renal damage that is observed in mice with severe malaria. Only HSP70 expression is strongly correlated with the expression of HMGB1.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ervina Rosmarwati
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Yesita Rizky
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Niniek Budiarti
- Tropical Medicine Division, Internal Medicine Department, Faculty of Medicine, Universitas Brawijaya, dr. Saiful Anwar Public Hospital, Malang, Indonesia
| | - Nur Samsu
- Renal and Hypertension Division, Internal Medicine Department, Faculty of Medicine, Universitas Brawijaya, dr Saiful Anwar Public Hospital, Malang, Indonesia
| | - Karyono Mintaroem
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
17
|
Ryazanova MA, Fedoseeva LA, Ershov NI, Efimov VM, Markel AL, Redina OE. The gene-expression profile of renal medulla in ISIAH rats with inherited stress-induced arterial hypertension. BMC Genet 2016; 17:151. [PMID: 28105926 PMCID: PMC5249016 DOI: 10.1186/s12863-016-0462-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The changes in the renal function leading to a reduction of medullary blood flow can have a great impact on sodium and water homeostasis and on the long-term control of arterial blood pressure. The RNA-Seq approach was used for transcriptome profiling of the renal medulla from hypertensive ISIAH and normotensive WAG rats to uncover the genetic basis of the changes underlying the renal medulla function in the ISIAH rats being a model of the stress-sensitive arterial hypertension and to reveal the genes which possibly may contribute to the alterations in medullary blood flow. Results Multiple DEGs specifying the function of renal medulla in ISIAH rats were revealed. The group of DEGs described by Gene Ontology term ‘oxidation reduction’ was the most significantly enriched one. The other groups of DEGs related to response to external stimulus, response to hormone (endogenous) stimulus, response to stress, and homeostatic process provide the molecular basis for integrated responses to homeostasis disturbances in the renal medulla of the ISIAH rats. Several DEGs, which may modulate the renal medulla blood flow, were detected. The reduced transcription of Nos3 pointed to the possible reduction of the blood flow in the renal medulla of ISIAH rats. Conclusions The generated data may be useful for comparison with those from different models of hypertension and for identifying the common molecular determinants contributing to disease manifestation, which may be potentially used as new pharmacological targets. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0462-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina A Ryazanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Larisa A Fedoseeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nikita I Ershov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Vadim M Efimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Arcady L Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Olga E Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.
| |
Collapse
|
18
|
Burke SD, Zsengellér ZK, Khankin EV, Lo AS, Rajakumar A, DuPont JJ, McCurley A, Moss ME, Zhang D, Clark CD, Wang A, Seely EW, Kang PM, Stillman IE, Jaffe IZ, Karumanchi SA. Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia. J Clin Invest 2016; 126:2561-74. [PMID: 27270170 DOI: 10.1172/jci83918] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/07/2016] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy in which patients develop profound sensitivity to vasopressors, such as angiotensin II, and is associated with substantial morbidity for the mother and fetus. Enhanced vasoconstrictor sensitivity and elevations in soluble fms-like tyrosine kinase 1 (sFLT1), a circulating antiangiogenic protein, precede clinical signs and symptoms of preeclampsia. Here, we report that overexpression of sFlt1 in pregnant mice induced angiotensin II sensitivity and hypertension by impairing endothelial nitric oxide synthase (eNOS) phosphorylation and promoting oxidative stress in the vasculature. Administration of the NOS inhibitor l-NAME to pregnant mice recapitulated the angiotensin sensitivity and oxidative stress observed with sFlt1 overexpression. Sildenafil, an FDA-approved phosphodiesterase 5 inhibitor that enhances NO signaling, reversed sFlt1-induced hypertension and angiotensin II sensitivity in the preeclampsia mouse model. Sildenafil treatment also improved uterine blood flow, decreased uterine vascular resistance, and improved fetal weights in comparison with untreated sFlt1-expressing mice. Finally, sFLT1 protein expression inversely correlated with reductions in eNOS phosphorylation in placental tissue of human preeclampsia patients. These data support the concept that endothelial dysfunction due to high circulating sFLT1 may be the primary event leading to enhanced vasoconstrictor sensitivity that is characteristic of preeclampsia and suggest that targeting sFLT1-induced pathways may be an avenue for treating preeclampsia and improving fetal outcomes.
Collapse
|
19
|
Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res 2016; 14:15-39. [PMID: 26847481 PMCID: PMC4851450 DOI: 10.3121/cmr.2015.1282] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Qiangwei Fu
- Kabara Cancer Research Institute, La Crosse, WI
| | - Sean P Colgan
- Mucosal Inflammation Program and University of Colorado School of Medicine, Aurora, CO
| | - Carl Simon Shelley
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
20
|
Effects of late-onset and long-term captopril and nifedipine treatment in aged spontaneously hypertensive rats: Echocardiographic studies. Hypertens Res 2015; 38:716-22. [DOI: 10.1038/hr.2015.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/19/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
|
21
|
Cowley AW, Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol 2014; 308:F179-97. [PMID: 25354941 DOI: 10.1152/ajprenal.00455.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michiaki Abe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takefumi Mori
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yusuke Ohsaki
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
22
|
The aging kidney revisited: a systematic review. Ageing Res Rev 2014; 14:65-80. [PMID: 24548926 DOI: 10.1016/j.arr.2014.02.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 01/10/2023]
Abstract
As for the whole human body, the kidney undergoes age-related changes which translate in an inexorable and progressive decline in renal function. Renal aging is a multifactorial process where gender, race and genetic background and several key-mediators such as chronic inflammation, oxidative stress, the renin-angiotensin-aldosterone (RAAS) system, impairment in kidney repair capacities and background cardiovascular disease play a significant role. Features of the aging kidney include macroscopic and microscopic changes and important functional adaptations, none of which is pathognomonic of aging. The assessment of renal function in the framework of aging is problematic and the question whether renal aging should be considered as a physiological or pathological process remains a much debated issue. Although promising dietary and pharmacological approaches have been tested to retard aging processes or renal function decline in the elderly, proper lifestyle modifications, as those applicable to the general population, currently represent the most plausible approach to maintain kidney health.
Collapse
|
23
|
Hansell P, Welch WJ, Blantz RC, Palm F. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 2013. [PMID: 23181475 DOI: 10.1111/1440-1681.12034] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The high renal oxygen (O(2) ) demand is associated primarily with tubular O(2) consumption (Qo(2) ) necessary for solute reabsorption. Increasing O(2) delivery relative to demand via increased blood flow results in augmented tubular electrolyte load following elevated glomerular filtration, which, in turn, increases metabolic demand. Consequently, elevated kidney metabolism results in decreased tissue oxygen tension. The metabolic efficiency for solute transport (Qo(2) /T(Na) ) varies not only between different nephron sites, but also under different conditions of fluid homeostasis and disease. Contributing mechanisms include the presence of different Na(+) transporters, different levels of oxidative stress and segmental tubular dysfunction. Sustained hyperglycaemia results in increased kidney Qo(2) , partly due to mitochondrial dysfunction and reduced electrolyte transport efficiency. This results in intrarenal tissue hypoxia because the increased Qo(2) is not matched by a similar increase in O(2) delivery. Hypertension leads to renal hypoxia, mediated by increased angiotensin receptor tonus and oxidative stress. Reduced uptake in the proximal tubule increases load to the thick ascending limb. There, the increased load is reabsorbed, but at greater O(2) cost. The combination of hypertension, angiotensin II and oxidative stress initiates events leading to renal damage and reduced function. Tissue hypoxia is now recognized as a unifying pathway to chronic kidney disease. We have gained good knowledge about major changes in O(2) metabolism occurring in diabetic and hypertensive kidneys. However, further efforts are needed to elucidate how these alterations can be prevented or reversed before translation into clinical practice.
Collapse
Affiliation(s)
- Peter Hansell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
24
|
Huang CF, Hsu CN, Chien SJ, Lin YJ, Huang LT, Tain YL. Aminoguanidine attenuates hypertension, whereas 7-nitroindazole exacerbates kidney damage in spontaneously hypertensive rats: The role of nitric oxide. Eur J Pharmacol 2013. [DOI: 10.1016/j.ejphar.2012.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Nitric oxide and geriatrics: Implications in diagnostics and treatment of the elderly. J Geriatr Cardiol 2012; 8:230-42. [PMID: 22783310 PMCID: PMC3390088 DOI: 10.3724/sp.j.1263.2011.00230] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/21/2011] [Accepted: 09/28/2011] [Indexed: 01/01/2023] Open
Abstract
The nation's aging population is growing rapidly. By 2030, the number of adults age 65 and older will nearly double to 70 million. Americans are living longer and older adults can now live for many years with multiple chronic illnesses but with a substantial cost to health care. Twenty percent of the Medicare population has at least five chronic conditions i.e., hypertension, diabetes, arthritis, etc. Studies in experimental models and even humans reveal that constitutive production of nitric oxide (NO) is reduced with aging and this circumstance may be relevant to a number of diseases that plague the aging population. NO is a multifunctional signaling molecule, intricately involved with maintaining a host of physiological processes including, but not limited to, host defense, neuronal communication and the regulation of vascular tone. NO is one of the most important signaling molecules in our body, and loss of NO function is one of the earliest indicators or markers of disease. Clinical studies provide evidence that insufficient NO production is associated with all major cardiovascular risk factors, such as hyperlipidemia, diabetes, hypertension, smoking and severity of atherosclerosis, and also has a profound predictive value for disease progression including cardiovascular and Alzheimers disease. Thirty plus years after its discovery and over 13 years since a Nobel Prize was awarded for its discovery, there have been no hallmark therapeutic breakthroughs or even NO based diagnostics. We will review the current state of the science surrounding NO in the etiology of a number of different diseases in the geriatric patient. From these observations, it can be concluded that enzymatic production of NO declines steadily with increasing age in healthy human subjects. Implementing strategies to diagnose and treat NO insufficiency may provide enormous benefit to the geriatric patient.
Collapse
|
26
|
Zhang DW, Huang XZ, Wu JH, Fan YP, Shi H. Effects of Intercellular Adhesion Molecule-1 on Renal Damage in Spontaneously Hypertensive Rats. Ren Fail 2012; 34:915-20. [PMID: 22681549 DOI: 10.3109/0886022x.2012.692751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats. Am J Hypertens 2012; 25:229-35. [PMID: 22052072 DOI: 10.1038/ajh.2011.200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Our previous studies have shown that broccoli sprouts high in the glucosinolate glucoraphanin decreases renal and vascular oxidative stress and inflammation as well as blood pressure in spontaneously hypertensive stroke-prone (SHRSP) rats. The objective of this study was to determine whether the metabolite of glucoraphanin, sulforaphane, was responsible for this improved blood pressure and whether this is associated with normalization of renal methylated DNA. METHODS Sulforaphane was given by gavage to SHRSP and Sprague Dawley (SD) rats over 4 months and blood pressure measured under anesthesia just before euthanasia. Renovascular morphology was determined by histology and methylated deoxycytosine levels analyzed using high-performance liquid chromatography. RESULTS Mean arterial pressure was 20% higher in vehicle-treated SHRSP when compared to SD. Sulforaphane administration to SHRSP improved blood pressure and lowered this difference to 11%. Vehicle-treated SHRSP had significantly increased wall:lumen ratios in renal arteries, increased numbers of vascular smooth muscle cells (VSMCs), increased renal protein nitration, and decreased (11%) renal DNA methylation compared to SD. Sulforaphane administration to SHRSP significantly lowered arterial wall:lumen ratio by 35%, reduced the number of VSMCs, reduced the level of protein nitration, and increased methylated deoxycytosine levels by 14%. CONCLUSIONS Sulforaphane administration rectified pathological abnormalities in SHRSP kidneys and significantly improved blood pressure. This was associated with normalization of global kidney DNA methylation suggesting that DNA methylation could be associated with hypertension.
Collapse
|
28
|
Baumann M, Schmaderer C, Kuznetsova T, Bartholome R, Smits JFM, Richart T, Struijker-Boudier H, Staessen JA. Urinary nitric oxide metabolites and individual blood pressure progression to overt hypertension. ACTA ACUST UNITED AC 2011; 18:656-63. [PMID: 21450631 DOI: 10.1177/1741826710389419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Baseline blood pressure (BP) is the strongest known determinant of progression to hypertension, but for an individualized prediction of the incidence of hypertension, the identification of additional biomarkers is crucial. In animal models of hypertension, renal nitric oxide (NO) handling modifies the systemic BP responses prior to the development of hypertension. This study aimed to evaluate whether urinary NO metabolites (NOx) predict the progression of hypertension in normotensive subjects. Among 62 participants enrolled in the Flemish Study on Environment, Genes and Health Outcomes, we assessed progression to hypertension over 4.6 years. In a case-control design, 49 normotensive subjects including 10 subjects with high-normal blood pressure were enrolled of whom 25 remained normotensive (controls), whereas 24 'progressed' to hypertension (progressors). Thirteen hypertensive patients served as negative controls. Urinary NOx concentration, renal function and the urinary excretion of electrolytes were assessed at baseline and follow-up. At baseline, progressors showed higher BP values than controls and urinary NOx concentration was significantly lower in progressors as compared to the normotensive controls (p < 0.01). In all initially normotensive subjects baseline urinary NOx concentration was associated with follow-up BP (r = -0.55, p < 0.001) and the relative increase of BP over time (r = -0.47, p < 0.001). In progressors baseline urinary NOx was associated with follow-up BP (r = -0.52, p < 0.009) and the relative increase of BP over time (r = -0.44, p = 0.033). Baseline urinary NOx and BP were independent predictors for the relative BP increase. A urinary NOx threshold of <130.5 mg/L predicted 75% of all progressors. In context with high-normal baseline BP, 87.5% of all progressors were identified. These findings indicate that urinary NO metabolites are associated with BP development in normotensive subjects. Moreover, urinary NOx predicts the progression to hypertension independent of baseline BP suggesting urinary NOx as a biomarker for individual new-onset hypertension.
Collapse
Affiliation(s)
- Marcus Baumann
- Department of Nephrology, Klinikum rechts der Isar, Munich Technical University, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gomes P, Simão S, Silva E, Pinto V, Amaral JS, Afonso J, Serrão MP, Pinho MJ, Soares-da-Silva P. Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:138-45. [PMID: 20592768 PMCID: PMC2763239 DOI: 10.4161/oxim.2.3.8819] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/22/2009] [Accepted: 04/22/2009] [Indexed: 01/25/2023]
Abstract
The aim of this study was to investigate whether the effects of aging on oxidative stress markers and expression of major oxidant and antioxidant enzymes associate with impairment of renal function and increases in blood pressure. To explore this, we determined age-associated changes in lipid peroxidation (urinary malondialdehyde), plasma and urinary hydrogen peroxide (H2O2) levels, as well as renal H2O2 production, and the expression of oxidant and antioxidant enzymes in young (13 weeks) and old (52 weeks) male Wistar Kyoto (WKY) rats. Urinary lipid peroxidation levels and H2O2 production by the renal cortex and medulla of old rats were higher than their young counterparts. This was accompanied by overexpression of NADPH oxidase components Nox4 and p22phox in the renal cortex of old rats. Similarly, expression of superoxide dismutase (SOD) isoforms 2 and 3 and catalase were increased in the renal cortex from old rats. Renal function parameters (creatinine clearance and fractional excretion of sodium), diastolic blood pressure and heart rate were not affected by aging, although slight increases in systolic blood pressure were observed during this 52-week period. It is concluded that overexpression of renal Nox4 and p22phox and the increases in renal H2O2 levels in aged WKY does not associate with renal functional impairment or marked increases in blood pressure. It is hypothesized that lack of oxidative stress-associated effects in aged WKY rats may result from increases in antioxidant defenses that counteract the damaging effects of H2O2.
Collapse
Affiliation(s)
- Pedro Gomes
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
de Cavanagh EMV, Ferder LF, Ferder MD, Stella IY, Toblli JE, Inserra F. Vascular structure and oxidative stress in salt-loaded spontaneously hypertensive rats: effects of losartan and atenolol. Am J Hypertens 2010; 23:1318-25. [PMID: 20706197 DOI: 10.1038/ajh.2010.167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Renin-angiotensin system (RAS) modulation by high dietary sodium may contribute to salt-induced hypertension, oxidative stress, and target organ damage. We investigated whether angiotensin II (Ang-II) type 1 (AT1)-receptor blockade (losartan) could protect the aorta and renal arteries from combined hypertension- and high dietary salt-related oxidative stress. METHODS Spontaneously hypertensive rats (3-month-old, n = 10/group) received tap water (SHR), water containing 1.5% NaCl (SHR+S), 1.5% NaCl and 30 mg losartan/kg/day (SHR+S+L), or 50 mg atenolol/kg/day (SHR+S+A). Atenolol was used for comparison. Ten Wistar-Kyoto rats (WKY) were controls. Systolic blood pressure (SBP) was determined by tail plethysmography. After 5 months of treatment, vascular remodeling and oxidative stress (superoxide production and NAD(P)H-oxidase activity (chemiluminescence), malondialdehyde (MDA) content (high-performance liquid chromatography), endothelial nitric oxide synthase (eNOS) activity [(14)C-arginine to (14)C citrulline], CuZn-SOD activity (spectrophotometry)) were studied. RESULTS In SHR, salt-loading significantly aggravated hypertension, urinary protein excretion, intraparenchymal renal artery (IPRArt) perivascular fibrosis, aortic and renal artery oxidative stress, and induced endothelial cell loss in IPRArts. In salt-loaded SHR, 5-month losartan and atenolol treatments similarly reduced SBP, but only losartan significantly prevented (i) urinary protein excretion increase, (ii) or attenuated hypertension-related vascular remodeling, (iii) aortic MDA accumulation, (iv) renal artery eNOS activity lowering, and (v) aortic and renal artery superoxide dismutase (SOD) activity reduction. In SHR+S, the contributions to aortic superoxide production were as follows: uncoupled eNOS > xanthine oxidase (XO) > NAD(P)H oxidase. CONCLUSIONS In this salt-sensitive genetic hypertension model, losartan protects from hypertension- and high dietary salt-related vascular oxidative stress, exceeding the benefits of BP reduction. Also, during salt overload, BP-independent factors contribute to vascular remodeling, at least part of which derive from AT1-receptor activation.
Collapse
|
31
|
Chen L, Faulhaber-Walter R, Wen Y, Huang Y, Mizel D, Chen M, Sequeira Lopez ML, Weinstein LS, Gomez RA, Briggs JP, Schnermann J. Renal failure in mice with Gsalpha deletion in juxtaglomerular cells. Am J Nephrol 2010; 32:83-94. [PMID: 20551626 PMCID: PMC2914394 DOI: 10.1159/000314635] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/23/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mice with deletion of Gsalpha in renin-producing cells (RC/FF mice) have been shown to have greatly reduced renin production and lack of responsiveness of renin secretion to acute stimuli. In addition, young RC/FF mice are hypotensive and have a vasopressin-resistant concentrating defect. In the present study we have determined the long-term effect on renal function, blood pressure, and renal pathology in this low renin and diuretic mouse model. METHODS AND RESULTS Urine osmolarity of RC/FF mice was decreased in all age groups. GFR measured at 7, 14 and 20 weeks of age declined progressively. Single nephron GFR similarly declined while fractional proximal fluid absorption was maintained. Expression levels of extracellular matrix proteins (collagen I, IV and fibronectin) and alpha-smooth muscle actin were increased in kidneys of RC/FF mice at 20 weeks, and this was accompanied by focal segmental glomerulosclerosis and periglomerular interstitial fibrosis. RC/FF mice showed a progressive reduction of body weight, an increase in urine albumin excretion, and an increase of blood pressure with aging. CONCLUSION A chronic reduction of renin production in mice may be a risk factor in its own right, and does not protect renal function against the profibrotic influence of a chronically elevated urine flow.
Collapse
Affiliation(s)
- Limeng Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Md., USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Newaz MA, Yousefipour Z, Nawal NNA. Modulation of Nitric Oxide Synthase Activity in Brain, Liver, and Blood Vessels of Spontaneously Hypertensive Rats by Ascorbic Acid: Protection from Free Radical Injury. Clin Exp Hypertens 2009; 27:497-508. [PMID: 16081342 DOI: 10.1081/ceh-200067681] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
End organ damage in essential hypertension has been linked to increased oxygen free radical generation, reduced antioxidant defense, and/or attenuation of nitric oxide synthase (NOS) activity. Ascorbic acid (AA), a water-soluble antioxidant, has been reported as a strong defense against free radicals in both aqueous and nonaqueous environment. In this study we examined the hypothesis that antioxidant ascorbic acid may confer protection from increased free radical activity in brain, liver, and blood vessels of spontaneously hypertensive rats (SHR). Male SHRs were divided into groups: SHR + AA (treated with AA, 1 mg/rat/day; for 12 weeks) or SHR (untreated). Wister-Kyoto rats (WKY) served as the control. Mean systolic blood pressure (SBP) in treated and untreated SHR was 145 +/- 7 mmHg and 142 +/- 8 mmHg, respectively. AA treatment prevented the increase in systolic blood pressure in SHR by 37 +/- 1% (p < 0.05). NOS activity in the brain, liver, and blood vessels of WKY rat was 1.82 +/- 0.02, 0.14 +/- 0.003, and 1.54 +/- 0.06 pmol citruline/mg protein, respectively. In SHR, total NOS activity was significantly reduced by 52 +/- 1%, 21 +/- 3%, and 44 +/- 4%, respectively. AA increased NOS activity in brain, liver, and blood vessels of SHR from 0.87 +/-.03, 0.11 +/-.01, and 0.87 +/-.08 pmol citruline/mg protein to 0.93 +/- 0.01, 0.13 +/- 0.001, and 1.11 +/- 0.03 pmol citruline/mg protein (p < 0.05), respectively. Lipid peroxides in the brain, liver, and blood vessels from WKY rats were 0.87 +/- 0.06, 0.11 +/- 0.005, and 0.47 +/- 0.04 nmol MDA equiv/mg protein, respectively. In SHR, lipid peroxides in brain, liver, and blood vessels were significantly increased by 40 +/- 3%, 64 +/- 3%, and 104 +/- 13%, respectively. AA reduced lipid peroxidation in liver and blood vessels by 17 +/- 1% and 34 +/- 3% but not in brain. Plasma lipid peroxides were almost doubled in SHR (p < 0.01) together with a reduction in total antioxidant status (6 +/- 0.1%; p < 0.05), nitrite (53 +/- 2%; p < 0.05) and superoxide dismutase (SOD) activity (36 +/- 2%; p < 0.05). AA treatment reduced plasma lipid peroxide (p < 0.001), and increased TAS (p < 0.001), nitrite (p < 0.001), and SOD activity (p < 0.001). From this study, we conclude that brain, liver, and blood vessels in SHR are susceptible to free radical injury, which reduces the availability of NO either by scavenging it or by reducing its production via inhibiting NOS. In addition, brain, liver, and blood vessels in SHR; may be protected by antioxidant, which improves total antioxidant status, and SOD thus may prevent high blood pressure and its complications.
Collapse
Affiliation(s)
- M A Newaz
- Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas 77004, USA.
| | | | | |
Collapse
|
33
|
Piotrkowski B, Koch OR, De Cavanagh EMV, Fraga CG. Cardiac mitochondrial function and tissue remodelling are improved by a non-antihypertensive dose of enalapril in spontaneously hypertensive rats. Free Radic Res 2009; 43:390-9. [PMID: 19296328 DOI: 10.1080/10715760902801517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Renal and cardiac benefits of renin-angiotensin system inhibition exceed blood pressure (BP) reduction and seem to involve mitochondrial function. It has been shown that RAS inhibition prevented mitochondrial dysfunction in spontaneously hypertensive rats (SHR) kidneys. Here, it is investigated whether a non-antihypertensive enalapril dose protects cardiac tissue and mitochondria function. Three-month-old SHR received water containing enalapril (10 mg/kg/day, SHR+Enal) or no additions (SHR-C) for 5 months. Wistar-Kyoto rats (WKY) were normotensive controls. At month 5, BP was similar in SHR+Enal and SHR-C. In SHR+Enal and WKY, heart weight and myocardial fibrosis were lower than in SHR-C. Matrix metalloprotease-2 activity was lower in SHR+Enal with respect to SHR-C and WKY. In SHR+Enal and WKY, NADH/cytochrome c oxidoreductase activity, eNOS protein and activity and mtNOS activity were higher and Mn-SOD activity was lower than in SHR-C. In summary, enalapril at a non-antihypertensive dose prevented cardiac hypertrophy and modifies parameters of cardiac mitochondrial dysfunction in SHR.
Collapse
Affiliation(s)
- Barbara Piotrkowski
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
34
|
|
35
|
Renal senescence in 2008: progress and challenges. Int Urol Nephrol 2008; 40:823-39. [PMID: 18584301 DOI: 10.1007/s11255-008-9405-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/16/2008] [Indexed: 12/12/2022]
Abstract
Kidneys are significantly affected by profound anatomic and functional changes with senescence. These changes lead to decline in glomerular filtration rate, decreased urinary concentrating and diluting ability, diminished urinary acidification, and impaired potassium clearance, to list a few. Such changes make the elderly prone to drug toxicity and serious fluid and electrolyte imbalance. While the entire mystery of aging is far from being clear, the role of oxidative stress, telomere length, Klotho gene expression, and the renin angiotensin system seem to be the key mechanisms involved in aging. Aging, being a complex process, involves an array of intertwined molecular pathways. Simultaneous study of multiple molecular pathways in parallel could provide invaluable information in understanding the clinical course of kidney aging and elucidating mechanisms that play key roles in the aging process. A better understanding of these mechanisms may help to preserve renal function, improve morbidity and mortality, and hopefully reduce healthcare costs for the aging population.
Collapse
|
36
|
Zhen J, Lu H, Wang XQ, Vaziri ND, Zhou XJ. Upregulation of endothelial and inducible nitric oxide synthase expression by reactive oxygen species. Am J Hypertens 2008; 21:28-34. [PMID: 18091741 DOI: 10.1038/ajh.2007.14] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The effect of reactive oxygen species (ROS) on nitric oxide synthase (NOS) expression remains uncertain. This study explored the effect of increased ROS activity on NOS expression in vitro in human coronary artery endothelial cells (HCAECs) grown in culture and in intact animals. METHODS Endothelial NOS (eNOS) expression and nuclear factor kappaB (NFkappaB) activation were determined in HCAECs grown in culture and exposed to oxidative stress with xanthine-xanthine oxidase (X-XO) generated superoxide, H(2)O(2), or glutathione depletion with buthionine sulfoximine (BSO) for 24 h. In parallel experiments, cells were treated with a nitric oxide (NO) scavenger (hemoglobin), and with an NO donor S-nitroso-N-acetyl penicillamine (SNAP)]. In addition, eNOS and inducible NOS (iNOS) expressions were determined in rats treated with either BSO or vehicle for 48 h. RESULTS Increases in ROS activity, achieved by exogenous superoxide and H(2)O(2) or by glutathione depletion, upregulated the expression of eNOS at both transcriptional and translational levels in HCAECs. Similar effects were seen with the non-radical NO scavenger, hemoglobin. The upregulatory action of hemoglobin on eNOS messenger RNA (mRNA) and protein expressions was overcome by the NO donor, SNAP, thereby suggesting that there is a negative feedback regulation of eNOS by NO. Nuclear translocation of NFkappaB (p65) was noted within 5 min of exposure to H(2)O(2) and at least 15 min after exposure to superoxide or BSO. Induction of oxidative stress by glutathione depletion led to upregulation of renal and aorta eNOS and iNOS in live animals. CONCLUSIONS An increase in ROS activity upregulates NOS expression in vitro in HCAECs grown in culture, and also in vivo in animals. This effect appears to be, in part, mediated by limiting the availability of NO, thereby exerting a negative feedback influence on NOS expression through activation of NFkappaB.
Collapse
|
37
|
Zheng Q, Ye L, Gao R, Han J, Xiong M, Zhao D, Gong T, Zhang Z. Kinetic release of triptolide after injection of renal-targeting 14-succinyl triptolide-lysozyme in a rat kidney study by liquid chromatography/mass spectrometry. Biomed Chromatogr 2007; 21:724-9. [PMID: 17370252 DOI: 10.1002/bmc.811] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Triptolide (TP) is one of the most important biologically active components of the Chinese herb Tripterygium wilfordii Hook f (TWHf). A novel high-performance liquid chromatography/mass spectrometry (LC/MS) method was developed to study the kinetic release of TP after intravenous injection of the newly synthesized 14-succinyl triptolide-lysozyme (TPS-LZM). The method was validated in terms of selectivity, linearity, precision, accuracy, stability, limit of detection (LOD) and limit of quantification (LOQ). The calibration curve was linear over the concentration range 0.5-400.0 ng/g. The mean recovery of triptolide from spiked samples, in a concentration range of 0.5-400.0 ng/g, was 91.84% (RSD = 3.69%, n = 3). The intra- and inter-assay coefficients of variation were less than 6.38%. The method with simple sample pretreatment and being highly specific and precise, can be used for analysis of triptolide release in rat kidney after intravenous injection of renal-targeting TPS-LZM conjugate. The results showed that, as compared with free TP, TPS-LZM could significantly increase the concentration and prolong the action time of TP in the kidney.
Collapse
Affiliation(s)
- Qiang Zheng
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan, 610041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
de Cavanagh EMV, Toblli JE, Ferder L, Piotrkowski B, Stella I, Inserra F. Renal mitochondrial dysfunction in spontaneously hypertensive rats is attenuated by losartan but not by amlodipine. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1616-25. [PMID: 16410402 DOI: 10.1152/ajpregu.00615.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction is associated with cardiovascular damage; however, data on a possible association with kidney damage are scarce. Here, we aimed at investigating whether 1) kidney impairment is related to mitochondrial dysfunction; and 2) ANG II blockade, compared with Ca2+ channel blockade, can reverse potential mitochondrial changes in hypertension. Eight-week-old male spontaneously hypertensive rats (SHR) received water containing losartan (40 mg·kg−1·day−1, SHR+Los), amlodipine (3 mg·kg−1·day−1, SHR+Amlo), or no additions (SHR) for 6 mo. Wistar-Kyoto rats (WKY) were normotensive controls. Glomerular and tubulointerstitial damage, systolic blood pressure, and proteinuria were higher, and creatinine clearance was lower in SHR vs. SHR+Los and WKY. In SHR+Amlo, blood pressure was similar to WKY, kidney function was similar to SHR, and renal lesions were lower than in SHR, but higher than in SHR+Los. In kidney mitochondria from SHR and SHR+Amlo, membrane potential, nitric oxide synthase, manganese-superoxide dismutase and cytochrome oxidase activities, and uncoupling protein-2 content were lower than in SHR+Los and WKY. In SHR and SHR+Amlo, mitochondrial H2O2 production was higher than in SHR+Los and WKY. Renal glutathione content was lower in SHR+Amlo relative to SHR, SHR+Los, and WKY. In SHR and SHR+Amlo, glutathione was relatively more oxidized than in SHR+Los and WKY. Tubulointerstitial α-smooth muscle actin labeling was inversely related to manganese-superoxide dismutase activity and uncoupling protein-2 content. These findings suggest that oxidant stress is associated with renal mitochondrial dysfunction in SHR. The mitochondrial-antioxidant actions of losartan may be an additional or alternative way to explain some of the beneficial effects of AT1-receptor antagonists.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Physical-Chemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Helguera 2365, Buenos Aires 1417, Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Yanes LL, Romero DG, Iles JW, Iliescu R, Gomez-Sanchez C, Reckelhoff JF. Sexual dimorphism in the renin-angiotensin system in aging spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R383-90. [PMID: 16914423 DOI: 10.1152/ajpregu.00510.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In young adult spontaneously hypertensive rats (SHR), mean arterial pressure (MAP) is higher in males than in females and inhibition of the renin-angiotensin system (RAS) eliminates this sex difference. After cessation of estrous cycling in female SHR, MAP is similar to that in male SHR. The purpose of this study was to determine the role of the RAS in maintenance of hypertension in aging male and female SHR. At 16 mo of age, MAP was similar in male and female SHR (183+/-5 vs. 193+/-8 mmHg), and chronic losartan (40 mg.kg-1.day-1 po for 3 wk) reduced MAP by 52% (to 90+/-8 mmHg, P<0.05 vs. control) in males and 37% (to 123+/-11 mmHg, P<0.05 vs. control) in females (P<0.05, females vs. males). The effect of losartan on angiotensin type 1 (AT1) receptor blockade was similar: MAP responses to acute doses of ANG II (62.5-250 ng/kg) were blocked to a similar extent in losartan-treated males and females. F2-isoprostane excretion was reduced with losartan more in males than in females. There were no sex differences in plasma renin activity, plasma angiotensinogen or ANG II, or renal expression of AT1 receptors, angiotensin-converting enzyme, or renin. However, renal angiotensinogen mRNA and protein expression was higher in old males than females, whereas renal ANG II was higher in old females than males. The data show that, in aging SHR, when blood pressures are similar, there remains a sexual dimorphism in the response to AT1 receptor antagonism, and the differences may involve sex differences in mechanisms responsible for oxidative stress with aging.
Collapse
Affiliation(s)
- Licy L Yanes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
40
|
Afanas'ev IB. Free Radical Mechanisms of Aging Processes Under Physiological Conditions. Biogerontology 2005; 6:283-90. [PMID: 16333762 DOI: 10.1007/s10522-005-2626-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/03/2005] [Indexed: 01/22/2023]
Abstract
Free radical theory of aging predicts crucial role for free radicals produced by external factors (environmental contamination, irradiation, etc.) or pathological disorders (hereditary diseases or infections) in the initiation of aging. Does it mean that under hypothetical completely physiological conditions aging processes could be fully suppressed? To answer this question, we will consider the possible mechanisms of free radical formation in such hypothetical state. There are two major mechanisms, which are responsible for free radical-mediated damage in a living organism: superoxide overproduction by mitochondria and nonenzymatic lipid peroxidation. Superoxide overproduction causes the inhibition of nitric oxide formation and bioavailability, one of principal characteristics of aging, while nonenzymatic lipid peroxidation, which is already demonstrated at physiological conditions, produces toxic isoprostanes. We suggest that major initiators of free radical-mediated damaging processes leading to aging at physiological state are oxidizable components of diet. The possibility of inhibition of aging processes by supplementation of nontoxic antioxidants and calorie restriction is discussed. Scheme demonstrating the potential mechanisms of starting the free radical-mediated aging processes is presented, which are discussed on the grounds of known literature data.
Collapse
Affiliation(s)
- Igor B Afanas'ev
- Vitamin Research Institute, Nauchny pr. 14A, 117820, Moscow, Russia.
| |
Collapse
|
41
|
Li C, Sun BK, Lim SW, Song JC, Kang SW, Kim YS, Kang DH, Cha JH, Kim J, Yang CW. Combined Effects of Losartan and Pravastatin on Interstitial Inflammation and Fibrosis in Chronic Cyclosporine-Induced Nephropathy. Transplantation 2005; 79:1522-9. [PMID: 15940041 DOI: 10.1097/01.tp.0000155305.49439.4c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Statins and angiotensin II type I receptor blockers have synergistic effects on vascular smooth-muscle-cell proliferation and the progression of renal diseases. We evaluated whether combined treatment with losartan (LSRT) and pravastatin (PRVT) affords superior protection compared with their respective monotherapies in treating chronic cyclosporine (CsA)-induced nephropathy in rats. METHODS Rats maintained on a low salt diet were given vehicle, CsA (15 mg/kg), CsA and LSRT (10 mg/kg), CsA and PRVT (5 mg/kg), or a combination of CsA, LSRT, and PRVT for 28 days. Basic parameters (renal function, systolic blood pressure, serum high-sensitivity C-reactive protein [hs-CRP], and lipid profiles), histopathology (arteriolopathy, tubulointerstitial fibrosis, and inflammatory cell infiltration), and inflammatory and fibrotic factors (intrarenal CRP, angiotensin II, osteopontin, and transforming growth factor [TGF]-beta1) were studied. RESULTS LSRT or PRVT treatment significantly attenuated the histopathologic changes induced by CsA, and combined treatment with LSRT and PRVT further decreased these parameters compared with giving each drug alone. Increased levels of angiotensin II, intrarenal CRP, osteopontin, and TGF-beta1 in CsA-treated rat kidney were reduced by treatment with either LSRT or PRVT and were further decreased by the combination of the two drugs. There were no significant differences in systolic blood pressure or serum lipid parameters between groups. CONCLUSIONS Combined treatment with LSRT and PRVT provided synergistic effects in attenuating inflammatory and fibrotic processes in a rat model of chronic CsA-induced nephropathy, and this effect was independent of their hypolipidemic and hypotensive actions.
Collapse
Affiliation(s)
- Can Li
- Department of Internal Medicine, KangNam St. Mary's Hospital, The Catholic University of Korea, Seoul 137-040, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
McCarty MF. Marinobufagenin may mediate the impact of salty diets on left ventricular hypertrophy by disrupting the protective function of coronary microvascular endothelium. Med Hypotheses 2005; 64:854-63. [PMID: 15694707 DOI: 10.1016/j.mehy.2003.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 11/21/2003] [Indexed: 01/19/2023]
Abstract
Individuals who eat salty diets and who are "salt-sensitive" tend to have increased left ventricular mass, independent of blood pressure; this phenomenon awaits an explanation. It is clear that local up-regulation of angiotensin II (AngII) production and activity play a key role in the induction of left ventricular hypertrophy (LVH). Recent evidence suggests that a healthy coronary microvascular endothelium opposes this effect by serving as a paracrine source of nitric oxide (NO), a natural antagonist of AngII activity, and that up-regulation of this mechanism can account for the protective role of bradykinin with respect to LVH. The coronary microvasculature also possesses NAD(P)H oxidase activity that can generate superoxide, inimical to the bioactivity of endothelial NO. There is now good reason to believe that the triterpenoid marinobufagenin (MBG), a selective inhibitor of the alpha-1 isoform of the sodium pump, mediates the impact of salty diets on blood pressure; production of MBG by the adrenal cortex is boosted when salt-sensitive animals are fed salty diets. It is hypothesized that coronary microvascular endothelium expresses the alpha-1 isoform of the sodium pump, and that MBG thus can target this endothelium. If that is the case, MBG would be expected to decrease membrane potential in these cells; as a consequence, superoxide production would be up-regulated, NO synthase activity would be down-regulated, and myocardial NO bioactivity would thus be suppressed. This would offer a satisfying explanation for the impact of salt and salt-sensitivity on risk for LVH. If expression of the alpha-1 isoform of the sodium pump is a more general property of vascular endothelium, MBG may suppress NO bioactivity in other regions of the vascular tree, thereby contributing to other adverse effects elicited by salty diets: reduced arterial compliance, medial hypertrophy, impaired endothelium-dependent vasodilation, hypertensive/diabetic glomerulopathy, increased risk for stroke, and hypertension.
Collapse
Affiliation(s)
- Mark F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA.
| |
Collapse
|
43
|
Zhan CD, Sindhu RK, Pang J, Ehdaie A, Vaziri ND. Superoxide dismutase, catalase and glutathione peroxidase in the spontaneously hypertensive rat kidney. J Hypertens 2004; 22:2025-33. [PMID: 15361776 DOI: 10.1097/00004872-200410000-00027] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Earlier studies have shown increased production of reactive oxygen species (ROS) and upregulation of ROS-generating enzyme, nicotinamide adenine dinucleotide (phosphate) oxidase, in the kidney of spontaneously hypertensive rats (SHR). This study aimed to examine the activities and protein abundance of the main antioxidant enzymes [i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)] in the kidney of SHR fed a regular or an antioxidant-rich diet. METHODS Pregnant SHR and their offspring were fed either a regular diet or an antioxidant-rich diet (alpha-tocopherol, ascorbic acid, zinc and selenium) and observed for 6 months. Wistar-Kyoto (WKY) rats fed a regular or antioxidant-fortified diet served as controls. RESULTS The untreated SHR showed severe hypertension and significant increases in plasma hydrogen peroxide and renal tissue nitrotyrosine abundance, indicating the presence of oxidative/nitrosative stress. Despite oxidative stress, Cu Zn SOD, CAT and GPX activities were unchanged in the cortex and medulla of untreated SHR. Immunodetectable Mn SOD was reduced in the medulla and elevated in the cortex, whereas, Cu Zn SOD protein was unchanged in the cortex and reduced in the medulla. By contrast, CAT protein abundance was increased in both cortex and medulla while GPX protein was elevated in the cortex and unchanged in the medulla. Comparison of protein abundance and activities of the antioxidant enzymes revealed significant discordance in the untreated SHR. Lifelong antioxidant therapy diminished the severity of hypertension, improved oxidative stress and ameliorated or reversed abnormalities of antioxidant enzyme expressions and activities. By contrast, antioxidant therapy had no effect on the measured parameters in the WKY rat controls. CONCLUSIONS Oxidative stress in SHR was associated with a lack of coordinate upregulation of the antioxidant enzymes and discordance between their protein abundance and enzymatic activity. These findings suggest an impaired antioxidant defense system and the presence of functionally abnormal enzymes in the SHR kidney. Lifelong antioxidant therapy improved expression, activity and activity-to-mass relationship of the measured enzymes. The latter suggests oxidative and nitrosative modification of these molecules in the SHR kidney.
Collapse
Affiliation(s)
- Chang-De Zhan
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|
44
|
McCarty MF. Marinobufagenin may mediate the impact of salty diets on left ventricular hypertrophy by disrupting the protective function of coronary microvascular endothelium. Med Hypotheses 2004; 62:993-1002. [PMID: 15142663 DOI: 10.1016/j.mehy.2003.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Accepted: 11/11/2003] [Indexed: 01/06/2023]
Abstract
Individuals who eat salty diets and who are "salt-sensitive" tend to have increased left ventricular mass, independent of blood pressure; this phenomenon awaits an explanation. It is clear that local up-regulation of angiotensin II (AngII) production and activity play a key role in the induction of left ventricular hypertrophy (LVH). Recent evidence suggests that a healthy coronary microvascular endothelium opposes this effect by serving as a paracrine source of nitric oxide (NO), a natural antagonist of AngII activity, and that up-regulation of this mechanism can account for the protective role of bradykinin with respect to LVH. The coronary microvasculature also possesses NAD(P)H oxidase activity that can generate superoxide, inimical to the bioactivity of endothelial NO. There is now good reason to believe that the triterpenoid marinobufagenin (MBG), a selective inhibitor of the alpha-1 isoform of the sodium pump, mediates the impact of salty diets on blood pressure;production of MBG by the adrenal cortex is boosted when salt-sensitive animals are fed salty diets. It is hypothesized that coronary microvascular endothelium expresses the alpha-1 isoform of the sodium pump, and that MBG thus can target this endothelium. If that is the case, MBG would be expected to decrease membrane potential in these cells;as a consequence, superoxide production would be up-regulated, NO synthase activity would be down-regulated, and myocardial NO bioactivity would thus be suppressed. This would offer a satisfying explanation for the impact of salt and salt-sensitivity on risk for LVH. If expression of the alpha-1 isoform of the sodium pump is a more general property of vascular endothelium, MBG may suppress NO bioactivity in other regions of the vascular tree, thereby contributing to other adverse effects elicited by salty diets: reduced arterial compliance, medial hypertrophy, impaired endothelium-dependent vasodilation, hypertensive/diabetic glomerulopathy, increased risk for stroke, and hypertension.
Collapse
Affiliation(s)
- Mark F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA.
| |
Collapse
|
45
|
Zhan CD, Sindhu RK, Vaziri ND. Up-regulation of kidney NAD(P)H oxidase and calcineurin in SHR: Reversal by lifelong antioxidant supplementation. Kidney Int 2004; 65:219-27. [PMID: 14675053 DOI: 10.1111/j.1523-1755.2004.00372.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Spontaneously hypertensive rats (SHR) are born normotensive and develop hypertension (HTN) later in life (age 4 to 5 weeks). HTN in SHR is associated with and caused in part, by oxidative stress and renal interstitial inflammation. This study tested the hypothesis that lifelong antioxidant supplementation beginning at prenatal period may delay the onset and reduce the severity of HTN in SHR. The study further sought to explore the effect of diet modification on renal tissue NAD(P)H oxidase and calcineurin abundance. METHODS Pregnant SHR and their offspring were fed either an antioxidant-fortified diet (a chow containing alpha-tocopherol 5000 IU/kg, ascorbic acid 500 ppm, selenium 2.76 ppm, and zinc 350 ppm) or regular diet (alpha-tocopherol 40 IU/kg, selenium 0.2 ppm, and zinc 70 ppm). Animals were observed for 24 weeks. Wistar-Kyoto rats fed either a regular or antioxidant diet served as control. RESULTS Onset of HTN was delayed and severity of HTN was reduced in antioxidant-treated compared with untreated SHR. Markers of oxidative stress (i.e., plasma hydrogen peroxide, renal tissue malondialdehyde, and nitrotyrosine abundance) were elevated in untreated but not in antioxidant-treated SHR. gp91phox and p22phox subunits of NAD(P)H oxidase were markedly elevated in the renal cortex of untreated SHR and partially restored in the treated SHR. Similarly, renal calcineurin Aalpha and B subunits were elevated in untreated SHR and were partially restored in the treated SHR. Antioxidant therapy had no effect on the measured parameters in the WKY control. CONCLUSION Lifelong consumption of antioxidant-rich diet ameliorates HTN and oxidative stress in SHR. This is associated with the reduction of superoxide-generating enzyme, NAD(P)H oxidase, and immunoregulatory factor calcineurin. Antioxidant-rich diet appears to attenuate oxidative stress, not only by fortifying antioxidant defense capacity but also by lowering NAD(P)H oxidase, which is a major source of reactive oxygen species.
Collapse
Affiliation(s)
- Chang-De Zhan
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California, USA
| | | | | |
Collapse
|
46
|
|
47
|
Heller J, Shiozawa T, Trebicka J, Hennenberg M, Schepke M, Neef M, Sauerbruch T. Acute haemodynamic effects of losartan in anaesthetized cirrhotic rats. Eur J Clin Invest 2003; 33:1006-12. [PMID: 14636305 DOI: 10.1046/j.1365-2362.2003.01251.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Portal hypertension in cirrhosis is the result of increased intrahepatic vascular resistance to portal outflow as well as increased portal tributary blood flow. The angiotensin II type 1 receptor antagonist losartan has been suggested as a portal pressure-lowering drug in patients with cirrhosis. AIM To investigate the systemic and splanchnic haemodynamic effects of different doses of losartan. METHODS In 35 anaesthetized rats with secondary biliary cirrhosis, 3, 10 or 30 mg of losartan kg(-1) or solvent were administered intravenously. Ten sham-operated rats served as controls. Mean arterial pressure and portal pressure were measured by catheters in the femoral artery or portal vein. Systemic and splanchnic haemodynamics and mesenterico-systemic shunt rate were determined by the coloured microsphere method. RESULTS Losartan reduced portal pressure (sham: 9.1 +/- 0.4. cirrhosis: 19.3 +/- 1.1, after 3 mg kg(-1) of losartan 16.4 +/- 0.4, after 10 mg kg(-1) of losartan 15.6 +/- 0.6, after 30 mg kg(-1) of losartan 14.9 +/- 0.6 mmHg) without reducing portal sinusoidal resistance. However, in cirrhotic rats it reduced portal tributary blood flow (sham: 4.3 +/- 0.6. cirrhosis: 8.6 +/- 1.4, after 3 mg kg(-1) of losartan 3.8 +/- 0.7, after 10 mg kg(-1) of losartan 4.7 +/- 0.5, after 30 mg kg(-1) of losartan 5.9 +/- 0.9 mmHg). This was owing either to an increase in splanchnic vascular resistance at the 3 mg kg(-1) dose or to a reduction in the splanchnic perfusion-pressure gradient secondary to a reduction in mean arterial pressure at the 10 and 30 mg kg(-1) doses (mean arterial pressure: sham: 109.7 +/- 4.8. cirrhosis: 109.4 +/- 2.8, after 3 mg kg(-1) of losartan 99.7 +/- 2.9, after 10 mg kg(-1) of losartan 89.9 +/- 3.4, after 30 mg kg(-1) of losartan 81.0 +/- 2.9 mmHg). CONCLUSIONS Low doses of losartan reduce portal hypertension by an increase in splanchnic vascular resistance without hypotensive side-effects on arterial pressure.
Collapse
Affiliation(s)
- J Heller
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Rodriguez-Iturbe B, Zhan CD, Quiroz Y, Sindhu RK, Vaziri ND. Antioxidant-rich diet relieves hypertension and reduces renal immune infiltration in spontaneously hypertensive rats. Hypertension 2003; 41:341-6. [PMID: 12574105 DOI: 10.1161/01.hyp.0000052833.20759.64] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have demonstrated that oxidative stress contributes to hypertension and treatments with either antioxidant or immunosuppressive/anti-inflammatory agents improve hypertension in spontaneously hypertensive rats (SHR). The present study was performed to determine if the antihypertensive effects of an antioxidant-rich diet are associated with reduction in the renal immune infiltration. Rats were divided into experimental groups (n=5 each) that were followed 7 months after birth, during which they were fed either a regular or antioxidant-enriched (test) diet as follows: SHR-R group=regular diet; SHR-T group=test diet throughout the experiment; SHR-S group=test diet for 4 months switched to regular diet thereafter; WKY group=control rats given regular diet. The SHR-T rats showed a significant reduction in systolic blood pressure (mm Hg): SHR-T=179.6+/-12.9 versus SHR-R=207.5+/-9.6 (P<0.001) and plasma hydrogen peroxide concentration (SHR-T=15+/-4 micro mol/L versus 34+/-9 in SHR-R rats). This was accompanied by significant reductions of renal tissue nitrotyrosine abundance, tubulointerstitial infiltration (cells/mm(2)) of lymphocytes (SHR-T=18+/-3 versus SHR-R=30+/-4, P<0.001), macrophages (SHR-T= 17+/-3 versus SHR-R=22+/-3), and angiotensin II-positive cells (SHR-T= 17+/-2 versus SHR-R=25+/-5, P<0.01). Results in the SHR-S group were intermediate between the SHR-R and SHR-T groups. The intensity of the infiltration of lymphocytes, macrophages, and angiotensin II-positive cells significantly correlated with systolic blood pressure. Thus, the present study demonstrates that an antioxidant-enriched diet reduces the renal interstitial inflammation and improves hypertension in SHR. These findings point to interrelation between oxidative stress and inflammatory reactivity in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Service and Laboratory, Hospital Universitario, Instituto de Investigaciones Biomédicas (Fundacite-Zulia), Universidad del Zulia, Maracaibo, Venezuela.
| | | | | | | | | |
Collapse
|
49
|
Vaziri ND, Wang XQ, Ni ZN, Kivlighn S, Shahinfar S. Effects of aging and AT-1 receptor blockade on NO synthase expression and renal function in SHR. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:153-61. [PMID: 12379478 DOI: 10.1016/s0167-4889(02)00309-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an earlier study, we found increased NO production and NO synthase (NOS) expression in renal and vascular tissues of prehypertensive and adult spontaneously hypertensive rats (SHR). This study was designed to determine the effects of aging and AT-1 receptor blockade (losartan 30 mg/kg/day beginning at 8 weeks of age) on NO system in this model. Compared to the Wistar Kyoto (WKY) control rats, untreated SHR showed severe hypertension, elevated urinary NO metabolite (NO(chi)) excretion, marked upregulations of renal and vascular eNOS and iNOS proteins, normal renal function and heart weight at 9 weeks of age. Hypertension control with either AT-1 receptor or calcium channel blockade (felodipine 5 mg/kg/day) mitigated upregulation of NOS isoforms in the young SHR. With advanced age (63 weeks), the untreated SHR showed increased proteinuria, renal insufficiency, cardiomegaly, reduced urinary NO(chi) excretion and depressed renal and vascular NOS protein expressions as compared to the corresponding WKY group. AT-1 receptor blockade prevented proteinuria, renal insufficiency, cardiomegaly, and renal and vascular NOS deficiency. Thus, in young SHR, hypertension results in compensatory upregulation of renal and vascular NOS, which can be attenuated by vigorous antihypertensive therapy. With advanced age, untreated SHR exhibit cardiomegaly, renal dysfunction and marked reductions of eNOS and iNOS compared with the aged WKY rats. Hypertension control with AT-1 receptor blockade initiated early in the course of the disease prevents target organ damage and preserves renal and vascular NOS.
Collapse
Affiliation(s)
- N D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, UCI Medical Center, University of Irvine, 101 The City Drive, Bldg. 53, Rm. 125, Rt. 81, Orange, CA 92868, USA.
| | | | | | | | | |
Collapse
|