1
|
Bansal A, Gamal W, Wu X, Yang Y, Olson V, D'Souza MJ. Evaluation of an adjuvanted hydrogel-based pDNA nanoparticulate vaccine for rabies prevention and immunocontraception. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102049. [PMID: 31279062 PMCID: PMC11287484 DOI: 10.1016/j.nano.2019.102049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Immunocontraceptive vaccination is becoming an acceptable strategy in managing animal populations. Mass vaccination of dogs is the most cost-effective and efficient method to control rabies, and combination of rabies vaccination and animal population control will be an added advantage. In this study, we developed an adjuvanted hydrogel-based pDNA nanoparticulate vaccine for rabies protection and immunocontraception. In vivo, we observed an immune response skewed toward a Th2 type, in contrast to the Th1 type in our previous pDNA study. The observation was verified by the IgG2a/IgG1 ratio (<1), and cytokine expression profile of IL-4 and IFN-γ. The humoral immune response is key for rabies protection and a GnRH antibody-based immunocontraception. In mice, anti-GnRH antibody titers were detected 4 weeks after immunization and lasted for 12 weeks, post animal experiment was terminated. The adjuvanted pDNA nanoparticulate vaccine shows promise for future studies evaluating protection from rabies challenge and prevention of animal breeding.
Collapse
Affiliation(s)
- Amit Bansal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA, USA.
| | - Wael Gamal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA, USA
| | - Xianfu Wu
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yong Yang
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Victoria Olson
- Poxvirus and Rabies Branch, DHCPP, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martin J D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA, USA
| |
Collapse
|
2
|
Dendritic cell targeted Ccl3- and Xcl1-fusion DNA vaccines differ in induced immune responses and optimal delivery site. Sci Rep 2019; 9:1820. [PMID: 30755656 PMCID: PMC6372594 DOI: 10.1038/s41598-018-38080-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/18/2018] [Indexed: 11/08/2022] Open
Abstract
Fusing antigens to chemokines to target antigen presenting cells (APC) is a promising method for enhancing immunogenicity of DNA vaccines. However, it is unclear how different chemokines compare in terms of immune potentiating effects. Here we compare Ccl3- and Xcl1-fusion vaccines containing hemagglutinin (HA) from influenza A delivered by intramuscular (i.m.) or intradermal (i.d.) DNA vaccination. Xcl1 fusion vaccines target cDC1s, and enhance proliferation of CD4+ and CD8+ T cells in vitro. In contrast, Ccl3 target both cDC1 and cDC2, but only enhance CD4+ T cell proliferation in combination with cDC2. When Ccl3- or Xcl1-HA fusion vaccines were administered by i.m. DNA immunization, both vaccines induced Th1-polarized immune responses with antibodies of the IgG2a/IgG2b subclass and IFNγ-secreting T cells. After i.d. DNA vaccination, however, only Xcl1-HA maintained a Th1 polarized response and induced even higher numbers of IFNγ-secreting T cells. Consequently, Xcl1-HA induced superior protection against influenza infection compared to Ccl3-HA after i.d. immunization. Interestingly, i.m. immunization with Ccl3-HA induced the strongest overall in vivo cytotoxicity, despite not inducing OT-I proliferation in vitro. In summary, our results highlight important differences between Ccl3- and Xcl1- targeted DNA vaccines suggesting that chemokine fusion vaccines can be tailor-made for different diseases.
Collapse
|
3
|
DNA Vaccine Targeting Gonadotropin-Releasing Hormone Receptor and Its Application in Animal Contraception. Mol Biotechnol 2018; 61:73-83. [PMID: 30448908 DOI: 10.1007/s12033-018-0137-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overpopulation of free-roaming and wildlife animals negatively affects economy and public health in many parts of the world. Contraceptive vaccines are viewed as a valuable option for reducing numbers of unwanted animals. This study develops vaccines for potential use in animal contraception exploiting a DNA platform. Objectives of the study were to generate DNA constructs directed against gonadotropin-releasing hormone receptor (GnRHR), a crucial molecular player in animal reproduction, and characterize them for ability to promote immune responses and suppression of reproductive parameters in vivo. DNA constructs were created to encode for a recombinant protein composed of two domains: GnRHR, the target antigen, and ubiquitin (Ub), a support protein. Ub-GnRHR constructs administered intramuscularly or intradermally or containing different promoters were compared. CMV and EF1α promoters were shown to be superior to CAG. In fertility trials, mice immunized intradermally with Ub-GnRHR construct driven by EF1α had a significantly lower number of fetuses. Importantly, the impaired fertility was achieved with a single DNA immunization and without the use of adjuvants. The study demonstrated for the first time that targeting the GnRH receptor with DNA-based vaccines could be a viable option for animal contraception.
Collapse
|
4
|
Galvez-Romero G, Salas-Rojas M, Pompa-Mera EN, Chávez-Rueda K, Aguilar-Setién Á. Addition of C3d-P28 adjuvant to a rabies DNA vaccine encoding the G5 linear epitope enhances the humoral immune response and confers protection. Vaccine 2017; 36:292-298. [PMID: 29191739 DOI: 10.1016/j.vaccine.2017.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 01/18/2023]
Abstract
Rabies DNA vaccines based on full-length glycoprotein (G) induce virus neutralizing antibody (VNA) responses and protect against the virus challenge. Although conformational epitopes of G are the main target of VNAs, some studies have shown that a polypeptide linear epitope G5 is also able to induce VNAs. However, a G5 DNA vaccine has not been explored. While multiple doses of DNA vaccines are required in order to confer a protective immune response, this could be overcome by the inclusion of C3d-P28, a molecular adjuvant is know to improve the antibody response in several anti-viral vaccine models. To induce and enhance the immune response against rabies in mice, we evaluated two DNA vaccines based on the linear epitope G5 of Rabies Virus (RABV) glycoprotein (pVaxG5 vaccine) and another vaccine consisting of G5 fused to the molecular adjuvant C3d-P28 (pVaxF1 vaccine). VNA responses were measured in mice immunized with both vaccines. The VNA levels from the group immunized with pVaxG5 decreased gradually, while those from the group vaccinated with pVaxF1 remained high throughout the experimental study. After challenge with 22 LD50 of the Challenge Virus Strain (CVS), the survival rate of mice immunized with pVaxG5 and pVaxF1 was increased by 27% and 50% respectively, in comparison to the PBS group. Furthermore, the in vitro proliferation of anti-rabies specific spleen CD4+ and CD8+ T cells from mice immunized with pVaxF1 was observed. Collectively, these results suggest that the linear G5 epitope is a potential candidate vaccine. Furthermore, the addition of a C3d-P28 adjuvant contributed to enhanced protection, the sustained production of VNAs, and a specific T-cell proliferative response.
Collapse
Affiliation(s)
- Guillermo Galvez-Romero
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica Salas-Rojas
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Ericka N Pompa-Mera
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Karina Chávez-Rueda
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Álvaro Aguilar-Setién
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Abstract
The skin is an attractive site for immunization in humans and animals, owing to its resident population of dendritic cells and macrophages along with extensive vascularization by lymphatic vessels and blood capillaries. In addition to these physiological attributes, the intradermal route for vaccine delivery also presents a less-invasive alternative to conventional subcutaneous or intramuscular injections. This may offer compliance and convenience advantages for a wide range of stakeholders including patients, healthcare providers, veterinarians, animal owners and animal producers. This review discusses the current developments in intradermal vaccination for human and veterinary applications, with particular focus on the skin immunology, vaccine antigens and adjuvants and delivery systems.
Collapse
|
6
|
Garg R, Kaur M, Saxena A, Bhatnagar R. DNA vaccination for rabies: Evaluation of preclinical safety and toxicology. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2014.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Three-year duration of immunity in cats vaccinated with a canarypox-vectored recombinant rabies virus vaccine. Vaccine 2012; 30:6991-6. [PMID: 23059358 DOI: 10.1016/j.vaccine.2012.09.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 11/21/2022]
Abstract
Despite the availability of efficacious vaccines for animals and humans, rabies is still a major zoonosis. Prevention of rabies in dogs and cats is key for reducing the risk of transmission of this deadly disease to humans. Most veterinary vaccines are adjuvanted inactivated vaccines and have been shown to provide one to four-year duration of immunity. In response to debates about the safety of adjuvanted vaccines in cats, a non-adjuvanted feline rabies vaccine with one-year duration of immunity claim was specifically developed using the canarypoxvirus vector technology. The objective of this study was to validate a vaccination program based on primary vaccination, revaccination one year later and boosters every three years. Seronegative cats were vaccinated at 12 weeks of age and received a booster vaccination one year later. This vaccination regimen induced a strong and sustained antibody response, and all vaccinated animals were protected against virulent rabies challenge carried out 3 years after vaccination. These results validated 3-year duration of immunity after a complete basic vaccination program consisting in primary vaccination from 12 weeks of age followed by revaccination one year later with a non-adjuvanted canarypox-vectored vaccine.
Collapse
|
8
|
Ullas PT, Desai A, Madhusudana SN. Rabies DNA Vaccines: Current Status and Future. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/wjv.2012.21005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Feria-Romero IA, Chávez-Rueda K, Orozco-Suárez S, Blanco-Favela F, Calzada-Bermejo F, Chávez-Sánchez L, Manuel-Apolinar L, Hernández-González R, Aguilar-Setién A, Tesoro-Cruz E. Intranasal anti-rabies DNA immunization promotes a Th1-related cytokine stimulation associated with plasmid survival time. Arch Med Res 2011; 42:563-71. [PMID: 22056982 DOI: 10.1016/j.arcmed.2011.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/17/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS DNA vaccination has a great potential to decrease infectious diseases worldwide, such as rabies. Here we showed the effects of a single anti-rabies DNA vaccination applied intranasally (IN) on plasmid survival time, neutralizing antibody (NA) titers, G-protein expression and Th1/Th2-related cytokines. METHODS Only one 50-μg dose of an anti-rabies DNA vaccine was IN administered to 160 Balb/c mice. Twenty mice were used for the neutralizing antibody study, 35 for the proliferation assay, 35 for Th1/Th2-related cytokines, 35 for glycoprotein expression by immunocytochemistry, and 35 for pGQH detection and G-protein mRNA expression. RESULTS Th1-type related cytokines from spleen cells (IFN-γ, TNF-α, and IL-2) were detected. Rabies NA titers were ≥0.6 IUs from day 30 onward in the IN DNA-vaccinated group. The plasmid was identified in brains and lungs from days 3-15. The mRNA transcript was amplified in brains and lungs from days 3-30, and G-protein expression was observed in spleens, brains and lungs on days 3, 8, and 15. In all cases, a gradual decrease was observed on days 30 and 45 and absent on day 60. CONCLUSIONS We found that Th1-type related cytokines (IL-2, IFN-γ, and TNF-α) were stimulated during the first month after DNA vaccination, correlating with the proliferation assays. Also, it was associated with the plasmid survival time remaining in lungs and brains prior to its degradation.
Collapse
Affiliation(s)
- Iris Angélica Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Coordinación de Investigación del Instituto Mexicano del Seguro Social, México, D.F., Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Construction and immunogenicity of a recombinant pseudotype baculovirus expressing the glycoprotein of rabies virus in mice. Arch Virol 2011; 156:753-8. [PMID: 21221673 DOI: 10.1007/s00705-010-0909-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
A pseudotype baculovirus with the glycoprotein of vesicular stomatitis virus (VSV-G) on the envelope was used as a vector for the construction of recombinant baculovirus expressing the G protein of rabies virus (RABV) under the cytomegalovirus (CMV) promoter. The generated recombinant baculovirus (BV-G) efficiently expressed the RABV G proteins in mammalian cells. Intramuscular vaccination with BV-G (10(9) PFU/mouse) induced the production of RABV G-specific neutralizing antibodies and strong T cell responses in mice. Our data clearly indicate that pseudotype baculovirus-mediated gene delivery can be utilized as an alternative strategy to develop a new generation of vaccine against RABV infection.
Collapse
|
11
|
Uhl EW, Harvey SB, Michel F, Perozo Y, Gabbard J, Tompkins SM, Hogan RJ. Immunogenicity of avian H5N1 influenza virus recombinant vaccines in cats. Viral Immunol 2010; 23:221-6. [PMID: 20374002 DOI: 10.1089/vim.2009.0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Confirmed reports of large domesticated cats becoming infected with highly pathogenic avian influenza (HPAI) H5N1 virus have raised questions about both the risk of infection for these animals, and their potential as vector or reservoir hosts in an influenza pandemic. With this in mind, we examined the immunogenicity of the hemagglutinin (HA) of H5N1 strain A/Vietnam/1203/04 using several different vaccination strategies. Data from ELISA assays showed that vaccination with a single dose of recombinant H5 HA protein induces a robust antibody response against both whole inactivated virus and recombinant HA antigen. Moreover, a single dose of the recombinant H5 HA protein induced hemagglutination inhibition titers >or=40, which is indicative of protective immunization. Cats receiving the IND H5N1 vaccine required two doses before similar H5 HA-specific antibody titers were observed, and despite boosting, these animals had HIA titers that were lower than or equivalent to those in the group receiving one injection of recombinant protein. In contrast, cats vaccinated with plasmid DNA encoding HA failed to develop HA-specific antibody responses above those seen in cohorts receiving an unrelated control plasmid. The results of this study indicate that recombinant H5 HA protein-based vaccines can rapidly induce high serum antibody titers, and may be more effective than either inactivated influenza virus or DNA vaccines in cats.
Collapse
Affiliation(s)
- Elizabeth W Uhl
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications. Vaccine 2009; 27:7214-8. [DOI: 10.1016/j.vaccine.2009.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/03/2009] [Indexed: 11/21/2022]
|
13
|
Abstract
DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available.
Collapse
Affiliation(s)
- Laurel Redding
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA 19104, USA,
| | - David B Werner
- Department of Pathology and Laboratory Medicine, 422 Curie Boulevard – 505 SCL, University of Pennsylvania, Philadelphia, PA 19104, USA, Tel.: +1 215 349 8365, Fax: +1215 573 9436,
| |
Collapse
|
14
|
Tesoro Cruz E, Feria Romero IA, López Mendoza JG, Orozco Suárez S, Hernández González R, Favela FB, Pérez Torres A, José Álvaro Aguilar Setién. Efficient post-exposure prophylaxis against rabies by applying a four-dose DNA vaccine intranasally. Vaccine 2008; 26:6936-44. [DOI: 10.1016/j.vaccine.2008.09.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/21/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
|