1
|
Li W, Li Y, Zhao J, Liao J, Wen W, Chen Y, Cui H. Release of damaged mitochondrial DNA: A novel factor in stimulating inflammatory response. Pathol Res Pract 2024; 258:155330. [PMID: 38733868 DOI: 10.1016/j.prp.2024.155330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Mitochondrial DNA (mtDNA) is a circular double-stranded genome that exists independently of the nucleus. In recent years, research on mtDNA has significantly increased, leading to a gradual increase in understanding of its physiological and pathological characteristics. Reactive oxygen species (ROS) and other factors can damage mtDNA. This damaged mtDNA can escape from the mitochondria to the cytoplasm or extracellular space, subsequently activating immune signaling pathways, such as NLR family pyrin domain protein 3 (NLRP3), and triggering inflammatory responses. Numerous studies have demonstrated the involvement of mtDNA damage and leakage in the pathological mechanisms underlying various diseases including infectious diseases, metabolic inflammation, and immune disorders. Consequently, comprehensive investigation of mtDNA can elucidate the pathological mechanisms underlying numerous diseases. The prevention of mtDNA damage and leakage has emerged as a novel approach to disease treatment, and mtDNA has emerged as a promising target for drug development. This article provides a comprehensive review of the mechanisms underlying mtDNA-induced inflammation, its association with various diseases, and the methods used for its detection.
Collapse
Affiliation(s)
- Wenting Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Zhao
- Department of TCM Endocrinology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China
| | - Jiabao Liao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Weibo Wen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Yao Chen
- Department of TCM Encephalopathy, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China.
| | - Huantian Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
2
|
Xie Y, Wang Z, Song G, Ma H, Feng B. GSDMD induces hepatocyte pyroptosis to trigger alcoholic hepatitis through modulating mitochondrial dysfunction. Cell Div 2024; 19:10. [PMID: 38532477 DOI: 10.1186/s13008-024-00114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Mechanisms and consequences of Gasdermin D (GSDMD) activation in alcoholic hepatitis (AH) are unclear. In the present study, we investigated whether GSDMD induces hepatocyte pyroptosis by regulating mitochondrial dysfunction in AH. RESULTS Liver damage in AH mice was assessed by HE staining, serum levels of AST, ALT, TC, and TG. The levels of IL-1β, IL-18, LDH, inflammasome-associated proteins and hepatocyte death were assessed to determine pyroptosis. Mitochondrial dysfunction was assessed through various parameters including mitochondrial DNA (mtDNA) levels, ROS generation, mitochondrial membrane potential, ATP contents, levels of mitochondrial function-related proteins and morphological changes of mitochondria. AH induced gasdermin D (GSDMD) activation, leading to increased protein expression of N-terminal GSDMD (GSDMD-N), NLRP3, and Caspase 11 in liver tissues. Downregulation of GSDMD alleviated alcohol-induced hepatocyte pyroptosis. Alcohol also causes mitochondrial dysfunction in hepatocytes in AH, which was improved by inhibiting GSDMD. Furthermore, enhancing mitochondrial function suppressed alcohol-induced hepatocyte pyroptosis. Further, knockdown of GSDMD or dynamin-related protein 1 (Drp1) improved AH-induced liver injury, accompanied by a decrease in hepatocyte pyroptosis. CONCLUSION GSDMD induces hepatocyte pyroptosis by modulating mitochondrial dysfunction during AH-induced inflammation and liver injury. These findings may pave the way to develop new therapeutic treatments for AH.
Collapse
Affiliation(s)
- Yandi Xie
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China.
| | - Zilong Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China
| | - Guangjun Song
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China
| | - Hui Ma
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China
| | - Bo Feng
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China
| |
Collapse
|
3
|
Chen H, Jin C, Xie L, Wu J. Succinate as a signaling molecule in the mediation of liver diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166935. [PMID: 37976628 DOI: 10.1016/j.bbadis.2023.166935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Succinate, one of the intermediates of the tricarboxylic acid (TCA) cycle, plays an essential role in the metabolism of mitochondria and the production of energy, and is considered as a signaling molecule in metabolism as well as in initiation and progression of hepatic diseases. Of note, succinate activates a downstream signaling pathway through GPR91, and elicits a variety of intracellular responses, such as succinylation, production of reactive oxygen species (ROS), stabilization of hypoxia-inducible factor-1α (HIF-1α), and significant impact in cellular metabolism because of the pivotal role in the TCA cycle. Therefore, it is intriguing to deeply elucidate signaling mechanisms of succinate in hepatic fibrosis, metabolic reprogramming in inflammatory or immune responses, as well as carcinogenesis. This manuscript intends to review current understanding of succinate in mediating metabolism, inflammatory and immunologic reactions in liver diseases in order to establish molecular basis for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; College of Clinical College, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
4
|
Arumugam MK, Gopal T, Kalari Kandy RR, Boopathy LK, Perumal SK, Ganesan M, Rasineni K, Donohue TM, Osna NA, Kharbanda KK. Mitochondrial Dysfunction-Associated Mechanisms in the Development of Chronic Liver Diseases. BIOLOGY 2023; 12:1311. [PMID: 37887021 PMCID: PMC10604291 DOI: 10.3390/biology12101311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The liver is a major metabolic organ that performs many essential biological functions such as detoxification and the synthesis of proteins and biochemicals necessary for digestion and growth. Any disruption in normal liver function can lead to the development of more severe liver disorders. Overall, about 3 million Americans have some type of liver disease and 5.5 million people have progressive liver disease or cirrhosis, in which scar tissue replaces the healthy liver tissue. An estimated 20% to 30% of adults have excess fat in their livers, a condition called steatosis. The most common etiologies for steatosis development are (1) high caloric intake that causes non-alcoholic fatty liver disease (NAFLD) and (2) excessive alcohol consumption, which results in alcohol-associated liver disease (ALD). NAFLD is now termed "metabolic-dysfunction-associated steatotic liver disease" (MASLD), which reflects its association with the metabolic syndrome and conditions including diabetes, high blood pressure, high cholesterol and obesity. ALD represents a spectrum of liver injury that ranges from hepatic steatosis to more advanced liver pathologies, including alcoholic hepatitis (AH), alcohol-associated cirrhosis (AC) and acute AH, presenting as acute-on-chronic liver failure. The predominant liver cells, hepatocytes, comprise more than 70% of the total liver mass in human adults and are the basic metabolic cells. Mitochondria are intracellular organelles that are the principal sources of energy in hepatocytes and play a major role in oxidative metabolism and sustaining liver cell energy needs. In addition to regulating cellular energy homeostasis, mitochondria perform other key physiologic and metabolic activities, including ion homeostasis, reactive oxygen species (ROS) generation, redox signaling and participation in cell injury/death. Here, we discuss the main mechanism of mitochondrial dysfunction in chronic liver disease and some treatment strategies available for targeting mitochondria.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | | | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | - Sathish Kumar Perumal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
5
|
Subramaiyam N. Insights of mitochondrial involvement in alcoholic fatty liver disease. J Cell Physiol 2023; 238:2175-2190. [PMID: 37642259 DOI: 10.1002/jcp.31100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
Alcoholic liver disease (ALD) is a global concern affecting most of the population and leading to the development of end-stage liver disease. Metabolic alterations due to increased alcohol consumption surge the hepatic accumulation of lipids and develop into a severe form of alcoholic steatohepatitis (ASH), depending on age and the consumption rate. The mitochondria in the hepatocyte actively regulate metabolic homeostasis and are disrupted in ALD pathogenesis. The increased NADH upon ethanol metabolism inhibits the mitochondrial oxidation of fatty acids, alters oxidative phosphorylation, and favors de novo lipogenesis. The higher mitochondrial respiration in early ALD increases free radical generation, whereas mitochondrial respiration is uncoupled in chronic ALD, affecting the cellular energy status. The defective glutathione importer due to excessive cholesterol loading and low adenosine triphosphate accounts for additional oxidative stress leading to hepatocyte apoptosis. The defective mitochondrial transcription machinery and sirtuins function in ALD affect mitochondrial function and biogenesis. The metabolites of ethanol metabolism epigenetically alter the gene expression profile of hepatic cell populations by modulating the promoters and sirtuins, aiding hepatic fibrosis and inflammation. The defect in mitophagy increases the accumulation of megamitochondria in hepatocytes and attracts immune cells by releasing mitochondrial damage-associated molecular patterns to initiate hepatic inflammation and ASH progression. Thus, maintaining mitochondrial lipid homeostasis and antioxidant capacity pharmacologically could provide a better outcome for ALD management.
Collapse
Affiliation(s)
- Nithyananthan Subramaiyam
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [DOI: https:/doi.org/10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [PMID: 37507944 PMCID: PMC10376173 DOI: 10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases. J Hepatol 2023; 78:415-429. [PMID: 36209983 DOI: 10.1016/j.jhep.2022.09.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022]
Abstract
Fatty liver diseases can result from common metabolic diseases, as well as from xenobiotic exposure and excessive alcohol use, all of which have been shown to exert toxic effects on hepatic mitochondrial functionality and dynamics. Invasive or complex methodology limits large-scale investigations of mitochondria in human livers. Nevertheless, abnormal mitochondrial function, such as impaired fatty acid oxidation and oxidative phosphorylation, drives oxidative stress and has been identified as an important feature of human steatohepatitis. On the other hand, hepatic mitochondria can be flexible and adapt to the ambient metabolic condition to prevent triglyceride and lipotoxin accumulation in obesity. Experience from studies on xenobiotics has provided important insights into the regulation of hepatic mitochondria. Increasing awareness of the joint presence of metabolic disease-related (lipotoxic) and alcohol-related liver diseases further highlights the need to better understand their mutual interaction and potentiation in disease progression. Recent clinical studies have assessed the effects of diets or bariatric surgery on hepatic mitochondria, which are also evolving as an interesting therapeutic target in non-alcoholic fatty liver disease. This review summarises the current knowledge on hepatic mitochondria with a focus on fatty liver diseases linked to obesity, type 2 diabetes and xenobiotics.
Collapse
Affiliation(s)
- Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
9
|
Nsengimana B, Okpara ES, Hou W, Yan C, Han S. Involvement of oxidative species in cyclosporine-mediated cholestasis. Front Pharmacol 2022; 13:1004844. [PMID: 36425570 PMCID: PMC9679297 DOI: 10.3389/fphar.2022.1004844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 04/11/2025] Open
Abstract
Cyclosporine is an established medication for the prevention of transplant rejection. However, adverse consequences such as nephrotoxicity, hepatotoxicity, and cholestasis have been associated with prolonged usage. In cyclosporine-induced obstructive and chronic cholestasis, for example, the overproduction of oxidative stress is significantly increased. Additionally, cyclosporine exerts adverse effects on liver function and redox balance responses in treated rats, as evidenced by its increasing levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and bilirubin while also decreasing the levels of glutathione and NADPH. Cyclosporine binds to cyclophilin to produce its therapeutic effects, and the resulting complex inhibits calcineurin, causing calcium to accumulate in the mitochondria. Accumulating calcium with concomitant mitochondrial abnormalities induces oxidative stress, perturbation in ATP balance, and failure of calcium pumps. Also, cyclosporine-induced phagocyte oxidative stress generation via the interaction of phagocytes with Toll-like receptor-4 has been studied. The adverse effect of cyclosporine may be amplified by the release of mitochondrial DNA, mediated by oxidative stress-induced mitochondrial damage. Given the uncertainty surrounding the mechanism of cyclosporine-induced oxidative stress in cholestasis, we aim to illuminate the involvement of oxidative stress in cyclosporine-mediated cholestasis and also explore possible strategic interventions that may be applied in the future.
Collapse
Affiliation(s)
| | | | | | | | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
10
|
Xie P, Zhu J, Wang L, Liu Y, Diao E, Gong D, Liu T. Lipid accumulation and oxidative stress in the crop tissues of male and female pigeons during incubation and chick-rearing periods. Poult Sci 2022; 102:102289. [PMID: 36436376 PMCID: PMC9706646 DOI: 10.1016/j.psj.2022.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
The current study aimed to evaluate the changes in lipid accumulation and oxidative status in pigeon crops during different breeding stages. Forty-two pairs of adult pigeons were randomly assigned to 7 groups. Lipid droplet accumulation in pigeon crops was visualized by using oil red O staining from d 17 of incubation (I17) to d 7 of chick rearing (R7). Transmission electron microscopy analysis showed swollen mitochondria with disintegration of cristae and typical characteristics of endoplasmic reticulum stress in crop tissues at R1 compared with those at I4. During the peak of pigeon milk formation, the concentrations of reactive oxygen species, and oxidative damage markers (advanced oxidation protein products, 8-hydroxy-2 deoxyguanosine, and malondialdehyde) and the enzyme activities of total superoxide dismutase and glutathione peroxidase were all elevated significantly (P < 0.05). The protein concentration of B-cell lymphoma-2 associated X in crop tissues was significantly higher at R1, while the level of B-cell lymphoma-2 protein in males was the highest at I4 (P < 0.05). The ratio of B-cell lymphoma-2 associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) in both male and female crops peaked at R1 (P < 0.05). Gene expression of the key enzymes involved in mitochondrial and peroxisomal fatty acid β-oxidation was investigated in crops. In males, the gene expression of carnitine palmitoyltransferase 1a peaked at R15, and that of carnitine palmitoyltransferase 2 increased significantly from R1 to R15 (P < 0.05). The mRNA abundance of long chain 3-hydroxyacyl-CoA dehydrogenase increased to the maximum value at R1 and I17 in males and females, respectively. From I17 to R7, the mRNA levels of acyl-CoA oxidase 1 and acyl-CoA oxidase 2 were decreased in pigeon crops (P < 0.05). Conclusively, lipid droplet accumulation was found in male and female pigeon crops from the end of incubation to the early stage of chick rearing. Although antioxidant defence and mitochondrial fatty acid β-oxidation were both mobilized, oxidative stress in crop tissues still occurred during the peak of milk formation.
Collapse
Affiliation(s)
- P. Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - J.G. Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - L.X. Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Y. Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - E.J. Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - D.Q. Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - T.W. Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China,Corresponding author:
| |
Collapse
|
11
|
Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. LIVERS 2022; 2:30-76. [DOI: 10.3390/livers2010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
Affiliation(s)
- Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Eleonora Croce
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Davide Di Benedetto
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
12
|
Mitochondrial Mechanisms of Apoptosis and Necroptosis in Liver Diseases. Anal Cell Pathol (Amst) 2021; 2021:8900122. [PMID: 34804779 PMCID: PMC8601834 DOI: 10.1155/2021/8900122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
In addition to playing a pivotal role in cellular energetics and biosynthesis, mitochondrial components are key operators in the regulation of cell death. In addition to apoptosis, necrosis is a highly relevant form of programmed liver cell death. Differential activation of specific forms of programmed cell death may not only affect the outcome of liver disease but may also provide new opportunities for therapeutic intervention. This review describes the role of mitochondria in cell death and the mechanism that leads to chronic liver hepatitis and liver cirrhosis. We focus on mitochondrial-driven apoptosis and current knowledge of necroptosis and discuss therapeutic strategies for targeting mitochondrial-mediated cell death in liver diseases.
Collapse
|
13
|
Middleton P, Vergis N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 2021; 14:17562848211031394. [PMID: 34377148 PMCID: PMC8320552 DOI: 10.1177/17562848211031394] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/18/2021] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are key organelles involved in energy production as well as numerous metabolic processes. There is a growing interest in the role of mitochondrial dysfunction in the pathogenesis of common chronic diseases as well as in cancer development. This review will examine the role mitochondria play in the pathophysiology of common liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, chronic hepatitis B and hepatocellular carcinoma. Mitochondrial dysfunction is described widely in the literature in studies examining patient tissue and in disease models. Despite significant differences in pathophysiology between chronic liver diseases, common mitochondrial defects are described, including increased mitochondrial reactive oxygen species production and impaired oxidative phosphorylation. We review the current literature on mitochondrial-targeted therapies, which have the potential to open new therapeutic avenues in the management of patients with chronic liver disease.
Collapse
Affiliation(s)
| | - Nikhil Vergis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
14
|
Fan H, Shen Y, Ren Y, Mou Q, Lin T, Zhu L, Ren T. Combined intake of blueberry juice and probiotics ameliorate mitochondrial dysfunction by activating SIRT1 in alcoholic fatty liver disease. Nutr Metab (Lond) 2021; 18:50. [PMID: 33971886 PMCID: PMC8108333 DOI: 10.1186/s12986-021-00554-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial dysfunction has been implicated as a significant factor in the liver disease process. Blueberry juice and probiotics (BP) synergistically improve liver function in alcoholic fatty liver disease (AFLD), although the mechanism for this effect was unclear. This study aims to investigate the effect and specific mechanisms of BP on AFLD. Methods C57/BL6 mice were randomly divided into seven groups: CG (control), MG (AFLD model), BJ (MG mice treated with blueberry), BJB (MG mice treated with BP), SI (AFLD mice treated with SIRT1 siRNA), BJSI (SI mice treated with blueberry), and BJBSI (SI mice treated with BP). The mice were fed an alcohol liquid diet for 10 days to establish the AFLD model, and subjected to BP and SIRT1 siRNA intervention for 10 days. Liver pathology was performed on day 11, and biochemical and molecular analyses of liver mitochondria were employed on day 12. Results BP significantly ameliorated hepatic mitochondrial injury, mitochondrial swelling, and hepatic necrosis in AFLD. BP alleviated hepatic mitochondrial dysfunction by increasing the expression of succinate dehydrogenase and cytochrome c oxidase, increasing respiratory control rate and the ADP/O ratio, and facilitating the synthesis of energy-related molecules. Besides, BP increased the expression of glutathione and superoxide dismutase, and inhibited malondialdehyde expression and reactive oxygen species activity. BP-induced sirtuin 1 (SIRT1), which activates peroxisome proliferator-activated receptor-gamma coactivator-1α, both of which mediate mitochondrial homeostasis. SIRT1 silencing suppressed the BP-induced changes in liver mitochondria, blunting its efficacy. Conclusions The ingredients of BP ameliorate hepatocyte mitochondrial dysfunction in AFLD mice. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00554-3.
Collapse
Affiliation(s)
- Houmin Fan
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanyan Shen
- Tongren Maternal and Child Health Care Hospital, Tongren, Guizhou, China
| | - Ya Ren
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiuju Mou
- Department of Blood Transfusion, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Lin
- Department of Clinical Examination, The Affiliated Hospital of Guizhou Medical University, No 28, Guiyi Street, Yunyan District, Guiyang, Guizhou, China
| | - Lili Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Tingting Ren
- Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
15
|
Prasun P, Ginevic I, Oishi K. Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease. Transl Gastroenterol Hepatol 2021; 6:4. [PMID: 33437892 DOI: 10.21037/tgh-20-125] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty liver disease constitutes a spectrum of liver diseases which begin with simple steatosis and may progress to advance stages of steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The two main etiologies are-alcohol related fatty liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). NAFLD is a global health epidemic strongly associated with modern dietary habits and life-style. It is the second most common cause of chronic liver disease in the US after chronic hepatitis C virus (HCV) infection. Approximately 100 million people are affected with this condition in the US alone. Excessive intakes of calories, saturated fat and refined carbohydrates, and sedentary life style have led to explosion of this health epidemic in developing nations as well. ALD is the third most common cause of chronic liver disease in the US. Even though the predominant trigger for onset of steatosis is different in these two conditions, they share common themes in progression from steatosis to the advance stages. Oxidative stress (OS) is considered a very significant contributor to hepatocyte injury in these conditions. Mitochondrial dysfunction contributes to this OS. Role of mitochondrial dysfunction in pathogenesis of fatty liver diseases is emerging but far from completely understood. A better understanding is essential for more effective preventive and therapeutic interventions. Here, we discuss the pathogenesis and therapeutic approaches of NAFLD and ALD from a mitochondrial perspective.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
A Potential Role for Mitochondrial DNA in the Activation of Oxidative Stress and Inflammation in Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [PMID: 32393967 PMCID: PMC7683147 DOI: 10.1155/2020/5835910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that are essential for cellular homeostasis including energy harvesting through oxidative phosphorylation. Mitochondrial dysfunction plays a vital role in liver diseases as it produces a large amount of reactive oxygen species (ROS), in turn leading to further oxidative damage to the structure and function of mitochondria and other cellular components. More severe oxidative damage occurred in mitochondrial DNA (mtDNA) than in nuclear DNA. mtDNA dysfunction results in further oxidative damage as it participates in encoding respiratory chain polypeptides. In addition, mtDNA can leave the mitochondria and enter the cytoplasm and extracellular environment. mtDNA is derived from ancient bacteria, contains many unmethylated CpG dinucleotide repeats similar to bacterial DNA, and thus can induce inflammation to exacerbate damage to liver cells and distal organs by activating toll-like receptor 9, inflammatory bodies, and stimulator of interferon genes (STING). In this review, we focus on the mechanism by which mtDNA alterations cause liver injuries, including nonalcoholic fatty liver, alcoholic liver disease, drug-induced liver injury, viral hepatitis, and liver cancer.
Collapse
|
17
|
Chen X, Zhang Z, Li H, Zhao J, Wei X, Lin W, Zhao X, Jiang A, Yuan J. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2020; 35:2009-2019. [PMID: 32150306 DOI: 10.1111/jgh.15027] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM A causal relationship between changes of the gut microbiome and non-alcoholic fatty liver disease (NAFLD) remains unclear. We demonstrated that endogenous ethanol (EnEth) produced by intestinal microbiota is likely a causative agent of NAFLD. METHODS Two mutants with different alcohol-producing abilities, namely, W14-adh and W14Δadh, were constructed using the clinical high alcohol-producing (HiAlc) Klebsiella pneumoniae strain W14 as a parent. Damage to hepatocytes caused by bacteria with different alcohol-producing capacities was evaluated (EtOH group as positive control). The ultrastructural changes of mitochondria were assessed via transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, and adenosine triphosphate were examined. RESULTS The results illustrated that steatosis was most severe in the W14-adh group, followed by the W14 group, whereas the W14Δadh group had few fatty droplets. TEM and examination of related protein expression revealed that the mitochondrial integrity of HepG2 hepatocytes was considerably damaged in the EtOH and bacteria treatment groups. The impaired mitochondrial function in HepG2 hepatocytes was evidenced by reduced adenosine triphosphate content and increased mitochondrial ROS accumulation and DNA damage in the EtOH and bacteria treatment groups, especially the W14-adh group. Meanwhile, liver injury and mitochondrial damage were observed in the hepatocytes of mice. The livers of mice in the W14-adh group, which had the highest ethanol production, exhibited the most serious damage, similar to that in the EtOH group. CONCLUSIONS EnEth produced by HiAlc bacteria induces mitochondrial dysfunction in NAFLD.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| | - Huan Li
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Jiangtao Zhao
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Xiao Wei
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Weishi Lin
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Xiangna Zhao
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Aimin Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
18
|
High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem Biol Interact 2020; 330:109199. [DOI: 10.1016/j.cbi.2020.109199] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
19
|
Xuan W, Song D, Yan Y, Yang M, Sun Y. Police Violence among Adults Diagnosed with Mental Disorders. HEALTH & SOCIAL WORK 2020; 45:81-89. [PMID: 32393967 PMCID: PMC7683147 DOI: 10.1093/hsw/hlaa003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 06/11/2023]
Abstract
Police violence is reportedly common among those diagnosed with mental disorders characterized by the presence of psychotic symptoms or pronounced emotional lability. Despite the perception that people with mental illness are disproportionately mistreated by the police, there is relatively little empirical research on this topic. A cross-sectional general population survey was administered online in 2017 to 1,000 adults in two eastern U.S. cities to examine the relationship between police violence exposure, mental disorders, and crime involvement. Results from hierarchical logistic regression and mediation analyses revealed that a range of mental health conditions are broadly associated with elevated risk for police violence exposure. Individuals with severe mental illness are more likely than the general population to be physically victimized by police, regardless of their involvement in criminal activities. Most of the excess risk of police violence exposure related to common psychiatric diagnoses was explained by confounding factors including crime involvement. However, crime involvement may necessitate more police contact, but does not necessarily justify victimization or excessive force (particularly sexual and psychological violence). Findings support the need for adequate training for police officers on how to safely interact with people with mental health conditions, particularly severe mental illness.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, No. 126 Xinmin Street, Changchun 130041, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
20
|
Lam S, Doran S, Yuksel HH, Altay O, Turkez H, Nielsen J, Boren J, Uhlen M, Mardinoglu A. Addressing the heterogeneity in liver diseases using biological networks. Brief Bioinform 2020; 22:1751-1766. [PMID: 32201876 PMCID: PMC7986590 DOI: 10.1093/bib/bbaa002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
The abnormalities in human metabolism have been implicated in the progression of several complex human diseases, including certain cancers. Hence, deciphering the underlying molecular mechanisms associated with metabolic reprogramming in a disease state can greatly assist in elucidating the disease aetiology. An invaluable tool for establishing connections between global metabolic reprogramming and disease development is the genome-scale metabolic model (GEM). Here, we review recent work on the reconstruction of cell/tissue-type and cancer-specific GEMs and their use in identifying metabolic changes occurring in response to liver disease development, stratification of the heterogeneous disease population and discovery of novel drug targets and biomarkers. We also discuss how GEMs can be integrated with other biological networks for generating more comprehensive cell/tissue models. In addition, we review the various biological network analyses that have been employed for the development of efficient treatment strategies. Finally, we present three case studies in which independent studies converged on conclusions underlying liver disease.
Collapse
Affiliation(s)
- Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Stephen Doran
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Hatice Hilal Yuksel
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Ozlem Altay
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Hasan Turkez
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Jens Nielsen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Jan Boren
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Mathias Uhlen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| |
Collapse
|
21
|
Zhang X, Wu X, Hu Q, Wu J, Wang G, Hong Z, Ren J. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci 2019; 236:116464. [PMID: 31078546 DOI: 10.1016/j.lfs.2019.05.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
The function of liver is highly dependent on mitochondria producing ATP for biosynthetic and detoxifying properties. Accumulating evidence indicates that most hepatic disorders are characterized by profound mitochondrial dysfunction. Mitochondrial dysfunction not only exhibits mitochondrial DNA (mtDNA) damage and depletion, but also releases mtDNA. mtDNA is a closed circular molecule encoding 13 of the polypeptides of the oxidative phosphorylation system. Extensive mtDNA lesions could exacerbate mitochondrial oxidative stress and subsequently cause damage to hepatocytes. When mtDNA leaves the confines of mitochondria to the cytosolic and extracellular environment, it can act as damage-associated molecular patterns (DAMPs) to trigger the inflammatory response through the Toll-like receptor 9, inflammasomes, and stimulator of interferon genes (STING) pathways and further exacerbate hepatocellular damage and even remote organs injury. In addition, mtDNA also plays a vital role in hepatitis B virus (HBV)-related liver injury and hepatocellular carcinoma (HCC). In this review, we describe mtDNA alterations during liver injury, focusing on the mechanisms of mtDNA-mediated liver inflammation and oxidative stress injury.
Collapse
Affiliation(s)
- Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China.
| | - Qiongyuan Hu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Jie Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Gefei Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Zhiwu Hong
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China.
| |
Collapse
|
22
|
Yan S, Khambu B, Hong H, Liu G, Huda N, Yin XM. Autophagy, Metabolism, and Alcohol-Related Liver Disease: Novel Modulators and Functions. Int J Mol Sci 2019; 20:ijms20205029. [PMID: 31614437 PMCID: PMC6834312 DOI: 10.3390/ijms20205029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alcohol-related liver disease (ALD) is caused by over-consumption of alcohol. ALD can develop a spectrum of pathological changes in the liver, including steatosis, inflammation, cirrhosis, and complications. Autophagy is critical to maintain liver homeostasis, but dysfunction of autophagy has been observed in ALD. Generally, autophagy is considered to protect the liver from alcohol-induced injury and steatosis. In this review, we will summarize novel modulators of autophagy in hepatic metabolism and ALD, including autophagy-mediating non-coding RNAs (ncRNAs), and crosstalk of autophagy machinery and nuclear factors. We will also discuss novel functions of autophagy in hepatocytes and non-parenchymal hepatic cells during the pathogenesis of ALD and other liver diseases.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Honghai Hong
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gang Liu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
23
|
Yan S, Zhou J, Chen X, Dong Z, Yin XM. Diverse Consequences in Liver Injury in Mice with Different Autophagy Functional Status Treated with Alcohol. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1744-1762. [PMID: 31199920 DOI: 10.1016/j.ajpath.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
Alcoholic fatty liver disease is often complicated by other pathologic insults, such as viral infection or high-fat diet. Autophagy plays a homeostatic role in the liver but can be compromised by alcohol, high-fat diet, or viral infection, which in turn affects the disease process caused by these etiologies. To understand the full impact of autophagy modulation on alcohol-induced liver injury, several genetic models of autophagy deficiency, which have different levels of functional alterations, were examined after acute binge or chronic-plus-binge treatment. Mice given alcohol with either mode and induced with deficiency in liver-specific Atg7 shortly after the induction of Atg7 deletion had elevated liver injury, indicating the protective role of autophagy. Constitutive hepatic Atg7-deficient mice, in which Atg7 was deleted in embryos, were more susceptible with chronic-plus-binge but not with acute alcohol treatment. Constitutive hepatic Atg5-deficient mice, in which Atg5 was deleted in embryos, were more susceptible with acute alcohol treatment, but liver injury was unexpectedly improved with the chronic-plus-binge regimen. A prolonged autophagy deficiency may complicate the hepatic response to alcohol treatment, likely in part due to endogenous liver injury. The complexity of the relationship between autophagy deficiency and alcohol-induced liver injury can thus be affected by the timing of autophagy dysfunction, the exact autophagy gene being affected, and the alcohol treatment regimen.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Zhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Minimal Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology and Anatomy, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
Shin SK, Cho HW, Song SE, Bae JH, Im SS, Hwang I, Ha H, Song DK. Ablation of catalase promotes non-alcoholic fatty liver via oxidative stress and mitochondrial dysfunction in diet-induced obese mice. Pflugers Arch 2019; 471:829-843. [PMID: 30617744 DOI: 10.1007/s00424-018-02250-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/05/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
Hydrogen peroxide (H2O2) produced endogenously can cause mitochondrial dysfunction and metabolic complications in various cell types by inducing oxidative stress. In the liver, oxidative and endoplasmic reticulum (ER) stress affects the development of non-alcoholic fatty liver disease (NAFLD). Although a link between both stresses and fatty liver diseases has been suggested, few studies have investigated the involvement of catalase in fatty liver pathogenesis. We examined whether catalase is associated with NAFLD, using catalase knockout (CKO) mice and the catalase-deficient human hepatoma cell line HepG2. Hepatic morphology analysis revealed that the fat accumulation was more prominent in high-fat diet (HFD) CKO mice compared to that in age-matched wild-type (WT) mice, and lipid peroxidation and H2O2 release were significantly elevated in CKO mice. Transmission electron micrographs indicated that the liver mitochondria from CKO mice tended to be more severely damaged than those in WT mice. Likewise, mitochondrial DNA copy number and cellular ATP concentrations were significantly lower in CKO mice. In fatty acid-treated HepG2 cells, knockdown of catalase accelerated cellular lipid accumulation and depressed mitochondrial biogenesis, which was recovered by co-treatment with N-acetyl cysteine or melatonin. This effect of antioxidant was also true in HFD-fed CKO mice, suppressing fatty liver development and improving hepatic mitochondrial function. Expression of ER stress marker proteins and hepatic fat deposition also increased in normal-diet, aged CKO mice compared to WT mice. These findings suggest that H2O2 production may be an important event triggering NAFLD and that catalase may be an attractive therapeutic target for preventing NAFLD.
Collapse
Affiliation(s)
- Su-Kyung Shin
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Hyun-Woo Cho
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Seung-Eun Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Jae-Hoon Bae
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Seung-Soon Im
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Inha Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Women's University, Seoul, 03760, South Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Women's University, Seoul, 03760, South Korea
| | - Dae-Kyu Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea.
| |
Collapse
|
25
|
Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr Mol Pharmacol 2019; 10:207-225. [PMID: 26278393 DOI: 10.2174/1874467208666150817111114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892. United States
| | - Seung-Kwon Ha
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| |
Collapse
|
26
|
Barzegar-Amini M, Ghazizadeh H, Seyedi SMR, Sadeghnia HR, Mohammadi A, Hassanzade-Daloee M, Barati E, Kharazmi-Khorassani S, Kharazmi-Khorassani J, Mohammadi-Bajgiran M, Tavallaie S, Ferns GA, Mouhebati M, Ebrahimi M, Tayefi M, Ghayour-Mobarhan M. Serum vitamin E as a significant prognostic factor in patients with dyslipidemia disorders. Diabetes Metab Syndr 2019; 13:666-671. [PMID: 30641786 DOI: 10.1016/j.dsx.2018.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Obesity and overweight are among the main causes of cardiovascular disease (CVD) mortality. Dyslipidemia, fatty liver index, is strongly related to CVD. Vitamin E as an antioxidant protects the hepatic cells against oxidative stress and prevents fatty liver disease. The aim of the current study is to evaluate the relationship between anthropometric parameters and fasted lipid profile with serum vitamin E levels. STUDY DESIGN A randomized trial was designed based on data from the Mashhad stroke and heart atherosclerotic disorders (MASHAD: 2010-2020). METHODS 363 CVD subjects (173 males and 190 females) was selected at random, among 9704 subjects in three regions of Mashhad, northeast of Iran to investigate the specific correlations among their serum vitamin E, lipid profile (TG, HDL-C, LDL-C and TC), and anthropometric features (height, weight, BMI, hip and waist circumferences. RESULT The results indicated the significant relationships between vitamin E, and fasting serum lipid profile in subjects. Serum vitamin E was negatively correlated to TC, TG, and LDL-C and positively related to HDL-C. Also, statistically negative correlations were found between vitamin E and anthropometric parameters (weight, waist and hip circumference, middle Arm, and Systolic Blood Pressure). Moreover, vitamin E ratios such as vitamin E/(TC + TG) and vitamin E/TC values as standardized vitamin E, had significant negative correlation with BMI, the whole of anthropometric parameters, and dyslipidemia risk factors including TC, TG and LDL-C. CONCLUSION We found that vitamin E profile was significantly lower in the dyslipidemia subjects. It is generally suggested that vitamin E monitoring might be used as a useful prognostic and therapeutic agent in dyslipidemia disorder.
Collapse
Affiliation(s)
- Maral Barzegar-Amini
- Cardiovascular Division, Vascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Reza Sadeghnia
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Mohammadi
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hassanzade-Daloee
- Cardiovascular Division, Vascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Barati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Kharazmi-Khorassani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biology, Mashad Branch, Islamic Azad University, Iran
| | - Jasmin Kharazmi-Khorassani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Mashad Branch, Ferdowsi University, Iran
| | | | - Shima Tavallaie
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Mohsen Mouhebati
- Cardiovascular Division, Vascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ebrahimi
- Cardiovascular Division, Vascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. LIVER RESEARCH 2018; 2:161-172. [PMID: 31214376 PMCID: PMC6581514 DOI: 10.1016/j.livres.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy alcohol use is the cause of alcoholic liver disease (ALD). The ALD spectrum ranges from alcoholic steatosis to steatohepatitis, fibrosis, and cirrhosis. In Western countries, approximately 50% of cirrhosis-related deaths are due to alcohol use. While alcoholic cirrhosis is no longer considered a completely irreversible condition, no effective anti-fibrotic therapies are currently available. Another significant clinical aspect of ALD is alcoholic hepatitis (AH). AH is an acute inflammatory condition that is often comorbid with cirrhosis, and severe AH has a high mortality rate. Therapeutic options for ALD are limited. The established treatment for AH is corticosteroids, which improve short-term survival but do not affect long-term survival. Liver transplantation is a curative treatment option for alcoholic cirrhosis and AH, but patients must abstain from alcohol use for 6 months to qualify. Additional effective therapies are needed. The molecular mechanisms underlying ALD are complex and have not been fully elucidated. Various molecules, signaling pathways, and crosstalk between multiple hepatic and extrahepatic cells contribute to ALD progression. This review highlights established and emerging concepts in ALD clinicopathology, their underlying molecular mechanisms, and current and future ALD treatment options.
Collapse
Affiliation(s)
- Koichiro Ohashi
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Pimienta
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA,Corresponding author. Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA., (E. Seki)
| |
Collapse
|
28
|
Possible Involvement of Mitochondrial Dysfunction and Oxidative Stress in a Cellular Model of NAFLD Progression Induced by Benzo[a]pyrene/Ethanol CoExposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4396403. [PMID: 30147834 PMCID: PMC6083493 DOI: 10.1155/2018/4396403] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Exposure to xenobiotics could favor the transition of nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis in obese patients. Recently, we showed in different models of NAFL that benzo[a]pyrene (B[a]P) and ethanol coexposure induced a steatohepatitis-like state. One model was HepaRG cells incubated with stearate and oleate for 2 weeks. In the present study, we wished to determine in this model whether mitochondrial dysfunction and reactive oxygen species (ROS) overproduction could be involved in the occurrence of this steatohepatitis-like state. CRISPR/Cas9-modified cells were also used to specify the role of aryl hydrocarbon receptor (AhR), which is potently activated by B[a]P. Thus, nonsteatotic and steatotic HepaRG cells were treated with B[a]P, ethanol, or both molecules for 2 weeks. B[a]P/ethanol coexposure reduced mitochondrial respiratory chain activity, mitochondrial respiration, and mitochondrial DNA levels and induced ROS overproduction in steatotic HepaRG cells. These deleterious effects were less marked or absent in steatotic cells treated with B[a]P alone or ethanol alone and in nonsteatotic cells treated with B[a]P/ethanol. Our study also disclosed that B[a]P/ethanol-induced impairment of mitochondrial respiration was dependent on AhR activation. Hence, mitochondrial dysfunction and ROS generation could explain the occurrence of a steatohepatitis-like state in steatotic HepaRG cells exposed to B[a]P and ethanol.
Collapse
|
29
|
Wang X, Du H, Shao S, Bo T, Yu C, Chen W, Zhao L, Li Q, Wang L, Liu X, Su X, Sun M, Song Y, Gao L, Zhao J. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology 2018; 68:62-77. [PMID: 29356058 DOI: 10.1002/hep.29788] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 01/12/2018] [Indexed: 01/04/2023]
Abstract
Physiological opening of the mitochondrial permeability transition pore (mPTP) is indispensable for maintaining mitochondrial function and cell homeostasis, but the role of the mPTP and its initial factor, cyclophilin D (CypD), in hepatic steatosis is unclear. Here, we demonstrate that excess mPTP opening is mediated by an increase of CypD expression induced hepatic mitochondrial dysfunction. Notably, such mitochondrial perturbation occurred before detectable triglyceride accumulation in the liver of high-fat diet-fed mice. Moreover, either genetic knockout or pharmacological inhibition of CypD could ameliorate mitochondrial dysfunction, including excess mPTP opening and stress, and down-regulate the transcription of sterol regulatory element-binding protein-1c, a key factor of lipogenesis. In contrast, the hepatic steatosis in adenoviral overexpression of CypD-infected mice was aggravated relative to the control group. Blocking p38 mitogen-activated protein kinase or liver-specific Ire1α knockout could resist CypD-induced sterol regulatory element-binding protein-1c expression and steatosis. Importantly, CypD inhibitor applied prior to or after the onset of triglyceride deposition substantially prevented or ameliorated fatty liver. CONCLUSION CypD stimulates mPTP excessive opening, subsequently causing endoplasmic reticulum stress through p38 mitogen-activated protein kinase activation, and results in enhanced sterol regulatory element-binding protein-1c transcription and hepatic steatosis. (Hepatology 2018;68:62-77).
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Qiu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Li Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Physiology and Neurobiology and the Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Xiaojing Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiaohui Su
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Mingqi Sun
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| |
Collapse
|
30
|
El Hadi H, Vettor R, Rossato M. Vitamin E as a Treatment for Nonalcoholic Fatty Liver Disease: Reality or Myth? Antioxidants (Basel) 2018; 7:antiox7010012. [PMID: 29337849 PMCID: PMC5789322 DOI: 10.3390/antiox7010012] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
Obesity is one of the major epidemics of this millennium, and its incidence is growing worldwide. Following the epidemics of obesity, nonalcoholic fatty liver disease (NAFLD) has become a disease of increasing prevalence and a leading cause of morbidity and mortality closely related to cardiovascular disease, malignancies, and cirrhosis. It is believed that oxidative stress is a main player in the development and progression of NAFLD. Currently, a pharmacological approach has become necessary in NAFLD because of a failure to modify lifestyle and dietary habits in most patients. Vitamin E is a potent antioxidant that has been shown to reduce oxidative stress in NAFLD. This review summarizes the biological activities of vitamin E, with a primary focus on its therapeutic efficacy in NAFLD.
Collapse
Affiliation(s)
- Hamza El Hadi
- Internal Medicine 3, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Marco Rossato
- Internal Medicine 3, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
31
|
Du J, Zhang X, Han J, Man K, Zhang Y, Chu ESH, Nan Y, Yu J. Pro-Inflammatory CXCR3 Impairs Mitochondrial Function in Experimental Non-Alcoholic Steatohepatitis. Theranostics 2017; 7:4192-4203. [PMID: 29158819 PMCID: PMC5695006 DOI: 10.7150/thno.21400] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/14/2017] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial dysfunction plays a crucial role in the development of non-alcoholic steatohepatitis (NASH). However, the regulator of mitochondrial dysfunction in the pathogenesis of NASH is still largely unclear. CXCR3 is an essential pro-inflammatory factor in chronic liver diseases. We explored the significance of CXCR3 in regulating mitochondrial function during NASH development in animal models and cultured hepatocytes. METHODS The effects of CXCR3 on mitochondrial function were evaluated by genetic knockout or pharmacological inhibition in mouse models and in vitro. The ultrastructural changes of mitochondria were assessed by transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, membrane potential and ATP were examined. RESULTS CXCR3 ablation by genetic knockout or pharmacological inhibition in mice protected against NASH development by influencing mitochondrial function. Similarly, depletion of CXCR3 reduced steatohepatitis injury in cultured hepatocytes. TEM analysis revealed that liver mitochondrial integrity was much improved in CXCR3 knockout (CXCR3-/-) compared to wildtype (WT) mice. In agreement with this, impaired mitochondrial function was pronounced in WT mice compared to CXCR3-/- mice, evidenced by increased protein expression of dynamic-related protein-1 (DRP1) and fission-1 (FIS1) and decreased protein expression of mitofusin-1 (MFN1). Mitochondrial dysfunction was induced in AML-12 hepatocytes by methionine and choline deficient medium and in HepG2 cells by palmitic acid. The impaired mitochondrial function in both cell lines was evidenced by reduced membrane potential and ATP content, and by increased mitochondrial ROS accumulation and DNA damage. However, CXCR3 knockdown by siCXCR3 significantly diminished the mitochondrial dysfunction in both AML-12 and HepG2 hepatocytes. In addition, inhibition of CXCR3 by CXCR3 specific antagonists SCH546738 and AMG487 restored mitochondrial function and inhibited mitochondrial-dependent apoptosis in the liver of WT mice fed with methionine and choline deficient diet. CONCLUSION CXCR3 induces mitochondrial dysfunction, which contributes to the pathogenesis of steatohepatitis. Pharmacologic blockade of CXCR3 prevents mitochondrial dysfunction and restores the severity of steatohepatitis, indicating a potential clinical impact for controlling the disease.
Collapse
|
32
|
Abstract
Hepatic steatosis is an underlying feature of nonalcoholic fatty liver disease (NAFLD), which is the most common form of liver disease and is present in up to ∼70% of individuals who are overweight. NAFLD is also associated with hypertriglyceridaemia and low levels of HDL, glucose intolerance, insulin resistance and type 2 diabetes mellitus. Hepatic steatosis is a strong predictor of the development of insulin resistance and often precedes the onset of other known mediators of insulin resistance. This sequence of events suggests that hepatic steatosis has a causal role in the development of insulin resistance in other tissues, such as skeletal muscle. Hepatokines are proteins that are secreted by hepatocytes, and many hepatokines have been linked to the induction of metabolic dysfunction, including fetuin A, fetuin B, retinol-binding protein 4 (RBP4) and selenoprotein P. In this Review, we describe the factors that influence the development of hepatic steatosis, provide evidence of strong links between hepatic steatosis and insulin resistance in non-hepatic tissues, and discuss recent advances in our understanding of how steatosis alters hepatokine secretion to influence metabolic phenotypes through inter-organ communication.
Collapse
Affiliation(s)
- Ruth C R Meex
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Yan S, Huda N, Khambu B, Yin XM. Relevance of autophagy to fatty liver diseases and potential therapeutic applications. Amino Acids 2017; 49:1965-1979. [PMID: 28478585 DOI: 10.1007/s00726-017-2429-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved lysosome-mediated cellular degradation program. Accumulating evidence shows that autophagy is important to the maintenance of liver homeostasis. Autophagy involves recycling of cellular nutrients recycling as well as quality control of subcellular organelles. Autophagy deficiency in the liver causes various liver pathologies. Fatty liver disease (FLD) is characterized by the accumulation of lipids in hepatocytes and the dysfunction in energy metabolism. Autophagy is negatively affected by the pathogenesis of FLD and the activation of autophagy could ameliorate steatosis, which suggests a potential therapeutic approach to FLD. In this review, we will discuss autophagy and its relevance to liver diseases, especially FLD. In addition, we will discuss recent findings on potential therapeutic applications of autophagy modulators for FLD.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
34
|
Ethanol drinking, brain mitochondrial DNA, polyunsaturated fatty acids and effects of dietary anthocyanins. CLINICAL NUTRITION EXPERIMENTAL 2017. [DOI: 10.1016/j.yclnex.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Jiang Z, Jiang X, Li C, Xue H, Zhang X. Development of an IgY Antibody-Based Immunoassay for the Screening of the CYP2E1 Inhibitor/Enhancer from Herbal Medicines. Front Pharmacol 2016; 7:502. [PMID: 28066249 PMCID: PMC5177661 DOI: 10.3389/fphar.2016.00502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022] Open
Abstract
Cytochrome P450 (CYP) 2E1 is an important enzyme involved in the metabolism of many endogenous and exogenous compounds. It is essential to evaluate the expression of CYP2E1 in the studies of drug–drug interactions and the screening of drugs, natural products, and foodstuffs. The present work is a feasibility study on the development of immunoassays using a specific and sensitive chicken-sourced anti-CYP2E1 IgY antibody. Cloning, expression, and purification of a recombinant CYP2E1 (mice origin) protein were carried out. Anti-CYP2E1 IgY antibodies were generated by immunizing white Leghorn chickens with purified recombinant CYP2E1 protein and were purified by immune affinity chromatography. The IgY titer attained a peak level (≥1:128,000) after the fifth booster injection. For evaluation of the expression of CYP2E1 in different herbal treatment samples, the mice were treated by oral gavage for 3 days with alcohol (50% 15 mL/kg), acetaminophen (APAP, 300 mg/kg), Cornus officinalis extract (100 mg/kg), Alhagi-honey extract (100 mg/kg), Apocynum venetum extract (100 mg/kg), hyperoside (50 mg/kg), isoquercetin (50 mg/kg), 4-hydroxyphenylacetic acid (50 mg/kg), 3-hydroxyphenylacetic acid (50 mg/kg), and 3,4-hydroxyphenylacetic acid (50 mg/kg). The expression of CYP2E1 was determined by Western blot analysis, immunohistochemistry, ELISA, and immunomagnetic beads (IMBs) using anti-CYP2E1 IgY in liver tissue. The results showed that C. officinalis extract, Alhagi-honey extract, A. venetum extract, hyperoside, isoquercetin, and their xenobiotics 4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3,4-hydroxyphenylacetic acid significantly decreased CYP2E1 levels. Alcohol and APAP treatments significantly increased CYP2E1 levels as analyzed with Western blot analysis, immunohistochemistry, and ELISA. The IMB method is suitable for large-scale screening, and it is a rapid screening (20 min) that uses a portable magnet and has no professional requirements for the operator, which makes it useful for on-the-spot analysis. Considering these results, the anti-CYP2E1 IgY could be applied as a novel research tool in screening for the CYP2E1 inhibitor/enhancer.
Collapse
Affiliation(s)
- Zhihui Jiang
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Xuemei Jiang
- College of Veterinary Medicine, Northwest A&F University Yangling, China
| | - Cui Li
- College of Veterinary Medicine, Northwest A&F University Yangling, China
| | - Huiting Xue
- College of Veterinary Medicine, Xinjiang Agricultural University Urumqi, China
| | - Xiaoying Zhang
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| |
Collapse
|
36
|
Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8327410. [PMID: 26788252 PMCID: PMC4691634 DOI: 10.1155/2016/8327410] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
Accurate control of the cell redox state is mandatory for maintaining the structural integrity and physiological functions. This control is achieved both by a fine-tuned balance between prooxidant and anti-oxidant molecules and by spatial and temporal confinement of the oxidative species. The diverse cellular compartments each, although structurally and functionally related, actively maintain their own redox balance, which is necessary to fulfill specialized tasks. Many fundamental cellular processes such as insulin signaling, cell proliferation and differentiation and cell migration and adhesion, rely on localized changes in the redox state of signal transducers, which is mainly mediated by hydrogen peroxide (H2O2). Therefore, oxidative stress can also occur long before direct structural damage to cellular components, by disruption of the redox circuits that regulate the cellular organelles homeostasis. The hepatocyte is a systemic hub integrating the whole body metabolic demand, iron homeostasis and detoxification processes, all of which are redox-regulated processes. Imbalance of the hepatocyte's organelles redox homeostasis underlies virtually any liver disease and is a field of intense research activity. This review recapitulates the evolving concept of oxidative stress in the diverse cellular compartments, highlighting the principle mechanisms of oxidative stress occurring in the healthy and wounded hepatocyte.
Collapse
|
37
|
Caro AA, Bell M, Ejiofor S, Zurcher G, Petersen DR, Ronis MJJ. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically. Alcohol Clin Exp Res 2015; 38:2896-906. [PMID: 25581647 DOI: 10.1111/acer.12576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/06/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative stress is a factor that triggers mitochondrial biogenesis after chronic EtOH feeding. If our hypothesis is correct, co-administration of antioxidants should prevent up-regulation of mitochondrial biogenesis genes. METHODS Rats were fed an EtOH-containing diet intragastrically by total enteral nutrition for 150 days, in the absence or presence of the antioxidant N-acetylcysteine (NAC) at 1.7 g/kg/d; control rats were administered isocaloric diets where carbohydrates substituted for EtOH calories. RESULTS EtOH administration significantly increased hepatic oxidative stress, evidenced as decreased liver total glutathione and reduced glutathione/glutathione disulfide ratio. These effects were inhibited by co-administration of EtOH and NAC. Chronic EtOH increased the expression of mitochondrial biogenesis genes including peroxisome proliferator-activated receptor gamma-coactivator-1 alpha and mitochondrial transcription factor A, and mitochondrial DNA; co-administration of EtOH and NAC prevented these effects. Chronic EtOH administration was associated with decreased mitochondrial mass, inactivation and depletion of mitochondrial complex I and complex IV, and increased hepatic mitochondrial oxidative damage, effects that were not prevented by NAC. CONCLUSIONS These results suggest that oxidative stress caused by chronic EtOH triggered the up-regulation of mitochondrial biogenesis genes in rat liver, because an antioxidant such as NAC prevented both effects. Because NAC did not prevent liver mitochondrial oxidative damage, extra-mitochondrial effects of reactive oxygen species may regulate mitochondrial biogenesis. In spite of the induction of hepatic mitochondrial biogenesis genes by chronic EtOH, mitochondrial mass and function decreased probably in association with mitochondrial oxidative damage. These results also predict that the effectiveness of NAC as an antioxidant therapy for chronic alcoholism will be limited by its limited antioxidant effects in mitochondria, and its inhibitory effect on mitochondrial biogenesis.
Collapse
Affiliation(s)
- Andres A Caro
- Chemistry Department , Hendrix College, Conway, Arkansas
| | | | | | | | | | | |
Collapse
|
38
|
Autophagy in alcoholic liver disease, self-eating triggered by drinking. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S2-6. [PMID: 26186877 PMCID: PMC5582974 DOI: 10.1016/j.clinre.2015.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
Macroautophagy (autophagy) is an evolutionarily conserved mechanism. It is important for normal cellular function and also plays critical roles in the etiology and pathogenesis of a number of human diseases. In alcohol-induced liver disease, autophagy is a protective mechanism against the liver injury caused by alcohol. Autophagy is activated in acute ethanol treatment but could be suppressed in chronic and/or high dose treatment of alcohol. The selective removal of lipid droplets and/or damaged mitochondria is likely the major mode of autophagy in reducing liver injury. Understanding the dynamics of the autophagy process and the approach to modulate autophagy could help finding new ways to battle against alcohol-induced liver injury.
Collapse
|
39
|
Lin R, Rittenhouse D, Sweeney K, Potluri P, Wallace DC. TSPO, a Mitochondrial Outer Membrane Protein, Controls Ethanol-Related Behaviors in Drosophila. PLoS Genet 2015; 11:e1005366. [PMID: 26241038 PMCID: PMC4524697 DOI: 10.1371/journal.pgen.1005366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/17/2015] [Indexed: 11/25/2022] Open
Abstract
The heavy consumption of ethanol can lead to alcohol use disorders (AUDs) which impact patients, their families, and societies. Yet the genetic and physiological factors that predispose humans to AUDs remain unclear. One hypothesis is that alterations in mitochondrial function modulate neuronal sensitivity to ethanol exposure. Using Drosophila genetics we report that inactivation of the mitochondrial outer membrane translocator protein 18kDa (TSPO), also known as the peripheral benzodiazepine receptor, affects ethanol sedation and tolerance in male flies. Knockdown of dTSPO in adult male neurons results in increased sensitivity to ethanol sedation, and this effect requires the dTSPO depletion-mediated increase in reactive oxygen species (ROS) production and inhibition of caspase activity in fly heads. Systemic loss of dTSPO in male flies blocks the development of tolerance to repeated ethanol exposures, an effect that is not seen when dTSPO is only inactivated in neurons. Female flies are naturally more sensitive to ethanol than males, and female fly heads have strikingly lower levels of dTSPO mRNA than males. Hence, mitochondrial TSPO function plays an important role in ethanol sensitivity and tolerance. Since a large array of benzodiazepine analogues have been developed that interact with the peripheral benzodiazepine receptor, the mitochondrial TSPO might provide an important new target for treating AUDs. Alcohol use disorders (AUDs) affect millions of patients worldwide and result in high social and economic burdens. Although environmental factors are involved, there are clear genetic components to AUDs. Both the acute sedating effect of alcohol exposure and alcohol tolerance contribute to long term risk for alcohol dependence and addiction. Yet the genetic etiology of AUDs remains to be determined. The mitochondria play a central role in ethanol metabolism and are important in many aspects of cellular physiology such as REDOX and ROS regulation, and apoptosis. The mitochondrial outer membrane translocator protein 18 kDa (TSPO) binds the benzodiazepines and perhaps other addictive drugs, and thus may play a role in AUDs. Since Drosophila is a well-established model for ethanol-related behaviors, we have developed systems for manipulating the Drosophila tspo gene and protein. With these systems, we have discovered that neuronal TSPO controls sensitivity to ethanol sedation via ROS and caspase-mediated signaling and that systemic TSPO levels are important in the development of tolerance to repeated ethanol exposure. Given the variety of known TSPO ligands, and the common mechanisms of various abusive substances, our studies suggest that TSPO might be a promising target to combat alcoholism as well as addiction to other drugs.
Collapse
Affiliation(s)
- Ran Lin
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Danielle Rittenhouse
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Katelyn Sweeney
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20:14205-18. [PMID: 25339807 PMCID: PMC4202349 DOI: 10.3748/wjg.v20.i39.14205] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/13/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is today considered the most common form of chronic liver disease, affecting a high proportion of the population worldwide. NAFLD encompasses a large spectrum of liver damage, ranging from simple steatosis to steatohepatitis, advanced fibrosis and cirrhosis. Obesity, hyperglycemia, type 2 diabetes and hypertriglyceridemia are the most important risk factors. The pathogenesis of NAFLD and its progression to fibrosis and chronic liver disease is still unknown. Accumulating evidence indicates that mitochondrial dysfunction plays a key role in the physiopathology of NAFLD, although the mechanisms underlying this dysfunction are still unclear. Oxidative stress is considered an important factor in producing lethal hepatocyte injury associated with NAFLD. Mitochondrial respiratory chain is the main subcellular source of reactive oxygen species (ROS), which may damage mitochondrial proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid located at the level of the inner mitochondrial membrane, plays an important role in several reactions and processes involved in mitochondrial bioenergetics as well as in mitochondrial dependent steps of apoptosis. This phospholipid is particularly susceptible to ROS attack. Cardiolipin peroxidation has been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions, including NAFLD. In this review, we focus on the potential roles played by oxidative stress and cardiolipin alterations in mitochondrial dysfunction associated with NAFLD.
Collapse
|
41
|
Laurent D, Mathew JE, Mitry M, Taft M, Force A, Edwards JG. Chronic ethanol consumption increases myocardial mitochondrial DNA mutations: a potential contribution by mitochondrial topoisomerases. Alcohol Alcohol 2014; 49:381-9. [PMID: 24852753 PMCID: PMC4060737 DOI: 10.1093/alcalc/agu029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/14/2022] Open
Abstract
AIMS Alcoholic cardiomyopathy (ACM) presents as decreased myocardial contractility, arrhythmias and secondary non-ischemic dilated cardiomyopathy leading to heart failure. Mitochondrial dysfunction is known to have a significant role in the development and complications of ACM. This study investigated if chronic ethanol feeding promoted myocardial mitochondrial topoisomerase dysfunction as one underlying cause of mitochondrial DNA (mtDNA) damage and mitochondrial dysfunction in ACM. METHODS The impact of chronic ethanol exposure on the myocardial mitochondria was examined in both neonatal cardiomyocytes using 50 mM ethanol for 6 days and in rats assigned to control or ethanol feeding groups for 4 months. RESULTS Chronic ethanol feeding led to significant (P < 0.05) decreases in M-mode Fractional Shortening, ejection fraction, and the cardiac output index as well as increases in Tau. Ethanol feeding promoted mitochondrial dysfunction as evidenced by significantly decreased left ventricle cytochrome oxidase activity and decreases in mitochondrial protein content. Both in rats and in cultured cardiomyocytes, chronic ethanol presentation significantly increased mtDNA damage. Using isolated myocardial mitochondria, both mitochondrial topoisomerase-dependent DNA cleavage and DNA relaxation were significantly altered by ethanol feeding. CONCLUSION Chronic ethanol feeding compromised cardiovascular and mitochondrial function as a result of a decline in mtDNA integrity that was in part the consequence of mitochondrial topoisomerase dysfunction. Understanding the regulation of the mitochondrial topoisomerases is critical for protection of mtDNA, not only for the management of alcoholic cardiomyopathy, but also for the many other clinical treatments that targets the topoisomerases in the alcoholic patient.
Collapse
Affiliation(s)
- D Laurent
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - J E Mathew
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - M Mitry
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - M Taft
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - A Force
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - J G Edwards
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
42
|
Metabolic and environmental conditions determine nuclear genomic instability in budding yeast lacking mitochondrial DNA. G3-GENES GENOMES GENETICS 2014; 4:411-23. [PMID: 24374640 PMCID: PMC3962481 DOI: 10.1534/g3.113.010108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrial dysfunctions are an internal cause of nuclear genome instability. Because mitochondria are key regulators of cellular metabolism, we have investigated a potential link between external growth conditions and nuclear chromosome instability in cells with mitochondrial defects. Using Saccharomyces cerevisiae, we found that cells lacking mitochondrial DNA (rho0 cells) have a unique feature, with nuclear chromosome instability that occurs in nondividing cells and strongly fluctuates depending on the cellular environment. Calorie restriction, lower growth temperatures, growth at alkaline pH, antioxidants (NAC, Tiron), or presence of nearby wild-type cells all efficiently stabilize nuclear genomes of rho0 cells, whereas high glucose and ethanol boost instability. In contrast, other respiratory mutants that still possess mitochondrial DNA (RHO(+)) keep fairly constant instability rates under the same growth conditions, like wild-type or other RHO(+) controls. Our data identify mitochondrial defects as an important driver of nuclear genome instability influenced by environmental factors.
Collapse
|
43
|
Domenici F, Vannucchi H. Oxidative Stress in Alcoholic and Nonalcoholic Liver Disease. ROLE OF OXIDATIVE STRESS IN CHRONIC DISEASES 2014:260-281. [DOI: 10.1201/b16653-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Effects of binge ethanol on lipid homeostasis and oxidative stress in a rat model of nonalcoholic fatty liver disease. J Physiol Biochem 2014; 70:341-53. [PMID: 24481563 DOI: 10.1007/s13105-013-0308-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
Abstract
Excess fat accumulation renders the liver more vulnerable to ethanol, but it is still unclear how alcohol enhances lipid dysmetabolism and oxidative stress in a pre-existing steatosis condition. The effects produced by binge ethanol consumption in the liver of male Wistar rats fed a standard (Ctrl) or a high-fat diet HFD were compared. The liver status was checked through tissue histology and standard serum parameters. Alteration of hepatic lipid homeostasis and consequent oxidative unbalance were assessed by quantifying the mRNA expression of the lipid-regulated peroxisome proliferator-activated receptors (PPARs), of the cytochromes CYP2E1 and CYP4A1, and of some antioxidant molecules such as the metallothionein isoforms MT1 and MT2 and the enzymes catalase and superoxide dismutase. The number of adipose differentiation-related protein (ADRP)-positive lipid droplets (LDs) was evaluated by immunohistochemical staining. As a response to the double insult of diet and ethanol the rat liver showed: (1) a larger increase in fat accumulation within ADRP-positive LDs; (2) stimulation of lipid oxidation in the attempt to limit excess fat accumulation; (3) induction of antioxidant proteins (MT2, in particular) to protect the liver from the ethanol-induced overproduction of oxygen radicals. The data indicate an increased susceptibility of fatty liver to ethanol and suggest that the synergistic effect of diet and ethanol on lipid dysmetabolism might be mediated, at least in part, by PPARs and cytochromes CYP4A1 and CYP2E1.
Collapse
|
45
|
Matthew Morris E, Fletcher JA, Thyfault JP, Rector RS. The role of angiotensin II in nonalcoholic steatohepatitis. Mol Cell Endocrinol 2013; 378:29-40. [PMID: 22579612 PMCID: PMC12063499 DOI: 10.1016/j.mce.2012.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/30/2012] [Indexed: 01/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now considered the most prevalent chronic liver disease, affecting over 30% of the US adult population. NAFLD is strongly linked to insulin resistance and is considered the hepatic manifestation of the metabolic syndrome. Activation of the renin-angiotensin-aldosterone system (RAAS) is known to play a role in the hypertension observed in the metabolic syndrome and also is thought to play a central role in insulin resistance and NAFLD. Angiotensin II (AngII) is considered the primary effector of the physiological outcomes of RAAS signaling, both at the systemic and local tissue level. Herein, we review data describing the potential involvement of AngII-mediated signaling at multiple levels in the development and progression of NAFLD, including increased steatosis, inflammation, insulin resistance, and fibrosis. Additionally, we present recent work on the potential therapeutic benefits of RAAS and angiotensin II signaling inhibition in rodent models and patients with NAFLD.
Collapse
Affiliation(s)
- E Matthew Morris
- Department of Internal Medicine - Division of Gastroenterology and Hepatology, University of Missouri, MO, United States; Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States.
| | | | | | | |
Collapse
|
46
|
Stewart MS, Heerwagen MJR, Friedman JE. Developmental programming of pediatric nonalcoholic fatty liver disease: redefining the"first hit". Clin Obstet Gynecol 2013; 56:577-90. [PMID: 23835912 PMCID: PMC3763993 DOI: 10.1097/grf.0b013e3182a09760] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The incidence of pediatric nonalcoholic fatty liver disease has increased dramatically, and growing evidence indicates that the pathophysiology may be unique from the adult form, suggesting a role for early-life events. Recent radiologic techniques have now demonstrated that maternal obesity contributes to hepatic fat storage in newborn infants. In this review, we will explore how maternal obesity and a hyperlipidemic environment can initiate liver histopathogenesis in utero, including steatosis, mitochondrial dysfunction, oxidative stress, and inflammatory priming. Thus, early exposure to excess lipids may represent the "first hit" for the fetal liver, placing it on a trajectory toward future metabolic disease.
Collapse
Affiliation(s)
- Michael S Stewart
- Department of Pediatrics, Division of Neonatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | |
Collapse
|
47
|
Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B. Drug-Induced Inhibition of Mitochondrial Fatty Acid Oxidation and Steatosis. CURRENT PATHOBIOLOGY REPORTS 2013. [DOI: 10.1007/s40139-013-0022-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Shukla SD, Pruett SB, Szabo G, Arteel GE. Binge ethanol and liver: new molecular developments. Alcohol Clin Exp Res 2013; 37:550-7. [PMID: 23347137 DOI: 10.1111/acer.12011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/10/2012] [Indexed: 02/06/2023]
Abstract
Binge consumption of alcohol is an alarming global health problem. Binge (acute) ethanol (EtOH) is implicated in the pathophysiology of alcoholic liver disease (ALD). New studies from experimental animals and from humans indicate that binge EtOH has profound effects on immunological, signaling, and epigenetic parameters of the liver. This is in addition to the known metabolic effects of acute EtOH. Binge EtOH alters the levels of several cellular components and dramatically amplifies liver injury in chronically EtOH exposed liver. These studies highlight the importance of molecular investigations into binge effects of EtOH for a better understanding of ALD and also to develop therapeutic strategies to control it. This review summarizes these recent developments.
Collapse
Affiliation(s)
- Shivendra D Shukla
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65202, USA.
| | | | | | | |
Collapse
|
49
|
Dey A. Cytochrome P450 2E1: its clinical aspects and a brief perspective on the current research scenario. Subcell Biochem 2013; 67:1-104. [PMID: 23400917 DOI: 10.1007/978-94-007-5881-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Research on Cytochrome P450 2E1 (CYP2E1), a key enzyme in alcohol metabolism has been very well documented in literature. Besides the involvement of CYP2E1 in alcohol metabolism as illustrated through the studies discussed in the chapter, recent studies have thrown light on several other aspects of CYP2E1 i.e. its extrahepatic expression, its involvement in several diseases and pathophysiological conditions; and CYP2E1 mediated carcinogenesis and modulation of drug efficacy. Studies involving these interesting facets of CYP2E1 have been discussed in the chapter focusing on the recent observations or ongoing studies illustrating the crucial role of CYP2E1 in disease development and drug metabolism.
Collapse
Affiliation(s)
- Aparajita Dey
- AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai, Tamil Nadu, 600044, India,
| |
Collapse
|
50
|
Park JH, Kim SJ, Hwang I, Bae KC, Bae JH, Song DK. Green Tea Extract Co-administered with a Polymer Effectively Prevents Alcoholic Liver Damage by Prolonged Inhibition of Alcohol Absorption in Mice. Alcohol Alcohol 2012; 48:59-67. [DOI: 10.1093/alcalc/ags118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|