1
|
Chen YYM, Chien KY, Shieh HR, Luo CJ, Chang YX, Chiang-Ni C, Lai CH, Chiu CH. Impact of vancomycin and Clostridioides difficile on the secretome and pathogenicity of Clostridium innocuum. Med Microbiol Immunol 2025; 214:21. [PMID: 40338351 DOI: 10.1007/s00430-025-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
Clostridium innocuum, a member of the human gut microbiome with intrinsic resistance to vancomycin, has been increasingly associated with inflammatory bowel diseases (IBD). Clinical observations indicate that co-infection with Clostridioides difficile and C. innocuum could lead to poorer clinical remission in ulcerative colitis; however, the pathogenic mechanism of C. innocuum remains unclear. Here, we investigated the effects of vancomycin and C. difficile on C. innocuum secretomes and the functions of the modified secretomes on C. innocuum pathogenicity. The results indicated that, compared to co-culturing with C. difficile, vancomycin was more effective in stimulating the secretion of proteins without a signal peptide, whereas C. difficile was better at promoting the secretion of classical secretory proteins. Based on these results, we further analyzed the effects of three abundant classical secretory proteins on C. innocuum virulence utilizing recombinant proteins. The results demonstrated that the NlpC/P60-containing protein (NlpC/P60) can enhance C. innocuum biofilm formation and adherence to HT-29 cells. Additionally, NlpC/P60, D-Ala-D-Ala carboxypeptidase, and a polysaccharide deacetylase were able to stimulate IL-8 production of HT-29 cells and TNF-α production of Raw264.7 macrophages. Additionally, recombinant NlpC/P60 and polysaccharide deacetylase exhibited cytotoxicity on Raw264.7 cells at 48 h. As the production of IL-8 and TNF-α is closely associated with IBD development, it is suggested that C. innocuum secretomes, under the influence of vancomycin or C. difficile, could contribute to IBD progression by enhancing inflammation and host-pathogen interactions.
Collapse
Affiliation(s)
- Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular and Medical Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Clinical Proteomics Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hui-Ru Shieh
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cai-Jie Luo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Xun Chang
- Molecular and Medical Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
2
|
Yang YJ, Jeon SR. Metabolic musculoskeletal disorders in patients with inflammatory bowel disease. Korean J Intern Med 2025; 40:181-195. [PMID: 40102707 PMCID: PMC11938716 DOI: 10.3904/kjim.2024.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 03/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a chronic inflammatory disorder that affects not only the gastrointestinal tract but also extraintestinal organs, leading to various extraintestinal manifestations and complications. Among these, musculoskeletal disorders such as osteoporosis, sarcopenia, and axial and peripheral spondyloarthritis are the most commonly observed. These conditions arise from complex mechanisms, including chronic inflammation, malnutrition, gut dysbiosis, and glucocorticoid use, all of which contribute to reduced bone density, muscle loss, and joint inflammation. Osteoporosis and sarcopenia may co-occur as osteosarcopenia, a condition that heightens the risk of fractures, impairs physical performance, and diminishes quality of life, particularly in elderly patients with IBD. Holistic management strategies, including lifestyle modifications, calcium, and vitamin D supplementation, resistance training, and pharmacological interventions, are essential for mitigating the impact of these conditions. Spondyloarthritis, which affects both axial and peripheral joints, further complicates disease management and significantly compromises joint health. Timely diagnosis and appropriate medical interventions, such as administration of nonsteroidal anti-inflammatory drugs and biologics, are critical for preventing chronic joint damage and disability. Moreover, a multidisciplinary approach that addresses both metabolic and inflammatory aspects is essential for optimizing physical function and improving treatment outcomes in patients who have IBD with musculoskeletal involvement.
Collapse
Affiliation(s)
- Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon,
Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon,
Korea
| | - Seong Ran Jeon
- Digestive Disease Center, Institute for Digestive Research, Soonchunhyang University College of Medicine, Seoul,
Korea
| |
Collapse
|
3
|
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, Duttaroy AK, Jena AB. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother 2024; 178:117177. [PMID: 39053423 DOI: 10.1016/j.biopha.2024.117177] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cytokines regulate immune responses essential for maintaining immune homeostasis, as deregulated cytokine signaling can lead to detrimental outcomes, including inflammatory disorders. The antioxidants emerge as promising therapeutic agents because they mitigate oxidative stress and modulate inflammatory pathways. Antioxidants can potentially ameliorate inflammation-related disorders by counteracting excessive cytokine-mediated inflammatory responses. A comprehensive understanding of cytokine-mediated inflammatory pathways and the interplay with antioxidants is paramount for developing natural therapeutic agents targeting inflammation-related disorders and helping to improve clinical outcomes and enhance the quality of life for patients. Among these antioxidants, curcumin, vitamin C, vitamin D, propolis, allicin, and cinnamaldehyde have garnered attention for their anti-inflammatory properties and potential therapeutic benefits. This review highlights the interrelationship between cytokines-mediated disorders in various diseases and therapeutic approaches involving antioxidants.
Collapse
Affiliation(s)
- Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | | | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Umesh Chandra Dash
- Environmental Biotechnology Laboratory, KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Rakesh Ranjan Ojha
- Department of Bioinformatics, BJB (A) College, Bhubaneswar, Odisha-751014, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
4
|
Yu F, Wang X, Ren H, Chang J, Guo J, He Z, Shi R, Hu X, Jin Y, Lu S, Li Y, Liu Z, Hu P. Lactobacillus paracasei Jlus66 relieves DSS-induced ulcerative colitis in a murine model by maintaining intestinal barrier integrity, inhibiting inflammation, and improving intestinal microbiota structure. Eur J Nutr 2024; 63:2185-2197. [PMID: 38733401 DOI: 10.1007/s00394-024-03419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE Ulcerative colitis (UC) is a serious health problem with increasing morbidity and prevalence worldwide. The pathogenesis of UC is complex, currently believed to be influenced by genetic factors, dysregulation of the host immune system, imbalance in the intestinal microbiota, and environmental factors. Currently, UC is typically managed using aminosalicylates, immunosuppressants, and biologics as adjunctive therapies, with the risk of relapse and development of drug resistance upon discontinuation. Therefore, further research into the pathogenesis of UC and exploration of potential treatment strategies are necessary to improve the quality of life for affected patients. According to previous studies, Lactobacillus paracasei Jlus66 (Jlus66) reduced inflammation and may help prevent or treat UC. METHODS We used dextran sulfate sodium (DSS) to induce a mouse model of UC to assess the effect of Jlus66 on the progression of colitis. During the experiment, we monitored mouse body weight, food and water consumption, as well as rectal bleeding. Hematoxylin-eosin staining was performed to assess intestinal pathological damage. Protein imprinting and immunohistochemical methods were used to evaluate the protein levels of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and tight junction (TJ) proteins in intestinal tissues. Fecal microbiota was analyzed based on partial 16S rRNA gene sequencing. RESULTS Jlus66 supplementation reduced the degree of colon tissue damage, such as colon shortening, fecal occult blood, colon epithelial damage, and weight loss. Supplementation with Jlus66 reduced DSS-induced upregulation of cytokine levels such as TNF-α, IL-1β, and IL-6 (p < 0.05). The NF-κB pathway and MAPK pathway were inhibited, and the expression of TJ proteins (ZO-1, Occludin, and Claudin-3) was upregulated. 16S rRNA sequencing of mouse cecal contents showed that Jlus66 effectively regulated the structure of the intestinal biota. CONCLUSION In conclusion, these data indicate that Jlus66 can alter the intestinal biota and slow the progression of UC, providing new insights into potential therapeutic strategies for UC.
Collapse
Affiliation(s)
- Fazheng Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiang Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jian Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhaoqi He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruoran Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xueyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuanyuan Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shiying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
5
|
Xu J, Peng WR, Zhang D, Sun HX, Li L, Sun F, Gu ZC, Lin HW. Marine sponge-derived alkaloid ameliorates DSS-induced IBD via inhibiting IL-6 expression through modulating JAK2-STAT3-SOCS3 pathway. Int Immunopharmacol 2024; 129:111576. [PMID: 38350353 DOI: 10.1016/j.intimp.2024.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 02/15/2024]
Abstract
Cyanogramide (AC14), a novel alkaloid, isolated from the fermentation broth of the marine-derived Actinoalloteichus cyanogriseus. However, the exact role of AC14 in inflammatory bowel disease (IBD) is poorly understood. Our results demonstrated that AC14 exhibited significant inhibition of IL-6 release in THP-1 cells and a "Caco-2/THP-1" coculture system after stimulation with LPS for 24 h. However, no significant effect on TNF-α production was observed. Furthermore, in 2.5 % DSS-induced colitis mice, AC14 treatment led to improvement in body weight, colon length, and intestine mucosal barrier integrity. AC14 also suppressed serum IL-6 production and modulated dysregulated microbiota in the mice. Mechanistically, AC14 was found to inhibit the phosphorylation of Janus kinase (JAK) 2 and signal transducers and activators of transcription (STAT) 3, while simultaneously elevating the expression of suppressor of cytokine signaling (SOCS) 3, both in vivo and in vitro. These findings suggest that AC14 exerts its suppressive effects on IL-6 production in DSS-induced IBD mice through the JAK2-STAT3-SOCS3 signaling pathway. Our study highlights the potential of AC14 as a therapeutic agent for the treatment of IBD.
Collapse
Affiliation(s)
- Jing Xu
- School of Medicine, Tongji University, Shanghai 200092, People's Republic of China; Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wen-Rui Peng
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Die Zhang
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Hong-Xin Sun
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Lei Li
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Fan Sun
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Zhi-Chun Gu
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Hou-Wen Lin
- School of Medicine, Tongji University, Shanghai 200092, People's Republic of China; Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
6
|
Yang Y, Deng Y, Zhang G, Xu X, Xiong X, Yu S, Peng F, Tian X, Ye W, Chen H, Yu B, Liu Z, He X, Huang Z. α-mangostin derivatives ameliorated mouse DSS-induced chronic colitis via regulating Th17/Treg balance. Mol Immunol 2024; 166:110-118. [PMID: 38280829 DOI: 10.1016/j.molimm.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 01/29/2024]
Abstract
Th17 cell, an important subpopulation of helper T cell, plays an important role in the development of inflammatory bowel disease (IBD) and is thought to be a potential target for the treatment of IBD. In our previous study, we demonstrated that α-mangostin could relieve lupus nephritis via inhibiting Th17 cell function. In our preliminary study, we obtained four derivatives by adding chemical modification of α-mangostin which could also inhibit Th17 cell differentiation in vitro. In this study, we constructed a chronic IBD mouse model and demonstrated the therapeutic effects of α-mangostin and its derivatives as therapeutic agents for IBD. In compounds treating groups, intestinal inflammation showed significant improvement in symptoms which included weight loss, high disease activity index, colon length shorten and the change of intestinal flora. We also found that compounds could effectively either suppress the number of Th17 cell or increase the number of Treg cell detected by flow cytometry, thus reducing the Th17/Treg ratio and suppressing the level of intestinal inflammation. Notably, IL17-F levels, rather than IL17-A, were reduced in the colon of mice of compounds treating groups. Thus, α-mangostin and its derivatives ameliorate DSS-induced chronic colitis in mice by regulating Th17/Treg balance to alleviate intestinal inflammation and can modulate the intestinal microbial community. These results suggest that α-mangostin and its derivatives may be the new therapeutic option for chronic colitis.
Collapse
Affiliation(s)
- Yuying Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Yuqing Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Guoqiang Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiaoting Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoxiao Xiong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Si Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Fanrong Peng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Weiying Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huanpeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China.
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
7
|
Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev 2022; 181:114101. [PMID: 34999122 DOI: 10.1016/j.addr.2021.114101] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the inflamed region of the intestinal tract. New protocols based on antibodies that target proinflammatory cytokines are clinically relevant. However, besides being expensive, their use is associated with a primary nonresponse or a loss of response following a long administration period. Accordingly, many researchers exploited the physiological changes of the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test their intrinsic anti-inflammatory and healing properties in IBD models. This critical review updates state of the art on advances in IBD treatment. Data on using polysaccharide nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed.
Collapse
Affiliation(s)
- Hicheme Hadji
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
8
|
Nardone OM, de Sire R, Petito V, Testa A, Villani G, Scaldaferri F, Castiglione F. Inflammatory Bowel Diseases and Sarcopenia: The Role of Inflammation and Gut Microbiota in the Development of Muscle Failure. Front Immunol 2021; 12:694217. [PMID: 34326845 PMCID: PMC8313891 DOI: 10.3389/fimmu.2021.694217] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia represents a major health burden in industrialized country by reducing substantially the quality of life. Indeed, it is characterized by a progressive and generalized loss of muscle mass and function, leading to an increased risk of adverse outcomes and hospitalizations. Several factors are involved in the pathogenesis of sarcopenia, such as aging, inflammation, mitochondrial dysfunction, and insulin resistance. Recently, it has been reported that more than one third of inflammatory bowel disease (IBD) patients suffered from sarcopenia. Notably, the role of gut microbiota (GM) in developing muscle failure in IBD patient is a matter of increasing interest. It has been hypothesized that gut dysbiosis, that typically characterizes IBD, might alter the immune response and host metabolism, promoting a low-grade inflammation status able to up-regulate several molecular pathways related to sarcopenia. Therefore, we aim to describe the basis of IBD-related sarcopenia and provide the rationale for new potential therapeutic targets that may regulate the gut-muscle axis in IBD patients.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Roberto de Sire
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Valentina Petito
- Department of Medicine and Translational Surgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, University Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Testa
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Guido Villani
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Franco Scaldaferri
- Department of Medicine and Translational Surgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, University Cattolica del Sacro Cuore, Rome, Italy
| | - Fabiana Castiglione
- Gastroenterology, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| |
Collapse
|
9
|
Kim W, Jang JH, Zhong X, Seo H, Surh YJ. 15-Deoxy-△ 12,14-Prostaglandin J 2 Promotes Resolution of Experimentally Induced Colitis. Front Immunol 2021; 12:615803. [PMID: 33633749 PMCID: PMC7901909 DOI: 10.3389/fimmu.2021.615803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Uncontrolled macrophage functions cause failure to resolve gut inflammation and has been implicated in the pathogenesis of inflammatory bowel disease (IBD). 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of endogenous lipid mediators formed from arachidonic acid during the inflammatory process, has been reported to terminate inflammation. However, the pro-resolving effect of 15d-PGJ2 on intestinal inflammation and underlying molecular mechanisms remain largely unknown. In the present study, we examined the effects of 15d-PGJ2 on the resolution of dextran sulfate sodium (DSS)-induced murine colitis that mimics human IBD. Pharmacologic inhibition of prostaglandin D synthase (PGDS) responsible for the synthesis of 15d-PGJ2 hampered resolution of inflammation in the colonic mucosa of mice treated with DSS. Notably, intraperitoneal injection of 15d-PGJ2 accelerated the resolution of experimentally induced colitis. 15d-PGJ2 treatment reduced the number of neutrophils and M1 macrophages, while it increased the proportion of M2 macrophages. Moreover, 15d-PGJ2 treated mice exhibited the significantly reduced proportion of macrophages expressing the pro-inflammatory cytokine, IL-6 with concomitant suppression of STAT3 phosphorylation in the colonic mucosa of mice administered 2.5% DSS in drinking water. Taken together, these findings clearly indicate that 15d-PGJ2, endogenously generated from arachidonic acid by cyclooxygenase-2 and PGDS activities in inflamed tissue, promotes resolution of intestinal colitis.
Collapse
Affiliation(s)
- Wonki Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jeong-Hoon Jang
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Xiancai Zhong
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyungseok Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Shi J, Xie Q, Yue Y, Chen Q, Zhao L, Evivie SE, Li B, Huo G. Gut microbiota modulation and anti-inflammatory properties of mixed lactobacilli in dextran sodium sulfate-induced colitis in mice. Food Funct 2021; 12:5130-5143. [PMID: 33973599 DOI: 10.1039/d1fo00317h] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Correlations between gut microbiota activities and inflammatory bowel disease (IBD) treatment are gaining research interest. In our previous study, Lactobacillus acidophilus KLDS 1.0901, Lactobacillus helveticus KLDS 1.8701, and Lactobacillus plantarum KLDS 1.0318 showed antibacterial, antioxidant, and immunomodulatory activities. In the current study, we evaluated the effects of three tested strains and their mixture on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. The three tested strains and their mixture significantly decreased the disease activity index (DAI), colon shortening, and myeloperoxidase (MPO) activity. Additionally, the three tested strains and their mixture improved the histological damage, increased the colonic mucous layer integrity, and exhibited lower levels of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), while up-regulating colonic anti-inflammatory cytokine IL-10 levels, tight junction proteins (E-cadherin, zonulae occludens (ZO)-1, occludin and claudin-1) and mucin (MUC1 and MUC2) mRNA expressions to some extent. In addition, mixed lactobacilli showed better anti-inflammatory effects than single-strain treatment. Our study further revealed that mixed lactobacilli increased bacterial diversity and improved gut microbiota composition, increasing short-chain fatty acid (SCFA) production. These results indicated that mixed lactobacilli supplementation could attenuate DSS-induced colitis by modulating the gut microbiota and repairing the intestinal barrier, which provided a scientific basis for its clinical application in the future.
Collapse
Affiliation(s)
- Jialu Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. and Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., LTD, Qiqihaer 164800, China
| | - Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. and Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. and Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Lina Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. and Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Smith Etareric Evivie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. and Food College, Northeast Agricultural University, Harbin 150030, China. and Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria and Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. and Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. and Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Marafini I, Sedda S, Dinallo V, Monteleone G. Inflammatory cytokines: from discoveries to therapies in IBD. Expert Opin Biol Ther 2019; 19:1207-1217. [PMID: 31373244 DOI: 10.1080/14712598.2019.1652267] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Although the etiology of inflammatory bowel diseases (IBD) remains unknown, accumulating evidence suggests that the intestinal tissue damage in these disorders is due to a dynamic interplay between immune cells and non-immune cells, which is mediated by cytokines produced within the inflammatory microenvironment. Areas covered: We review the available data about the role of inflammatory cytokines in IBD pathophysiology and provide an overview of the therapeutic options to block the function of such molecules. Expert opinion: Genome studies, in vitro experiments with patients' samples and animal models of colitis, have largely advanced our understanding of how cytokines modulate the ongoing mucosal inflammation in IBD. However, not all the cytokines produced within the damaged gut seem to play a major role in the amplification and perpetuation of the IBD-associated inflammatory cascade. Indeed, while some of the anti-cytokine compounds are effective in some subgroups of IBD patients, others have no benefit. In this complex scenario, a major unmet need is the identification of biomarkers that can predict response to therapy and facilitate a personalized therapeutic approach, which maximizes the benefits and limits the adverse events.
Collapse
Affiliation(s)
- Irene Marafini
- Department of Systems Medicine, Gastroenterology, University of Rome "Tor Vergata" , Rome , Italy
| | - Silvia Sedda
- Department of Systems Medicine, Gastroenterology, University of Rome "Tor Vergata" , Rome , Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, Gastroenterology, University of Rome "Tor Vergata" , Rome , Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, Gastroenterology, University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
12
|
Seo SH, Park SE, Kim EJ, Youn D, Lee YM, Lee SY, Bok SH, Park DH, Seo CS, Byun SH, Jun KY, Kim DS, Na CS, Son HS. GC/MS-Based Metabolomics Approach to Evaluate the Effect of Jackyakgamcho-Tang on Acute Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4572764. [PMID: 30800169 PMCID: PMC6360583 DOI: 10.1155/2019/4572764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 12/30/2022]
Abstract
The objective of this study was to examine the effects of Jackyakgamcho-tang (JGT) on acute colitis. GC/MS-based metabolomics and NGS-based metagenomics were applied to investigate the alteration of metabolites and microbiota in an acute colitis model. The severity of acute colitis symptoms was alleviated by JGT treatment. Induction of colitis and JGT treatment changed compositions of gut microbiota and inflammatory cytokine levels (TNF-α and IL-6). They also substantially change metabolites (i.e., lactic acid, linoleic acid, monostearin, and palmitoylglycerol). In addition, some clear correlations were observed among metabolites, cytokine, and microbiota. This study highlights the applicability of metabolomics and metagenomics study for evaluating anti-inflammatory effects of a new functional herbal medicine as a therapeutic agent for acute colitis.
Collapse
Affiliation(s)
- Seung-Ho Seo
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Seong-Eun Park
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Eun-Ju Kim
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Daehwan Youn
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Yu-Mi Lee
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Soon-Young Lee
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - So-Hyeon Bok
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Dae-Hun Park
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sung-Hoon Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Ki Young Jun
- Hanpoong Pharm. Co., Ltd., Wanju 55316, Republic of Korea
| | - Dae Sung Kim
- Hanpoong Pharm. Co., Ltd., Wanju 55316, Republic of Korea
| | - Chang-Su Na
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Hong-Seok Son
- School of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| |
Collapse
|
13
|
Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodium-induced colitis in mice. PLoS One 2018; 13:e0205252. [PMID: 30289911 PMCID: PMC6173412 DOI: 10.1371/journal.pone.0205252] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/23/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a known medical burden in most developed countries and a significant cause of morbidity. The IBD label includes Crohn's disease (CD) and ulcerative colitis (UC). Pharmacological and surgical intervention are the two main management approaches for IBD. Some drugs have been developed for IBD therapy, but accessibility is limited due to high costs. Furthermore, these agents have demonstrated inactivity over long-term treatment courses. Therefore, an urgent need is present for new treatment options that are safe, able to sustain clinical remission, and improve mucosal gut healing. Seaweed has received much attention in the pharmacological field owing to its various biomedical properties, including the prolongation of blood clotting time, as well as antitumor, anti-inflammation, and antioxidant effects. This study therefore aimed to examine the effects of a dietary polysaccharide-rich extract obtained from Eucheuma cottonii (EC) on a model of colitis. Colitis was induced in male BALB/c mice by the administration of 2.5% (w/v) dextran sulfate sodium (DSS) for 7 days. DSS-induced mice were treated with either one of three different doses of EC extracts (0.35, 0.70, and 1.75 g/kg body weight) or curcumin as a positive control (0.10 g/kg). Mice were sacrificed post-treatment and blood samples were collected. The disease activity index (DAI) and inflammatory cytokine levels (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10) were measured. After treatment for 7 days, EC extract administration protected against weight loss and decreased the colon weight per length ratio. EC extract administration also decreased pro-inflammatory cytokine expression, increased IL-10 levels, and reduced colonic damage. Therefore, a dietary polysaccharide-rich extract from E. cottonii reduced DSS-induced bowel inflammation, thereby becoming a promising candidate for the treatment of colitis.
Collapse
|
14
|
Bevivino G, Monteleone G. Advances in understanding the role of cytokines in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2018; 12:907-915. [PMID: 30024302 DOI: 10.1080/17474124.2018.1503053] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines represent the key pathophysiologic elements that govern the initiation, progression, and, in some circumstances, the resolution of the inflammation occurring in inflammatory bowel disease (IBD). Areas covered: In this review, we will focus on the main effector and anti-inflammatory cytokines produced in IBD and discuss the results of recent trials in which cytokine-based therapy has been used for treating IBD patients. Expert commentary: The possibility to sample mucosal biopsies from IBD patients and analyze which molecular pathways are prominent during the active phases of the disease and the easy access to various models of experimental colitis has largely advanced our understanding about the role of cytokines in IBD. These progresses have facilitated the development of several therapeutic compounds, which either target inflammatory cytokines or enhance the regulatory function of immunosuppressive cytokines. While some of such drugs are effective in the induction and maintenance of remission of the disease, other compounds are not useful for attenuating the ongoing mucosal inflammation, thus establishing a hierarchical scale of the relevance of cytokines in IBD. Further work is needed to identify biomarkers, which could help personalize cytokine-targeted therapy and minimize potential side effects.
Collapse
Affiliation(s)
- Gerolamo Bevivino
- a Department of Systems Medicine , University of Rome Tor Vergata , Italy
| | | |
Collapse
|
15
|
The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers (Basel) 2018; 10:cancers10030083. [PMID: 29558443 PMCID: PMC5876658 DOI: 10.3390/cancers10030083] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe is Helicobacter pylori and its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results.
Collapse
|
16
|
Matta B, Song S, Li D, Barnes BJ. Interferon regulatory factor signaling in autoimmune disease. Cytokine 2017; 98:15-26. [PMID: 28283223 DOI: 10.1016/j.cyto.2017.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Interferon regulatory factors (IRFs) play critical roles in pathogen-induced innate immune responses and the subsequent induction of adaptive immune response. Dysregulation of IRF signaling is therefore thought to contribute to autoimmune disease pathogenesis. Indeed, numerous murine in vivo studies have documented protection from or enhanced susceptibility to particular autoimmune diseases in Irf-deficient mice. What has been lacking, however, is replication of these in vivo observations in primary immune cells from patients with autoimmune disease. These types of studies are essential as the majority of in vivo data support a protective role for IRFs in Irf-deficient mice, yet IRFs are often found to be overexpressed in patient immune cells. A significant body of work is beginning to emerge from both of these areas of study - mouse and human.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
| | - Su Song
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
| | - Dan Li
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
| | - Betsy J Barnes
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY 11030, United States.
| |
Collapse
|
17
|
Zhang T, Cui B, Li P, He Z, Long C, Wei L, Peng Z, Ji G, Zhang F. Short-Term Surveillance of Cytokines and C-Reactive Protein Cannot Predict Efficacy of Fecal Microbiota Transplantation for Ulcerative Colitis. PLoS One 2016; 11:e0158227. [PMID: 27347881 PMCID: PMC4922664 DOI: 10.1371/journal.pone.0158227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE There were no reports on predicting long-term efficacy of fecal microbiota transplantation (FMT) for ulcerative colitis (UC). This study aimed to detect short-term changes of cytokines and C-reactive protein (CRP) in patients with UC undergoing FMT, and to evaluate the predictive value of CRP and cytokines for the long-term efficacy of FMT. METHODS Nineteen patients with moderate to severe UC (Mayo score ≥ 6) were treated with single fresh FMT through mid-gut. Serum samples were collected before and three days post-FMT. Clinical responses were evaluated by a minimum follow-up of three months. Patients with clinical improvement and remission at the assessment point of three-month were included as response group, while patients without clinical improvement or remission were included as non-response group. Serum concentrations of cytokines (IL-1β, IL-2, IL-4, IL-6, IL-10, IL-11, IL-17A, IFN-γ, TNF, TNFR-1, TNFR-2, MCP-1, G-CSF, GM-CSF) and CRP were assayed to predict the clinical response of FMT. RESULTS In total, 10.5% (2/19) of patients achieved clinical remission and 47.4% (9/19) achieved clinical improvement (Response group, including clinical remission and clinical improvement), 42.1% (8/19) failed to benefit from FMT (Non-response group). In both Response group and Non-response group, the level of CRP at three days after FMT didn't show significant decrease compared with that before FMT (p>0.05). However, in Response group, CRP level at three months after FMT decreased significantly than that before FMT (p<0.05). Compared with healthy controls (n = 9), patients with UC showed a higher baseline level of serum IL-6, TNFR-2 and G-CSF, and a lower level of IL-2 and IL-4 (p<0.05). In both Response group and Non-response group, none of the eleven detectable cytokines showed a significant difference between the value at three days after FMT and that before FMT (p>0.05). CONCLUSIONS Patients with moderate to severe UC presented a complex disorder of cytokines. However, the efficacy of FMT for UC might not be predicted by the short-term surveillance of cytokines and CRP.
Collapse
Affiliation(s)
- Ting Zhang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bota Cui
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Pan Li
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhi He
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chuyan Long
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lu Wei
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaoyuan Peng
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guozhong Ji
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
18
|
Angelica acutiloba Kitagawa Extract Attenuates DSS-Induced Murine Colitis. Mediators Inflamm 2016; 2016:9275083. [PMID: 27293323 PMCID: PMC4886075 DOI: 10.1155/2016/9275083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/27/2016] [Indexed: 12/13/2022] Open
Abstract
We examined the protective effects of Angelica acutiloba Kitagawa (AAK) extract on a murine model of acute experimental colitis. Colitis was induced by 4% dextran sulfate sodium (DSS) in the drinking water of male C57BL/6 mice, for 7 consecutive days. Oral administration of AAK extract (500 mg/kg/day) significantly alleviated DSS-induced symptoms such as anorexia, weight loss, events of diarrhea or bloody stools, and colon shortening. Histological damage was also ameliorated, as evidenced by the architectural preservation and suppression of inflammatory cell infiltration in colonic samples. Treatment improved the colonic mRNA expression of different inflammatory markers: cytokines, inducible enzymes, matrix metalloproteinases, and tight junction-related proteins. In the isolated serum, IgE levels were downregulated. Collectively, these findings indicate the therapeutic potentials of AAK as an effective complementary or alternative modality for the treatment of ulcerative colitis.
Collapse
|
19
|
Sato S, Chiba T, Nakamura S, Matsumoto T. Changes in cytokine profile may predict therapeutic efficacy of infliximab in patients with ulcerative colitis. J Gastroenterol Hepatol 2015; 30:1467-1472. [PMID: 25968585 DOI: 10.1111/jgh.13008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Infliximab is an established therapy for ulcerative colitis (UC). The aim of this study was to examine various serum cytokine levels and to identify possible markers predictive of therapeutic efficacy of infliximab for UC patients. METHODS Twenty-one patients with moderately active UC were given intravenous infliximab (5 mg/kg) at 0, 2, and 6 weeks as induction therapy. The serum levels of 17 cytokines were determined using a Bio-Plex suspension array system before and 8 weeks after induction therapy. Partial Mayo score (PMS) and serum C-reactive protein levels were used for the determination of clinical activities at 0 and 8 weeks after the treatment. The overall therapeutic effect was determined at 26 weeks according to the PMS. RESULTS The median value of the PMS decreased significantly 8 weeks after the treatment (from 6 to 1.5, P < 0.05). However, C-reactive protein levels did not change significantly. Levels of serum interleukin (IL)-8 (P < 0.05) and macrophage inflammatory protein-1β (P < 0.005) significantly decreased 8 weeks after the induction. Serum levels of the other 15 cytokines did not change significantly. At 26 weeks, 13 of 20 patients (65%) were responders while 7 patients were non-responders. Levels of serum IL-6 at 8 weeks were significantly lower in responders than in non-responders (P < 0.05). CONCLUSIONS Serum IL-8 and macrophage inflammatory protein-1β seem to be sensitive markers for UC patients treated with infliximab, while IL-6 at 8 weeks after induction therapy may be predictive of subsequent response to infliximab.
Collapse
Affiliation(s)
- Shoko Sato
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Toshimi Chiba
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Shotaro Nakamura
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
20
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015; 89:541-554. [PMID: 25632846 DOI: 10.1007/s00204-015-1461-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
Abstract
Since its discovery in 1986, originally as B cell stimulating factor 2, the knowledge on IL-6 for immune homeostasis and its pathophysiological implications has rapidly increased. It is now clear that IL-6, alone or in combination with other cytokines, is an architect for shaping and generating immune responses which exerts profound activities on the induction of acute-phase reactions, the differentiation of B lymphocytes, the modulation of T cell apoptosis, the activation of T helper cells and the balance between regulatory T cells and Th17 cells. In parallel to the identification of these physiologic functions, IL-6 has emerged as a critical mediator for perpetuating chronic inflammation and autoimmunity and is increasingly recognized as a key cytokine for linking chronic inflammation to cancer development. In this review, we begin by briefly summarizing the molecular events of IL-6 regulation and signaling and then describe the role of IL-6 in orchestrating innate and adaptive immune responses and its immunopathological relevance for chronic inflammatory diseases. We further outline how IL-6 links chronic inflammation and cancer development and finally provide an outlook on novel therapeutic strategies targeting IL-6 signaling for the treatment of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Timo Rath
- Division of Gastroenterology, Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany,
| | | | | | | | | |
Collapse
|
21
|
Abstract
Inflammatory bowel diseases (IBDs) are debilitating conditions that result in intestinal damage due to chronic inflammation. In addition, the perpetual state of inflammation predisposes individuals to the development of colitis-associated cancer. Because of the immense immune cell infiltration into colon, cytokines produced by immune cells are major players in the initiation and progression of IBD and colitis-associated cancer. In this review, we will explore the functions of many key cytokines and their roles in IBD and colitis-associated cancer, as well as their influences on the immune system and stromal cells. Finally, we will briefly discuss current therapies and current clinical trials targeting cytokines in IBD.
Collapse
|
22
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 3010=3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 waitfor delay '0:0:5'-- ismb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and (select 9484 from(select count(*),concat(0x716b627871,(select (elt(9484=9484,1))),0x716a787671,floor(rand(0)*2))x from information_schema.plugins group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
25
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 order by 1-- kwdt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
|
27
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 waitfor delay '0:0:5'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
28
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 order by 1-- esve] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
29
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 3010=3010-- kvwx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 5674=dbms_pipe.receive_message(chr(81)||chr(112)||chr(90)||chr(102),5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
31
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 5342=6023-- hngu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
32
|
|
33
|
|
34
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and (select 9484 from(select count(*),concat(0x716b627871,(select (elt(9484=9484,1))),0x716a787671,floor(rand(0)*2))x from information_schema.plugins group by x)a)-- fdyr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
|
36
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 4572=(select 4572 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
37
|
|
38
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 4572=(select 4572 from pg_sleep(5))-- rtfx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
|
40
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and (select 2510 from (select(sleep(5)))zdoz)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
41
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 9226=2538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and 5674=dbms_pipe.receive_message(chr(81)||chr(112)||chr(90)||chr(102),5)-- zgjk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
43
|
Rath T, Billmeier U, Waldner MJ, Atreya R, Neurath MF. From physiology to disease and targeted therapy: interleukin-6 in inflammation and inflammation-associated carcinogenesis. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1461-5 and (select 2510 from (select(sleep(5)))zdoz)-- paid] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Abstract
Cytokines have a crucial role in the pathogenesis of inflammatory bowel diseases (IBDs), such as Crohn's disease and ulcerative colitis, where they control multiple aspects of the inflammatory response. In particular, the imbalance between pro-inflammatory and anti-inflammatory cytokines that occurs in IBD impedes the resolution of inflammation and instead leads to disease perpetuation and tissue destruction. Recent studies suggest the existence of a network of regulatory cytokines that has important implications for disease progression. In this Review, we discuss the role of cytokines produced by innate and adaptive immune cells, as well as their relevance to the future therapy of IBD.
Collapse
Affiliation(s)
- Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nürnberg, Kussmaul Campus for Medical Research, 91054 Erlangen, Germany
| |
Collapse
|
45
|
Mudter J, Yu J, Zufferey C, Brüstle A, Wirtz S, Weigmann B, Hoffman A, Schenk M, Galle PR, Lehr HA, Mueller C, Lohoff M, Neurath MF. IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo. Inflamm Bowel Dis 2011; 17:1343-58. [PMID: 21305677 DOI: 10.1002/ibd.21476] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/02/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND The transcription factor IRF4 is involved in several T-cell-dependent chronic inflammatory diseases. To elucidate the mechanisms for pathological cytokine production in colitis, we addressed the role of the IRF transcription factors in human inflammatory bowel disease (IBD) and experimental colitis. METHODS IRF levels and cytokine production in IBD patients were studied as well as the effects of IRF4 deficiency in experimental colitis. RESULTS In contrast to IRF1, IRF5, and IRF8, IRF4 expression in IBD was augmented in the presence of active inflammation. Furthermore, IRF4 levels significantly correlated with IL-6 and IL-17 mRNA expression and to a lesser extent with IL-22 mRNA expression in IBD. To further explore the role of IRF4 under in vivo conditions, we studied IRF4-deficient and wildtype mice in experimental colitis. In contrast to DSS colitis, IRF4 deficiency was protective in T-cell-dependent transfer colitis associated with reduced RORα/γt levels and impaired IL-6, IL-17a, and IL-22 production, suggesting that IRF4 acts as a master regulator of mucosal Th17 cell differentiation. Subsequent mechanistic studies using database analysis, chromatin immunoprecipitation, and electrophoretic mobility shift assays identified a novel IRF4 binding site in the IL-17 gene promoter. Overexpression of IRF4 using retroviral infection induced IL-17 production and IL-17 together with IL-6 induced RORγt expression. CONCLUSIONS IRF4 can directly bind to the IL-17 promotor and induces mucosal RORγt levels and IL-17 gene expression thereby controlling Th17-dependent colitis. Targeting of this molecular mechanism may lead to novel therapeutic approaches in human IBD.
Collapse
Affiliation(s)
- Jonas Mudter
- 1st Medical Clinic, University of Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Neurath MF, Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev 2011; 22:83-9. [PMID: 21377916 DOI: 10.1016/j.cytogfr.2011.02.003] [Citation(s) in RCA: 439] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IL-6 activates various cell types carrying the membrane bound IL-6R (classical IL-6 signaling) as well as IL-6R(-) gp130(+) cells via the soluble IL-6R (IL-6 trans-signaling). IL-6 signaling plays a pivotal role in controlling the differentiation and activation of T lymphocytes by inducing the Jak/STAT-3 and the Ras/Erk/C/EBP pathways. In particular, IL-6 modulates the resistance of T cells against apoptosis, induces activation of T helper cells and controls the balance between regulatory T cells and Th17 cells. Importantly, recent findings suggest that blockade of IL-6 signaling is effective in treating experimental models of autoimmune and chronic inflammatory diseases such as inflammatory bowel diseases, diabetes, multiple sclerosis, asthma and rheumatoid arthritis as well as models of inflammation-associated cancer. Thus, anti-IL-6/anti-IL-6R strategies emerge as promising novel approaches for therapy of inflammatory diseases in humans. In this review article, we discuss the latest findings on the role of IL-6 in experimental models of autoimmunity and cancer, as well as clinical perspectives.
Collapse
|
47
|
Novel mouse model of colitis characterized by hapten-protein visualization. Biotechniques 2011; 49:641-8. [PMID: 20854265 DOI: 10.2144/000113496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Trinitrobenzene sulfonic acid (TNBS) and oxazolone are used to induce colitis for the investigation of inflammatory reactions in the colon. Although these chemicals are presumed to bind proteins in the colonic mucosa and then induce colitis as haptens, hapten-protein formation has not yet been confirmed in the colonic mucosa. We developed a mouse model of colitis characterized by hapten-protein visualization, using 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl), which emits fluorescence after binding to proteins. The enema of 1 mg/mL NBD-Cl induced severe diarrhea, rectal bleeding, and body weight reductions in BALB/c mice. Mucosal signs indicative of colitis, such as redness and swelling observed under stereomicroscopy or inflammatory cell infiltration and crypt-epithelium destruction under microscopy, were manifested around NBD-proteins visualized with fluorescence. Fluorescence microscopy showed the infiltration of F4/80+ cells around areas of NBD-proteins, and flow cytometry indicated the uptake of NBD-proteins by CD11b+ cells. We also found critical roles for T cells and interleukin-6 in colitis induction with NBD-proteins. NBD-Cl-induced colitis presents a unique model to study the relevance between hapten-protein formation and inflammatory reactions and offers a method to assess experimental interventions on colitis induction in the mucosa, where hapten-protein formation is confirmed.
Collapse
|
48
|
Takahashi I, Fujihashi K, Kiyono H. Mucosal regulatory cells in the gastrointestinal tract and periodontium. Periodontol 2000 2010; 54:247-56. [PMID: 20712644 DOI: 10.1111/j.1600-0757.2009.00335.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Mudter J, Amoussina L, Schenk M, Yu J, Brüstle A, Weigmann B, Atreya R, Wirtz S, Becker C, Hoffman A, Atreya I, Biesterfeld S, Galle PR, Lehr HA, Rose-John S, Mueller C, Lohoff M, Neurath MF. The transcription factor IFN regulatory factor-4 controls experimental colitis in mice via T cell-derived IL-6. J Clin Invest 2008; 118:2415-26. [PMID: 18535667 DOI: 10.1172/jci33227] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 04/30/2008] [Indexed: 12/23/2022] Open
Abstract
The proinflammatory cytokine IL-6 seems to have an important role in the intestinal inflammation that characterizes inflammatory bowel diseases (IBDs) such as Crohn disease and ulcerative colitis. However, little is known about the molecular mechanisms regulating IL-6 production in IBD. Here, we assessed the role of the transcriptional regulator IFN regulatory factor-4 (IRF4) in this process. Patients with either Crohn disease or ulcerative colitis exhibited increased IRF4 expression in lamina propria CD3+ T cells as compared with control patients. Consistent with IRF4 having a regulatory function in T cells, in a mouse model of IBD whereby colitis is induced in RAG-deficient mice by transplantation with CD4+CD45RB(hi) T cells, adoptive transfer of wild-type but not IRF4-deficient T cells resulted in severe colitis. Furthermore, IRF4-deficient mice were protected from T cell-dependent chronic intestinal inflammation in trinitrobenzene sulfonic acid- and oxazolone-induced colitis. In addition, IRF4-deficient mice with induced colitis had reduced mucosal IL-6 production, and IRF4 was required for IL-6 production by mucosal CD90+ T cells, which it protected from apoptosis. Finally, the protective effect of IRF4 deficiency could be abrogated by systemic administration of either recombinant IL-6 or a combination of soluble IL-6 receptor (sIL-6R) plus IL-6 (hyper-IL-6). Taken together, our data identify IRF4 as a key regulator of mucosal IL-6 production in T cell-dependent experimental colitis and suggest that IRF4 might provide a therapeutic target for IBDs.
Collapse
Affiliation(s)
- Jonas Mudter
- 1st Medical Clinic, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Weigmann B, Lehr HA, Yancopoulos G, Valenzuela D, Murphy A, Stevens S, Schmidt J, Galle PR, Rose-John S, Neurath MF. The transcription factor NFATc2 controls IL-6-dependent T cell activation in experimental colitis. ACTA ACUST UNITED AC 2008; 205:2099-110. [PMID: 18710929 PMCID: PMC2526204 DOI: 10.1084/jem.20072484] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell–dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6–dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Benno Weigmann
- Institute of Molecular Medicine, Johanes Gutenberg Univeristy, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|