1
|
Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological Aspects of Alcohol Metabolism in the Liver. Int J Mol Sci 2021; 22:5717. [PMID: 34071962 PMCID: PMC8197869 DOI: 10.3390/ijms22115717] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The liver is the major organ that metabolizes alcohol; therefore, it is particularly sensitive to alcohol intake. Metabolites and byproducts generated during alcohol metabolism cause liver damage, leading to ALD via several mechanisms, such as impairing lipid metabolism, intensifying inflammatory reactions, and inducing fibrosis. Despite the severity of ALD, the development of novel treatments has been hampered by the lack of animal models that fully mimic human ALD. To overcome the current limitations of ALD studies and therapy development, it is necessary to understand the molecular mechanisms underlying alcohol-induced liver injury. Hence, to provide insights into the progression of ALD, this review examines previous studies conducted on alcohol metabolism in the liver. There is a particular focus on the occurrence of ALD caused by hepatotoxicity originating from alcohol metabolism.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Jinsol Han
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
| | - Chanbin Lee
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
| | - Myunghee Yoon
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Biomedical Research Institute, Pusan National University, Pusan 46241, Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
2
|
Assiri MA, Ali HR, Marentette JO, Yun Y, Liu J, Hirschey MD, Saba LM, Harris PS, Fritz KS. Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease. Hum Genomics 2019; 13:65. [PMID: 31823815 PMCID: PMC6902345 DOI: 10.1186/s40246-019-0251-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chronic alcohol consumption is a significant cause of liver disease worldwide. Several biochemical mechanisms have been linked to the initiation and progression of alcoholic liver disease (ALD) such as oxidative stress, inflammation, and metabolic dysregulation, including the disruption of NAD+/NADH. Indeed, an ethanol-mediated reduction in hepatic NAD+ levels is thought to be one factor underlying ethanol-induced steatosis, oxidative stress, steatohepatitis, insulin resistance, and inhibition of gluconeogenesis. Therefore, we applied a NAD+ boosting supplement to investigate alterations in the pathogenesis of early-stage ALD. METHODS To examine the impact of NAD+ therapy on the early stages of ALD, we utilized nicotinamide mononucleotide (NMN) at 500 mg/kg intraperitoneal injection every other day, for the duration of a Lieber-DeCarli 6-week chronic ethanol model in mice. Numerous strategies were employed to characterize the effect of NMN therapy, including the integration of RNA-seq, immunoblotting, and metabolomics analysis. RESULTS Our findings reveal that NMN therapy increased hepatic NAD+ levels, prevented an ethanol-induced increase in plasma ALT and AST, and changed the expression of 25% of the genes that were modulated by ethanol metabolism. These genes were associated with a number of pathways including the MAPK pathway. Interestingly, our analysis revealed that NMN treatment normalized Erk1/2 signaling and prevented an induction of Atf3 overexpression. CONCLUSIONS These findings reveal previously unreported mechanisms by which NMN supplementation alters hepatic gene expression and protein pathways to impact ethanol hepatotoxicity in an early-stage murine model of ALD. Overall, our data suggest further research is needed to fully characterize treatment paradigms and biochemical implications of NAD+-based interventions.
Collapse
Affiliation(s)
- Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hadi R Ali
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - John O Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Youngho Yun
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Matthew D Hirschey
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, 27710, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Lu Y, Lv F, Kong M, Chen X, Duan Y, Chen X, Sun D, Fang M, Xu Y. A cAbl-MRTF-A Feedback Loop Contributes to Hepatic Stellate Cell Activation. Front Cell Dev Biol 2019; 7:243. [PMID: 31681772 PMCID: PMC6805704 DOI: 10.3389/fcell.2019.00243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Trans-differentiation of quiescent hepatic stellate cells (HSC) to myofibroblasts is a hallmark event in liver fibrosis. Previous studies have led to the discovery that myocardin-related transcription factor A (MRTF-A) is a key regulator of HSC trans-differentiation or, activation. In the present study we investigated the interplay between MRTF-A and c-Abl (encoded by Abl1), a tyrosine kinase, in this process. We report that hepatic expression levels of c-Abl were down-regulated in MRTF-A knockout (KO) mice compared to wild type (WT) littermates in several different models of liver fibrosis. MRTF-A deficiency also resulted in c-Abl down-regulation in freshly isolated HSCs from the fibrotic livers of mice. MRTF-A knockdown or inhibition repressed c-Abl in cultured HSCs in vitro. Further analyses revealed that MRTF-A directly bound to the Abl1 promoter to activate transcription by interacting with Sp1. Reciprocally, pharmaceutical inhibition of c-Abl suppressed MRTF-A activity. Mechanistically, c-Abl activated extracellular signal-regulated kinase (ERK), which in turn phosphorylated MRTF-A and promoted MRTF-A nuclear trans-localization. In conclusion, our data suggest that a c-Abl-MRTF-A positive feedback loop contributes to HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fangqiao Lv
- Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xuyang Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mingming Fang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Vocational College of Medicine, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Mitochondria-targeted ubiquinone (MitoQ) enhances acetaldehyde clearance by reversing alcohol-induced posttranslational modification of aldehyde dehydrogenase 2: A molecular mechanism of protection against alcoholic liver disease. Redox Biol 2017; 14:626-636. [PMID: 29156373 PMCID: PMC5700831 DOI: 10.1016/j.redox.2017.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
Alcohol metabolism in the liver generates highly toxic acetaldehyde. Breakdown of acetaldehyde by aldehyde dehydrogenase 2 (ALDH2) in the mitochondria consumes NAD+ and generates reactive oxygen/nitrogen species, which represents a fundamental mechanism in the pathogenesis of alcoholic liver disease (ALD). A mitochondria-targeted lipophilic ubiquinone (MitoQ) has been shown to confer greater protection against oxidative damage in the mitochondria compared to untargeted antioxidants. The present study aimed to investigate if MitoQ could preserve mitochondrial ALDH2 activity and speed up acetaldehyde clearance, thereby protects against ALD. Male C57BL/6 J mice were exposed to alcohol for 8 weeks with MitoQ supplementation (5 mg/kg/d) for the last 4 weeks. MitoQ ameliorated alcohol-induced oxidative/nitrosative stress and glutathione deficiency. It also reversed alcohol-reduced hepatic ALDH activity and accelerated acetaldehyde clearance through modulating ALDH2 cysteine S-nitrosylation, tyrosine nitration and 4-hydroxynonenol adducts formation. MitoQ ameliorated nitric oxide (NO) donor-mediated ADLH2 S-nitrosylation and nitration in Hepa-1c1c7 cells under glutathion depletion condition. In addition, alcohol-increased circulating acetaldehyde levels were accompanied by reduced intestinal ALDH activity and impaired intestinal barrier. In accordance, MitoQ reversed alcohol-increased plasma endotoxin levels and hepatic toll-like receptor 4 (TLR4)-NF-κB signaling along with subsequent inhibition of inflammatory cell infiltration. MitoQ also reversed alcohol-induced hepatic lipid accumulation through enhancing fatty acid β-oxidation. Alcohol-induced ER stress and apoptotic cell death signaling were reversed by MitoQ. This study demonstrated that speeding up acetaldehyde clearance by preserving ALDH2 activity critically mediates the beneficial effect of MitoQ on alcohol-induced pathogenesis at the gut-liver axis. PTMs of ALDH2 participated in the pathogenesis of alcoholic liver disease. MitoQ treatment accelerated acetaldehyde detoxification. MitoQ ameliorated acetaldehyde-related tight junction disruption. MitoQ reversed TLR4-mediated inflammatory response in alcoholic liver disease. MitoQ counteracts alcohol-induced ER stress and cell apoptosis.
Collapse
|
5
|
Polvani S, Tarocchi M, Tempesti S, Bencini L, Galli A. Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J Gastroenterol 2016; 22:2441-2459. [PMID: 26937133 PMCID: PMC4768191 DOI: 10.3748/wjg.v22.i8.2441] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/17/2015] [Accepted: 01/09/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer death with an overall survival of 5% at five years. The development of PDAC is characteristically associated to the accumulation of distinctive genetic mutations and is preceded by the exposure to several risk factors. Epidemiology has demonstrated that PDAC risk factors may be non-modifiable risks (sex, age, presence of genetic mutations, ethnicity) and modifiable and co-morbidity factors related to the specific habits and lifestyle. Recently it has become evident that obesity and diabetes are two important modifiable risk factors for PDAC. Obesity and diabetes are complex systemic and intertwined diseases and, over the years, experimental evidence indicate that insulin-resistance, alteration of adipokines, especially leptin and adiponectin, oxidative stress and inflammation may play a role in PDAC. Peroxisome proliferator activated receptor-γ (PPARγ) is a nuclear receptor transcription factor that is implicated in the regulation of metabolism, differentiation and inflammation. PPARγ is a key regulator of adipocytes differentiation, regulates insulin and adipokines production and secretion, may modulate inflammation, and it is implicated in PDAC. PPARγ agonists are used in the treatment of diabetes and oxidative stress-associated diseases and have been evaluated for the treatment of PDAC. PPARγ is at the cross-road of diabetes, obesity, and PDAC and it is an interesting target to pharmacologically prevent PDAC in obese and diabetic patients.
Collapse
|
6
|
Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J Gastroenterol 2014; 20:17756-17772. [PMID: 25548474 PMCID: PMC4273126 DOI: 10.3748/wjg.v20.i47.17756] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/22/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing proteasome function in macrophages and dendritic cells, and consequently alters allogenic antigen presentation. Finally, acetaldehyde and ROS have a role in alcohol-related carcinogenesis because they can form DNA adducts that are prone to mutagenesis, and they interfere with methylation, synthesis and repair of DNA, thereby increasing HCC susceptibility.
Collapse
|
7
|
Seo YS, Kwon JH, Yaqoob U, Yang L, De Assuncao TM, Simonetto DA, Verma VK, Shah VH. HMGB1 recruits hepatic stellate cells and liver endothelial cells to sites of ethanol-induced parenchymal cell injury. Am J Physiol Gastrointest Liver Physiol 2013; 305:G838-48. [PMID: 24091596 PMCID: PMC3882432 DOI: 10.1152/ajpgi.00151.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic stellate cells (HSC) and liver endothelial cells (LEC) migrate to sites of injury and perpetuate alcohol-induced liver injury. High-mobility group box 1 (HMGB1) is a protein released from the nucleus of injured cells that has been implicated as a proinflammatory mediator. We hypothesized that HMGB1 may be released from ethanol-stimulated liver parenchymal cells and contribute to HSC and LEC recruitment. Ethanol stimulation of rat hepatocytes and HepG2 cells resulted in translocation of HMGB1 from the nucleus as assessed by Western blot. HMGB1 protein levels were increased in the supernatant of ethanol-treated hepatocytes compared with vehicle-treated cells. Migration of both HSC and LEC was increased in response to conditioned medium for ethanol-stimulated hepatocytes (CMEtOH) compared with vehicle-stimulated hepatocytes (CMVEH) (P < 0.05). However, the effect of CMEtOH on migration was almost entirely reversed by treatment with HMGB1-neutralizing antibody or when HepG2 cells were pretransfected with HMGB1-siRNA compared with control siRNA-transfected HepG2 cells (P < 0.05). Recombinant HMGB1 (100 ng/ml) also stimulated migration of HSC and LEC compared with vehicle stimulation (P < 0.05 for both HSC and LEC). HMGB1 stimulation of HSC increased the phosphorylation of Src and Erk and HMGB1-induced HSC migration was blocked by the Src inhibitor PP2 and the Erk inhibitor U0126. Hepatocytes release HMGB1 in response to ethanol with subsequent recruitment of HSC and LEC. This pathway has implications for HSC and LEC recruitment to sites of ethanol-induced liver injury.
Collapse
Affiliation(s)
- Yeon S. Seo
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jung H. Kwon
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Usman Yaqoob
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Liu Yang
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Thiago M. De Assuncao
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Douglas A. Simonetto
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Vikas K. Verma
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Vijay H. Shah
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
8
|
Polvani S, Tarocchi M, Galli A. PPARγ and Oxidative Stress: Con(β) Catenating NRF2 and FOXO. PPAR Res 2012; 2012:641087. [PMID: 22481913 PMCID: PMC3317010 DOI: 10.1155/2012/641087] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/05/2011] [Accepted: 11/17/2011] [Indexed: 12/22/2022] Open
Abstract
Peroxisome-proliferator activator receptor γ (PPARγ) is a nuclear receptor of central importance in energy homeostasis and inflammation. Recent experimental pieces of evidence demonstrate that PPARγ is implicated in the oxidative stress response, an imbalance between antithetic prooxidation and antioxidation forces that may lead the cell to apoptotic or necrotic death. In this delicate and intricate game of equilibrium, PPARγ stands out as a central player devoted to the quenching and containment of the damage and to foster cell survival. However, PPARγ does not act alone: indeed the nuclear receptor is at the point of interconnection of various pathways, such as the nuclear factor erythroid 2-related factor 2 (NRF2), Wnt/β-catenin, and forkhead box proteins O (FOXO) pathways. Here we reviewed the role of PPARγ in response to oxidative stress and its interaction with other signaling pathways implicated in this process, an interaction that emerged as a potential new therapeutic target for several oxidative-related diseases.
Collapse
Affiliation(s)
- Simone Polvani
- Gastroenterology Unit, Department of Clinical Pathophysiology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Mirko Tarocchi
- Gastroenterology Unit, Department of Clinical Pathophysiology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Andrea Galli
- Gastroenterology Unit, Department of Clinical Pathophysiology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| |
Collapse
|
9
|
ZHU H, JIA Z, MISRA H, LI YR. Oxidative stress and redox signaling mechanisms of alcoholic liver disease: updated experimental and clinical evidence. J Dig Dis 2012; 13:133-142. [PMID: 22356308 PMCID: PMC3297983 DOI: 10.1111/j.1751-2980.2011.00569.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality in the United States and Europe. The spectrum of ALD ranges from fatty liver to alcoholic hepatitis and cirrhosis, which may eventually lead to hepatocellular carcinoma. In developed countries as well as developing nations, ALD is a major cause of end-stage liver disease that requires liver transplantation. The most effective therapy for ALD is alcohol abstinence; however, for individuals with severe ALD and those in whom alcohol abstinence is not achievable, targeted therapies are absolutely necessary. In this context, advances of our understanding of the pathophysiology of ALD over the past two decades have contributed to the development of therapeutic modalities (e.g., pentoxifylline and corticosteroids) for the disease although the efficacy of the available treatments remains limited. This article is intended to succinctly review the recent experimental and clinical findings of the involvement of oxidative stress and redox signaling in the pathophysiology of ALD and the development of mechanistically based antioxidant modalities targeting oxidative stress and redox signaling mechanisms. The biochemical and cellular sources of reactive oxygen and nitrogen species (ROS/RNS) and dysregulated redox signaling pathways associated with alcohol consumption are particularly discussed to provide insight into the molecular basis of hepatic cell dysfunction and destruction as well as tissue remodeling underlying ALD.
Collapse
Affiliation(s)
- Hong ZHU
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia, USA,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA,Correspondence should be addressed to: Y. Robert Li, MD, PhD, Professor and Department Chair, Phone: (540) 231-1465, Fax: (540) 231-8846, or H. Zhu, MD, MPH, Assistant Professor, Phone: (540) 231-1468, Fax: (540) 231-8846,
| | - Zhenquan JIA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Hara MISRA
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia, USA,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Y. Robert LI
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia, USA,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences,, Blacksburg, Virginia, USA,Correspondence should be addressed to: Y. Robert Li, MD, PhD, Professor and Department Chair, Phone: (540) 231-1465, Fax: (540) 231-8846, or H. Zhu, MD, MPH, Assistant Professor, Phone: (540) 231-1468, Fax: (540) 231-8846,
| |
Collapse
|
10
|
Edwards TL, Velez Edwards DR, Villegas R, Cohen SS, Buchowski MS, Fowke JH, Schlundt D, Long J, Cai Q, Zheng W, Shu XO, Hargreaves MK, Smith J, Williams SM, Signorello LB, Blot WJ, Matthews CE. HTR1B, ADIPOR1, PPARGC1A, and CYP19A1 and obesity in a cohort of Caucasians and African Americans: an evaluation of gene-environment interactions and candidate genes. Am J Epidemiol 2012; 175:11-21. [PMID: 22106445 DOI: 10.1093/aje/kwr272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The World Health Organization estimates that the number of obese and overweight adults has increased to 1.6 billion, with concomitant increases in comorbidity. While genetic factors for obesity have been extensively studied in Caucasians, fewer studies have investigated genetic determinants of body mass index (BMI; weight (kg)/height (m)(2)) in African Americans. A total of 38 genes and 1,086 single nucleotide polymorphisms (SNPs) in African Americans (n = 1,173) and 897 SNPs in Caucasians (n = 1,165) were examined in the Southern Community Cohort Study (2002-2009) for associations with BMI and gene × environment interactions. A statistically significant association with BMI survived correction for multiple testing at rs4140535 (β = -0.04, 95% confidence interval: -0.06, -0.02; P = 5.76 × 10(-5)) in African Americans but not in Caucasians. Gene-environment interactions were observed with cigarette smoking and a SNP in ADIPOR1 in African Americans, as well as between a different SNP in ADIPOR1 and physical activity in Caucasians. A SNP in PPARGC1A interacted with alcohol consumption in African Americans, and a different SNP in PPARGC1A was nominally associated in Caucasians. A SNP in CYP19A1 interacted with dietary energy intake in African Americans, and another SNP in CYP191A had an independent association with BMI in Caucasians.
Collapse
Affiliation(s)
- Todd L Edwards
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Petersen RK, Larsen SB, Jensen DM, Christensen J, Olsen A, Loft S, Nellemann C, Overvad K, Kristiansen K, Tjønneland A, Vogel U. PPARgamma-PGC-1alpha activity is determinant of alcohol related breast cancer. Cancer Lett 2011; 315:59-68. [PMID: 22050908 DOI: 10.1016/j.canlet.2011.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/17/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
Abstract
Alcohol is a risk factor for postmenopausal breast cancer. One of several proposed mechanisms is that alcohol-related breast cancer is caused by increased sex hormone levels. PPARγ inhibits aromatase transcription in breast adipocytes. We reproduced previously found allele-specific effects of the wildtype Pro-allele of PPARG Pro(12)Ala in alcohol related breast cancer. In transiently transfected cells, transcriptional activation by PPARγ and the PPARγ-PGC-1α complex was inhibited by ethanol. PPARγ 12Ala-mediated transcription activation was not enhanced by PGC-1α, resulting in allele-specific transcription activation by the PPARγ 12Pro-PGC-1α complex. Our results suggest that PPARγ and PGC-1α activity is an important determinant of alcohol related breast cancer.
Collapse
|
12
|
Kim MY, Baik SK, Lee SS. Hemodynamic alterations in cirrhosis and portal hypertension. THE KOREAN JOURNAL OF HEPATOLOGY 2011; 16:347-52. [PMID: 21415576 PMCID: PMC3304610 DOI: 10.3350/kjhep.2010.16.4.347] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Portal hypertension (PHT) is associated with hemodynamic changes in intrahepatic, systemic, and portosystemic collateral circulation. Increased intrahepatic resistance and hyperdynamic circulatory alterations with expansion of collateral circulation play a central role in the pathogenesis of PHT. PHT is also characterized by changes in vascular structure, termed vascular remodeling, which is an adaptive response of the vessel wall that occurs in response to chronic changes in the environment such as shear stress. Angiogenesis, the formation of new blood vessels, also occurs with PHT related in particular to the expansion of portosystemic collateral circulation. The complementary processes of vasoreactivity, vascular remodeling, and angiogenesis represent important targets for the treatment of portal hypertension. Systemic and splanchnic vasodilatation can induce hyperdynamic circulation which is related with multi-organ failure such as hepatorenal syndrome and cirrhotic cadiomyopathy.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | | |
Collapse
|
13
|
Crabb DW, Zeng Y, Liangpunsakul S, Jones R, Considine R. Ethanol impairs differentiation of human adipocyte stromal cells in culture. Alcohol Clin Exp Res 2011; 35:1584-92. [PMID: 21599713 DOI: 10.1111/j.1530-0277.2011.01504.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bioinformatic resources suggest that adipose tissue expresses mRNAs for alcohol dehydrogenases (ADHs) and ALDH2, and epidemiological studies indicate that heavy alcohol use reduces adipose tissue mass. We therefore characterized the expression of alcohol metabolizing enzymes in human, rat and mouse adipose tissue, preadipocytes, and adipocytes, the ability of adipocytes to metabolize ethanol, and the effects of ethanol on differentiation of human adipose stromal cells (hASCs). METHODS Adipose tissue, preadipocytes, and adipocytes were collected from rodents or from humans undergoing bariatric surgery. hASCs were differentiated in vitro using standard methods. Gene expression and cellular differentiation were analyzed by Western blotting, RT-PCR, and microscopy. RESULTS Class I ADH was expressed in human > mouse > rat adipose tissue, whereas ALDH2 was high in all samples. ADH, catalase, and ALDH2 were induced during differentiation of hASCs. The presence of 50 mM ethanol markedly reduced the differentiation of hASCs; this effect was associated with inhibition of expression of transcription factors required for differentiation, but did not depend on the ability of the cells to metabolize ethanol. CONCLUSIONS Human adipose tissue expresses alcohol oxidizing enzymes. The presence of ethanol at physiologically relevant concentrations inhibits differentiation of hASCs. Ethanol could alter adipose tissue biology, inducing a form of acquired lipodystrophy, which is consistent with epidemiological studies.
Collapse
Affiliation(s)
- David W Crabb
- Departments of Medicine, Biochemistry and Molecular Biology, Indianapolis VA Medical Center, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
14
|
Morán-Salvador E, López-Parra M, García-Alonso V, Titos E, Martínez-Clemente M, González-Périz A, López-Vicario C, Barak Y, Arroyo V, Clària J. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J 2011; 25:2538-50. [PMID: 21507897 DOI: 10.1096/fj.10-173716] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ is a nuclear receptor central to glucose and lipid homeostasis. PPARγ role in nonalcoholic fatty liver disease is controversial because PPARγ overexpression is a general property of steatotic livers, but its activation by thiazolidinediones reduces hepatic steatosis. Here, we investigated hepatic PPARγ function by using Cre-loxP technology to generate hepatocyte (PPARγ(Δhep))- and macrophage (PPARγ(Δmac))-specific PPARγ-knockout mice. Targeted deletion of PPARγ in hepatocytes, and to a lesser extent in macrophages, protected mice against high-fat diet-induced hepatic steatosis. Down-regulated expression of genes involved in lipogenesis (SCD1, SREBP-1c, and ACC), lipid transport (CD36/FAT, L-FABP, and MTP), and β-oxidation (PPARα and ACO) was observed in PPARγ(Δhep) mice. Moreover, PPARγ(Δhep) mice showed improved glucose tolerance and reduced PEPCK expression without changes in Pcx, Fbp1, and G6Pc expression and CREB and JNK phosphorylation. In precision-cut liver slices (PCLSs) and hepatocytes, rosiglitazone either alone or in combination with oleic acid increased triglyceride accumulation, an effect that was blocked by the PPARγ antagonist biphenol A diglycidyl ether (BADGE). PCLSs and hepatocytes from PPARγ(Δhep) mice showed blunted responses to rosiglitazone and oleic acid, whereas the response to these compounds remained intact in PCLSs from PPARγ(Δmac) mice. Collectively, these findings establish PPARγ expression in hepatocytes as a prosteatotic factor in fatty liver disease.
Collapse
Affiliation(s)
- Eva Morán-Salvador
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, Esther Koplowitz Center–Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao H, Mayhan WG, Arrick DM, Xiong W, Sun H. Alcohol-induced exacerbation of ischemic brain injury: role of NAD(P)H oxidase. Alcohol Clin Exp Res 2011; 34:1948-55. [PMID: 20659070 DOI: 10.1111/j.1530-0277.2010.01284.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic alcohol consumption increases ischemic stroke and exacerbates ischemic brain injury. We determined the role of NAD(P)H oxidase in exacerbated ischemic brain injury during chronic alcohol consumption. METHODS Sprague Dawley rats were fed a liquid diet with or without alcohol (6.4% v/v) for 8 weeks. We measured the effect of apocynin on 2-hour middle cerebral artery occlusion (MCAO)/24-hour reperfusion-induced brain injury. In addition, superoxide production and expression of NAD(P)H oxidase subunit, gp91phox, in the peri-infarct area were assessed. RESULTS Chronic alcohol consumption produced a larger infarct volume, worse neurological score, and higher superoxide production. Acute (5 mg/kg, ip, 30 minutes before MCAO) and chronic treatment with apocynin (7.5 mg/kg/d in the diet, 4 weeks prior to MCAO) reduced infarct volume, improved neurological outcome, and attenuated superoxide production in alcohol-fed rats. Expression of gp91phox at basal conditions and following ischemia/reperfusion was greater in alcohol-fed rats compared to non-alcohol-fed rats. In addition, neurons are partially responsible for upregulated gp91phox during alcohol consumption. CONCLUSIONS Our findings suggest that NAD(P)H oxidase may play an important role in exacerbated ischemic brain injury during chronic alcohol consumption.
Collapse
Affiliation(s)
- Honggang Zhao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5850, USA
| | | | | | | | | |
Collapse
|
16
|
Liu Y, Brymora J, Zhang H, Smith B, Ramezani-Moghadam M, George J, Wang J. Leptin and acetaldehyde synergistically promotes αSMA expression in hepatic stellate cells by an interleukin 6-dependent mechanism. Alcohol Clin Exp Res 2011; 35:921-8. [PMID: 21294755 DOI: 10.1111/j.1530-0277.2010.01422.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The mechanisms whereby patients with obesity/overweight are more susceptible to alcohol-associated liver fibrosis are unclear. Leptin, a peptide hormone secreted by white adipose tissue is increased in association with overweight/obesity and is recognized as mediator of liver fibrosis. We sought to assess whether leptin contributes to alcoholic liver fibrosis by in vitro studies in hepatic stellate cells (HSC). METHODS Rat HSCs in second or third passage were utilised. Leptin, Acetaldehyde or combination with leptin and acetaldehyde were incubated for specific periods in cultured HSCs. Profibrogenic gene and protein expression were determined and associated-signalling pathways were assessed. Interleukin 6 (IL-6) antibody neutralization was used to evaluate the role of IL-6. RESULTS Leptin did not promote acetaldehyde-induced gene expression of collagen I, transforming growth factor β1 (TGFβ1) and tissue inhibitor of metalloproteinase 1 (TIMP1) in vitro. However, combined treatment of leptin with acetaldehyde synergistically enhanced the protein expression of smooth muscle actin (αSMA), an activation marker of HSCs, and of Interleukin-6 (IL-6). The combination of leptin and acetaldehyde also augmented MAPK/p38 and MAPK/ERK1/2 phosphoprotein expression. IL-6 neutralization down-regulated protein expression of pp38, pERK1/2 and αSMA, while exogenous rat recombinant IL-6 administration up-regulated αSMA. Similarly, MAPK/p38 and MAPK/ERK1/2 inhibition attenuated αSMA expression. H(2)O(2) induction by acetaldehyde was not potentiated by co-treatment with leptin nor did IL-6 neutralization reduce acetaldehyde-induced H(2)O(2) production. CONCLUSIONS We conclude that leptin potentiates acetaldehyde-induced HSC activation and αSMA expression by an IL-6-dependent mechanism.
Collapse
Affiliation(s)
- Yingdi Liu
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Kim MY, Baik SK. [Pathophysiology of portal hypertension, what's new?]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2010; 56:129-34. [PMID: 20847603 DOI: 10.4166/kjg.2010.56.3.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Portal hypertension (PHT) is associated with changes in the intrahepatic, systemic and portosystemic collateral circulations. Alteration in vasoreactivity (vasodilation and vasoconstriction) plays a central role in the pathogenesis of PHT by contributing to increased intrahepatic resistance, hyperdynamic circulation and the expansion of the collateral circulation. PHT is also importantly characterized by changes in vascular structure; termed vascular remodeling, which is an adaptive response of the vessel wall that occurs in response to chronic changes in the environment such as shear stress. Angiogenesis, the sprouting of new blood vessels, also occurs in PHT, especially in the expansion of the portosystemic collateral circulation. These complementary processes of vasoreactivity, vascular remodeling and angiogenesis represent important targets in the research for the treatment of portal hypertension.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | |
Collapse
|
18
|
Galli A, Ceni E, Mello T, Polvani S, Tarocchi M, Buccoliero F, Lisi F, Cioni L, Ottanelli B, Foresta V, Mastrobuoni G, Moneti G, Pieraccini G, Surrenti C, Milani S. Thiazolidinediones inhibit hepatocarcinogenesis in hepatitis B virus-transgenic mice by peroxisome proliferator-activated receptor gamma-independent regulation of nucleophosmin. Hepatology 2010; 52:493-505. [PMID: 20683949 DOI: 10.1002/hep.23669] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Antidiabetic thiazolidinediones (TZD) have in vitro antiproliferative effect in epithelial cancers, including hepatocellular carcinoma (HCC). The effective anticancer properties and the underlying molecular mechanisms of these drugs in vivo remain unclear. In addition, the primary biological target of TZD, the ligand-dependent transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), is up-regulated in HCC and seems to provide tumor-promoting responses. The aim of our study was to evaluate whether chronic administration of TZD may affect hepatic carcinogenesis in vivo in relation to PPARgamma expression and activity. The effect of TZD oral administration for 26 weeks was tested on tumor formation in PPARgamma-expressing and PPARgamma-deficient mouse models of hepatic carcinogenesis. Proteomic analysis was performed in freshly isolated hepatocytes by differential in gel electrophoresis and mass spectrometry analysis. Identified TZD targets were confirmed in cultured PPARgamma-deficient hepatocytes. TZD administration in hepatitis B virus (HBV)-transgenic mice (TgN[Alb1HBV]44Bri) reduced tumor incidence in the liver, inhibiting hepatocyte proliferation and increasing apoptosis. PPARgamma deletion in hepatocytes of HBV-transgenic mice (Tg[HBV]CreKOgamma) did not modify hepatic carcinogenesis but increased the TZD antitumorigenic effect. Proteomic analysis identified nucleophosmin (NPM) as a TZD target in PPARgamma-deficient hepatocytes. TZD inhibited NPM expression at protein and messenger RNA levels and decreased NPM promoter activity. TZD inhibition of NPM was associated with the induction of p53 phosphorylation and p21 expression. CONCLUSION These findings suggest that chronic administration of TZD has anticancer activity in the liver via inhibition of NPM expression and indicate that these drugs might be useful for HCC chemoprevention and treatment.
Collapse
Affiliation(s)
- Andrea Galli
- Gastroenterology Unit, Department of Clinical Pathophysiology, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Asano Y, Bujor AM, Trojanowska M. The impact of Fli1 deficiency on the pathogenesis of systemic sclerosis. J Dermatol Sci 2010; 59:153-62. [PMID: 20663647 DOI: 10.1016/j.jdermsci.2010.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/03/2010] [Accepted: 06/14/2010] [Indexed: 12/29/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune inflammatory disease with unknown etiology characterized by microvascular injury and fibrosis of the skin and internal organs. A growing body of evidence suggests that deficiency of the transcription factor Fli1 (Friend leukemia integration-1) has a pivotal role in the pathogenesis of SSc. Fli1 is expressed in fibroblasts, endothelial cells, and immune cells, and has important roles in the activation, differentiation, development, and survival of these cells. Previous studies demonstrated that Fli1 is downregulated in SSc fibroblasts by an epigenetic mechanism and a series of experiments with Fli1-deficient animal models revealed that Fli1 deficiency in fibroblasts and endothelial cells reproduces the histopathologic features of fibrosis and vasculopathy in SSc, respectively. In this article, we review the impact of Fli1 deficiency on the pathogenesis of SSc and discuss a new therapeutic strategy for SSc by targeting the transcription factor Fli1.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | |
Collapse
|
20
|
Abstract
The association between alcohol consumption and pancreatitis has been recognized for over 100 years. Despite the fact that this association is well recognized, the mechanisms by which alcohol abuse leads to pancreatic tissue damage are not entirely clear. Alcohol abuse is the major factor associated with pancreatitis in the Western world. Interestingly, although most cases of chronic pancreatitis and many cases of acute pancreatitis are associated with alcohol abuse, only a small percentage of individuals who abuse alcohol develop this disease. This situation is reminiscent of the association between alcohol abuse and the incidence of alcoholic liver disease. The liver and the pancreas are developmentally very closely related. Even though these two organs are quite different, they exhibit a number of general structural and functional similarities. Furthermore, the diseases mediated by alcohol abuse in these organs exhibit some striking similarities. The diseases in both organs are characterized by parenchymal cell damage, activation of stellate cells, aberrant wound healing, and fibrosis. Because of the similarities between the liver and the pancreas, and the alcohol-associated diseases of these organs, we may be able to apply much of the knowledge that we have gained regarding the effects of alcohol on the liver to the pancreas.
Collapse
|
21
|
Abstract
Portal Hypertension is a frequent complication of cirrhosis and causes significant morbidity and mortality. Increased intrahepatic resistance is the primary factor but portal hypertension is also associated with changes in systemic and porto-sytemic collateral circulation. Cirrhosis is a state of vasoregulatory imbalance with excess vasoconstrictors and less vasodilators in hepatic circulation and the reverse is true for systemic circulation. Multiple pathophysiologic mechanisms including endothelial dysfunction, sinusoidal remodeling and angiogenesis are involved in increasing resistance in hepatic vascular bed. Current evidence suggests that these changes in vasoreactivity contribute to a significant proportion of intrahepatic vascular resistance and that they are reversible, providing an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Praveen Guturu
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | | |
Collapse
|
22
|
Peroxisome proliferator-activated receptor and retinoic x receptor in alcoholic liver disease. PPAR Res 2009; 2009:748174. [PMID: 19756185 PMCID: PMC2743826 DOI: 10.1155/2009/748174] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 05/19/2009] [Accepted: 07/13/2009] [Indexed: 12/13/2022] Open
Abstract
A growing number of new studies demonstrate that nuclear receptors are involved in the development of alcoholic liver disease (ALD). Ethanol metabolism and RXR/PPAR functions are tightly interconnected in the liver. Several ethanol metabolizing enzymes are potently regulated by RXR and PPARα after alcohol consumption. The increased ethanol metabolism, in turn, leads to alteration of the redox balance of the cells and impairment of RXR/PPAR functions by direct and indirect effects of acetaldehyde, resulting in deranged lipid metabolism, oxidative stress, and release of proinflammatory cytokines. The use of animal models played a crucial role in understanding the molecular mechanisms of ALD. In this paper we summarize the reciprocal interactions between ethanol metabolism and RXR/PPAR functions. In conclusion, RXR and PPAR play a central role in the onset and perpetuation of the mechanisms underling all steps of the clinical progression in ALD.
Collapse
|
23
|
Bhattacharyya S, Ishida W, Wu M, Wilkes M, Mori Y, Hinchcliff M, Takehara K, Leof E, Varga J. A non-Smad mechanism of fibroblast activation by transforming growth factor-beta via c-Abl and Egr-1: selective modulation by imatinib mesylate. Oncogene 2009; 28:1285-97. [PMID: 19151753 PMCID: PMC4006376 DOI: 10.1038/onc.2008.479] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/24/2008] [Accepted: 12/04/2008] [Indexed: 01/15/2023]
Abstract
The nonreceptor protein tyrosine kinase c-Abl regulates cell proliferation and survival. Recent studies provide evidence that implicate c-Abl as a mediator for fibrotic responses induced by transforming growth factor-beta (TGF-beta), but the precise mechanisms underlying this novel oncogene function are unknown. Here, we report that when expressed in normal fibroblasts, a constitutively active mutant of Abl that causes chronic myelogenous leukemia (CML) stimulated the expression and transcriptional activity of the early growth response factor 1 (Egr-1). Mouse embryonic fibroblasts (MEFs), lacking c-Abl, were resistant to TGF-beta stimulation. Responsiveness of these MEFs to TGF-beta could be rescued by wild-type c-Abl, but not by a kinase-deficient mutant form of c-Abl. Furthermore, Abl kinase activity was necessary for the induction of Egr-1 by TGF-beta in normal fibroblasts, and Egr-1 was required for stimulation of collagen by Bcr-Abl. Lesional skin fibroblasts in mice with bleomycin-induced fibrosis of skin displayed evidence of c-Abl activation in situ, and elevated phospho-c-Abl correlated with increased local expression of Egr-1. Collectively, these results position Egr-1 downstream of c-Abl in the fibrotic response, delineate a novel Egr-1-dependent intracellular signaling mechanism that underlies the involvement of c-Abl in certain TGF-beta responses, and identify Egr-1 as a target of inhibition by imatinib. Furthermore, the findings show in situ activation of c-Abl paralleling the upregulated tissue expression of Egr-1 that accompanies fibrosis. Pharmacological targeting of c-Abl and its downstream effector pathways may, therefore, represent a novel therapeutic approach to blocking TGF-beta-dependent fibrotic processes.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago
| | - Wataru Ishida
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago
- Department of Dermatology, Kanazawa University, Kanazawa, Japan
| | - Minghua Wu
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago
| | - Mark Wilkes
- Division of Pulmonary Medicine, Mayo Clinic, Rochester, MN
| | - Yasuji Mori
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago
| | - Monique Hinchcliff
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago
| | | | - Edward Leof
- Division of Pulmonary Medicine, Mayo Clinic, Rochester, MN
| | - John Varga
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago
| |
Collapse
|
24
|
Michalik L, Wahli W. PPARs Mediate Lipid Signaling in Inflammation and Cancer. PPAR Res 2008; 2008:134059. [PMID: 19125181 PMCID: PMC2606065 DOI: 10.1155/2008/134059] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/17/2008] [Indexed: 02/06/2023] Open
Abstract
Lipid mediators can trigger physiological responses by activating nuclear hormone receptors, such as the peroxisome proliferator-activated receptors (PPARs). PPARs, in turn, control the expression of networks of genes encoding proteins involved in all aspects of lipid metabolism. In addition, PPARs are tumor growth modifiers, via the regulation of cancer cell apoptosis, proliferation, and differentiation, and through their action on the tumor cell environment, namely, angiogenesis, inflammation, and immune cell functions. Epidemiological studies have established that tumor progression may be exacerbated by chronic inflammation. Here, we describe the production of the lipids that act as activators of PPARs, and we review the roles of these receptors in inflammation and cancer. Finally, we consider emerging strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Walter Wahli
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Abstract
Alcoholic liver disease still represents an important cause for death and disability in most well-developed countries and is becoming a leading cause of disease in developing countries. It is now increasingly clear that, besides the formation of acetaldehyde, alcohol effects on the liver include oxidative stress, disturbances in methionine metabolism, endoplasmic reticulum stress, inflammatory/immune responses and adipokine imbalances. This article will discuss the most recent findings on the mechanisms by which alcohol abuse causes hepatic steatosis and steatohepatitis, and now it contributes to the progression of fibrosis. Although still incomplete, these data shed new light on the multifactorial pathogenesis of alcoholic liver disease and open new possibilities in the understanding of how gender and genetic factors can influence disease progression.
Collapse
Affiliation(s)
- Emanuele Albano
- Department of Medical Science, University Amedeo Avogadro of East Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
26
|
Voltan S, Martines D, Elli M, Brun P, Longo S, Porzionato A, Macchi V, D'Incà R, Scarpa M, Palù G, Sturniolo GC, Morelli L, Castagliuolo I. Lactobacillus crispatus M247-derived H2O2 acts as a signal transducing molecule activating peroxisome proliferator activated receptor-gamma in the intestinal mucosa. Gastroenterology 2008; 135:1216-27. [PMID: 18722375 DOI: 10.1053/j.gastro.2008.07.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 06/26/2008] [Accepted: 07/03/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Accumulating evidence indicates that the peroxisome proliferator activated receptor (PPAR)-gamma is a major player in maintaining intestinal mucosa homeostasis, but whether PPAR-gamma is directly involved in probiotic-mediated effects and the molecular events involved in its activation are not known. METHODS We investigated the role of PPAR-gamma in the immunomodulatory effects of Lactobacillus crispatus M247 on intestinal epithelial cells (IEC) and the role of probiotic-derived H(2)O(2) on PPAR-gamma activity. RESULTS L crispatus M247 supplementation in mice significantly increased PPAR-gamma levels and transcriptional activity in the colonic mucosa. L crispatus M247 induced PPAR-gamma nuclear translocation and enhanced transcriptional activity in epithelial (CMT-93) cells, as demonstrated by the increased luciferase activity of a PPAR-gamma-responsive element, PPAR-gamma-responsive gene up-regulation, and reduced activity of an nuclear factor-kappaB-responsive element. Pharmacologic PPAR-gamma inhibition or silencing by small interfering RNA cancelled the L crispatus M247-mediated effects in CMT-93 cells. Because Lactobacillus strains producing little H(2)O(2) failed to activate PPAR-gamma, we investigated the role of L crispatus M247-derived H(2)O(2) in PPAR-gamma activation. L crispatus M247 induced a transient rise in intracellular H(2)O(2) and PPAR-gamma transcriptional activity was cancelled by antioxidant or H(2)O(2) scavenger. Toll-like receptor (TLR)-2 was not required for PPAR-gamma up-regulation mediated by L crispatus M247 in mice, although the protective effects of L crispatus M247 on dextran sodium sulfate-induced colitis were less pronounced in TLR-2(-/-) mice. CONCLUSIONS L crispatus M247 uses H(2)O(2) as a signal transducing molecule to induce PPAR-gamma activation in IEC, directly modulating epithelial cell responsiveness to inflammatory stimuli.
Collapse
Affiliation(s)
- Sandra Voltan
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Francès F, Verdú F, Portolés O, Castelló A, Sorlí JV, Guillen M, Corella D. PPAR-alpha L162V and PGC-1 G482S gene polymorphisms, but not PPAR-gamma P12A, are associated with alcohol consumption in a Spanish Mediterranean population. Clin Chim Acta 2008; 398:70-4. [PMID: 18786524 DOI: 10.1016/j.cca.2008.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/14/2008] [Accepted: 08/14/2008] [Indexed: 01/02/2023]
Abstract
BACKGROUND Peroxisome Proliferator-Activated Receptors (PPARs) and its co-activators are regulatory elements of the cellular lipid homeostasis and have been associated with feeding behavior modulation. Animal models suggest that these genes may be involved in alcohol consumption regulation. However, no studies in humans exist. Our aim is to estimate the possible association between polymorphisms in the PPAR-alpha, PPAR-gamma and PPAR-gamma co-activator 1A (PGC-1A) genes and alcohol consumption in humans. METHODS We have conducted a cross-sectional study between the PPAR-alpha L162V, PPAR-gamma P12A and PGC-1A G482S polymorphisms, and alcohol consumption in a general Mediterranean Spanish population (303 men and 443 women). RESULTS We have found an association between the L162V polymorphism and alcohol consumption in which, carriers of the V allele were more prevalent among alcohol consumers (19.4% vs. 9.8%; OR 2.69; 95% CI: 1.31-5.54, p=0.007). The G482S polymorphism showed a significantly higher frequency in the group of high alcohol drinkers than in non-high alcohol drinkers (33.4% vs. 20.6%; OR 2.28; 95% CI: 1.07-4.88, p=0.034). Mean alcohol consumption was higher as the number of G alleles increased (GG 8.6+/-12.8 g/day, GS 6.6+/-9.2 g/day, SS 5.6+/-7.8 g/day, p=0.003). These results remained statistically significant after covariate adjustment. CONCLUSIONS PPAR-alpha L162V and PGC-1A G482S polymorphisms are associated with alcohol consumption in the Mediterranean population.
Collapse
Affiliation(s)
- F Francès
- Department of Preventive and Legal Medicine, School of Medicine, University of Valencia, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
He WH, Zhu X. Participation of reactive oxygen species generated by NADPH oxidase in regulating signal transduction in hepatic stellate cells. Shijie Huaren Xiaohua Zazhi 2008; 16:1897-1903. [DOI: 10.11569/wcjd.v16.i17.1897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are established molecules that are injurious to such biomolecules as DNA and protein, and that can induce lipid peroxidation. However, it is now held that Nox/Duox family of NADPH oxidases generate ROS in a carefully regulated manner, which can act as second messengers influencing signal transduction in various cells including hepatic stellate cells (HSCs). This paper focused on mechanism of ROS generated by NOX/Duox regulating signal transduction, and then reviewed signal transduction of ROS-mediated liver profibrogenic factors, e.g., transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), Angiotensin II (Ang II) and leptin, et al in HSCs.
Collapse
|
29
|
Dharancy S, Louvet A, Hollebecque A, Desreumaux P, Mathurin P, Dubuquoy L. [Nuclear receptor PPAR and hepatology: pathophysiological and therapeutical aspects]. ACTA ACUST UNITED AC 2008; 32:339-50. [PMID: 18396382 DOI: 10.1016/j.gcb.2008.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/18/2007] [Accepted: 01/05/2008] [Indexed: 01/08/2023]
Abstract
In last few years, the topic of nuclear receptor has been developed in the field of hepatology allowing envisaging therapeutic strategies for the most frequent chronic liver diseases. Peroxysome proliferator-activated receptors (PPAR) contribute to wide physiological processes within the liver such as lipid/glucid metabolisms, inflammatory response, cell differenciation and cell cycle. In vitro experiments and animal studies showed that PPARalpha discloses anti-inflammatory property and PPARgamma discloses anti-inflammatory, antifibrogenic and antiproliferative properties in the liver. Main available agonists are fibrates (PPARalpha) used for 20 years in cases of lipid metabolism abnormalities and glitazones (PPARgamma) used since 2000 for type 2 diabetes. In terms of therapy, animal studies and human trials have been conducted in steatopathies. However, clinicians have to be aware of potential specific side effects related to glitazones especially on cardiovascular system.
Collapse
Affiliation(s)
- S Dharancy
- Inserm U795, Boulevard du Professeur-Jules-Leclercq, 59037 Lille, France.
| | | | | | | | | | | |
Collapse
|
30
|
Rombouts K, Lottini B, Caligiuri A, Liotta F, Mello T, Carloni V, Marra F, Pinzani M. MARCKS is a downstream effector in platelet-derived growth factor-induced cell motility in activated human hepatic stellate cells. Exp Cell Res 2008; 314:1444-54. [DOI: 10.1016/j.yexcr.2008.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
|
31
|
Mello T, Ceni E, Surrenti C, Galli A. Alcohol induced hepatic fibrosis: role of acetaldehyde. Mol Aspects Med 2007; 29:17-21. [PMID: 18164754 DOI: 10.1016/j.mam.2007.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 12/16/2022]
Abstract
Alcohol abuse is one of the major causes of liver fibrosis worldwide. Although the pathogenesis of liver fibrosis is a very complex phenomenon involving different molecular and biological mechanisms, several lines of evidence established that the first ethanol metabolite, acetaldehyde, plays a key role in the onset and maintenance of the fibrogenetic process. This review briefly summarizes the molecular mechanisms underlying acetaldehyde pro-fibrogenic effects. Liver fibrosis represents a general wound-healing response to a variety of insults. Although mortality due to alcohol abuse has been constantly decreasing in the past 20 years in Southern Europe and North America, in several Eastern-European countries and Great Britain Alcoholic Liver Disease (ALD) shows a sharply increasing trend [Bosetti, C., Levi, F., Lucchini, F., Zatonski, W.A., Negri, E., La, V.C., 2007. Worldwide mortality from cirrhosis: an update to 2002. J. Hepatol. 46, 827-839]. ALD has a complex pathogenesis, in which acetaldehyde (AcCHO), the major ethanol metabolite, plays a central role. Ethanol is mainly metabolized in the liver by two oxidative pathways. In the first one ethanol is oxidized to acetaldehyde by the cytoplasmic alcohol dehydrogenase enzyme (ADH), acetaldehyde is then oxidized to acetic acid by the mitochondrial acetaldehyde dehydrogenase (ALDH). The second pathway is inducible and involves the microsomal ethanol-oxidizing system (MEOS), in which the oxidation of ethanol to acetaldehyde and acetic acid also leads to generation of reactive oxygen species (ROS). Chronic ethanol consumption significantly inhibits mitochondrial ALDH activity while the rate of ethanol oxidation to acetaldehyde is even enhanced, resulting in a striking increase of tissue and plasma acetaldehyde levels [Lieber, C.S., 1997. Ethanol metabolism, cirrhosis and alcoholism. Clin. Chim. Acta 257, 59-84]. This review will focus on the molecular mechanisms by which acetaldehyde promote liver fibrosis.
Collapse
Affiliation(s)
- Tommaso Mello
- Gastroenterology Unit, Department of Clinical Pathophysiology, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
32
|
Abstract
Portal hypertension is associated with changes in the intrahepatic, systemic, and portosystemic collateral circulation. Alterations in vasoreactivity (vasodilation and vasoconstriction) play a central role in the pathogenesis of portal hypertension by contributing to increased intrahepatic resistance, hyperdynamic circulation, and expansion of the collateral circulation. Portal hypertension is also importantly characterized by changes in vascular structure; termed vascular remodeling, which is an adaptive response of the vessel wall that occurs in response to chronic changes in the environment such as shear stress. These complementary processes of vasoreactivity and vascular remodeling contribute importantly to increased intrahepatic resistance and represent important targets in the treatment of portal hypertension. This review will focus on these processes within the intrahepatic circulation, a circulatory bed whose study, that Dr Roberto Groszmann has pioneered.
Collapse
|