1
|
Zaradzki M, Rehberg F, Zwaans V, Hecker M, Karck M, Arif R, Soethoff JP, Wagner AH. Stabilisation of extracellular matrix is crucial to rapamycin-mediated life span increase in Marfan mgR/mgR mice. Biochem Pharmacol 2025; 235:116830. [PMID: 40021021 DOI: 10.1016/j.bcp.2025.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Marfan syndrome is a hereditary connective tissue disorder caused by heterozygous mutations in the fibrillin-1 gene (FBN1) and altered TGF-β signalling. Life-threatening complications involve thoracic aortic aneurysms (TAA) and dissections due to the disruption of microfibrillar assembly in the aortic wall. We previously demonstrated that Rapamycin, a typical mTOR pathway inhibitor, limits the ascending aorta elastolysis and expansion, significantly increasing lifespan in an established murine model of Marfan syndrome (Zaradzki et al., Biochem Pharmacol 2022). This study aimed to investigate how mTOR inhibition stabilises the aorta in fibrillin-1 hypomorphic mgR/mgR mice and previously observed increased life expectancy. We used antibody microarrays to detect protein expression in the proximal thoracic aorta of sham or rapamycin-treated male and female mgR/mgR mice immediately after the two-week treatment. Immunofluorescence staining was performed to visualize and quantify protein expression in the ascending thoracic aorta and arch four weeks after the short-term rapamycin treatment was completed. We showed that rapamycin significantly increased the abundance of extracellular matrix (ECM) proteins like cytokeratin-18 and betaglycan, also known as the TGF-β type 3 receptor (TGFBR3). In addition, it raises the abundance of aggrecanase-2 (ADAMTS5) and xylosyltransferase-1 proteins, enzymes involved in ECM remodelling and homeostasis. In conclusion, rapamycin affects the composition and organization of key ECM components, which determine the structure-function relationships in the aorta, thereby maintaining the balance critical for the increase in life expectancy. Using mTOR modulators for targeted therapy may help to prevent aortic complications of MFS and improve clinical outcomes.
Collapse
Affiliation(s)
- Marcin Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Franziska Rehberg
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Vanessa Zwaans
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Jasmin P Soethoff
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany.
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Chen Y, Yan Y, Li Y, Zhang L, Luo T, Zhu X, Qin D, Chen N, Huang W, Chen X, Wang L, Zhu X, Zhang L. Deletion of Tgm2 suppresses BMP-mediated hepatocyte-to-cholangiocyte metaplasia in ductular reaction. Cell Prolif 2024; 57:e13646. [PMID: 38623945 PMCID: PMC11471396 DOI: 10.1111/cpr.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.
Collapse
Affiliation(s)
- Yaqing Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yi Yan
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yujing Li
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Liang Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Tingting Luo
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Xinlong Zhu
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Dan Qin
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Ning Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Wendong Huang
- Department of Diabetes Complications and MetabolismDiabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Liqiang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Xianmin Zhu
- Department of Hepatobiliary and Pancreatic SurgeryCancer Hospital of Wuhan University (Hubei Cancer Hospital)WuhanChina
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
3
|
Qian H, Ding WX. SQSTM1/p62 and Hepatic Mallory-Denk Body Formation in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1415-1426. [PMID: 36906265 PMCID: PMC10642158 DOI: 10.1016/j.ajpath.2023.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Sequestosome 1 (SQSTM1/p62; hereafter p62) is an autophagy receptor protein for selective autophagy primarily due to its direct interaction with the microtubule light chain 3 protein that specifically localizes on autophagosome membranes. As a result, impaired autophagy leads to the accumulation of p62. p62 is also a common component of many human liver disease-related cellular inclusion bodies, such as Mallory-Denk bodies, intracytoplasmic hyaline bodies, α1-antitrypsin aggregates, as well as p62 bodies and condensates. p62 also acts as an intracellular signaling hub, and it involves multiple signaling pathways, including nuclear factor erythroid 2-related factor 2, NF-κB, and the mechanistic target of rapamycin, which are critical for oxidative stress, inflammation, cell survival, metabolism, and liver tumorigenesis. This review discusses the recent insights of p62 in protein quality control, including the role of p62 in the formation and degradation of p62 stress granules and protein aggregates as well as regulation of multiple signaling pathways in the pathogenesis of alcohol-associated liver disease.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
4
|
Tatsukawa H, Hitomi K. Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis. Cells 2021; 10:cells10071842. [PMID: 34360011 PMCID: PMC8307792 DOI: 10.3390/cells10071842] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslinking between Gln and Lys residues and involved in various pathophysiological events. Besides this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular localization and biological activity, leading to cell death or survival. In normal unstressed cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open conformation, demonstrating a transamidase activity involved in cell death or survival. These functional discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial roles of TG2, focusing on cell death/survival and fibrosis.
Collapse
|
5
|
Effects of butylparaben on antioxidant enzyme activities and histopathological changes in rat tissues. Arh Hig Rada Toksikol 2020; 70:315-324. [PMID: 32623865 DOI: 10.2478/aiht-2019-70-3342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
Butyl p-hydroxybenzoic acid, also known as butylparaben (BP), is one of the most common parabens absorbed by the skin and gastrointestinal tract and metabolised in the liver and kidney. Recent in vivo and in vitro studies have raised concern that BP causes reproductive, development, and teratogenic toxicity. However, BP-induced oxidative stress and its relation to tissue damage has not been widely investigated before. Therefore, we aimed to investigate the effects of butyl 4-hydroxybenzoate on enzyme activities related to the pentose phosphate pathway and on glutathione-dependent enzymes such as glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) in kidney, liver, brain, and testis tissues. Male rats were randomly divided into four groups to orally receive corn oil (control) or 200, 400, or 800 mg/kg/day of BP for 14 days. Then we measured G6PD, GR, GST, 6-PGD, and GPx enzyme activities in these tissues and studied histopathological changes. BP treatment caused imbalance in antioxidant enzyme activities and tissue damage in the liver, kidney, brain, and testis. These findings are the first to show the degenerative role of BP on the cellular level. The observed impairment of equivalent homeostasis and antioxidant defence points to oxidative stress as a mechanism behind tissue damage caused by BP.
Collapse
|
6
|
D'Eletto M, Rossin F, Fedorova O, Farrace MG, Piacentini M. Transglutaminase type 2 in the regulation of proteostasis. Biol Chem 2019; 400:125-140. [PMID: 29908126 DOI: 10.1515/hsz-2018-0217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
The maintenance of protein homeostasis (proteostasis) is a fundamental aspect of cell physiology that is essential for the survival of organisms under a variety of environmental and/or intracellular stress conditions. Acute and/or persistent stress exceeding the capacity of the intracellular homeostatic systems results in protein aggregation and/or damaged organelles that leads to pathological cellular states often resulting in cell death. These events are continuously suppressed by a complex macromolecular machinery that uses different intracellular pathways to maintain the proteome integrity in the various subcellular compartments ensuring a healthy cellular life span. Recent findings have highlighted the role of the multifunctional enzyme type 2 transglutaminase (TG2) as a key player in the regulation of intracellular pathways, such as autophagy/mitophagy, exosomes formation and chaperones function, which form the basis of proteostasis regulation under conditions of cellular stress. Here, we review the role of TG2 in these stress response pathways and how its various enzymatic activities might contributes to the proteostasis control.
Collapse
Affiliation(s)
- Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Olga Fedorova
- Institute of Cytology, 194064 Saint-Petersburg, Russia
| | - Maria Grazia Farrace
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy.,National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', I-00149 Rome, Italy
| |
Collapse
|
7
|
High-fat and high-cholesterol diet decreases phosphorylated inositol-requiring kinase-1 and inhibits autophagy process in rat liver. Sci Rep 2019; 9:12514. [PMID: 31467308 PMCID: PMC6715744 DOI: 10.1038/s41598-019-48973-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
Precise molecular pathways involved in the progression of non-alcoholic steatohepatitis (NASH) remain to be elucidated. As Mallory–Denk bodies were occasionally observed in the enlarged hepatocytes in NASH model rat (SHRSP5/Dmcr) fed high-fat and high-cholesterol (HFC) diet, we aimed to clarify the roles of autophagy and endoplasmic reticulum (ER) stress in NASH progression. Male SHRSP5/Dmcr were randomly divided into 4 groups. Two groups were fed a control diet; the other two groups were fed a HFC diet for 2 and 8 weeks, respectively. The HFC diet increased the autophagy-related proteins levels and microtubule-associated protein 1 light chain 3-II/I ratio after 2 and 8 weeks, respectively. However, regarding ER stress-related proteins, the HFC diet decreased the levels of phosphorylated (p-) inositol-requiring kinase-1 (p-IRE-1) and p-protein kinase RNA-like ER kinase after 2 weeks. Additionally, the HFC diet increased anti-ubiquitin-positive cells and the level of the autophagy substrate p62, suggesting that the HFC diet induced dysfunction in ubiquitin-dependent protein degradation pathways. In conclusion, the HFC diet arrested the autophagy process in the liver; this was particularly associated with decreases in p-IRE-1 expression.
Collapse
|
8
|
Omary MB. Intermediate filament proteins of digestive organs: physiology and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G628-G634. [PMID: 28360031 PMCID: PMC5495917 DOI: 10.1152/ajpgi.00455.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023]
Abstract
Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Molecular and Integrative Physiology and Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Tatsukawa H, Tani Y, Otsu R, Nakagawa H, Hitomi K. Global identification and analysis of isozyme-specific possible substrates crosslinked by transglutaminases using substrate peptides in mouse liver fibrosis. Sci Rep 2017; 7:45049. [PMID: 28327670 PMCID: PMC5361200 DOI: 10.1038/srep45049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/17/2017] [Indexed: 12/16/2022] Open
Abstract
The transglutaminase (TG) family comprises eight isozymes that form the isopeptide bonds between glutamine and lysine residues and contribute to the fibrotic diseases via crosslinking-mediated stabilization of ECM and the activation of TGF-β in several tissues. However, despite a growing body of evidence implicating TG2 as a key enzyme in fibrosis, the causative role of TG2 and the involvement of the other isozymes have not yet been fully elucidated. Therefore, here we clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific possible substrates for both TG1 and TG2 using their substrate peptides in mouse fibrotic liver. We found that TG1 activity was markedly enhanced intracellularly over a widespread area, whereas TG2 activity increased in the extracellular space. In total, 43 and 42 possible substrates were identified for TG1 and TG2, respectively, as involved in chromatin organization and cellular component morphogenesis. These included keratin 18, a biomarker for hepatic injury, which was accumulated in the fibrotic liver and showed the partly similar distribution with TG1 activity. These findings suggest that TG1 activity may be involved in the functional modification of intracellular proteins, whereas TG2 activity contributes to the stabilization of extracellular proteins during liver fibrosis.
Collapse
Affiliation(s)
- Hideki Tatsukawa
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Yuji Tani
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Risa Otsu
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Haruka Nakagawa
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Kiyotaka Hitomi
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
10
|
Consequences of Keratin Phosphorylation for Cytoskeletal Organization and Epithelial Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 330:171-225. [DOI: 10.1016/bs.ircmb.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Lahiri P, Schmidt V, Smole C, Kufferath I, Denk H, Strnad P, Rülicke T, Fröhlich LF, Zatloukal K. p62/Sequestosome-1 Is Indispensable for Maturation and Stabilization of Mallory-Denk Bodies. PLoS One 2016; 11:e0161083. [PMID: 27526095 PMCID: PMC4985067 DOI: 10.1371/journal.pone.0161083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/31/2016] [Indexed: 11/19/2022] Open
Abstract
Mallory-Denk bodies (MDBs) are hepatocytic protein aggregates found in steatohepatitis and several other chronic liver diseases as well as hepatocellular carcinoma. MDBs are mainly composed of phosphorylated keratins and stress protein p62/Sequestosome-1 (p62), which is a common component of cytoplasmic aggregates in a variety of protein aggregation diseases. In contrast to the well-established role of keratins, the role of p62 in MDB pathogenesis is still elusive. We have generated total and hepatocyte-specific p62 knockout mice, fed them with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to induce MDBs and allowed the mice to recover from DDC intoxication on a standard diet to investigate the role of p62 in MDB formation and elimination. In the absence of p62, smaller, granular and less distinct MDBs appeared, which failed to mature to larger and compact inclusions. Moreover, p62 deficiency impaired the binding of other proteins such as NBR1 and Hsp25 to MDBs and altered the cellular defense mechanism by downregulation of Nrf2 target genes. Upon recovery from DDC intoxication on a standard diet, there was an enhanced reduction of p62-deficient MDBs, which was accompanied by a pronounced decrease in ubiquitinated proteins. Our data provide strong evidence that keratin aggregation is the initial step in MDB formation in steatohepatitis-related mouse models. Interaction of p62 with keratin aggregates then leads to maturation i.e., enlargement and stabilization of the MDBs as well as recruitment of other MDB-associated proteins.
Collapse
Affiliation(s)
- Pooja Lahiri
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Volker Schmidt
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Smole
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Kufferath
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Pavel Strnad
- IZKF and Department of Internal Medicine III, Aachen, Germany
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
12
|
Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 2016; 7:e2244. [PMID: 27253408 PMCID: PMC5143380 DOI: 10.1038/cddis.2016.150] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca2+-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies.
Collapse
Affiliation(s)
- H Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Y Furutani
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - K Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - S Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| |
Collapse
|
13
|
|
14
|
Snider NT, Omary MB. Assays for Posttranslational Modifications of Intermediate Filament Proteins. Methods Enzymol 2015; 568:113-38. [PMID: 26795469 DOI: 10.1016/bs.mie.2015.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intermediate filament (IF) proteins are known to be regulated by a number of posttranslational modifications (PTMs). Phosphorylation is the best-studied IF PTM, whereas ubiquitination, sumoylation, acetylation, glycosylation, ADP-ribosylation, farnesylation, and transamidation are less understood in functional terms but are known to regulate specific IFs under various contexts. The number and diversity of IF PTMs is certain to grow along with rapid advances in proteomic technologies. Therefore, the need for a greater understanding of the implications of PTMs to the structure, organization, and function of the IF cytoskeleton has become more apparent with the increased availability of data from global profiling studies of normal and diseased specimens. This chapter will provide information on established methods for the isolation and monitoring of IF PTMs along with the key reagents that are necessary to carry out these experiments.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Honma Y, Harada M. New therapeutic strategy for hepatocellular carcinoma by molecular targeting agents via inhibition of cellular stress defense mechanisms. J UOEH 2014; 36:229-235. [PMID: 25501753 DOI: 10.7888/juoeh.36.229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The prognosis of advanced hepatocellular carcinoma (HCC) has remained very poor.It has recently been reported that the molecular targeting agent sorafenib can improve the prognosis of patients with advanced HCC. However, the detailed mechanisms of sorafenib, especially its direct effects on hepatoma and hepatocyte cells, are poorly understood, making a more detailed investigation about the molecular mechanism of sorafenib necessary. Endoplasmic reticulum (ER) stress is related to the pathophysiology of various liver diseases, including chronic viral hepatitis, alcoholic and nonalcoholic steatohepatitis and HCC. In this regard, our recent data examining the molecular effects of sorafenib focused on the cellular defense mechanisms from ER stress, the unfolded protein response (UPR) and keratin phosphorylation, demonstrated that sorafenib inhibited both important cytoprotective mechanisms, UPR and keratin phosphorylation, and enhances the anti-tumor effect in combination with proteasome inhibitors. This review summarizes the cytoprotective mechanisms from ER stress and our results about the direct effect of sorafenib on the cytoprotective mechanisms.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | | |
Collapse
|
16
|
Kucukoglu O, Guldiken N, Chen Y, Usachov V, El-Heliebi A, Haybaeck J, Denk H, Trautwein C, Strnad P. High-fat diet triggers Mallory-Denk body formation through misfolding and crosslinking of excess keratin 8. Hepatology 2014; 60:169-78. [PMID: 24519272 DOI: 10.1002/hep.27068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/06/2014] [Indexed: 01/11/2023]
Abstract
UNLABELLED Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated keratins 8/18 (K8/K18). MDBs are characteristic of alcoholic and nonalcoholic steatohepatitis (NASH) and discriminate between the relatively benign simple steatosis and the more aggressive NASH. Given the emerging evidence for a genetic predisposition to MDB formation and NASH development in general, we studied whether high-fat (HF) diet triggers MDB formation and liver injury in susceptible animals. Mice were fed a high-fat (HF) or low-fat (LF) diet plus a cofactor for MDB development, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Additionally, we fed nontransgenic and K8 overexpressing mice (K8tg) with the HF diet. The presence of MDB and extent of liver injury was evaluated using biochemical markers, histological staining, and immunofluorescence microscopy. In DDC-fed animals, an HF diet resulted in greater liver injury and up-regulation of inflammation-related genes. As a potential mechanism, K8/K18 accumulation and increased ecto-5'-nucleotidase (CD73) levels were noted. In the genetically susceptible K8tg mice, HF diet triggered hepatocellular injury, ballooning, apoptosis, inflammation, and MDB development by way of 1) decreased expression of the major stress-inducible chaperone Hsp72 with appearance of misfolded keratins; 2) elevated levels of the transglutaminase 2 (TG2); 3) increased K8 phosphorylation at S74 with subsequent TG2-mediated crosslinking of phosphorylated K8; and 4) higher production of the MDB-modifier gene CD73. CONCLUSION Our data demonstrate that HF diet triggers aggregate formation and development of liver injury in susceptible individuals through misfolding and crosslinking of excess K8.
Collapse
Affiliation(s)
- Ozlem Kucukoglu
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Snider NT, Omary MB. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 2014; 15:163-77. [PMID: 24556839 PMCID: PMC4079540 DOI: 10.1038/nrm3753] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on-off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.
Collapse
Affiliation(s)
- Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
18
|
Bains W. Transglutaminse 2 and EGGL, the protein cross-link formed by transglutaminse 2, as therapeutic targets for disabilities of old age. Rejuvenation Res 2013; 16:495-517. [PMID: 23968147 PMCID: PMC3869435 DOI: 10.1089/rej.2013.1452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/22/2013] [Indexed: 12/17/2022] Open
Abstract
Aging of the extracellular matrix (ECM), the protein matrix that surrounds and penetrates the tissues and binds the body together, contributes significantly to functional aging of tissues. ECM proteins become increasingly cross-linked with age, and this cross-linking is probably important in the decline of the ECM's function. This article reviews the role of ε-(γ-glutamyl)-lysine (EGGL), a cross-link formed by transglutaminase enzymes, and particularly the widely expressed isozyme transglutaminase 2 (TG2), in the aging ECM. There is little direct data on EGGL accumulation with age, and no direct evidence of a role of EGGL in the aging of the ECM with pathology. However, several lines of circumstantial evidence suggest that EGGL accumulates with age, and its association with pathology suggests that this might reflect degradation of ECM function. TG activity increases with age in many circumstances. ECM protein turnover is such that some EGGL made by TG is likely to remain in place for years, if not decades, in healthy tissue, and both EGGL and TG levels are enhanced by age-related diseases. If further research shows EGGL does accumulate with age, removing it could be of therapeutic benefit. Also reviewed is the blockade of TG and active removal of EGGL as therapeutic strategies, with the conclusion that both have promise. EGGL removal may have benefit for acute fibrotic diseases, such as tendinopathy, and for treating generalized decline in ECM function with old age. Extracellular TG2 and EGGL are therefore therapeutic targets both for specific and more generalized diseases of aging.
Collapse
Affiliation(s)
- William Bains
- SRF Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
19
|
Snider NT, Griggs NW, Singla A, Moons DS, Weerasinghe SV, Lok AS, Ruan C, Burant CF, Conjeevaram HS, Omary MB. CD73 (ecto-5'-nucleotidase) hepatocyte levels differ across mouse strains and contribute to mallory-denk body formation. Hepatology 2013; 58:1790-800. [PMID: 23729294 PMCID: PMC3796030 DOI: 10.1002/hep.26525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/10/2013] [Indexed: 01/22/2023]
Abstract
UNLABELLED Formation of hepatocyte Mallory-Denk bodies (MDBs), which are aggregates of keratins 8 and 18 (K8/K18), ubiquitin, and the ubiquitin-binding protein, p62, has a genetic predisposition component in humans and mice. We tested the hypothesis that metabolomic profiling of MDB-susceptible C57BL and MDB-resistant C3H mouse strains can illuminate MDB-associated pathways. Using both targeted and unbiased metabolomic analyses, we demonstrated significant differences in intermediates of purine metabolism. Further analysis revealed that C3H and C57BL livers differ significantly in messenger RNA (mRNA) level, protein expression, and enzymatic activity of the adenosine-generating enzyme, ecto-5'-nucleotidase (CD73), which was significantly lower in C57BL livers. CD73 mRNA levels were also dramatically decreased in human liver biopsies from hepatitis C and nonalcoholic fatty liver disease patients. Feeding mice with a diet containing the MDB-inducing agent, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), significantly decreased CD73 protein and activity in C57BL livers and resulted in loss of plasma membrane CD73 expression and activity in isolated mouse hepatocytes. To further examine the role of CD73 in MDB formation in vivo, we fed wild-type (WT) and CD73(-/-) mice a DDC-containing diet. Liver enlargement, p62 induction, and disappearance of the K8/K18 cytoskeleton were attenuated in CD73(-/-) , compared to WT livers. MDB formation, as assessed by biochemical and immunofluorescence detection of keratin and ubiquitin complexes, was nearly absent in CD73(-/-) mice. CONCLUSION Purine metabolism and CD73 expression are linked to susceptibility to MDB formation in livers of different mouse strains. Expression of the adenosine-generating enzyme, CD73, contributes to experimental MDB induction and is highly regulated in MDB-associated liver injury in mice and in chronic human liver disease.
Collapse
Affiliation(s)
- Natasha T. Snider
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicholas W. Griggs
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Amika Singla
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David S. Moons
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sujith V.W. Weerasinghe
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anna S. Lok
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chunhai Ruan
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charles F. Burant
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hari S. Conjeevaram
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - M. Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
20
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Singla A, Griggs NW, Kwan R, Snider NT, Maitra D, Ernst SA, Herrmann H, Omary MB. Lamin aggregation is an early sensor of porphyria-induced liver injury. J Cell Sci 2013; 126:3105-12. [PMID: 23641075 PMCID: PMC3711202 DOI: 10.1242/jcs.123026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 01/06/2023] Open
Abstract
Oxidative liver injury during steatohepatitis results in aggregation and transglutaminase-2 (TG2)-mediated crosslinking of the keratin cytoplasmic intermediate filament proteins (IFs) to form Mallory-Denk body (MDB) inclusions. The effect of liver injury on lamin nuclear IFs is unknown, though lamin mutations in several human diseases result in lamin disorganization and nuclear shape changes. We tested the hypothesis that lamins undergo aggregation during oxidative liver injury using two MDB mouse models: (i) mice fed the porphyrinogenic drug 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and (ii) mice that harbor a mutation in ferrochelatase (fch), which converts protoporphyrin IX to heme. Dramatic aggregation of lamin A/C and B1 was noted in the livers of both models in association with changes in lamin organization and nuclear shape, as determined by immunostaining and electron microscopy. The lamin aggregates sequester other nuclear proteins including transcription factors and ribosomal and nuclear pore components into high molecular weight complexes, as determined by mass-spectrometry and confirmed biochemically. Lamin aggregate formation is rapid and precedes keratin aggregation in fch livers, and is seen in liver explants of patients with alcoholic cirrhosis. Exposure of cultured cells to DDC, protoporphyrin IX or N-methyl-protoporphyrin, or incubation of purified lamins with protoporphyrin IX, also results in lamin aggregation. In contrast, lamin aggregation is ameliorated by TG2 inhibition. Therefore, lamin aggregation is an early sensor of porphyria-associated liver injury and might serve to buffer oxidative stress. The nuclear shape and lamin defects associated with porphyria phenocopy the changes seen in laminopathies and could result in transcriptional alterations due to sequestration of nuclear proteins.
Collapse
Affiliation(s)
- Amika Singla
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicholas W. Griggs
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dhiman Maitra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephen A. Ernst
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Harald Herrmann
- Functional Architecture of the Cell Group, German Cancer Research Center, 69120 Heidelberg, Germany
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Singla A, Moons DS, Snider NT, Wagenmaker ER, Jayasundera VB, Omary MB. Oxidative stress, Nrf2 and keratin up-regulation associate with Mallory-Denk body formation in mouse erythropoietic protoporphyria. Hepatology 2012; 56:322-31. [PMID: 22334478 PMCID: PMC3389581 DOI: 10.1002/hep.25664] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/27/2012] [Indexed: 01/02/2023]
Abstract
UNLABELLED Mallory-Denk bodies (MDBs) are hepatocyte inclusions commonly seen in steatohepatitis. They are induced in mice by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 12 weeks, which also causes porphyrin accumulation. Erythropoietic protoporphyria (EPP) is caused by mutations in ferrochelatase (fch), and a fraction of EPP patients develop liver disease that is phenocopied in Fech(m1Pas) mutant (fch/fch) mice, which have an inactivating fch mutation. fch/fch mice develop spontaneous MDBs, but the molecular factors involved in their formation and whether they relate to DDC-induced MDBs are unknown. We tested the hypothesis that fch mutation creates a molecular milieu that mimics experimental drug-induced MDBs. In 13- and 20-week-old fch/fch mice, serum alkaline phosphatase, alanine aminotransferase, and bile acids were increased. The 13-week-old fch/fch mice did not develop histologically evident MDBs but manifested biochemical alterations required for MDB formation, including increased transglutaminase-2 and keratin overexpression, with a greater keratin 8 (K8)-to-keratin 18 (K18) ratio, which are critical for drug-induced MDB formation. In 20-week-old fch/fch mice, spontaneous MDBs were readily detected histologically and biochemically. Short-term (3-week) DDC feeding markedly induced MDB formation in 20-week-old fch/fch mice. Under basal conditions, old fch/fch mice had significant alterations in mitochondrial oxidative-stress markers, including increased protein oxidation, decreased proteasomal activity, reduced adenosine triphosphate content, and Nrf2 (redox sensitive transcription factor) up-regulation. Nrf2 knockdown in HepG2 cells down-regulated K8, but not K18. CONCLUSION Fch/fch mice develop age-associated spontaneous MDBs, with a marked propensity for rapid MDB formation upon exposure to DDC, and therefore provide a genetic model for MDB formation. Inclusion formation in the fch/fch mice involves oxidative stress which, together with Nrf2-mediated increase in K8, promotes MDB formation.
Collapse
Affiliation(s)
- Amika Singla
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - David S. Moons
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - Natasha T. Snider
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - Elizabeth R. Wagenmaker
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - V. Bernadene Jayasundera
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622
| | - M. Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622,Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5622,To whom correspondence should be addressed: Bishr Omary, University of Michigan Medical School, Department of Molecular & Integrative Physiology, 7744 Medical Science Building II, 1137 Catherine St., Ann Arbor, MI 48109, Phone: 734-764-4376, Fax: 734-936-8813,
| |
Collapse
|
23
|
Massironi S, Rossi RE, Fraquelli M, Bardella MT, Elli L, Maggioni M, Della Valle S, Spampatti MP, Colombo M, Conte D. Transient elastography in patients with celiac disease: a noninvasive method to detect liver involvement associated with celiac disease. Scand J Gastroenterol 2012; 47:640-648. [PMID: 22512436 DOI: 10.3109/00365521.2012.679683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liver involvement in celiac disease (CD) is clinically relevant and could require specific treatment in addition to gluten-free diet (GFD). Transient elastography (TE), a noninvasive tool for assessing liver stiffness (LS), has widely been reported as an accurate surrogate marker of liver fibrosis. AIMS To prospectively identify celiac patients with liver involvement by TE and to assess the effect of GFD. MATERIAL AND METHODS Ninety-five histologically confirmed CD patients (24 newly diagnosed) were consecutively evaluated by TE and compared with 146 patients with chronic hepatitis C (HCV) and 54 healthy subjects. RESULTS LS ranged between 2.8 and 6.7 kPa (median 4.9) in healthy subjects, defining 6.9 kPa as the upper reference limit (2 SD above the mean levels). TE was above 6.9 kPa in 10 (10.5%) CD patients. Median TE values resulted significantly higher in CD patients with hypertransaminasemia than those without [6.1 vs. 4.2 kPa (p < 0.01)]. Among the 24 newly diagnosed patients with CD, median TE values declined from 4.4 to 4 kPa, after 6 months of GFD, resulting below 6.9 kPa in 100% of the patients. CONCLUSIONS A subset of CD patients with hypertransaminasemia showed liver involvement by TE. Accordingly, based on its accuracy in predicting liver fibrosis, TE could be used to identify those CD patients suitable for liver biopsy.
Collapse
Affiliation(s)
- Sara Massironi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Gastroenterology Unit 2, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model. J Transl Med 2012; 92:857-67. [PMID: 22449798 DOI: 10.1038/labinvest.2012.49] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Keratin 8 (K8) and keratin 18 (K18) form the major hepatocyte cytoskeleton. We investigated the impact of genetic loss of either K8 or K18 on liver homeostasis under toxic stress with the hypothesis that K8 and K18 exert different functions. krt8⁻/⁻ and krt18⁻/⁻ mice crossed into the same 129-ola genetic background were treated by acute and chronic administration of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC). In acutely DDC-intoxicated mice, macrovesicular steatosis was more pronounced in krt8⁻/⁻ and krt18⁻/⁻ compared with wild-type (wt) animals. Mallory-Denk bodies (MDBs) appeared in krt18⁻/⁻ mice already at an early stage of intoxication in contrast to krt8⁻/⁻ mice that did not display MDB formation when fed with DDC. Keratin-deficient mice displayed significantly lower numbers of apoptotic hepatocytes than wt animals. krt8⁻/⁻, krt18⁻/⁻ and control mice displayed comparable cell proliferation rates. Chronically DDC-intoxicated krt18⁻/⁻ and wt mice showed a similarly increased degree of steatohepatitis with hepatocyte ballooning and MDB formation. In krt8⁻/⁻ mice, steatosis was less, ballooning, and MDBs were absent. krt18⁻/⁻ mice developed MDBs whereas krt8⁻/⁻ mice on the same genetic background did not, highlighting the significance of different structural properties of keratins. They are independent of the genetic background as an intrinsic factor. By contrast, toxicity effects may depend on the genetic background. krt8⁻/⁻ and krt18⁻/⁻ mice on the same genetic background show similar sensitivity to DDC intoxication and almost resemble wt animals regarding survival, degree of porphyria, liver-to-body weight ratio, serum bilirubin and liver enzyme levels. This stands in contrast to previous work where krt8⁻/⁻ and krt18⁻/⁻ mice on different genetic backgrounds were investigated.
Collapse
|
25
|
Kuo TF, Tatsukawa H, Matsuura T, Nagatsuma K, Hirose S, Kojima S. Free fatty acids induce transglutaminase 2-dependent apoptosis in hepatocytes via ER stress-stimulated PERK pathways. J Cell Physiol 2012; 227:1130-7. [PMID: 21567402 DOI: 10.1002/jcp.22833] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Non-alcoholic steatohepatitis (NASH), a progressive form of fatty liver, shares histological similarities with alcoholic steatohepatitis (ASH), including accumulated fat, hepatic apoptosis, and fibrous tissues in the liver, but the molecular mechanisms responsible for hepatic apoptosis remain unclear. We previously reported that transglutaminase 2 (TG2), induced in the nuclei of ethanol-treated hepatocytes, crosslinks and inactivates the transcription factor Sp1, leading to hepatic apoptosis. In this study, we investigated whether a similar change is involved in NASH, and if so, how TG2 and crosslinked Sp1 (CLSp1) are induced. Elevated nuclear TG2 and CLSp1 formation was demonstrated in NASH patients, as well as increased activation of apoptosis inducing factor (AIF) and release of cytochrome c. In Hc human normal hepatocytes treated with free fatty acids (FFAs), biochemical analyses revealed that ethanol and FFAs provoked fat accumulation, endoplasmic reticulum (ER) stress, increased nuclear factor kappa B (NFκB), and nuclear TG2. Salubrinal, a selective inhibitor of the ER stress-induced pancreatic ER kinase (PERK) signaling pathway, inhibited NFκB activation, nuclear TG2 expression, and apoptosis only if it was induced by FFAs, but not by ethanol. These results suggest that FFAs could increase ER stress and lead to nuclear NFκB activation and TG2 induction through PERK-dependent pathways, resulting in TG2-mediated apoptosis accompanying crosslinking and inactivation of Sp1, activation of AIF, and release of cytochrome c.
Collapse
Affiliation(s)
- Ting-Fang Kuo
- Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Hanada S, Harada M, Abe M, Akiba J, Sakata M, Kwan R, Taniguchi E, Kawaguchi T, Koga H, Nagata E, Ueno T, Sata M. Aging modulates susceptibility to mouse liver Mallory-Denk body formation. J Histochem Cytochem 2012; 60:475-83. [PMID: 22473941 DOI: 10.1369/0022155412441478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mallory-Denk bodies (MDBs) are hepatocyte cytoplasmic inclusions found in several liver diseases and consist primarily of the cytoskeletal proteins, keratins 8 and 18 (K8/K18). Recent evidence indicates that the extent of stress-induced protein misfolding, a K8>K18 overexpression state, and transglutaminase-2 activation promote MDB formation. In addition, the genetic background and gender play an important role in mouse MDB formation, but the effect of aging on this process is unknown. Given that oxidative stress increases with aging, the authors hypothesized that aging predisposes to MDB formation. They used an established mouse MDB model-namely, feeding non-transgenic male FVB/N mice (1, 3, and 8 months old) with 3,5 diethoxycarbonyl-1,4-dihydrocollidine for 2 months. MDB formation was assessed using immunofluorescence staining and biochemically by demonstrating keratin and ubiquitin-containing crosslinks generated by transglutaminase-2. Immunofluorescence staining showed that old mice had a significant increase in MDB formation compared with young mice. MDB formation paralleled the generation of high molecular weight ubiquitinated keratin-containing complexes and induction of p62. Old mouse livers had increased oxidative stress. In addition, 20S proteasome activity and autophagy were decreased, and endoplasmic reticulum stress was increased in older livers. Therefore, aging predisposes to experimental MDB formation, possibly by decreased activity of protein degradation machinery.
Collapse
Affiliation(s)
- Shinichiro Hanada
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Österreicher CH, Trauner M. Xenobiotic-induced liver injury and fibrosis. Expert Opin Drug Metab Toxicol 2012; 8:571-80. [PMID: 22452290 DOI: 10.1517/17425255.2012.674511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Many different drugs and xenobiotics (chemical compounds foreign to an organism) can injure the bile duct epithelium and cause inflammatory bile duct diseases (cholangiopathies) ranging from transient cholestasis to vanishing bile duct syndrome, sclerosing cholangitis with development of biliary fibrosis and cirrhosis. Animal models of xenobiotic-induced liver injury have provided major mechanistic insights into the molecular mechanisms of xenobiotic-induced cholangiopathies and biliary fibrosis including primary biliary cirrhosis and primary sclerosing cholangitis. AREAS COVERED In this review, the authors discuss the basic principles of xenobiotic-induced liver and bile duct injury and biliary fibrosis with emphasis on animal models. A PubMed search was performed using the search terms "xenobiotic," "liver injury," "cholestasis," and "biliary fibrosis." Reference lists of retrieved articles were also searched for relevant literature. EXPERT OPINION Xenobiotic-induced cholangiopathies are underestimated and frequently overlooked medical conditions due to their often transient nature. However, biliary disease may progress to vanishing bile duct syndrome, biliary fibrosis, and cirrhosis. Moreover, xenobiotics may prime the liver for subsequent liver disease by other agents and may also contribute to the development of hepatobiliary cancer though interaction with resident stem cells.
Collapse
Affiliation(s)
- Christoph H Österreicher
- Medical University of Vienna, Institute of Pharmacology, Center for Physiology and Pharmacology, Vienna, Austria
| | | |
Collapse
|
28
|
Kojima S, Kuo TF, Tatsukawa H. Regulation of transglutaminase-mediated hepatic cell death in alcoholic steatohepatitis and non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2012; 27 Suppl 2:52-7. [PMID: 22320917 DOI: 10.1111/j.1440-1746.2011.07009.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIM Transglutaminase 2 (TG2), catalyzing crosslinking between lysine and glutamine residues, is involved in many liver diseases. We previously reported that TG2, induced in the nucleus of ethanol- or free fatty acids (FFAs)-treated hepatic cells, crosslinks and inactivates a transcription factor Sp1, leading to reduced expression of c-Met and thereby caspase independent hepatic apoptosis in culture systems, animal models, and both alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) patients. FFAs increase endoplasmic reticulum (ER) stress, NFkB activation and nuclear TG2 (nTG2) through pancreatic ER kinase (PERK)-dependent pathway, whereas ethanol induces nTG2 via retinoid signaling. However, the molecular mechanism by which ethanol/FFAs induce nuclear localization of TG2 has been unclear. METHOD A similar nTG2-mediated cell death is induced in acyclic retinoid (ACR)-treated hepatocellular carcinoma. Using cultured cells, we investigated how to control this novel apoptotic pathway by regulating nuclear localization of TG2. RESULTS TG2 is composed of N-terminal b-sandwich, catalytic core, b-barrel 1, and C-terminal b-barrel 2 domains. In a previous work, we identified a 14 amino acid nuclear localization signal (NLS) within the b-barrel 1 domain and a putative leucine-rich nuclear export signal (NES) at position 657 to 664 (LHMGLHKL) near the C-terminus in the b-barrel 2 domain, and found that ACR downregulated exportin-1 levels, thereby accumulation of TG2 in the nucleus. Here, we found that both ethanol and FFAs provoked generation of truncated short form of TG2 (TG2-S) defects in the putative NES at least in part through alternative splicing, thereby causing accumulation of TG2-S in the nucleus. CONCLUSION The generation of TG2-S in ethanol or FFAs-treated hepatic cells is a novel therapeutic target for prevention of hepatic cell death associated with ASH/NASH.
Collapse
Affiliation(s)
- Soichi Kojima
- Molecular Ligand Biology Research Team, Chemical Genomics Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, Saitama, Japan.
| | | | | |
Collapse
|
29
|
Kwan R, Hanada S, Harada M, Strnad P, Li DH, Omary MB. Keratin 8 phosphorylation regulates its transamidation and hepatocyte Mallory-Denk body formation. FASEB J 2012; 26:2318-26. [PMID: 22362895 DOI: 10.1096/fj.11-198580] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mallory-Denk bodies (MDBs) are hepatocyte inclusions that are associated with poor liver disease prognosis. The intermediate filament protein keratin 8 (K8) and its cross-linking by transglutaminase-2 (TG2) are essential for MDB formation. K8 hyperphosphorylation occurs in association with liver injury and MDB formation, but the link between keratin phosphorylation and MDB formation is unknown. We used a mutational approach to identify K8 Q70 as a residue that is important for K8 cross-linking to itself and other liver proteins. K8 cross-linking is markedly enhanced on treating cells with a phosphatase inhibitor and decreases dramatically on K8 S74A or Q70N mutation in the presence of phosphatase inhibition. K8 Q70 cross-linking, in the context of synthetic peptides or intact proteins transfected into cells, is promoted by phosphorylation at K8 S74 or by an S74D substitution and is inhibited by S74A mutation. Transgenic mice that express K8 S74A or a K8 G62C liver disease variant that inhibits K8 S74 phosphorylation have a markedly reduced ability to form MDBs. Our findings support a model in which the stress-triggered phosphorylation of K8 S74 induces K8 cross-linking by TG2, leading to MDB formation. These findings may extend to neuropathies and myopathies that are characterized by intermediate filament-containing inclusions.
Collapse
Affiliation(s)
- Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
31
|
Király R, Demény M, Fésüs L. Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein. FEBS J 2011; 278:4717-39. [PMID: 21902809 DOI: 10.1111/j.1742-4658.2011.08345.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transglutaminase 2 (TG2) is the first described cellular member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. During the last two decades its additional enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, protein kinase) and non-enzymatic (multiple interactions in protein scaffolds) activities, which do not require Ca(2+) , have been recognized. It became a prevailing view that TG2 is silent as a transamidase, except in extreme stress conditions, in the intracellular environment characterized by low Ca(2+) and high GTP concentrations. To counter this presumption a critical review of the experimental evidence supporting the role of this enzymatic activity in cellular processes is provided. It includes the structural basis of TG2 regulation through non-canonical Ca(2+) binding sites, mechanisms making it sensitive to low Ca(2+) concentrations, techniques developed for the detection of protein transamidation in cells and examples of basic cellular phenomena as well as pathological conditions influenced by this irreversible post-translational protein modification.
Collapse
Affiliation(s)
- Róbert Király
- Department of Biochemistry and Molecular Biology, Apoptosis and Genomics Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
32
|
Hoffner G, Vanhoutteghem A, André W, Djian P. Transglutaminase in epidermis and neurological disease or what makes a good cross-linking substrate. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:97-160. [PMID: 22220473 DOI: 10.1002/9781118105771.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guylaine Hoffner
- Unité Propre de Recherche 2228 du Centre National de la Recherche Scientifique, Régulation de la Transcription et Maladies Génétiques, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
33
|
Gentile V. Physiopathological roles of human transglutaminase 2. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:47-95. [PMID: 22220472 DOI: 10.1002/9781118105771.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vittorio Gentile
- Department of Biochemistry and Biophysics, Medical School, Second University of Naples, Naples, Italy
| |
Collapse
|
34
|
Szondy Z, Korponay-Szabó I, Király R, Fésüs L. Transglutaminase 2 Dysfunctions in the Development of Autoimmune Disorders: Celiac Disease and TG2 −/−Mouse. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:295-345. [DOI: 10.1002/9781118105771.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Piacentini M, D'Eletto M, Falasca L, Farrace MG, Rodolfo C. Transglutaminase 2 at the crossroads between cell death and survival. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:197-246. [PMID: 22220475 DOI: 10.1002/9781118105771.ch5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | |
Collapse
|
36
|
Mahajan V, Klingstedt T, Simon R, Nilsson KPR, Thueringer A, Kashofer K, Haybaeck J, Denk H, Abuja PM, Zatloukal K. Cross β-sheet conformation of keratin 8 is a specific feature of Mallory-Denk bodies compared with other hepatocyte inclusions. Gastroenterology 2011; 141:1080-1090.e1-7. [PMID: 21699779 DOI: 10.1053/j.gastro.2011.05.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 05/09/2011] [Accepted: 05/20/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Mallory-Denk bodies (MDBs) are cytoplasmic protein aggregates in hepatocytes in steatohepatitis and other liver diseases. We investigated the molecular structure of keratin 8 (K8) and 18 (K18), sequestosome 1/p62, and ubiquitin, which are the major constituents of MDBs, to investigate their formation and role in disease pathogenesis. METHODS Luminescent conjugated oligothiophenes (LCOs), h-HTAA, and p-FTAA are fluorescent amyloid ligands that specifically bind proteins with cross β-sheet conformation. We used LCOs to investigate conformational changes in MDBs in situ in human and murine livers as well as in transfection studies. RESULTS LCO analysis showed cross β-sheet conformation in human MDBs from patients with alcoholic and nonalcoholic steatohepatitis or hepatocellular carcinoma, but not in intracellular hyaline bodies, α₁-antitrypsin deficiency, or ground-glass inclusions. LCOs bound to MDBs induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine feeding of mice at all developmental stages. CHO-K1 cells transfected with various combinations of SQSTM1/p62, ubi, and Krt8/Krt18 showed that K8 was more likely to have cross β-sheet conformation than K18, whereas p62 never had cross β-sheet conformation. The different conformational properties of K8 and K18 were also shown by circular dichroism analysis. CONCLUSIONS K8 can undergo conformational changes from predominantly α-helical to cross β-sheet, which would allow it to form MDBs. These findings might account for the observation that krt8⁻/⁻ mice do not form MDBs, whereas its excess facilitates MDB formation. LCOs might be used in diagnosis of liver disorders; they can be applied to formalin-fixed, paraffin-embedded tissues to characterize protein aggregates in liver cells.
Collapse
Affiliation(s)
- Vineet Mahajan
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kojima S, Kuo TF, Tatsukawa H, Hirose S. Induction of cross-linking and silencing of Sp1 by transglutaminase during liver injury in ASH and NASH via different ER stress pathways. Dig Dis 2011; 28:715-21. [PMID: 21525755 DOI: 10.1159/000324278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) share many histological similarities, but the molecular mechanisms responsible for hepatic apoptosis remain unclear. We previously reported that transglutaminase 2 (TG2), a protein cross-linking enzyme, is induced in the nucleus of ethanol-treated hepatocytes, and cross-links and inactivates a general transcription factor Sp1, which eventually leads to reduced expression of c-Met and caspase-independent hepatic apoptosis [Tatsukawa et al., Gastroenterology 2009;136:1783-1795]. In this study, we investigated if a similar change might be observed also in NASH and if yes how TG2 and cross-linked Sp1 (CLSp1) would be induced in NASH and ASH. We obtained elevated nuclear TG2 and CLSp1 formation in NASH patients, as well as in HepG2 cells treated with free fatty acids (FFAs). Biochemical analyses on this culture model revealed that both ethanol and FFAs provoked fat accumulation, endoplasmic reticulum (ER) stress, increased nuclear factor-κB (NFκB) and nuclear TG2, but the synergistic effect was not obvious between FFA and ethanol. Salubrinal, a selective inhibitor against dephosphorylation of eukaryotic initiation factor-2α in ER stress-induced pancreatic ER kinase (PERK) signal pathway, inhibited NFκB activation, nuclear TG2 expression and apoptosis only induced by FFAs, but not those induced by ethanol, while retinoid antagonist blocks ethanol induction of NFκB and TG2. These results suggest that FFA and ethanol may increase ER stress and lead to nuclear NFκB activation and TG2 induction through respectively distinctive pathways, leading to TG2-mediated apoptosis via cross-linking and inactivation of Sp1 and reduction in c-Met.
Collapse
Affiliation(s)
- Soichi Kojima
- Molecular Ligand Biology Research Team, Chemical Genomics Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Japan.
| | | | | | | |
Collapse
|
38
|
Molnar A, Haybaeck J, Lackner C, Strnad P. The cytoskeleton in nonalcoholic steatohepatitis: 100 years old but still youthful. Expert Rev Gastroenterol Hepatol 2011; 5:167-77. [PMID: 21476912 DOI: 10.1586/egh.11.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hepatocellular cytoskeleton consists of three filamentous systems: microfilaments, microtubules and keratins (Ks). While the alterations in microfilaments and microtubules during nonalcoholic steatohepatitis (NASH) are largely unexplored, K8/K18 reorganization into Mallory-Denk bodies (MDBs) represents a NASH hallmark, and serological K18 fragments constitute an established tool to monitor NASH severity. To commemorate the 100th anniversary of the first description of MDBs, this article summarizes the composition and function of the hepatocellular cytoskeleton, as well as the importance of cytoskeletal alterations in NASH. The significance of MDBs in clinical routine is illustrated, as are the findings from MDB mouse models, which shape our current view of MDB pathogenesis. Even after 100 years, the cytoskeleton represents a fascinating but greatly understudied area of NASH biology.
Collapse
Affiliation(s)
- Agnes Molnar
- Department of Internal Medicine I, University Hospital Ulm, Germany
| | | | | | | |
Collapse
|
39
|
Cochón AC, Miño LA, de Viale LCSM. Early increases in transglutaminase activity and polyamine levels in a Mallory-Denk body mouse model. Toxicol Lett 2010; 199:160-5. [PMID: 20832458 DOI: 10.1016/j.toxlet.2010.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
Abstract
Rodents treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) are a model of two hepatic toxic manifestations: porphyria and the appearance of hepatic cytoplasmic protein aggregates (Mallory-Denk Bodies, MDBs). MDBs are induced after long-term DDC feeding, consist primarily of keratins 8 and 18, and contain glutamine-lysine cross-links generated by transglutaminases (TGs). TGs are Ca(2+)-dependent enzymes which catalyze the formation of covalent bonds between proteins and between proteins and polyamines. The aim of the current study was to investigate the time-course of TG hepatic activity in CF1 male mice either acutely or chronically treated with DDC and to correlate this activity with polyamine and porphyrin levels. On day 3 of the treatment, statistically significant increases in TG activity (75%), porphyrin content (6740%) and spermidine levels (73%) were observed. Although not statistically significant, at this time point putrescine levels showed an increase of 52%. The highest TG activity was observed on day 30 (522%), while porphyrin levels were still gradually increasing by day 45 (37,000%). From day 7 of the treatment and until the end of the experiment, putrescine levels remained increased (781%). Spermine levels were not affected by the treatment. The DDC-induced increases in putrescine and spermidine levels herein reported seem to be an early event contributing to the stimulation of liver TG activity, and thus to the promotion of cross-linking reactions between keratin proteins. This in turn would contribute to the formation of protein aggregates, which would lead to the appearance of MDBs. Due to the pro-oxidant and antioxidant properties of polyamines, it is possible to speculate that putrescine and spermidine may also participate at several levels in the oxidative stress processes associated with MDB formation.
Collapse
Affiliation(s)
- Adriana C Cochón
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | |
Collapse
|
40
|
Kimura W, Alev C, Sheng G, Jakt M, Yasugi S, Fukuda K. Identification of region-specific genes in the early chicken endoderm. Gene Expr Patterns 2010; 11:171-80. [PMID: 21081180 DOI: 10.1016/j.gep.2010.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/05/2010] [Accepted: 11/10/2010] [Indexed: 11/29/2022]
Abstract
In vertebrates, the endoderm gives rise to the epithelial lining of the digestive tract, respiratory system and endocrine organs. After gastrulation, the newly formed endoderm gradually becomes regionalized and differentiates into specific organs. To understand the molecular basis of early endoderm regionalization, which is largely unknown, it is necessary to identify novel region-specific genes as candidates potentially involved in this process. Applying an Affymetrix Array based approach we aimed for the identification of genes specifically upregulated in the foregut or mid-/hindgut endoderm at the onset of regionalization. Several genes exhibiting spatial and temporal restricted expression patterns in the developing early endoderm were identified and their expression was validated via RT-PCR and whole mount in situ hybridization. We report here the detailed gene expression patterns of two novel genes specifically associated with foregut endoderm and of eight novel genes specifically expressed in the mid-/hindgut endoderm at HH stages 10-11. Future functional analysis of these genes may help to elucidate the mechanisms involved in endoderm development and regionalization.
Collapse
Affiliation(s)
- Wataru Kimura
- Department of Biological Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Recent advances in understanding the roles of transglutaminase 2 in alcoholic steatohepatitis. Cell Biol Int 2010; 34:325-34. [DOI: 10.1042/cbi20090130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Iismaa SE, Mearns BM, Lorand L, Graham RM. Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 2009; 89:991-1023. [PMID: 19584319 DOI: 10.1152/physrev.00044.2008] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human transglutaminase (TG) family consists of a structural protein, protein 4.2, that lacks catalytic activity, and eight zymogens/enzymes, designated factor XIII-A (FXIII-A) and TG1-7, that catalyze three types of posttranslational modification reactions: transamidation, esterification, and hydrolysis. These reactions are essential for biological processes such as blood coagulation, skin barrier formation, and extracellular matrix assembly but can also contribute to the pathophysiology of various inflammatory, autoimmune, and degenerative conditions. Some members of the TG family, for example, TG2, can participate in biological processes through actions unrelated to transamidase catalytic activity. We present here a comprehensive review of recent insights into the physiology and pathophysiology of TG family members that have come from studies of genetically engineered mouse models and/or inherited disorders. The review focuses on FXIII-A, TG1, TG2, TG5, and protein 4.2, as mice deficient in TG3, TG4, TG6, or TG7 have not yet been reported, nor have mutations in these proteins been linked to human disease.
Collapse
Affiliation(s)
- Siiri E Iismaa
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute and Universityof New South Wales, Sydney, New South Wales 2010, Australia
| | | | | | | |
Collapse
|
43
|
Elli L, Bergamini CM, Bardella MT, Schuppan D. Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver. Dig Liver Dis 2009; 41:541-50. [PMID: 19195940 DOI: 10.1016/j.dld.2008.12.095] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/28/2008] [Accepted: 12/02/2008] [Indexed: 12/11/2022]
Abstract
Transglutaminases are a family of eight currently known calcium-dependent enzymes that catalyze the cross-linking or deamidation of proteins. They are involved in important biological processes such as wound healing, tissue repair, fibrogenesis, apoptosis, inflammation and cell-cycle control. Therefore, they play important roles in the pathomechanisms of autoimmune, inflammatory and degenerative diseases, many of which affect the gastrointestinal system. Transglutaminase 2 is prominent, since it is central to the pathogenesis of celiac disease, and modulates inflammation and fibrosis in inflammatory bowel and chronic liver diseases. This review highlights our present understanding of transglutaminase function in gastrointestinal and liver diseases and therapeutic strategies that target transglutaminase activities.
Collapse
Affiliation(s)
- L Elli
- Center for Prevention and Diagnosis of Celiac Disease, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via F. Sforza, Milan, Italy.
| | | | | | | |
Collapse
|
44
|
Omary MB, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 2009; 119:1794-805. [PMID: 19587454 DOI: 10.1172/jci37762] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
45
|
Fang F, Liu P, Wang H, Zhang L, Zhang J, Gao Y, Zeng L, Guo Y. Studies of keratins in tongue coating samples of hepatitis B patients by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1703-1709. [PMID: 19412920 DOI: 10.1002/rcm.4060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pooled tongue coating samples from 64 hepatitis B patients and 24 healthy adults were studied and a major band of differential proteins was found by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The differential proteins in this band were identified and proved to be keratins by liquid chromatography/tandem mass spectrometry (LC/MS/MS) and Western blot analysis. Furthermore, relative quantification of the identified keratins was performed via using stable isotopic labeling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), showing the higher expression level of these keratins in tongue coating samples of hepatitis B patients than healthy adults. These results provided additional information to understand the medical diagnosis depending on the tongue coating.
Collapse
Affiliation(s)
- Fang Fang
- Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1. Gastroenterology 2009; 136:1783-95.e10. [PMID: 19208340 PMCID: PMC4960455 DOI: 10.1053/j.gastro.2009.01.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/25/2008] [Accepted: 01/08/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Despite high morbidity and mortality of alcoholic liver disease worldwide, the molecular mechanisms underlying alcohol-induced liver cell death are not fully understood. Transglutaminase 2 (TG2) is a cross-linking enzyme implicated in apoptosis. TG2 levels and activity are increased in association with various types of liver injury. However, how TG2 induces hepatic apoptosis is not known. METHODS Human hepatic cells or primary hepatocytes from rats or TG2+/+ and TG2-/- mice were treated with ethanol. Mice were administered anti-Fas antibody or alcohol. Liver sections were prepared from patients with alcoholic steatohepatitis. Changes in TG2 levels, Sp1 cross-linking and its activities, expression of hepatocyte growth factor receptor, c-Met, and hepatic apoptosis were measured. RESULTS Ethanol induced apoptosis in hepatic cells, enhanced activity and nuclear accumulation of TG2 as well as accumulation of cross-linked and inactivated Sp1, and reduced expression of the Sp1-responsive gene, c-Met. These effects were rescued by TG2 knockdown, restoration of functional Sp1, or addition of hepatocyte growth factor, whereas apoptosis was reproduced by Sp1 knockdown or TG2 overexpression. Compared with TG2+/+ mice, TG2-/- mice showed markedly reduced hepatocyte apoptosis and Sp1 cross-linking following ethanol or anti-Fas treatment. Treatment of TG2+/+ mice with the TG2 inhibitors putrescine or cystamine blocked anti-Fas-induced hepatic apoptosis and Sp1 silencing. Moreover, enhanced expression of cross-linked Sp1 and TG2 was evident in hepatocyte nuclei of patients with alcoholic steatohepatitis. CONCLUSIONS TG2 induces hepatocyte apoptosis via Sp1 cross-linking and inactivation, with resultant inhibition of the expression of c-Met required for hepatic cell viability.
Collapse
|
47
|
Strnad P, Omary MB. Transglutaminase cross-links Sp1-mediated transcription to ethanol-induced liver injury. Gastroenterology 2009; 136:1502-5. [PMID: 19318103 DOI: 10.1053/j.gastro.2009.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Mallory-Denk-bodies: lessons from keratin-containing hepatic inclusion bodies. Biochim Biophys Acta Mol Basis Dis 2008; 1782:764-74. [PMID: 18805482 DOI: 10.1016/j.bbadis.2008.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 01/08/2023]
Abstract
Inclusion bodies are characteristic morphological features of various neuronal, muscular and other human disorders. They share common molecular constituents such as p62, chaperones and proteasome subunits. The proteins within aggregates are misfolded with increased beta-sheet structure, they are heavily phosphorylated, ubiquitinylated and partially degraded. Furthermore, involvement of proteasomal system represents a common feature of virtually all inclusions. Multiple aggregates contain intermediate filament proteins as their major constituents. Among them, Mallory-Denk bodies (MDBs) are the best studied. MDBs represent hepatic inclusions observed in diverse chronic liver diseases such as alcoholic and non-alcoholic steatohepatitis, chronic cholestasis, metabolic disorders and hepatocellular neoplasms. MDBs are induced in mice fed griseofulvin or 3,5-diethoxycarbonyl-1,4-dihydrocollidine and resolve after discontinuation of toxin administration. The availability of a drug-induced model makes MDBs a unique tool for studying inclusion formation. Our review summarizes the recent advances gained from this model and shows how they relate to observations in other aggregates. The MDB formation-underlying mechanisms include protein misfolding, chaperone alterations, disproportional protein expression with keratin 8>keratin 18 levels and subsequent keratin 8 crosslinking via transglutaminase. p62 presence is crucial for MDB formation. Proteasome inhibitors precipitate MDB formation, whereas stimulation of autophagy with rapamycin attenuates their formation.
Collapse
|
49
|
Robin MA, Descatoire V, Pessayre D, Berson A. Steatohepatitis-inducing drugs trigger cytokeratin cross-links in hepatocytes. Possible contribution to Mallory-Denk body formation. Toxicol In Vitro 2008; 22:1511-9. [DOI: 10.1016/j.tiv.2008.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 01/24/2023]
|
50
|
Hanada S, Strnad P, Brunt EM, Omary MB. The genetic background modulates susceptibility to mouse liver Mallory-Denk body formation and liver injury. Hepatology 2008; 48:943-52. [PMID: 18697208 DOI: 10.1002/hep.22436] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Mallory-Denk bodies (MDBs) are hepatocyte inclusions found in several liver diseases and consist primarily of keratins 8 and 18 (K8/K18) and ubiquitin that are cross-linked by transglutaminase-2. We hypothesized that genetic variables contribute to the extent of MDB formation, because not all patients with an MDB-associated liver disease develop inclusions. We tested this hypothesis using five strains of mice (FVB/N, C3H/He, Balb/cAnN, C57BL/6, 129X1/Sv) fed for three months (eight mice per strain) the established MDB-inducing agent 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDB formation was compared using hematoxylin-and-eosin staining, or immunofluorescence staining with antibodies to K8/K18/ubiquitin, or biochemically by blotting with antibodies to transglutaminase-2/p62 proteins and to K8/K18/ubiquitin to detect keratin cross-linking. DDC feeding induced MDBs in all mouse strains, but there were dramatic strain differences that quantitatively varied 2.5-fold (P < 0.05). MDB formation correlated with hepatocyte ballooning, and most ballooned hepatocytes had MDBs. Immunofluorescence assessment was far more sensitive than hematoxylin-and-eosin staining in detecting small MDBs, which out-numbered (by approximately 30-fold to 90-fold) but did not parallel their large counterparts. MDB scores partially reflected the biochemical presence of cross-linked keratin-ubiquitin species but not the changes in liver size or injury in response to DDC. The extent of steatosis correlated with the total (large+small) number of MDBs, and there was a limited correlation between large MDBs and acidophil bodies. CONCLUSION Mouse MDB formation has important genetic contributions that do not correlate with the extent of DDC-induced liver injury. If extrapolated to humans, the genetic contributions help explain why some patients develop MDBs whereas others are less likely to do so. Detection and classification of MDBs using MDB-marker-selective staining may offer unique links to specific histological features of DDC-induced liver injury.
Collapse
Affiliation(s)
- Shinichiro Hanada
- Department of Medicine, Veterans Administration Palo Alto Health Care System and Stanford University, Palo Alto, CA, USA
| | | | | | | |
Collapse
|