1
|
Kaartinen L, Jääskeläinen T, Sliz E, Yazgeldi Gunaydin G, Wedenoja S, Katayama S, Kajantie E, Rinne V, Heinonen S, Kere J, Merikallio H, Hannele Laivuori submitted on behalf of FINNPEC group, Sliz E, submitted on behalf of FinnGen group, Laivuori H, Hukkanen J. Role of oxysterol 4β-hydroxycholesterol and liver X receptor alleles in pre-eclampsia. Ann Med 2025; 57:2495763. [PMID: 40298034 PMCID: PMC12042236 DOI: 10.1080/07853890.2025.2495763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/25/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Liver X receptors (LXRs) are expressed in placenta and may be associated with pre-eclampsia (PE). Oxysterols act as agonists for LXRs. We recently proposed a new blood pressure-regulating circuit with oxysterol 4β-hydroxycholesterol (4βHC) acting as a hypotensive factor via LXRs. MATERIALS AND METHODS This study investigated the association between maternal plasma 4βHC, blood pressure (BP) indices, placental expression of LXR target genes, and patient characteristics using data from the Finnish Genetics of Pre-Eclampsia Consortium (FINNPEC) cohort. Plasma samples of 144 women with PE and 38 healthy pregnant controls as well as 44 PE and 40 control placental samples were available. In addition, genetic data from the FinnGen project was utilized to explore the associations of LXR alleles with PE and pregnancy hypertension. RESULTS There were no significant associations between 4βHC and BP or maternal and perinatal characteristics in FINNPEC cohort. However, plasma 4βHC was inversely correlated with the maternal body mass index. There were no associations with the genetic variants of LXRs with PE in FinnGen. LXR target genes APOD, SCARB1, TGM2, and LPCAT3 were expressed differently between PE and normal pregnancies in placental samples of FINNPEC. CONCLUSIONS Our results demonstrate that plasma 4βHC and genetic LXR variants do not play a major role in PE and BP regulation during pregnancy. However, key LXR target genes involved in lipid metabolism were expressed differently in normal and PE pregnancies. Further research is needed to understand the complexities of oxysterols, LXRs, and their potential contributions to placental function and pregnancy outcomes.
Collapse
Affiliation(s)
- Lassi Kaartinen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Gamze Yazgeldi Gunaydin
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Satu Wedenoja
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Eero Kajantie
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Seppo Heinonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Heta Merikallio
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Hannele Laivuori submitted on behalf of FINNPEC group
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - submitted on behalf of FinnGen group
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Janne Hukkanen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
2
|
Sun Y, Sun K, Ling H, Xia Q. Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review). Int J Mol Med 2025; 56:110. [PMID: 40376981 PMCID: PMC12121986 DOI: 10.3892/ijmm.2025.5551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/13/2025] [Indexed: 05/18/2025] Open
Abstract
Metabolic reprogramming represents a hallmark of malignant tumors, manifested through progressive alterations in nutrient utilization patterns during oncogenesis. As fundamental constituents of biological membranes, essential components of signaling pathways, and critical energy substrates, lipids undergo comprehensive metabolic restructuring in neoplastic cells. This lipid remodeling confers enhanced adaptability to sustain uncontrolled proliferation while promoting aggressive migratory phenotypes. Farnesoid X receptor (FXR), a ligand‑activated nuclear receptor responsive to bile acid (BA) derivatives and cholesterol metabolites, orchestrates key aspects of lipid homeostasis. Its regulatory network encompasses cholesterol/BA metabolism, fatty acid (FA) metabolism and plasma lipoprotein trafficking pathways. Emerging evidence positions FXR as a pleiotropic modulator in oncogenesis, with dysregulated expression patterns documented across multiple tumor lineages and premalignant lesions. This mechanistic understanding has propelled FXR‑targeted therapeutics into the forefront of precision oncology development. The present review critically examines the FXR‑lipid axis in lipid‑enriched malignancies, with particular emphasis on its regulatory circuitry governing BA flux and FA turnover.
Collapse
Affiliation(s)
- Yanning Sun
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Kai Sun
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongju Ling
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qinghua Xia
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
- Urology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
3
|
Hu S, Ai Y, Hu C, Cassim Bawa FN, Xu Y. Transcription factors, metabolic dysfunction-associated fatty liver disease, and therapeutic implications. Genes Dis 2025; 12:101372. [PMID: 39911797 PMCID: PMC11795806 DOI: 10.1016/j.gendis.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 02/07/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a spectrum of liver diseases ranging from metabolic dysfunction-associated fatty liver to metabolic dysfunction-associated steatohepatitis, which may progress to liver cirrhosis and hepatocellular carcinoma. Several mechanisms, including obesity, insulin resistance, dyslipidemia, inflammation, apoptosis, mitochondrial dysfunction, and reactive oxygen species, have been proposed to underlie the progression of MAFLD. Transcription factors are proteins that specifically bind to DNA sequences to regulate the transcription of target genes. Numerous transcription factors regulate MAFLD by modulating the transcription of genes involved in steatosis, inflammation, apoptosis, and fibrosis. Here, we review the pathological factors associated with MAFLD, with a particular emphasis on the transcription factors that contribute to the progression of MAFLD and their therapeutic implications.
Collapse
Affiliation(s)
- Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yingjie Ai
- Department of Pathology of School of Basic Medical Sciences, Department of Gastroenterology and Hepatology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chencheng Hu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fathima N. Cassim Bawa
- Institute of Diabetes, Obesity and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Frontier Innovation Center, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Banerjee M, Song J, Yan B, Wu H, Norouzi S, Sengoku T, Sharma S, Fan TWM, Lee E, He D, Wang C, Liu J, Schmitt TM, Gao T, Weiss HL, Li J, Evers BM. Neurotensin promotes hepatic steatosis by regulating lipid uptake and mitochondrial adaptation in hepatocytes. Cell Death Dis 2025; 16:347. [PMID: 40287434 PMCID: PMC12033321 DOI: 10.1038/s41419-025-07664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disease characterized by hepatic steatosis. Mitochondrial dysfunction resulting in the incomplete digestion of surplus fat is one of the key factors that lead to hepatic steatosis but the reason for this remains unclear. We investigated the role of neurotensin (NTS), a gut hormone, in inducing maladaptive fat metabolism in steatotic liver. We identify CD36 and PGC1α, two critical drivers of MASLD, as direct NTS signaling targets in the liver. NTS upregulates CD36, a free fatty acid receptor, in hepatocytes and promotes long chain lipid uptake. Conversely, NTS inhibits PGC1α, which acts as a lipid sensor and translocates to the nucleus to activate lipid catabolism-related genes in an AMPK-dependent manner. Thus, a high fat diet decreases the fatty acid oxidation and oxidative phosphorylation capacity of the liver and hepatocytes from NTS or NTS receptor 1 (NTSR1) wild type mice; whereas NTS deficiency preserves the lipid metabolism capacity of the liver. NTS signaling is significantly upregulated in MASLD and in metabolic dysfunction-associated steatohepatitis (MASH) human liver samples when compared to normal livers, which correlates with the expression of CD36 and oxidative phosphorylation proteins. These findings provide critical mechanistic insights into the maladaptive fat metabolism noted with steatosis in mice and humans and suggest novel strategies for therapeutic intervention of MASLD, which affects nearly one-quarter of the global population.
Collapse
Affiliation(s)
- Moumita Banerjee
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jun Song
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Baoxiang Yan
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Haoming Wu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | - Tomoko Sengoku
- Redox Metabolism Shared Resource Facility, University of Kentucky, Lexington, KY, USA
| | - Savita Sharma
- Redox Metabolism Shared Resource Facility, University of Kentucky, Lexington, KY, USA
| | - Teresa W M Fan
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Eun Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Bioinformatics, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Bioinformatics, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Bioinformatics, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Jing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
- Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Yang Y, Jiao L, Huang Y, Shang H, Li E, Chang H, Cui H, Wan Y. Evaluation of FXR Activity in Pollutants Identified in Sewage Sludge and Subsequent in Vitro and in Vivo Characterization of Metabolic Effects of Triphenyl Phosphate. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47005. [PMID: 40048564 PMCID: PMC12010937 DOI: 10.1289/ehp15435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease worldwide, and increasing evidence suggests that exposure to environmental pollutants is associated with the increased incidence of MASLD. The farnesoid X receptor (FXR) plays an important role in the development of MASLD by regulating bile acids (BAs) and lipid metabolism. However, whether FXR-active pollutants are the environmental drivers of MASLD remains unclear. OBJECTIVES This study aimed to determine whether FXR-active pollutants exist in the environment and evaluate their ability to trigger MASLD development in mice. METHODS An FXR protein affinity pull-down assay and nontargeted mass spectrometry (MS) analysis were used to identify environmental FXR ligands in sewage sludge. A homogeneous time-resolved fluorescence coactivator recruitment assay and cell-based dual-luciferase reporter assay were used to determine the FXR activities of the identified pollutants. Targeted analysis of BAs, MS imaging, lipidomic analysis, 16S rRNA sequencing, and quantitative polymerase chain reaction were conducted to assess the ability of FXR-active pollutants to induce metabolic disorders of BAs and lipids and to contribute to MASLD development in C57BL/6N mice. RESULTS We identified 19 compounds in the sewage sludge that had FXR-antagonistic activity, and triphenyl phosphate (TPHP) was the FXR antagonist with the highest efficacy. Mice exposed to either 10 or 50 mg / kg TPHP for 30 d had higher levels of conjugated primary BAs in enterohepatic circulation, and the BA pool showed FXR antagonistic activities. The exposed mice also had greater lipogenesis (more Oil Red O staining and high triglyceride levels) in liver. CONCLUSIONS Nineteen FXR-antagonistic pollutants were identified in sewage sludge. FXR inhibition by the strongest antagonist TPHP may have a role in promoting MASLD development in mice by inducing a positive feedback loop between the FXR and BAs. https://doi.org/10.1289/EHP15435.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hailin Shang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Enrui Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Hong Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Kakiyama G, Bai-Kamara N, Rodriguez-Agudo D, Takei H, Minowa K, Fuchs M, Biddinger S, Windle JJ, Subler MA, Murai T, Suzuki M, Nittono H, Sanyal A, Pandak WM. Liver specific transgenic expression of CYP7B1 attenuates early western diet-induced MASLD progression. J Lipid Res 2025; 66:100757. [PMID: 39952566 PMCID: PMC11954105 DOI: 10.1016/j.jlr.2025.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Effect of liver specific oxysterol 7α-hydroxylase (CYP7B1) overexpression on the Western diet (WD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression was studied in mice. Among various hepatic genes impacted during MASLD development, CYP7B1 is consistently suppressed in multiple MASLD mouse models and in human MASLD cohorts. CYP7B1 enzyme suppression leads to accumulations of bioactive oxysterols such as (25R)26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). We challenged liver specific CYP7B1 transgenic (CYP7B1hep.tg) overexpressing mice with ad libitum WD feeding. Unlike their WT counterparts, WD-fed CYP7B1hep.tg mice developed no significant hepatotoxicity as evidenced by liver histology, lipid quantifications, and serum biomarker analyses. Hepatic 26HC and 25HC levels were maintained at the basal levels. The comparative gene expression/lipidomic analyses between WT and CYP7B1hep.tg mice revealed that chronically accumulated 26HC initiates LXR/PPAR-mediated hepatic fatty acid uptake and lipogenesis which surpasses fatty acid metabolism and export; compromising metabolic functions. In addition, major pathways related to oxidative stress, inflammation, and immune system including retinol metabolism, arachidonic acid metabolism, and linoleic acid metabolism were significantly impacted in the WD-fed WT mice. All pathways were unaltered in CYP7B1hep.tg mice liver. Furthermore, the nucleus of WT mouse liver but not of CYP7B1hep.tg mouse liver accumulated 26HC and 25HC in response to WD. These data strongly suggested that these two oxysterols are specifically important in nuclear transcriptional regulation for the described cytotoxic pathways. In conclusion, this study represents a "proof-of-concept" that maintaining normal mitochondrial cholesterol metabolism with hepatic CYP7B1 expression prevents oxysterol-driven liver toxicity; thus attenuating MASLD progression.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA.
| | - Nanah Bai-Kamara
- Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | - Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | - Arun Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| |
Collapse
|
7
|
Attema B, Kummu O, Krutáková M, Pavek P, Hakkola J, Hooiveld GJEJ, Kersten S. The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity. Arch Toxicol 2025; 99:1203-1221. [PMID: 39718591 DOI: 10.1007/s00204-024-03942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
Collapse
Affiliation(s)
- Brecht Attema
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mária Krutáková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Li J, Li C, Wu X, Dong Y, Li Y, Jiao X, Li J, Han L, Wang M. Protocatechuic Acid Suppresses Lipid Uptake and Synthesis through the PPARγ Pathway in High-Fat Diet-Induced NAFLD Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4012-4026. [PMID: 39907525 DOI: 10.1021/acs.jafc.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the most concerning health problems in the world. Dietary intervention is an effective way to prevent and improve NAFLD. As one of the main metabolites of anthocyanins, protocatechuic acid (PCA) exhibited strong activity to improve NAFLD, but the specific mechanism remains unclear. Currently, proteomics has been used to identify that PCA treatment could significantly influence the expression of 224 proteins, including 89 downregulated proteins and 135 upregulated proteins. KEGG analysis showed that PCA obviously inhibited the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Immunofluorescence and Western blot analyses further confirmed that PCA repressed the protein expression of PPARγ and subsequently inhibited the expression of free fatty acid (FFA) uptake proteins (CD36 and FABP2) and FFA synthesis proteins (ACC and FASN), respectively. These effects of PCA contributed to the inhibitory activity of excessive lipid accumulation in the liver. Our results highlighted that PCA could effectively alleviate high-fat diet-induced (HFD) NAFLD by inhibiting lipid absorption and synthesis through the PPARγ signaling pathway.
Collapse
Affiliation(s)
- Jia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Chaoyue Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Xue Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Yonghui Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan 030006, P. R. China
| | - Xiaowen Jiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Jiating Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
9
|
Dusek J, Mejdrová I, Dohnalová K, Smutny T, Chalupsky K, Krutakova M, Skoda J, Rashidian A, Pavkova I, Škach K, Hricová J, Chocholouskova M, Smutna L, Kamaraj R, Hroch M, Leníček M, Mičuda S, Pijnenburg D, van Beuningen R, Holčapek M, Vítek L, Ingelman-Sundberg M, Burk O, Kronenberger T, Nencka R, Pavek P. The hypolipidemic effect of MI-883, the combined CAR agonist/ PXR antagonist, in diet-induced hypercholesterolemia model. Nat Commun 2025; 16:1418. [PMID: 39915454 PMCID: PMC11802874 DOI: 10.1038/s41467-025-56642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related nuclear receptors with overlapping regulatory functions in xenobiotic clearance but distinct roles in endobiotic metabolism. Car activation has been demonstrated to ameliorate hypercholesterolemia by regulating cholesterol metabolism and bile acid elimination, whereas PXR activation is associated with hypercholesterolemia and liver steatosis. Here we show a human CAR agonist/PXR antagonist, MI-883, which effectively regulates genes related to xenobiotic metabolism and cholesterol/bile acid homeostasis by leveraging CAR and PXR interactions in gene regulation. Through comprehensive analyses utilizing lipidomics, bile acid metabolomics, and transcriptomics in humanized PXR-CAR-CYP3A4/3A7 mice fed high-fat and high-cholesterol diets, we demonstrate that MI-883 significantly reduces plasma cholesterol levels and enhances fecal bile acid excretion. This work paves the way for the development of ligands targeting multiple xenobiotic nuclear receptors. Such ligands hold the potential for precise modulation of liver metabolism, offering new therapeutic strategies for metabolic disorders.
Collapse
Affiliation(s)
- Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Dohnalová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Krutakova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Azam Rashidian
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ivona Pavkova
- Military Faculty of Medicine, University of Defence, Hradec Králové, Czech Republic
| | - Kryštof Škach
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Hricová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Chocholouskova
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic
| | - Lucie Smutna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Miloš Hroch
- Department of Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Mičuda
- Institute of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Michal Holčapek
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
- 4th Department of Internal Medicine, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
10
|
Huang L, Zhang T, Zhu Y, Lai X, Tao H, Xing Y, Li Z. Deciphering the Role of CD36 in Gestational Diabetes Mellitus: Linking Fatty Acid Metabolism and Inflammation in Disease Pathogenesis. J Inflamm Res 2025; 18:1575-1588. [PMID: 39925938 PMCID: PMC11806725 DOI: 10.2147/jir.s502314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications which exerts detrimental effects on mothers and children. Emerging evidence has pointed to the important role of the fatty acid transporter protein CD36 in the pathogenesis of GDM. As a heavily glycosylated transmembrane protein, CD36 is widely expressed in diverse cell types, including placental trophoblasts, monocytes/macrophages, adipocytes, and pancreatic cells et al. CD36 plays a key role in lipid metabolism and signal transduction in the pathophysiological mechanism of GDM. The modified expression and functionality of CD36 may contribute to inflammation and oxidative stress in maternal tissues, interfere with insulin signaling, and subsequently influence maternal insulin sensitivity and fetal growth, increasing the risk for GDM. This review provides an overview of the current knowledge regarding the expression and function of CD36 in various tissues throughout pregnancy and explores how CD36 dysregulation can activate inflammatory pathways, worsen insulin resistance, and disrupt lipid metabolism, thereby complicating the necessary metabolic adjustments during pregnancy. Furthermore, the review delves into emerging therapeutic approaches targeting CD36 signaling to alleviate the impacts of GDM. Understanding the involvement of CD36 in GDM could yield crucial insights into its mechanisms and potential interventions for enhancing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Li Huang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Tong Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanyuan Zhu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Xueling Lai
- Shenzhen Guangming Maternal & Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
11
|
Chhetri A, Park C, Kim H, Manandhar L, Chuluunbaatar C, Hwang J, Wei X, Jang G, Chinbold B, Kwon HM, Lee SW, Park R. TMEM135 deficiency improves hepatic steatosis by suppressing CD36 in a SIRT1-dependent manner. Mol Metab 2025; 92:102080. [PMID: 39647810 PMCID: PMC11728970 DOI: 10.1016/j.molmet.2024.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
OBJECTIVES Dysregulation of lipid homeostasis pathway causes many liver diseases, including hepatic steatosis. One of the primary factors contributing to lipid accumulation is fatty acid uptake by the liver. Transmembrane protein 135 (TMEM135), which exists in mitochondria and peroxisomes, participates in intracellular lipid metabolism. This study aims to investigate the role of TMEM135 on regulating cellular lipid import in the liver. METHODS We used in vivo, ex vivo, and in vitro models of steatosis. TMEM135 knockout (TMEM135KO) and wild type (WT) mice were fed a high-fat diet (HFD) to induce hepatic steatosis. Primary mouse hepatocytes and AML12 cells were treated with free fatty acid (FFA). Additionally, TMEM135-deficient stable cells and overexpressed cells were established using AML12 cells. RESULTS TMEM135 deficiency mitigated lipid accumulation in the liver of HFD-fed TMEM135KO mice. TMEM135-depleted primary hepatocytes and AML12 cells exhibited less lipid accumulation when treated with FFA compared to control cells, as shown as lipid droplets. Consistently, the effect of TMEM135 depletion on lipid accumulation was completely reversed under TMEM135 overexpression conditions. CD36 expression was markedly induced by HFD or FFA, which was reduced by TMEM135 depletion. Among the SIRT family proteins, only SIRT1 expression definitely increased in the liver of HFD-fed TMEM135KO mice along with a significant increase in NAD+/NADH ratio. However, inhibition of SIRT1 in TMEM135-depleted cells using siSIRT1 or the SIRT1 inhibitor EX-527 resulted in an increase of CD36 expression and consequent TG levels. CONCLUSIONS TMEM135 depletion attenuates CD36 expression in a SIRT1-dependent manner, thereby reducing cellular lipid uptake and hepatic steatosis.
Collapse
Affiliation(s)
- Arun Chhetri
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Channy Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyunsoo Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Laxman Manandhar
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chagtsalmaa Chuluunbaatar
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jaetaek Hwang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Xiaofan Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gyuho Jang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Batching Chinbold
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology Asan Medical Center, Seoul, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
12
|
Basaly V, Bhattacharya A, Guo GL. Insights of direct and indirect regulation of PXR through phosphorylation in fatty liver disease. Mol Pharmacol 2025; 107:100014. [PMID: 40023513 DOI: 10.1016/j.molpha.2024.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/13/2024] [Indexed: 03/04/2025] Open
Abstract
The pregnane X receptor (PXR), a ligand-activated nuclear receptor, regulates the transcription of several genes that encode many enzymes and transporters related to drug metabolism. PXR also performs an important role as a physiological sensor in the modulation of endobiotic metabolism for hormones, bile acids, cholesterol, fatty acids, and glucose. Dysregulation of these PXR-mediated pathways is implicated in the progression of metabolic dysfunction-associated steatohepatitis (MASH), contributing to the complex interplay of factors involved in chronic liver disease development and exacerbation affecting millions worldwide. This review highlights the current knowledge of PXR expression and its role in endobiotic metabolism related to MASH development, which is associated with diverse causes and dire outcomes. This review focuses on elucidating the molecular pathways associated with PXR activation directly or indirectly and PXR interaction with other regulatory factors. Although there is still much to comprehend about the intricate details of these pathways, the conclusion is drawn that PXR exerts a crucial role in the pathological and physiological pathways of hepatic cellular processes, which holds promise as a potential pharmacological target for exploring novel therapeutic approaches for MASH treatment and/or prevention. SIGNIFICANCE STATEMENT: The pregnane X receptor (PXR) plays a fundamental role in regulating gene expression involved in xenobiotic and endobiotic metabolism. Dysregulation of PXR-mediated pathways is related to the development of metabolic dysfunction-associated steatohepatitis. The ligand-independent pathways regulating PXR hepatic functions through phosphorylation shed light on possible indirect molecular mechanisms and pathways that regulate PXR activity and function. Understanding these pathways may provide insight into new pharmaceutical interventions for metabolic dysfunction-associated steatohepatitis development.
Collapse
Affiliation(s)
- Veronia Basaly
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Anisha Bhattacharya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey.
| |
Collapse
|
13
|
Shen C, Pan Z, Xie W, Zhao J, Miao D, Zhao L, Liu M, Zhong Y, Zhong C, Gonzalez FJ, Wang W, Gao Y, Liu C. Hepatocyte-specific SLC27A4 deletion ameliorates nonalcoholic fatty liver disease in mice via suppression of phosphatidylcholine-mediated PXR activation. Metabolism 2025; 162:156054. [PMID: 39489412 DOI: 10.1016/j.metabol.2024.156054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The protein Solute carrier family 27 member 4 (SLC27A4) is crucial for fatty acid synthesis and β-oxidation, but its role in hepatic steatosis and nonalcoholic fatty liver disease (NAFLD) progression is not fully understood. METHODS Mice with AAV-mediated overexpression of Slc27a4 in liver and hepatocytes-specific deletion of Slc27a4 were fed a standard chow diet, a high-fat diet (HFD), or a methionine and choline-deficient diet (MCD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, lipidomic analysis, RNA-seq analysis, qPCR, western blot and immunofluorescence. RESULTS This study found elevated expression of SLC27A4 in individuals with NAFLD and OAPA-treated MPHs cells, leading to increased lipid accumulation and diet-induced liver steatosis, inflammation, and fibrosis. Conversely, hepatocyte-specific deletion of Slc27a4 improved the development of both NAFLD and NASH. SLC27A4 overexpression resulted in increased hepatic pregnane X receptor (PXR) expression and accumulation of phosphatidylcholine (PC), which activates PXR signaling and inducing SLC27A4 expression. PXR overexpression hinders the protective impact of Slc27a4 deletion on lipid accumulation and inflammation, whereas its deficiency in mice reduces the effect of Slc27a4 overexpression on NAFLD development. CONCLUSION These results indicate that SLC27A4 plays a critical role of lipid accumulation and inflammation, and is implicated in the development of NAFLD progression, rendering it potentially actionable target for NAFLD treatment.
Collapse
Affiliation(s)
- Chuangpeng Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China; ShenShan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shanwei 516600,China
| | - Zhisen Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenmin Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Jian Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Deyu Miao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Ling Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Min Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanhua Zhong
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chong Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China.
| | - Yong Gao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China.
| | - Changhui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China.
| |
Collapse
|
14
|
Yue N, Jin Q, Li C, Zhang L, Cao J, Wu C. CD36: a promising therapeutic target in hematologic tumors. Leuk Lymphoma 2024; 65:1749-1765. [PMID: 38982639 DOI: 10.1080/10428194.2024.2376178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cluster of differentiation 36 (CD36) is a multiligand receptor with important roles in lipid metabolism, angiogenesis and innate immunity, and its diverse effects may depend on the binding of specific ligands in different contexts. CD36 is expressed not only on immune cells in the tumor microenvironment (TME) but also on some hematopoietic cells. CD36 is associated with the growth, metastasis and drug resistance in some hematologic tumors, such as leukemia, lymphoma and myelodysplastic syndrome. Currently, some targeted therapeutic agents against CD36 have been developed, such as anti-CD36 antibodies, CD36 antagonists (small molecules) and CD36 expression inhibitors. This paper not only innovatively addresses the role of CD36 in some hematopoietic cells, such as erythrocytes, hematopoietic stem cells and platelets, but also pays special attention to the role of CD36 in the development of hematologic tumors, and suggests that CD36 may be a potential cancer therapeutic target in hematologic tumors.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiajia Cao
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
15
|
Jang E, Kim C, Noh J, Yi H, Jo S, Park JS, Hwang W, Cha JY, Cho ML, Kim TH, Youn J. Bach2 repression of CD36 regulates lipid-metabolism-linked effector functions in follicular B cells. Cell Rep 2024; 43:114878. [PMID: 39412989 DOI: 10.1016/j.celrep.2024.114878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
The transcription repressor Bach2 plays a crucial role in shaping humoral immunity, but its cell-autonomous function remains elusive. Here, we reveal the mechanism by which Bach2 regulates effector cell maturation in peripheral B cells. In response to Toll-like receptor (TLR) agonists, Bach2 deficiency promotes the differentiation of follicular, but not marginal zone, B cells into effector cells, producing interleukin (IL)-6 and antibodies. This phenomenon is associated with changes in lipid metabolism, such as increases in CD36 expression, lipid influx, and fatty acid oxidation. Consistent with this, Bach2-deficient B cells exhibit elevated levels of mitochondrial oxidative stress, lipid peroxidation, and p38 activation. Mechanistically, Bach2 acts as a repressor of Cd36, and inhibition of CD36 or fatty acid oxidation reduces the differentiation of naive B cells into IL-6- and antibody-secreting cells. These results indicate Bach2 as a key metabolic checkpoint regulator crucial for maintaining a functionally quiescent state of follicular B cells.
Collapse
Affiliation(s)
- Eunkyeong Jang
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea.
| | - ChangYeon Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jeonghyun Noh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Hansol Yi
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Korea
| | - Jin-Sil Park
- Rheumatism Research Center, Catholic Institutes of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Woochang Hwang
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea; Department of Pre-Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21936, Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Institutes of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Hanyang University, Seoul 04763, Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea; Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
16
|
Gold A, Kaye S, Gao J, Zhu J. Propionate Decreases Microglial Activation but Impairs Phagocytic Capacity in Response to Aggregated Fibrillar Amyloid Beta Protein. ACS Chem Neurosci 2024; 15:4010-4020. [PMID: 39394077 DOI: 10.1021/acschemneuro.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
Microglia, the innate immune cell of the brain, are a principal player in Alzheimer's disease (AD) pathogenesis. Their surveillance of the brain leads to interaction with the protein aggregates that drive AD pathogenesis, most notably Amyloid Beta (Aβ). Microglia attempt to clear and degrade Aβ using phagocytic machinery, spurring damaging neuroinflammation in the process. Thus, modulation of the microglial response to Aβ is crucial in mitigating AD pathophysiology. SCFAs, microbial byproducts of dietary fiber fermentation, are blood-brain barrier permeable molecules that have recently been shown to modulate microglial function. It is unclear whether propionate, one representative SCFA, has beneficial or detrimental effects on microglia in AD. Thus, we investigated its impact on microglial Aβ response in vitro. Using a multiomics approach, we characterized the transcriptomic, metabolomic, and lipidomic responses of immortalized murine microglia following 1 h of Aβ stimulation, as well as characterizing Aβ phagocytosis and secretion of reactive nitrogen species. Propionate blunted the early inflammatory response driven by Aβ, downregulating the expression of many Aβ-stimulated immune genes, including those regulating inflammation, the immune complement system, and chemotaxis. Further, it reduced the expression of Apoe and inflammation-promoting Aβ-binding scavenger receptors such as Cd36 and Msr1 in favor of inflammation-dampening Lpl, although this led to impaired phagocytosis. Finally, propionate shifted microglial metabolism, altering phospholipid composition and diverting arginine metabolism, resulting in decreased nitric oxide production. Altogether, our data demonstrate a modulatory role of propionate on microglia that may dampen immune activation in response to Aβ, although at the expense of phagocytic capacity.
Collapse
Affiliation(s)
- Andrew Gold
- Human Nutrition Program and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sarah Kaye
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jie Gao
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiangjiang Zhu
- Human Nutrition Program and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Zhang Y, Hu B, Guan S, Li P, Guo Y, Xu P, Niu Y, Li Y, Feng Y, Du J, Xu J, Guan X, Gu J, Sun H, Huang M. Activation of pregnane X receptor sensitizes alcoholic steatohepatitis by transactivating fatty acid binding protein 4. Acta Pharm Sin B 2024; 14:4776-4788. [PMID: 39664417 PMCID: PMC11628830 DOI: 10.1016/j.apsb.2024.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 12/13/2024] Open
Abstract
Alcoholic steatohepatitis (ASH) is a liver disease characterized by steatosis, inflammation, and necrosis of the liver tissue as a result of excessive alcohol consumption. Pregnane X receptor (PXR) is a xenobiotic nuclear receptor best known for its function in the transcriptional regulation of drug metabolism and disposition. Clinical reports suggested that the antibiotic rifampicin, a potent human PXR activator, is a contraindication in alcoholics, but the mechanism was unclear. In this study, we showed that the hepatic expression of fatty acid binding protein 4 (FABP4) was uniquely elevated in ASH patients and a mouse model of ASH. Pharmacological inhibiting FABP4 attenuated ASH in mice. Furthermore, treatment of mice with the mouse PXR agonist pregnenolon-16α-carbonitrile (PCN) induced the hepatic and circulating levels of FABP4 and exacerbated ASH in a PXR-dependent manner. Our mechanism study established FABP4 as a transcriptional target of PXR. Treatment with andrographolide, a natural compound and dual inhibitor of PXR and FABP4, alleviated mice from ASH. In summary, our results showed that the PXR-FABP4 gene regulatory axis plays an important role in the progression of ASH, which may have accounted for the contraindication of rifampicin in patients of alcoholic liver disease. Pharmacological inhibition of PXR and/or FABP4 may have its promise in the clinical management of ASH.
Collapse
Affiliation(s)
- Yiwen Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingfang Hu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoxing Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pan Li
- Department of Electrical Engineering and Computer Science, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yingjie Guo
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130015, China
| | - Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515031, China
| | - Yujin Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiewen Du
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130015, China
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Paudel D, Hao F, Goand UK, Tian S, Koehle AM, Nguyen LV, Tian Y, Patterson AD, Singh V. Elevated systemic total bile acids escalate susceptibility to alcohol-associated liver disease. iScience 2024; 27:110940. [PMID: 39398234 PMCID: PMC11467679 DOI: 10.1016/j.isci.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/21/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Excessive alcohol consumption is a major global health problem. Individuals with alcoholic liver disease often exhibit elevated serum total bile acids (TBAs). Nevertheless, the extent to which high TBA contributes to alcohol-associated liver disease (AALD) remains elusive. To investigate this, wild-type mice were categorized into normal (nTBA) and high (hTBA) TBA groups. Both groups underwent chronic-binge ethanol feeding for 4 weeks, followed by additional weekly ethanol doses. Ethanol feeding worsened AALD in both male and female mice with elevated serum TBA, characterized by liver dysfunction and steatosis. Decreased hepatic expression of genes involved in mitochondrial β-oxidation and lipid transport in ethanol-fed hTBA mice suggests that altered fatty acid metabolism contributed to AALD. Our findings, which represent the first to link high serum TBA to increased AALD susceptibility, underscore the importance of proactive serum TBA screening as a valuable tool for identifying individuals at high risk of developing AALD.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Umesh K. Goand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Anthony M. Koehle
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Loi V. Nguyen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Lopez-Pascual A, Russo-Cabrera JS, Ardaiz N, Palmer T, Graham AR, Uriarte I, Gomar C, Ruiz-Guillamon D, Latasa MU, Arechederra M, Fontanellas A, Monte MJ, Marin JJG, Berasain C, Del Rio CL, Fernandez-Barrena MG, Martini PGV, Schultz JR, Berraondo P, Avila MA. Non-mitogenic FGF19 mRNA-based therapy for the treatment of experimental metabolic dysfunction-associated steatotic liver disease (MASLD). Clin Sci (Lond) 2024; 138:1265-1284. [PMID: 39301694 DOI: 10.1042/cs20241137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) represents a global health threat. MASH pathophysiology involves hepatic lipid accumulation and progression to severe conditions like cirrhosis and, eventually, hepatocellular carcinoma. Fibroblast growth factor (FGF)-19 has emerged as a key regulator of metabolism, offering potential therapeutic avenues for MASH and associated disorders. We evaluated the therapeutic potential of non-mitogenic (NM)-FGF19 mRNA formulated in liver-targeted lipid nanoparticles (NM-FGF19-mRNAs-LNPs) in C57BL/6NTac male mice with diet-induced obesity and MASH (DIO-MASH: 40% kcal fat, 20% kcal fructose, 2% cholesterol). After feeding this diet for 21 weeks, NM-FGF19-mRNAs-LNPs or control (C-mRNA-LNPs) were administered (0.5 mg/kg, i.v.) weekly for another six weeks, in which diet feeding continued. NM-FGF19-mRNAs-LNPs treatment in DIO-MASH mice resulted in reduced body weight, adipose tissue depots, and serum transaminases, along with improved insulin sensitivity. Histological analyses confirmed the reversal of MASH features, including steatosis reduction without worsening fibrosis. NM-FGF19-mRNAs-LNPs reduced total hepatic bile acids (BAs) and changed liver BA composition, markedly influencing cholesterol homeostasis and metabolic pathways as observed in transcriptomic analyses. Extrahepatic effects included the down-regulation of metabolic dysfunction-associated genes in adipose tissue. This study highlights the potential of NM-FGF19-mRNA-LNPs therapy for MASH, addressing both hepatic and systemic metabolic dysregulation. NM-FGF19-mRNA demonstrates efficacy in reducing liver steatosis, improving metabolic parameters, and modulating BA levels and composition. Given the central role played by BA in dietary fat absorption, this effect of NM-FGF19-mRNA may be mechanistically relevant. Our study underscores the high translational potential of mRNA-based therapies in addressing the multifaceted landscape of MASH and associated metabolic perturbations.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Joan S Russo-Cabrera
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Nuria Ardaiz
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | | | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Celia Gomar
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - David Ruiz-Guillamon
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Maria U Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria J Monte
- CIBERehd, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Jose J G Marin
- CIBERehd, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | - Maite G Fernandez-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | | | - Pedro Berraondo
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERonc, Madrid, Spain
| | - Matias A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| |
Collapse
|
20
|
Kloosterman DJ, Erbani J, Boon M, Farber M, Handgraaf SM, Ando-Kuri M, Sánchez-López E, Fontein B, Mertz M, Nieuwland M, Liu NQ, Forn-Cuni G, van der Wel NN, Grootemaat AE, Reinalda L, van Kasteren SI, de Wit E, Ruffell B, Snaar-Jagalska E, Petrecca K, Brandsma D, Kros A, Giera M, Akkari L. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 2024; 187:5336-5356.e30. [PMID: 39137777 PMCID: PMC11429458 DOI: 10.1016/j.cell.2024.07.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/26/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Daan J Kloosterman
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Martina Farber
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Shanna M Handgraaf
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Masami Ando-Kuri
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bauke Fontein
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marjolijn Mertz
- Bioimaging Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ning Qing Liu
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Gabriel Forn-Cuni
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Luuk Reinalda
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sander I van Kasteren
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Brian Ruffell
- Department of Immunology, Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University Health Centre and Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066CX Amsterdam, the Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
22
|
Zhang J, Huang Y, Li H, Xu P, Liu Q, Sun Y, Zhang Z, Wu T, Tang Q, Jia Q, Xia Y, Xu Y, Jing X, Li J, Mo L, Xie W, Qu A, He J, Li Y. B3galt5 functions as a PXR target gene and regulates obesity and insulin resistance by maintaining intestinal integrity. Nat Commun 2024; 15:5919. [PMID: 39004626 PMCID: PMC11247088 DOI: 10.1038/s41467-024-50198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Pregnane X receptor (PXR) has been reported to regulate glycolipid metabolism. The dysfunction of intestinal barrier contributes to metabolic disorders. However, the role of intestinal PXR in metabolic diseases remains largely unknown. Here, we show that activation of PXR by tributyl citrate (TBC), an intestinal-selective PXR agonist, improves high fat diet (HFD)-induced obesity. The metabolic benefit of intestinal PXR activation is associated with upregulation of β-1,3 galactosyltransferase 5 (B3galt5). Our results reveal that B3galt5 mainly expresses in the intestine and is a direct PXR transcriptional target. B3galt5 knockout exacerbates HFD-induced obesity, insulin resistance and inflammation. Mechanistically, B3galt5 is essential to maintain the integrity of intestinal mucus barrier. B3galt5 ablation impairs the O-glycosylation of mucin2, destabilizes the mucus layer, and increases intestinal permeability. Furthermore, B3galt5 deficiency abolishes the beneficial effect of intestinal PXR activation on metabolic disorders. Our results suggest the intestinal-selective PXR activation regulates B3galt5 expression and maintains metabolic homeostasis, making it a potential therapeutic strategy in obesity.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya Huang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Pharmacy, GuiQian International General Hospital, Guiyang, China
| | - Hong Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tong Wu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
23
|
Yan L, Yan Y, Yang K, Chang Q, Zhang L. Metabolomics reveals dysregulated all-trans retinoic acid and polyunsaturated fatty acid metabolism contribute to PXR-induced hepatic steatosis in mice. Toxicol Lett 2024; 398:150-160. [PMID: 38971454 DOI: 10.1016/j.toxlet.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Activation of pregnane X receptor (PXR) by xenobiotics has been associated with metabolic diseases. This study aimed to reveal the impact of PXR activation on hepatic metabolome and explore novel mechanisms underlying PXR-mediated lipid metabolism disorder in the liver. Wild-type and PXR-deficient male C57BL/6 mice were used as in vivo models, and hepatic steatosis was induced by pregnenolone-16α-carbonitrile, a typical rodent PXR agonist. Metabolomic analysis of liver tissues showed that PXR activation led to significant changes in metabolites involved in multiple metabolic pathways previously reported, including lipid metabolism, energy homeostasis, and amino acid metabolism. Moreover, the level of hepatic all-trans retinoic acid (ATRA), the main active metabolite of vitamin A, was significantly increased by PXR activation, and genes involved in ATRA metabolism exhibited differential expression following PXR activation or deficiency. Consistent with previous research, the expression of downstream target genes of peroxisome proliferator-activated receptor α (PPARα) was decreased. Analysis of fatty acids by Gas Chromatography-Mass Spectrometer further revealed changes in polyunsaturated fatty acid metabolism upon PXR activation, suggesting inhibition of PPARα activity. Taken together, our findings reveal a novel metabolomic signature of hepatic steatosis induced by PXR activation in mice.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou Univerisity, Zhengzhou 450052, China.
| | - Yachun Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou Univerisity, Zhengzhou 450052, China
| | - Kun Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Qi Chang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
24
|
Wong A, Sun Q, Latif II, Karwi QG. Metabolic flux in macrophages in obesity and type-2 diabetes. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13210. [PMID: 38988822 PMCID: PMC11233469 DOI: 10.3389/jpps.2024.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Recent literature extensively investigates the crucial role of energy metabolism in determining the inflammatory response and polarization status of macrophages. This rapidly expanding area of research highlights the importance of understanding the link between energy metabolism and macrophage function. The metabolic pathways in macrophages are intricate and interdependent, and they can affect the polarization of macrophages. Previous studies suggested that glucose flux through cytosolic glycolysis is necessary to trigger pro-inflammatory phenotypes of macrophages, and fatty acid oxidation is crucial to support anti-inflammatory responses. However, recent studies demonstrated that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully understood yet. How the metabolic flux through different metabolic pathways (glycolysis, glucose oxidation, fatty acid oxidation, ketone oxidation, and amino acid oxidation) is altered by obesity- and type 2 diabetes (T2D)-associated insulin resistance is also not fully defined. This mini-review focuses on the impact of insulin resistance in obesity and T2D on the metabolic flux through the main metabolic pathways in macrophages, which might be linked to changes in their inflammatory responses. We closely evaluated the experimental studies and methodologies used in the published research and highlighted priority research areas for future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Qiuyu Sun
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ismail Ibrahim Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| |
Collapse
|
25
|
Dauwe Y, Mary L, Oliviero F, Dubois L, Rousseau-Bacquie E, Gomez J, Gayrard V, Mselli-Lakhal L. Synergistic Steatosis Induction in Mice: Exploring the Interactions and Underlying Mechanisms between PFOA and Tributyltin. Cells 2024; 13:940. [PMID: 38891072 PMCID: PMC11171786 DOI: 10.3390/cells13110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This study explores the impact of environmental pollutants on nuclear receptors (CAR, PXR, PPARα, PPARγ, FXR, and LXR) and their heterodimerization partner, the Retinoid X Receptor (RXR). Such interaction may contribute to the onset of non-alcoholic fatty liver disease (NAFLD), which is initially characterized by steatosis and potentially progresses to steatohepatitis and fibrosis. Epidemiological studies have linked NAFLD occurrence to the exposure to environmental contaminants like PFAS. This study aims to assess the simultaneous activation of nuclear receptors via perfluorooctanoic acid (PFOA) and RXR coactivation via Tributyltin (TBT), examining their combined effects on steatogenic mechanisms. Mice were exposed to PFOA (10 mg/kg/day), TBT (5 mg/kg/day) or a combination of them for three days. Mechanisms underlying hepatic steatosis were explored by measuring nuclear receptor target gene and lipid metabolism key gene expressions, by quantifying plasma lipids and hepatic damage markers. This study elucidated the involvement of the Liver X Receptor (LXR) in the combined effect on steatosis and highlighted the permissive nature of the LXR/RXR heterodimer. Antagonistic effects of TBT on the PFOA-induced activation of the Pregnane X Receptor (PXR) and Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) were also observed. Overall, this study revealed complex interactions between PFOA and TBT, shedding light on their combined impact on liver health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laïla Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), Ecole Nationale Veterinaire de Toulouse (ENVT), INP-Purpan, Université Paul Sabatier (UPS), 31027 Toulouse, France; (Y.D.); (L.M.); (F.O.); (L.D.); (E.R.-B.); (J.G.); (V.G.)
| |
Collapse
|
26
|
Li X, Wang H, Wang H, Bullert AJ, Cui JY, Wang K, Lehmler HJ. Germ-free status but not subacute polychlorinated biphenyl (PCB) exposure altered hepatic phosphatidylcholine and ether-phosphatidylcholine levels in mice. Toxicology 2024; 504:153790. [PMID: 38552894 PMCID: PMC11579902 DOI: 10.1016/j.tox.2024.153790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that pose a current ecosystem and human health concern. PCB exposure impacts the gut microbiome in animal models, suggesting a mechanistic link between PCB exposure and adverse health outcomes. The presence and absence of the microbiome and exposure to PCBs independently affect the lipid composition in the liver, which in turn affects the PCB disposition in target tissues, such as the liver. Here, we investigated microbiome × subacute PCB effects on the hepatic lipid composition of conventional and germ-free female mice exposed to 0, 6, or 30 mg/kg body weight of an environmental PCB mixture in sterile corn oil once daily for 3 consecutive days. Hepatic triacylglyceride and polar lipid levels were quantified using mass spectrometric methods following the subacute PCB exposure. The lipidomic analysis revealed no PCB effect on the hepatic levels. No microbiome effect was observed on levels of triacylglyceride and most polar lipid classes. The total hepatic levels of phosphatidylcholine (PC) and ether-phosphatidylcholine (ePC) lipids were lower in germ-free mice than the conventional mice from the same exposure group. Moreover, levels of several unsaturated PCs, such as PC(36:5) and PC(42:10), and ePCs, such as ePC(36:2) and ePC(4:2), were lower in germ-free than conventional female mice. Based on a KEGG pathway meta-analysis of RNA sequencing data, the ether lipid metabolism pathway is altered in the germ-free mouse liver. In contrast to the liver, extractable lipid levels, determined gravimetrically, differed in several tissues from naïve conventional vs. germ-free mice. Overall, microbiome × subacute PCB exposure effects on hepatic lipid composition are unlikely to affect PCB distribution into the mouse liver. Further studies are needed to assess how the different extractable lipid levels in other tissues alter PCB distribution in conventional vs. germ-free mice.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, University of Iowa, Iowa City, IA 52242, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
27
|
Melini S, Lama A, Comella F, Opallo N, Del Piano F, Annunziata C, Mollica MP, Ferrante MC, Pirozzi C, Mattace Raso G, Meli R. Targeting liver and adipose tissue in obese mice: Effects of a N-acylethanolamine mixture on insulin resistance and adipocyte reprogramming. Biomed Pharmacother 2024; 174:116531. [PMID: 38574624 DOI: 10.1016/j.biopha.2024.116531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
N-acylethanolamines (NAEs) are endogenous lipid-signalling molecules involved in inflammation and energy metabolism. The potential pharmacological effect of NAE association in managing inflammation-based metabolic disorders is unexplored. To date, targeting liver-adipose axis can be considered a therapeutic approach for the treatment of obesity and related dysfunctions. Here, we investigated the metabolic effect of OLALIAMID® (OLA), an olive oil-derived NAE mixture, in limiting liver and adipose tissue (AT) dysfunction of high-fat diet (HFD)-fed mice. OLA reduced body weight and fat mass in obese mice, decreasing insulin resistance (IR), as shown by homeostasis model assessment index, and leptin/adiponectin ratio, a marker of adipocyte dysfunction. OLA improved serum lipid and hepatic profile and the immune/inflammatory pattern of metainflammation. In liver of HFD mice, OLA treatment counteracted glucose and lipid dysmetabolism, restoring insulin signalling (phosphorylation of AKT and AMPK), and reducing mRNAs of key markers of fatty acid accumulation. Furthermore, OLA positively affected AT function deeply altered by HFD by reprogramming of genes involved in thermogenesis of interscapular brown AT (iBAT) and subcutaneous white AT (scWAT), and inducing the beigeing of scWAT. Notably, the NAE mixture reduced inflammation in iBAT and promoted M1-to-M2 macrophage shift in scWAT of obese mice. The tissue and systemic anti-inflammatory effects of OLA and the increased expression of glucose transporter 4 in scWAT contributed to the improvement of gluco-lipid toxicity and insulin sensitivity. In conclusion, we demonstrated that this olive oil-derived NAE mixture is a valid nutritional strategy to counteract IR and obesity acting on liver-AT crosstalk, restoring both hepatic and AT function and metabolism.
Collapse
Affiliation(s)
- S Melini
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - A Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - F Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - N Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - F Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - C Annunziata
- Department of Bioscience and Nutrition Karolinska Institute Neo Building, Huddinge 14152, Sweden
| | - M P Mollica
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - C Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - G Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - R Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
28
|
Bousquet D, Nader E, Connes P, Guillot N. Liver X receptor agonist upregulates LPCAT3 in human aortic endothelial cells. Front Physiol 2024; 15:1388404. [PMID: 38694208 PMCID: PMC11061552 DOI: 10.3389/fphys.2024.1388404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Objective Endothelial cells (ECs) play an important role in tissue homeostasis. Recently, EC lipid metabolism has emerged as a regulator of EC function. The liver X receptors (LXRs) are involved in the transcriptional regulation of genes involved in lipid metabolism and have been identified as a potential target in cardiovascular disease. We aimed to decipher the role of LXRs in the regulation of lipid metabolism in human aortic endothelial cells. Approach and Results Lipid composition analysis of endothelial cells treated with the LXR agonist T0901317 revealed that LXR activation increased the proportion of polyunsaturated fatty acids (PUFAs) and decreased the proportion of saturated fatty acids. The LXR agonist decreased the uptake of fatty acids (FAs) by ECs. This effect was abolished by LXRα silencing. LXR activation increased the activity and the expression of lysophosphatidylcholine acyltransferase, LPCAT3, which is involved in the turnover of FAs at the sn-2 position of phospholipids. Transcriptomic analysis also revealed that LXRs increased the expression of key genes involved in the synthesis of PUFAs, including FA desaturase one and 2, FA elongase 5 and fatty acid synthase. Subsequently, the LXR agonist increased PUFA synthesis and enhanced arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid content in the EC phospholipids. Modification of the FA composition of ECs by LXRs led to a decrease of arachidonate and linoleate derived prostaglandins synthesis and release. No change on markers of inflammation induced by plasma from sickle cell patient were observed in presence of LXR agonist. Conclusion These results identify LXR as a key regulator of lipid metabolism in human aortic endothelial cells and a direct effect of LXR agonist on lysophosphatidylacyl transferase (LPCAT3).
Collapse
Affiliation(s)
- Delphine Bousquet
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Elie Nader
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Philippe Connes
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
| | - Nicolas Guillot
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
- Labex GR-Ex, PRES Sorbonne, Paris, France
- INSA Lyon, Villeurbanne, France
| |
Collapse
|
29
|
Zhan C, Chen H, Zhang Z, Shao Y, Xu B, Hua R, Yao Q, Liu W, Shen Q. BMAL1 deletion protects against obesity and non-alcoholic fatty liver disease induced by a high-fat diet. Int J Obes (Lond) 2024; 48:469-476. [PMID: 38081925 DOI: 10.1038/s41366-023-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Obesity and non-alcoholic fatty liver disease (NAFLD) are major health concerns. The circadian rhythm is an autonomous and intrinsic timekeeping system closely associated with energy metabolism and obesity. Thus, this study explored the role of brain and muscle aryl hydrocarbon receptor nuclear translocator-like1 (BMAL1), a circadian clock regulator, in the development of obesity and NAFLD. METHODS We generated BMAL1 knockout (BMAL1 KO) mice to imitate circadian rhythm disruption. The study comprised three groups from the same litter: BMAL1 KO mice fed a high-fat diet (to establish obesity and NAFLD phenotypes), wild-type mice fed normal chow, and wild-type mice fed a high-fat diet. The metabolic and NAFLD phenotypes were assessed via physiological measurements and histological examinations. Quantitative polymerase chain reaction and western blotting were used to identify and validate changes in the signaling pathways responsible for the altered NAFLD phenotypes in the wild-type and BMAL1 KO mice. RESULTS BMAL1 depletion protected against obesity and metabolic disorders induced by a high-fat diet. BMAL1 depletion also prevented hepatic steatosis and inhibited cluster of differentiation 36 and peroxisome proliferator-activated receptor gamma (i.e., PPARγ) expression. CONCLUSIONS BMAL1 plays an important role in the development of obesity and NAFLD and, thus, is a potential therapeutic target for these conditions.
Collapse
Affiliation(s)
- Chongwen Zhan
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Haoran Chen
- Department of Urology, Huashan Hospital of Fudan University, Shanghai, China
| | - Zhao Zhang
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Yikai Shao
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Bo Xu
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Rong Hua
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wenjuan Liu
- Department of Endocrinology, Huashan Hospital of Fudan University, Shanghai, China.
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
31
|
Chen Y, Deng S, Xu J, Yan Y, Lan S, Guo M. Research status and hotspots on the mechanisms of liver X receptor in cancer progression: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e37126. [PMID: 38552096 PMCID: PMC10977575 DOI: 10.1097/md.0000000000037126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/10/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The mechanism of liver X receptor in cancer has been gradually revealed in recent years. This study is committed to analyzing the current research status of the mechanism of liver × receptor in cancer progression by using bibliometric methods and to explore the development trend of liver × receptor related research in the future, in order to provide some reference for further exploration in this field. METHODS The Web of Science core collection database was used to carry out the original data retrieval. Excel software was used for data statistics. Vosviewer and CiteSpace software were used to analyze the publication situation, cooperation network, reference co-citation, keyword and term co-occurrence, term bursts, and cluster analysis, and draw visual maps. RESULTS A total of 631 publications meeting the research criteria were included by December 2022, with an average of 32.5 citations per paper. The main research fields were molecular biology, oncology and cell biology, and the papers were mainly published in journals about molecular, biology and immunology. Cell is the journal with the highest citation. The United States is the most influential country, the University of California, Los Angeles is the main research institution, and Gustafsson, Jan-ake is the author with the highest output. In reference co-citation clustering, cluster#2 "cancer development" is the main cluster, and the period from 2014 to 2018 is an important stage of relevant theoretical progress. "Tumor microenvironment" with high burst and novelty became the most noteworthy term in term burst. CONCLUSION Using bibliometric methods to reveal the current status of LXR and cancer mechanisms, and making predictions of possible future hotspots based on the analysis of the current situation, the translation of LXR anti-cancer research to clinical applications, the impact on the tumor microenvironment as a whole and more immune pathways, and the formation of a systematic cognition of the effects of more cancer cell lines and oncogenic signaling crosstalk, which is a possible direction for future research.
Collapse
Affiliation(s)
- Yukun Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Siqi Deng
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiexia Xu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Yan
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuwen Lan
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingzhang Guo
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
32
|
Li Y, Shi P, Yao K, Lin Q, Wang M, Hou Z, Tang W, Diao H. Diarrhea induced by insufficient fat absorption in weaned piglets: Causes and nutrition regulation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:299-305. [PMID: 38371473 PMCID: PMC10869582 DOI: 10.1016/j.aninu.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 02/20/2024]
Abstract
Fat is one of the three macronutrients and a significant energy source for piglets. It plays a positive role in maintaining intestinal health and improving production performance. During the weaning period, physiological, stress and diet-related factors influence the absorption of fat in piglets, leading to damage to the intestinal barrier, diarrhea and even death. Signaling pathways, such as fatty acid translocase (CD36), pregnane X receptor (PXR), and AMP-dependent protein kinase (AMPK), are responsible for regulating intestinal fat uptake and maintaining intestinal barrier function. Therefore, this review mainly elaborates on the reasons for diarrhea induced by insufficient fat absorption and related signaling pathways in weaned-piglets, with an emphasis on the intestinal fat absorption disorder. Moreover, we focus on introducing nutritional strategies that can promote intestinal fat absorption in piglets with insufficient fat absorption-related diarrhea, such as lipase, amino acids, and probiotics.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, China
| |
Collapse
|
33
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH (BEIJING, CHINA) 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
34
|
Qu H, Liu X, Zhu J, Xiong X, Li L, He Q, Wang Y, Yang G, Zhang L, Yang Q, Luo G, Zheng Y, Zheng H. Dock5 Deficiency Promotes Proteinuric Kidney Diseases via Modulating Podocyte Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306365. [PMID: 38161229 PMCID: PMC10953540 DOI: 10.1002/advs.202306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Podocytes are particularly sensitive to lipid accumulation, which has recently emerged as a crucial pathological process in the progression of proteinuric kidney diseases like diabetic kidney disease and focal segmental glomerulosclerosis. However, the underlying mechanism remains unclear. Here, podocytes predominantly expressed protein dedicator of cytokinesis 5 (Dock5) is screened to be critically related to podocyte lipid lipotoxicity. Its expression is reduced in both proteinuric kidney disease patients and mouse models. Podocyte-specific deficiency of Dock5 exacerbated podocyte injury and glomeruli pathology in proteinuric kidney disease, which is mainly through modulating fatty acid uptake by the liver X receptor α (LXRα)/scavenger receptor class B (CD36) signaling pathway. Specifically, Dock5 deficiency enhanced CD36-mediated fatty acid uptake of podocytes via upregulating LXRα in an m6 A-dependent way. Moreover, the rescue of Dock5 expression ameliorated podocyte injury and proteinuric kidney disease. Thus, the findings suggest that Dock5 deficiency is a critical contributor to podocyte lipotoxicity and may serve as a promising therapeutic target in proteinuric kidney diseases.
Collapse
Affiliation(s)
- Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiufei Liu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Lu Li
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingshan He
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Guojun Yang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingwu Yang
- Department of Neurologythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Gang Luo
- Department of Orthopedicsthe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
35
|
Attema B, Kummu O, Pitkänen S, Weisell J, Vuorio T, Pennanen E, Vorimo M, Rysä J, Kersten S, Levonen AL, Hakkola J. Metabolic effects of nuclear receptor activation in vivo after 28-day oral exposure to three endocrine-disrupting chemicals. Arch Toxicol 2024; 98:911-928. [PMID: 38182912 PMCID: PMC10861694 DOI: 10.1007/s00204-023-03658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Environmental exposure to endocrine-disrupting chemicals (EDCs) can lead to metabolic disruption, resulting in metabolic complications including adiposity, dyslipidemia, hepatic lipid accumulation, and glucose intolerance. Hepatic nuclear receptor activation is one of the mechanisms mediating metabolic effects of EDCs. Here, we investigated the potential to use a repeated dose 28-day oral toxicity test for identification of EDCs with metabolic endpoints. Bisphenol A (BPA), pregnenolone-16α-carbonitrile (PCN), and perfluorooctanoic acid (PFOA) were used as reference compounds. Male and female wild-type C57BL/6 mice were orally exposed to 5, 50, and 500 μg/kg of BPA, 1000, 10 000, and 100 000 µg/kg of PCN and 50 and 300 μg/kg of PFOA for 28 days next to normal chow diet. Primary endpoints were glucose tolerance, hepatic lipid accumulation, and plasma lipids. After 28-day exposure, no changes in body weight and glucose tolerance were observed in BPA-, PCN-, or PFOA-treated males or females. PCN and PFOA at the highest dose in both sexes and BPA at the middle and high dose in males increased relative liver weight. PFOA reduced plasma triglycerides in males and females, and increased hepatic triglyceride content in males. PCN and PFOA induced hepatic expression of typical pregnane X receptor (PXR) and peroxisome proliferator-activated receptor (PPAR)α target genes, respectively. Exposure to BPA resulted in limited gene expression changes. In conclusion, the observed changes on metabolic health parameters were modest, suggesting that a standard repeated dose 28-day oral toxicity test is not a sensitive method for the detection of the metabolic effect of EDCs.
Collapse
Affiliation(s)
- Brecht Attema
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Sini Pitkänen
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Weisell
- Finnish Institute of Occupational Health, Kuopio, Finland
| | - Taina Vuorio
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Pennanen
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Vorimo
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Anna-Liisa Levonen
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
36
|
Evans WA, Eccles-Miller JA, Anderson E, Farrell H, Baldwin WS. 9-HODE and 9-HOTrE alter mitochondrial metabolism, increase triglycerides, and perturb fatty acid uptake and synthesis associated gene expression in HepG2 cells. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102635. [PMID: 39142221 PMCID: PMC11404490 DOI: 10.1016/j.plefa.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) prevalence is rising and can lead to detrimental health outcomes such as Non-Alcoholic Steatohepatitis (NASH), cirrhosis, and cancer. Recent studies have indicated that Cytochrome P450 2B6 (CYP2B6) is an anti-obesity CYP in humans and mice. Cyp2b-null mice are diet-induced obese, and human CYP2B6-transgenic (hCYP2B6-Tg) mice reverse the obesity or diabetes progression, but with increased liver triglyceride accumulation in association with an increase of several oxylipins. Notably, 9-hydroxyoctadecadienoic acid (9-HODE) produced from linoleic acid (LA, 18:2, ω-6) is the most prominent of these and 9-hydroxyoctadecatrienoic acid (9-HOTrE) from alpha-linolenic acid (ALA, 18:3, ω-3) is the most preferentially produced when controlling for substrate concentrations in vitro. Transactivation assays indicate that 9-HODE and 9-HOTrE activate PPARα and PPARγ. In Seahorse assays performed in HepG2 cells, 9-HOTrE increased spare respiratory capacity, slightly decreased palmitate metabolism, and increased non-glycolytic acidification in a manner consistent with slightly increased glutamine utilization; however, 9-HODE exhibited no effect on metabolism. Both compounds increased triglyceride and pyruvate concentrations, most strongly by 9-HOTrE, consistent with increased spare respiratory capacity. qPCR analysis revealed several perturbations in fatty acid uptake and metabolism gene expression. 9-HODE increased expression of CD36, FASN, PPARγ, and FoxA2 that are involved in lipid uptake and production. 9-HOTrE decreased ANGPTL4 expression and increased FASN expression consistent with increased fatty acid uptake, fatty acid production, and AMPK activation. Our findings support the hypothesis that 9-HODE and 9-HOTrE promote steatosis, but through different mechanisms as 9-HODE is directly involved in fatty acid uptake and synthesis; 9-HOTrE weakly inhibits mitochondrial fatty acid metabolism while increasing glutamine use.
Collapse
Affiliation(s)
- William A Evans
- Clemson University, Biological Sciences, Clemson, SC 29634, USA
| | | | | | - Hannah Farrell
- Clemson University, Biological Sciences, Clemson, SC 29634, USA
| | | |
Collapse
|
37
|
Ashaq MS, Zhang S, Xu M, Li Y, Zhao B. The regulatory role of CD36 in hematopoiesis beyond fatty acid uptake. Life Sci 2024; 339:122442. [PMID: 38244916 DOI: 10.1016/j.lfs.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
CD36 is a transmembrane glycoprotein, located on surface of numerous cell types. This review is aimed to explore regulatory role of CD36 in hematopoiesis beyond fatty acid uptake. CD36 acts as a pattern recognition receptor, regulates cellular fatty acid homeostasis, and negatively monitors angiogenesis. CD36 also mediates free fatty acid transportation to hematopoietic stem cells in response to infections. During normal physiology and pathophysiology, CD36 significantly participates in the activation and metabolic needs of platelets, macrophages, monocytes, T cells, B cells, and dendritic cells. CD36 has shown a unique relationship with Plasmodium falciparum-infected erythrocytes (PfIEs) as a beneficiary for both parasite and host. CD36 actively participates in pathogenesis of various hematological cancers as a significant prognostic biomarker including AML, HL, and NHL. CD36-targeting antibodies, CD36 antagonists (small molecules), and CD36 expression inhibitors/modulators are used to target CD36, depicting its therapeutic potential. Many preclinical studies or clinical trials were performed to assess CD36 as a therapeutic target; some are still under investigation. This review reflects the role of CD36 in hematopoiesis which requires more consideration in future research.
Collapse
Affiliation(s)
- Muhammad Sameer Ashaq
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shujing Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Miaomiao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
38
|
Zhang J, Wu A, Guo L, Wu X, Xu C, Kuang H, Xu X. Nonalcoholic Fatty Liver Disease Development in Male Mice upon Exposure to Flubendiamide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2672-2682. [PMID: 38290497 DOI: 10.1021/acs.est.3c07181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Flubendiamide (FLU), a widely used diamide insecticide, has been observed to potentiate adipogenesis in 3T3-L1 preadipocytes in vitro. Whether exposure to FLU disrupts hepatic lipid homeostasis in mammals and induces visceral obesity, however, remains unclear. The aim of this study was to assess the effects of FLU when administered orally to male C57BL/6J mice under normal diet (ND) and high-fat diet (HFD) conditions. FLU accumulated at higher levels in the tissues of the HFD group than those of the ND group, indicating that an HFD contributed to the accumulation of lipophilic pesticides in vivo. Notably, FLU (logP = 4.14) is highly lipophilic and easily accumulates in fat. Exposure to FLU had opposing effects on the lipid metabolism of the liver in the ND and HFD groups. Liver triacylglycerol levels in the ND group were reduced, while those in the HFD group were increased, resulting in more severe hepatic steatosis. More lipid accumulation was also observed in HepG2 cells exposed to FLU. Changes in hepatic lipid deposition in vivo occurred as the enhanced transcriptional regulation of the genes involved in lipid uptake, de novo lipogenesis, and fatty acid β-oxidation (FAO). Moreover, an excessive increase in FAO caused oxidative stress, which in turn exacerbated the inflammation of the liver. This study revealed the disruptive effect of FLU exposure on hepatic lipid homeostasis, which may facilitate the triggering of nonalcoholic fatty liver disease in HFD-fed mice.
Collapse
Affiliation(s)
- Jia Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Aihong Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
39
|
Su Z, Wang J, Xiao C, Zhong W, Liu J, Liu X, Zhu YZ. Functional role of Ash2l in oxLDL induced endothelial dysfunction and atherosclerosis. Cell Mol Life Sci 2024; 81:62. [PMID: 38280036 PMCID: PMC10821849 DOI: 10.1007/s00018-024-05130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Endothelial injury and dysfunction in the artery wall fuel the process of atherosclerosis. As a key epigenetic regulator, Ash2l (Absent, small, or homeotic-Like 2) is involved in regulating vascular injury and its complications. However, the role of Ash2l in atherosclerosis has not yet been fully elucidated. Here, we found increased Ash2l expression in high-cholesterol diet-fed ApoE-/- mice and oxidized LDL (oxLDL) treated endothelial cells (ECs). Furthermore, Ash2l promoted the scavenger receptors transcription by catalyzing histone H3 lysine 4 (H3K4) trimethylation at the promoter region of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) and triggered the activation of the pro-inflammatory nuclear factor-kappa B (NF-κB) by enhancing interaction between CD36 and toll-like receptor 4 (TLR4). Meanwhile, enhanced expression of scavenger receptors drove more oxLDL uptake by ECs. In vivo studies revealed that ECs-specific Ash2l knockdown reduced atherosclerotic lesion formation and promoted fibrous cap stability in the aorta of ApoE-/- mice, which was partly associated with a reduced endothelial activation by suppressing scavenger receptors and the uptake of lipids by ECs. Collectively, our findings identify Ash2l as a novel regulator that mediates endothelial injury and atherosclerosis. Targeting Ash2l may provide valuable insights for developing novel therapeutic candidates for atherosclerosis.
Collapse
Affiliation(s)
- Zhenghua Su
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jinghuan Wang
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chenxi Xiao
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Wen Zhong
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jiayao Liu
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Xinhua Liu
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| | - Yi Zhun Zhu
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy and 1st affiliate hospital, Macau University of Science and Technology, Macau, China.
- School of Pharmacy, Macau University of Science and Technology Taipa, Macau, China.
| |
Collapse
|
40
|
Cho YR, Lee S, Kim H, Park EC, Jeong SY, Hamishehkar H, Jung SM, Kim KH. Pinuseldarone, a Clerodane-Type Diterpene from Pinus eldarica Needles and Phytochemicals as Novel Agents for Regulating Brown Adipogenesis and Thermogenesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:58-67. [PMID: 38159296 DOI: 10.1021/acs.jnatprod.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Phytochemical investigation of the MeOH extract of Pinus eldarica needles led to the isolation and identification of a new clerodane-type diterpene, pinuseldarone (1), along with a known flavonoid, 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone (2), through HPLC purification. The structure of the new compound 1 was elucidated using spectroscopic methods, including 1D and 2D NMR, as well as HRESIMS. Its absolute configuration was established through NOESY analysis and computational methods, including electronic circular dichroism (ECD) calculations and gauge-including atomic orbital NMR chemical shift calculations, followed by DP4+ probability analysis. The metabolic implications of the isolated compounds were assessed using a cultured brown adipocyte model derived from murine brown adipose tissue. It was observed that treatment with dihydroxy-3,7,8-trimethoxy-6-C-methylflavone (2) downregulates the adipogenic marker C/EBPδ and fatty acid transporter CD36, resulting in a significant reduction in lipid accumulation during brown adipocyte differentiation. However, pinuseldarone (1) treatment did not affect brown adipocyte differentiation. Interestingly, pretreatment with pinuseldarone (1) potentiated the pharmacological stimulation of brown adipocytes, seemingly achieved by sensitizing their response to β3-adrenoreceptor signaling. Therefore, our findings indicate that phytochemicals derived from P. eldarica needles could potentially serve as valuable compounds for adjusting the metabolic activity of brown adipose tissue, a vital component in maintaining whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Yeo Rang Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sanghun Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyoju Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eon Chung Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
41
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
42
|
Wei J, Luo J, Yang F, Feng X, Zeng M, Dai W, Pan X, Yang Y, Li Y, Duan Y, Xiao X, Ye P, Yao Z, Liu Y, Huang Z, Zhang J, Zhong Y, Xu N, Luo M. Cultivated Enterococcus faecium B6 from children with obesity promotes nonalcoholic fatty liver disease by the bioactive metabolite tyramine. Gut Microbes 2024; 16:2351620. [PMID: 38738766 PMCID: PMC11093035 DOI: 10.1080/19490976.2024.2351620] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ming Zeng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Wen Dai
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiongfeng Pan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Yamei Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Yamei Duan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Ye
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhenzhen Yao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yixu Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhihang Huang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yan Zhong
- Institute of Children Health, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Ningan Xu
- Institute of Children Health, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Fu Q, Frick JM, O'Neil MF, Eller OC, Morris EM, Thyfault JP, Christianson JA, Lane RH. Early-life stress perturbs the epigenetics of Cd36 concurrent with adult onset of NAFLD in mice. Pediatr Res 2023; 94:1942-1950. [PMID: 37479748 PMCID: PMC10665193 DOI: 10.1038/s41390-023-02714-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in the U.S. and worldwide. The roles of early postnatal life stress (EPLS) and the fatty acid translocase (CD36) on the pathogenesis of adult-onset NAFLD remain unknown. We hypothesized that EPLS, in the form of neonatal maternal separation (NMS), would predispose mice towards developing adult NAFLD, increase hepatic CD36 expression, and differentially methylate Cd36 promoter concurrently. METHODS NMS was performed on mice from postnatal day 1 to 21 and a high-fat/high-sucrose (HFS) diet was started at 4 weeks of age to generate four experimental groups: Naive-control diet (CD), Naive-HFS, NMS-CD, and NMS-HFS. RESULTS NMS alone caused NAFLD in adult male mice at 25 weeks of age. The effects of NMS and HFS were generally additive in terms of NAFLD, hepatic Cd36 mRNA levels, and hepatic Cd36 promoter DNA hypomethylation. Cd36 promoter methylation negatively correlated with Cd36 mRNA levels. Two differentially methylated regions (DMRs) within Cd36 promoter regions appeared to be vulnerable to NMS in the mouse. CONCLUSIONS Our findings suggest that NMS increases the risk of an individual, particularly male, towards NAFLD when faced with a HFS diet later in life. IMPACT The key message of this article is that neonatal maternal separation and a postweaning high-fat/high-sucrose diet increased the risk of an individual, particularly male, towards NAFLD in adult life. What this study adds to the existing literature includes the identification of two vulnerable differentially methylated regions in hepatic Cd36 promoters whose methylation levels very strongly negatively correlated with Cd36 mRNA. The impact of this article is that it provides an early-life environment-responsive gene/promoter methylation model and an animal model for furthering the mechanistic study on how the insults in early-life environment are "transmitted" into adulthood and caused NAFLD.
Collapse
Affiliation(s)
- Qi Fu
- Department of Research Administration, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jenna M Frick
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Maura F O'Neil
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Olivia C Eller
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - E Matthew Morris
- Department of Molecular and Integrative Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Research Service, Kansas City VA Medical Center, Kansas City, KS, USA
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert H Lane
- Department of Administration, Children's Mercy Hospital, Kansas City, MO, USA.
| |
Collapse
|
44
|
Rakateli L, Huchzermeier R, van der Vorst EPC. AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors. Cells 2023; 12:2752. [PMID: 38067179 PMCID: PMC10705969 DOI: 10.3390/cells12232752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Traditionally, xenobiotic receptors are known for their role in chemical sensing and detoxification, as receptor activation regulates the expression of various key enzymes and receptors. However, recent studies have highlighted that xenobiotic receptors also play a key role in the regulation of lipid metabolism and therefore function also as metabolic sensors. Since dyslipidemia is a major risk factor for various cardiometabolic diseases, like atherosclerosis and non-alcoholic fatty liver disease, it is of major importance to understand the molecular mechanisms that are regulated by xenobiotic receptors. In this review, three major xenobiotic receptors will be discussed, being the aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Specifically, this review will focus on recent insights into the metabolic functions of these receptors, especially in the field of lipid metabolism and the associated dyslipidemia.
Collapse
Affiliation(s)
- Leonida Rakateli
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Rosanna Huchzermeier
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
45
|
Hoeffner N, Paul A, Goo YH. Drug screen identifies verteporfin as a regulator of lipid metabolism in macrophage foam cells. Sci Rep 2023; 13:19588. [PMID: 37949969 PMCID: PMC10638409 DOI: 10.1038/s41598-023-46467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Arterial macrophage foam cells are filled with cholesterol ester (CE) stored in cytosolic lipid droplets (LDs). Foam cells are central players in progression of atherosclerosis as regulators of lipid metabolism and inflammation, two major driving forces of atherosclerosis development. Thus, foam cells are considered plausible targets for intervention in atherosclerosis. However, a compound that directly regulates the lipid metabolism of LDs in the arterial foam cells has not yet been identified. In this study, we screened compounds that inhibit macrophage foam cell formation using a library of 2697 FDA-approved drugs. From the foam cells generated via loading of human oxidized low-density lipoprotein (oxLDL), we found 21 and 6 compounds that reduced and enhanced accumulations of lipids respectively. Among them, verteporfin most significantly reduced oxLDL-induced foam cell formation whereas it did not display a significant impact on foam cell formation induced by fatty acid. Mechanistically our data demonstrate that verteporfin acts via inhibition of oxLDL association with macrophages, reducing accumulation of CE. Interestingly, while other drugs that reduced foam cell formation did not have impact on pre-existing foam cells, verteporfin treatment significantly reduced their total lipids, CE, and pro-inflammatory gene expression. Together, our study identifies verteporfin as a novel regulator of foam cell lipid metabolism and inflammation and a potential compound for intervention in atherosclerosis.
Collapse
Affiliation(s)
- Nicholas Hoeffner
- Molecular and Cellular Physiology Department, Albany Medical College, Albany, NY, 12208, USA
| | - Antoni Paul
- Molecular and Cellular Physiology Department, Albany Medical College, Albany, NY, 12208, USA
| | - Young-Hwa Goo
- Molecular and Cellular Physiology Department, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
46
|
Abstract
The steatotic diseases of metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and chronic hepatitis C (HCV) account for the majority of liver disease prevalence, morbidity, and mortality worldwide. While these diseases have distinct pathogenic and clinical features, dysregulated lipid droplet (LD) organelle biology represents a convergence of pathogenesis in all three. With increasing understanding of hepatocyte LD biology, we now understand the roles of LD proteins involved in these diseases but also how genetics modulate LD biology to either exacerbate or protect against the phenotypes associated with steatotic liver diseases. Here, we review the history of the LD organelle and its biogenesis and catabolism. We also review how this organelle is critical not only for the steatotic phenotype of liver diseases but also for their advanced phenotypes. Finally, we summarize the latest attempts and challenges of leveraging LD biology for therapeutic gain in steatotic diseases. In conclusion, the study of dysregulated LD biology may lead to novel therapeutics for the prevention of disease progression in the highly prevalent steatotic liver diseases of MASLD, ALD, and HCV.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
- Division of Gastroenterology, Veterans Affairs Puget Sound Healthcare System Seattle, Washington
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
47
|
Kim KE, Shin HJ, Ju Y, Jung Y, An HS, Lee SJ, Jeong EA, Lee J, Hwang GS, Roh GS. Intermittent Fasting Attenuates Metabolic-Dysfunction-Associated Steatohepatitis by Enhancing the Hepatic Autophagy-Lysosome Pathway. Nutrients 2023; 15:4574. [PMID: 37960230 PMCID: PMC10649202 DOI: 10.3390/nu15214574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
An intermittent fasting (IF) regimen has been shown to protect against metabolic dysfunction-associated steatohepatitis (MASH). However, the precise mechanism remains unclear. Here, we explored how IF reduced hepatic lipid accumulation, inflammation, and fibrosis in mice with MASH. The mice were fed a high-fat diet (HFD) for 30 weeks and either continued on the HFD or were subjected to IF for the final 22 weeks. IF reduced body weight, insulin resistance, and hepatic lipid accumulation in HFD-fed mice. Lipidome analysis revealed that IF modified HFD-induced hepatic lipid composition. In particular, HFD-induced impaired autophagic flux was reversed by IF. The decreased hepatic lysosome-associated membrane protein 1 level in HFD-fed mice was upregulated in HFD+IF-fed mice. However, increased hepatic lysosomal acid lipase protein levels in HFD-fed mice were reduced by IF. IF attenuated HFD-induced hepatic inflammation and galectin-3-positive Kupffer cells. In addition to the increases in hepatic hydroxyproline and lumican levels, lipocalin-2-mediated signaling was reversed in HFD-fed mice by IF. Taken together, our findings indicate that the enhancement of the autophagy-lysosomal pathway may be a critical mechanism of MASH reduction by IF.
Collapse
Affiliation(s)
- Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Yeajin Ju
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; (Y.J.); (Y.J.)
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; (Y.J.); (Y.J.)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - So Jeong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; (Y.J.); (Y.J.)
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| |
Collapse
|
48
|
Zhang C, Sui Y, Liu S, Yang M. Molecular mechanisms of metabolic disease-associated hepatic inflammation in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. EXPLORATION OF DIGESTIVE DISEASES 2023:246-275. [DOI: https:/doi.org/10.37349/edd.2023.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/05/2023] [Indexed: 11/27/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, with a progressive form of non-alcoholic steatohepatitis (NASH). It may progress to advanced liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD/NASH is a comorbidity of many metabolic disorders such as obesity, insulin resistance, type 2 diabetes, cardiovascular disease, and chronic kidney disease. These metabolic diseases are often accompanied by systemic or extrahepatic inflammation, which plays an important role in the pathogenesis and treatment of NAFLD or NASH. Metabolites, such as short-chain fatty acids, impact the function, inflammation, and death of hepatocytes, the primary parenchymal cells in the liver tissue. Cholangiocytes, the epithelial cells that line the bile ducts, can differentiate into proliferative hepatocytes in chronic liver injury. In addition, hepatic non-parenchymal cells, including liver sinusoidal endothelial cells, hepatic stellate cells, and innate and adaptive immune cells, are involved in liver inflammation. Proteins such as fibroblast growth factors, acetyl-coenzyme A carboxylases, and nuclear factor erythroid 2-related factor 2 are involved in liver metabolism and inflammation, which are potential targets for NASH treatment. This review focuses on the effects of metabolic disease-induced extrahepatic inflammation, liver inflammation, and the cellular and molecular mechanisms of liver metabolism on the development and progression of NAFLD and NASH, as well as the associated treatments.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, Shanxi Province, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
49
|
Shang Y, Morioka T, Daino K, Nakayama T, Nishimura M, Kakinuma S. Ionizing radiation promotes, whereas calorie restriction suppresses, NASH and hepatocellular carcinoma in mice. Int J Cancer 2023; 153:1529-1542. [PMID: 37458118 DOI: 10.1002/ijc.34651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
The pathological conditions of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH) are the major risk factors for hepatocellular carcinoma (HCC). Exposure to DNA-damaging agents such as ionizing radiation is another risk factor for HCC; calorie restriction (CR), however, effectively delays the onset of radiation-induced HCC. We investigated whether NASH is relevant to radiation-induced HCC and the cancer-preventing effect of CR. Eight-day-old male B6C3F1 mice were irradiated with 3.8 Gy of X-rays and then fed a standard diet or 30% CR diet from 49 days of age until necropsy, which was performed from 56 to 600 days with ~100-day intervals to assess both pathological changes and gene expression levels. We found that early-life exposure to radiation accelerated lipid accumulation and NASH-like histopathological changes in the liver, accompanied by accelerated development of HCC. CR ameliorated the changes in lipid metabolism in the liver and reversed the NASH-like pathology, which effectively delayed HCC development. Gene-expression profiling revealed the radiation-related activation and CR-related suppression of the peroxisome proliferator-activated receptor gamma/Cd36 pathway of transmembrane fatty-acid translocation before development of the NASH-like state. Thus, early-life exposure to radiation affects lipid metabolism and induces a steatoinflammatory microenvironment that favors HCC development. Therefore, targeting this pathway by CR (or measures that mimic CR) may be a promising strategy for preventing HCC caused by either radiation or other DNA-damaging agents.
Collapse
Affiliation(s)
- Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takafumi Nakayama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
50
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|