1
|
Ronca V, Gerussi A, Collins P, Parente A, Oo YH, Invernizzi P. The liver as a central "hub" of the immune system: pathophysiological implications. Physiol Rev 2025; 105:493-539. [PMID: 39297676 DOI: 10.1152/physrev.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 01/16/2025] Open
Abstract
The purpose of this review is to describe the immune function of the liver, guiding the reader from the homeostatic tolerogenic status to the aberrant activation demonstrated in chronic liver disease. An extensive description of the pathways behind the inflammatory modulation of the healthy liver will be provided focusing on the complex immune cell network residing within the liver. The limit of tolerance will be presented in the context of organ transplantation, seizing the limits of homeostatic mechanisms that fail in accepting the graft, progressing eventually toward rejection. The triggers and mechanisms behind chronic activation in metabolic liver conditions and viral hepatitis will be discussed. The last part of the review will be dedicated to one of the greatest paradoxes for a tolerogenic organ, developing autoimmunity. Through the description of the three most common autoimmune liver diseases, the autoimmune reaction against hepatocytes and biliary epithelial cells will be dissected.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Centre for Liver and Gastro Research and National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network Centre-Rare Liver, Birmingham, United Kingdom
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paul Collins
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Alessandro Parente
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ye Htun Oo
- Centre for Liver and Gastro Research and National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network Centre-Rare Liver, Birmingham, United Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
2
|
Han JW, Shin EC. Investigating Human Liver Tissue-Resident Memory T Cells from the Perspectives of Gastroenterologists and Hepatologists. Gut Liver 2025; 19:161-170. [PMID: 40058791 PMCID: PMC11907256 DOI: 10.5009/gnl240366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 03/15/2025] Open
Abstract
Liver tissue-resident memory T (TRM) cells play a pivotal role in hepatic immune responses. Their unique residence within liver sinusoids allow continuous antigen surveillance. In this review, we highlight the role of liver TRM cells in protective immunity and disease pathology. Comparisons between human and murine liver TRM cells reveal species-specific characteristics, suggesting the need for human-focused studies. One key finding is the involvement of liver TRM cells in viral hepatitis, where they can both control infection and contribute to liver damage. Liver TRM cells also exhibit dual roles in metabolic-associated steatotic liver disease, promoting inflammation and fibrosis while also contributing to fibrosis resolution. In autoimmune liver diseases, such as autoimmune hepatitis and primary sclerosing cholangitis, the presence of liver TRM cells correlates with disease severity. In this review, we underscore the importance of liver TRM cells in vaccine development, particularly vaccines against malaria. Future research should focus on the mechanisms governing TRM-cell formation, maintenance, and function, with the aim of supporting their protective roles while mitigating detrimental effects. Advancing our understanding of liver TRM cells will enhance our knowledge of liver immunology and inform novel therapeutic strategies for liver disease management.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Korea
| |
Collapse
|
3
|
Wohlleber D, Knolle PA. Tissue Determinants of Antiviral Immunity in the Liver. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:65-72. [PMID: 39793603 PMCID: PMC11723797 DOI: 10.1055/a-2365-3900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/13/2024] [Indexed: 01/13/2025]
Abstract
The liver is an organ bearing important metabolic and immune functions. Hepatocytes are the main metabolically active cells of the liver and are the target of infection by hepatotropic viruses. Virus-specific CD8 T cells are essential for the control of hepatocyte infection with hepatotropic viruses but may be subject to local regulation of their effector function. Here, we review our current knowledge of the tissue determinants of antiviral immunity in the liver. Liver Sinusoidal Endothelial Cells (LSECs) not only allow through their fenestrations the access of circulating virus-specific CD8 T cells to engage in direct contact with infected hepatocytes without the need for extravasation but also cross-present viral antigens released from infected hepatocytes to these CD8 T cells. Two important features of LSECs and hepatocytes contribute to antiviral immune surveillance and liver failure. First, CD8 T cell immunity targeting LSECs leads to widespread endothelial cell death and results in sinusoidal microcirculation failure, causing fulminant viral hepatitis, whereas immune-mediated loss of hepatocytes is rapidly compensated by the regenerative capacity of the liver. Second, virus-infected hepatocytes support clearance of infection by responding to TNF, which is released from virus-specific CD8 T cells, with the selective induction of apoptosis. This increased sensitivity for TNF-induced death is caused by reduced mitochondrial resilience in virus-infected hepatocytes and may assist antiviral immunity in preferential targeting of virus-infected hepatocytes. Thus, hepatocytes and LSECs actively contribute to the outcome of antiviral CD8 T cell immunity in the liver. The knowledge of the mechanisms determining CD8 T cell control of hepatotropic viral infection will help to improve strategies to increase antiviral immune surveillance.
Collapse
Affiliation(s)
- Dirk Wohlleber
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Percy A. Knolle
- Institute of Molecular Immunology, School of Life Science, Technical University of Munich, Munich, Germany
- German Center for Infection Research, Munich, Germany
| |
Collapse
|
4
|
Han JW, Park SH. Advancing immunosuppression in liver transplantation: the role of regulatory T cells in immune modulation and graft tolerance. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:257-272. [PMID: 39696994 PMCID: PMC11732766 DOI: 10.4285/ctr.24.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Prolonged immunosuppressive therapy in liver transplantation (LT) is associated with significant adverse effects, such as nephrotoxicity, metabolic complications, and heightened risk of infection or malignancy. Regulatory T cells (Tregs) represent a promising target for inducing immune tolerance in LT, with the potential to reduce or eliminate the need for life-long immunosuppression. This review summarizes current knowledge on the roles of Tregs in LT, highlighting their mechanisms and the impact of various immunosuppressive agents on Treg stability and function. The liver's distinct immunological microenvironment, characterized by tolerogenic antigen-presenting cells and high levels of interleukin (IL)-10 and transforming growth factor-β, positions this organ as an ideal setting for Treg-mediated tolerance. We discuss Treg dynamics in LT, their association with rejection risk, and their utility as biomarkers of transplant outcomes. Emerging strategies, including the use of low-dose calcineurin inhibitors with mammalian target of rapamycin inhibitors, adoptive Treg therapy, and low-dose IL-2, aim to enhance Treg function while providing sufficient immunosuppression. Thus, the future of LT involves precision medicine approaches that integrate Treg monitoring with tailored immunosuppressive protocols to optimize long-term outcomes for LT recipients.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
5
|
Mladenić K, Lenartić M, Marinović S, Polić B, Wensveen FM. The "Domino effect" in MASLD: The inflammatory cascade of steatohepatitis. Eur J Immunol 2024; 54:e2149641. [PMID: 38314819 DOI: 10.1002/eji.202149641] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-β, and IL-1β. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
6
|
Watanabe T, Minaga K, Honjo H, Kudo M. Oral administration of ovalbumin protects mice from concanavalin A-induced hepatitis through suppression of interferon-gamma responses. Biochem Biophys Res Commun 2023; 674:117-123. [PMID: 37419032 DOI: 10.1016/j.bbrc.2023.06.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
The liver is a tolerogenic organ that exhibits hypo-responsiveness to antigens circulating in the portal vein. Antigens that are orally administered at high doses reach the liver. In our previous study, we demonstrated that administering ovalbumin (OVA) orally at high doses generates unique CD4+ T cells and tolerogenic dendritic cells, both of which can suppress T helper type 1 (Th1) responses, in the livers of two groups of mice: DO11.10 mice with transgenic CD4+ T cell receptors for OVA and BALB/c mice that received OVA-specific CD4+ T cells through adoptive transfer. This study aimed to investigate whether oral administration of OVA at high doses inhibits the development of hepatitis in the presence of OVA-specific CD4+ T cells. Oral administration of OVA at high doses inhibited the development of OVA-specific and concanavalin A (Con A)-induced hepatitis in DO11.10 mice, and these effects were associated with the downregulation of Th1 responses. Furthermore, the adoptive transfer of CD4+ T cells from the liver of OVA-fed DO11.10 mice inhibited the development of Con A-induced hepatitis in recipient BALB/c mice through the downregulation of Th1 responses. Finally, oral administration of OVA at high doses inhibited the development of Con A-induced hepatitis in BALB/c mice bearing naïve OVA-specific CD4+ T cells. These results suggest that the oral administration of antigens at high doses suppresses Th1-mediated hepatitis in an antigen-non-specific manner in the presence of antigen-specific CD4+ T cells.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan; Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Kyoto, Japan.
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
7
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Hodgson R, Crockford TL, Bhandari A, Kepple JD, Back J, Cawthorne E, Abeler-Dörner L, Laing AG, Clare S, Speak A, Adams DJ, Dougan G, Hayday AC, Deobagkar-Lele M, Cornall RJ, Bull KR. Prolidase Deficiency Causes Spontaneous T Cell Activation and Lupus-like Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:547-557. [PMID: 36637239 PMCID: PMC9946897 DOI: 10.4049/jimmunol.2200212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/10/2022] [Indexed: 01/14/2023]
Abstract
Prolidase deficiency (PD) is a multisystem disorder caused by mutations in the PEPD gene, which encodes a ubiquitously expressed metallopeptidase essential for the hydrolysis of dipeptides containing C-terminal proline or hydroxyproline. PD typically presents in childhood with developmental delay, skin ulcers, recurrent infections, and, in some patients, autoimmune features that can mimic systemic lupus erythematosus. The basis for the autoimmune association is uncertain, but might be due to self-antigen exposure with tissue damage, or indirectly driven by chronic infection and microbial burden. In this study, we address the question of causation and show that Pepd-null mice have increased antinuclear autoantibodies and raised serum IgA, accompanied by kidney immune complex deposition, consistent with a systemic lupus erythematosus-like disease. These features are associated with an accumulation of CD4 and CD8 effector T cells in the spleen and liver. Pepd deficiency leads to spontaneous T cell activation and proliferation into the effector subset, which is cell intrinsic and independent of Ag receptor specificity or antigenic stimulation. However, an increase in KLRG1+ effector CD8 cells is not observed in mixed chimeras, in which the autoimmune phenotype is also absent. Our findings link autoimmune susceptibility in PD to spontaneous T cell dysfunction, likely to be acting in combination with immune activators that lie outside the hemopoietic system but result from the abnormal metabolism or loss of nonenzymatic prolidase function. This knowledge provides insight into the role of prolidase in the maintenance of self-tolerance and highlights the importance of treatment to control T cell activation.
Collapse
Affiliation(s)
- Rose Hodgson
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tanya L. Crockford
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Aneesha Bhandari
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jessica D. Kepple
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jennifer Back
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleanor Cawthorne
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Adam G. Laing
- Department of Immunobiology, King’s College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom; and
| | - Simon Clare
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | | | | | - Adrian C. Hayday
- Department of Immunobiology, King’s College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom; and
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard J. Cornall
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine R. Bull
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers (Basel) 2022; 14:cancers14246151. [PMID: 36551635 PMCID: PMC9776867 DOI: 10.3390/cancers14246151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
Collapse
|
10
|
Pallett LJ, Maini MK. Liver-resident memory T cells: life in lockdown. Semin Immunopathol 2022; 44:813-825. [PMID: 35482059 PMCID: PMC9708784 DOI: 10.1007/s00281-022-00932-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
A subset of memory T cells has been identified in the liver with a tissue-resident profile and the capacity for long-term 'lockdown'. Here we review how they are retained in, and adapted to, the hepatic microenvironment, including its unique anatomical features and metabolic challenges. We describe potential interactions with other local cell types and the need for a better understanding of this complex bidirectional crosstalk. Pathogen or tumour antigen-specific tissue-resident memory T cells (TRM) can provide rapid frontline immune surveillance; we review the evidence for this in hepatotropic infections of major worldwide importance like hepatitis B and malaria and in liver cancers like hepatocellular carcinoma. Conversely, TRM can be triggered by pro-inflammatory and metabolic signals to mediate bystander tissue damage, with an emerging role in a number of liver pathologies. We discuss the need for liver sampling to gain a window into these compartmentalised T cells, allowing more accurate disease monitoring and future locally targeted immunotherapies.
Collapse
Affiliation(s)
- Laura J Pallett
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rowland Hill St, London, NW3 2PP, UK.
| | - Mala K Maini
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rowland Hill St, London, NW3 2PP, UK.
| |
Collapse
|
11
|
Hoogerland JA, Staels B, Dombrowicz D. Immune-metabolic interactions in homeostasis and the progression to NASH. Trends Endocrinol Metab 2022; 33:690-709. [PMID: 35961913 DOI: 10.1016/j.tem.2022.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) has increased significantly over the past two decades. NAFLD ranges from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) and predisposes to fibrosis and hepatocellular carcinoma (HCC). The importance of the immune system in hepatic physiology and in the progression of NAFLD is increasingly recognized. At homeostasis, the liver participates in immune defense against pathogens and in tolerance of gut-derived microbial compounds. Hepatic immune cells also respond to metabolic stimuli and have a role in NAFLD progression to NASH. In this review, we discuss how metabolic perturbations affect immune cell phenotype and function in NAFL and NASH, and then focus on the role of immune cells in liver homeostasis and in the development of NASH.
Collapse
Affiliation(s)
- Joanne A Hoogerland
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
12
|
Gottwick C, Carambia A, Herkel J. Harnessing the liver to induce antigen-specific immune tolerance. Semin Immunopathol 2022; 44:475-484. [PMID: 35513495 PMCID: PMC9256566 DOI: 10.1007/s00281-022-00942-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases develop when the adaptive immune system attacks the body’s own antigens leading to tissue damage. At least 80 different conditions are believed to have an autoimmune aetiology, including rheumatoid arthritis, type I diabetes, multiple sclerosis or systemic lupus erythematosus. Collectively, autoimmune diseases are a leading cause of severe health impairment along with substantial socioeconomic costs. Current treatments are mostly symptomatic and non-specific, and it is typically not possible to cure these diseases. Thus, the development of more causative treatments that suppress only the pathogenic immune responses, but spare general immunity is of great biomedical interest. The liver offers considerable potential for development of such antigen-specific immunotherapies, as it has a distinct physiological capacity to induce immune tolerance. Indeed, the liver has been shown to specifically suppress autoimmune responses to organ allografts co-transplanted with the liver or to autoantigens that were transferred to the liver. Liver tolerance is established by a unique microenvironment that facilitates interactions between liver-resident antigen-presenting cells and lymphocytes passing by in the low blood flow within the hepatic sinusoids. Here, we summarise current concepts and mechanisms of liver immune tolerance, and review present approaches to harness liver tolerance for antigen-specific immunotherapy.
Collapse
Affiliation(s)
- Cornelia Gottwick
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Antonella Carambia
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Herkel
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Kurt AS, Strobl K, Ruiz P, Osborn G, Chester T, Dawson L, Warwas KM, Grey EH, Mastoridis S, Kodela E, Safinia N, Sanchez-Fueyo A, Martinez-Llordella M. IL-2 availability regulates the tissue specific phenotype of murine intra-hepatic Tregs. Front Immunol 2022; 13:1040031. [PMID: 36389734 PMCID: PMC9661520 DOI: 10.3389/fimmu.2022.1040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
CD4+CD25+Foxp3+ Tregs are known to acquire tissue-specific features and exert cytoprotective and regenerative functions. The extent to which this applies to liver-resident Tregs is unknown. In this study, we aimed to explore the phenotypic and functional characteristics of adult murine liver resident Tregs during homeostasis. Additionally, we investigated their role in ameliorating liver inflammation and tissue damage. Quantification of Foxp3+CD4+CD25+ cells comparing different tissues showed that the liver contained significantly fewer resident Tregs. A combination of flow cytometry phenotyping and microarray analysis of intra-hepatic and splenic Tregs under homeostatic conditions revealed that, although intra-hepatic Tregs exhibited the core transcriptional Treg signature, they expressed a distinct transcriptional profile. This was characterized by reduced CD25 expression and increased levels of pro-inflammatory Th1 transcripts Il1b and Ifng. In vivo ablation of Tregs in the Foxp3-DTR mouse model showed that Tregs had a role in reducing the magnitude of systemic and intra-hepatic inflammatory responses following acute carbon tetrachloride (CCl₄) injury, but their absence did not impact the development of hepatocyte necrosis. Conversely, the specific expansion of Tregs by administration of IL-2 complexes increased the number of intra-hepatic Tregs and significantly ameliorated tissue damage following CCl₄ administration in C57BL/6 mice. The cytoprotective effect observed in response to IL-2c was associated with the increased expression of markers known to regulate Treg suppressive function. Our results offer insight into the transcriptome and complex immune network of intra-hepatic Tregs and suggest that strategies capable of selectively increasing the pool of intra-hepatic Tregs could constitute effective therapies in inflammatory liver diseases.
Collapse
Affiliation(s)
- Ada S. Kurt
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Karoline Strobl
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Paula Ruiz
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Gabriel Osborn
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Tonika Chester
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Lauren Dawson
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Karsten M. Warwas
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
- Applied Tumour Immunity, German Cancer Research Centre (DKFZ), Ruprecht-Karls-Universitat, Heidelberg, Germany
| | - Elizabeth H. Grey
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Sotiris Mastoridis
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Elisavet Kodela
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Niloufar Safinia
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
- *Correspondence: Alberto Sanchez-Fueyo,
| | - Marc Martinez-Llordella
- Institute of Liver Studies, Division of Transplantation Immunology & Mucosal Biology, King’s College London, London, United Kingdom
| |
Collapse
|
14
|
Shojaie L, Ali M, Iorga A, Dara L. Mechanisms of immune checkpoint inhibitor-mediated liver injury. Acta Pharm Sin B 2021; 11:3727-3739. [PMID: 35024302 PMCID: PMC8727893 DOI: 10.1016/j.apsb.2021.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
The immune checkpoints, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein-1/ligand-1 (PD-1/PD-L1) are vital contributors to immune regulation and tolerance. Recently immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy; however, they come with the cost of immune related adverse events involving multiple organs such as the liver. Due to its constant exposure to foreign antigens, the liver has evolved a high capacity for immune tolerance, therefore, blockade of the immune checkpoints can result in aberrant immune activation affecting the liver in up to 20% of patients depending on the agent(s) used and underlying factors. This type of hepatotoxicity is termed immune mediated liver injury from checkpoint inhibitors (ILICI) and is more common when CTLA4 and PD-1/PD-L1 are used in combination. The underlying mechanisms of this unique type of hepatotoxicity are not fully understood; however, the contribution of CD8+ cytotoxic T lymphocytes, various CD4+ T cells populations, cytokines, and the secondary activation of the innate immune system leading to liver injury have all been suggested. This review summarizes our current understanding of the underlying mechanisms of liver injury in immunotherapy using animal models of ILICI and available patient data from clinical studies.
Collapse
Affiliation(s)
- Layla Shojaie
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Myra Ali
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrea Iorga
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
- UMBC Center for Accelerated Real Time Analytics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Lily Dara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Knolle PA, Huang LR, Kosinska A, Wohlleber D, Protzer U. Improving Therapeutic Vaccination against Hepatitis B-Insights from Preclinical Models of Immune Therapy against Persistent Hepatitis B Virus Infection. Vaccines (Basel) 2021; 9:1333. [PMID: 34835264 PMCID: PMC8623083 DOI: 10.3390/vaccines9111333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic hepatitis B affects more than 250 million individuals worldwide, putting them at risk of developing liver cirrhosis and liver cancer. While antiviral immune responses are key to eliminating hepatitis B virus (HBV) infections, insufficient antiviral immunity characterized by failure to eliminate HBV-infected hepatocytes is associated with chronic hepatitis B. Prophylactic vaccination against hepatitis B successfully established protective immunity against infection with the hepatitis B virus and has been instrumental in controlling hepatitis B. However, prophylactic vaccination schemes have not been successful in mounting protective immunity to eliminate HBV infections in patients with chronic hepatitis B. Here, we discuss the current knowledge on the development and efficacy of therapeutic vaccination strategies against chronic hepatitis B with particular emphasis on the pathogenetic understanding of dysfunctional anti-viral immunity. We explore the development of additional immune stimulation measures within tissues, in particular activation of immunogenic myeloid cell populations, and their use for combination with therapeutic vaccination strategies to improve the efficacy of therapeutic vaccination against chronic hepatitis B.
Collapse
Affiliation(s)
- Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli City 350, Taiwan;
| | - Anna Kosinska
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| |
Collapse
|
16
|
The immune niche of the liver. Clin Sci (Lond) 2021; 135:2445-2466. [PMID: 34709406 DOI: 10.1042/cs20190654] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
The liver is an essential organ that is critical for the removal of toxins, the production of proteins, and the maintenance of metabolic homeostasis. Behind each liver functional unit, termed lobules, hides a heterogeneous, complex, and well-orchestrated system. Despite parenchymal cells being most commonly associated with the liver's primary functionality, it has become clear that it is the immune niche of the liver that plays a central role in maintaining both local and systemic homeostasis by propagating hepatic inflammation and orchestrating its resolution. As such, the immunological processes that are at play in healthy and diseased livers are being investigated thoroughly in order to understand the underpinnings of inflammation and the potential avenues for restoring homeostasis. This review highlights recent advances in our understanding of the immune niche of the liver and provides perspectives for how the implementation of new transcriptomic, multimodal, and spatial technologies can uncover the heterogeneity, plasticity, and location of hepatic immune populations. Findings from these technologies will further our understanding of liver biology and create a new framework for the identification of therapeutic targets.
Collapse
|
17
|
Vacani-Martins N, Meuser-Batista M, dos Santos CDLP, Hasslocher-Moreno AM, Henriques-Pons A. The Liver and the Hepatic Immune Response in Trypanosoma cruzi Infection, a Historical and Updated View. Pathogens 2021; 10:pathogens10091074. [PMID: 34578107 PMCID: PMC8465576 DOI: 10.3390/pathogens10091074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease was described more than a century ago and, despite great efforts to understand the underlying mechanisms that lead to cardiac and digestive manifestations in chronic patients, much remains to be clarified. The disease is found beyond Latin America, including Japan, the USA, France, Spain, and Australia, and is caused by the protozoan Trypanosoma cruzi. Dr. Carlos Chagas described Chagas disease in 1909 in Brazil, and hepatomegaly was among the clinical signs observed. Currently, hepatomegaly is cited in most papers published which either study acutely infected patients or experimental models, and we know that the parasite can infect multiple cell types in the liver, especially Kupffer cells and dendritic cells. Moreover, liver damage is more pronounced in cases of oral infection, which is mainly found in the Amazon region. However, the importance of liver involvement, including the hepatic immune response, in disease progression does not receive much attention. In this review, we present the very first paper published approaching the liver's participation in the infection, as well as subsequent papers published in the last century, up to and including our recently published results. We propose that, after infection, activated peripheral T lymphocytes reach the liver and induce a shift to a pro-inflammatory ambient environment. Thus, there is an immunological integration and cooperation between peripheral and hepatic immunity, contributing to disease control.
Collapse
Affiliation(s)
- Natalia Vacani-Martins
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | - Marcelo Meuser-Batista
- Depto de Anatomia Patológica e Citopatologia, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil;
| | - Carina de Lima Pereira dos Santos
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | | | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
- Correspondence:
| |
Collapse
|
18
|
Wang T, Yeh MM, Avigan MI, Pelosof L, Feldman GM. Deciphering the Dynamic Complexities of the Liver Microenvironment - Toward a Better Understanding of Immune-Mediated liver Injury Caused by Immune Checkpoint Inhibitors (ILICI). AAPS JOURNAL 2021; 23:99. [PMID: 34401948 DOI: 10.1208/s12248-021-00629-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Immune checkpoint inhibitors (ICIs) represent a promising therapy for many types of cancer. However, only a portion of patients respond to this therapy and some patients develop clinically significant immune-mediated liver injury caused by immune checkpoint inhibitors (ILICI), an immune-related adverse event (irAE) that may require the interruption or termination of treatment and administration of systemic corticosteroids or other immunosuppressive agents. Although the incidence of ILICI is lower with monotherapy, the surge in combining ICIs with chemotherapy, targeted therapy, and combination of different ICIs has led to an increase in the incidence and severity of ILICI - a major challenge for development of effective and safe ICI therapy. In this review, we highlight the importance and contribution of the liver microenvironment to ILICI by focusing on the emerging roles of resident liver cells in modulating immune homeostasis and hepatocyte regeneration, two important decisive factors that dictate the initiation, progression, and recovery from ILICI. Based on the proposed contribution of the liver microenvironment on ICILI, we discuss the clinical characteristics of ILICI in patients with preexisting liver diseases, as well as the challenges of identifying prognostic biomarkers to guide the clinical management of severe ILICI. A better understanding of the liver microenvironment may lead to novel strategies and identification of novel biomarkers for effective management of ILICI.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Matthew M Yeh
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, 98195, USA
| | - Mark I Avigan
- Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lorraine Pelosof
- Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Gerald M Feldman
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
19
|
Li J, Hu CH, Chen Y, Zhou MM, Gao ZJ, Fu MJ, Wang J, Li JZ, Chen TY, Zhao YR, He YL. Characteristics of Peripheral Lymphocyte Subsets in Patients With Acute-On-Chronic Liver Failure Associated With Hepatitis B. Front Med (Lausanne) 2021; 8:689865. [PMID: 34386507 PMCID: PMC8353122 DOI: 10.3389/fmed.2021.689865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background and Aims: Acute-on-chronic liver failure (ACLF) is a rare, but dramatic clinical syndrome. There is substantial evidence suggesting that immunity-mediated inflammation plays an important role in HBV-ACLF. Our aim was to characterize the proportion and cell counts of peripheral blood lymphocyte subsets in acute-on-chronic liver failure patients caused by HBV infection. Methods: One hundred and seventeen patients were enrolled in this study, including those with HBV-related ACLF (HBV-ACLF; n = 70), and HBV related non-ACLF patients (HBV non-ACLF; n = 47). Demographics, clinical and laboratory data at hospital admission were retrospectively analyzed. The percentage and cell count of peripheral lymphocyte subsets were evaluated by flow cytometry. Comparison analysis was performed by t-test or non-parametric Mann–Whitney U-test. Actuarial probabilities of death were calculated by the Kaplan-Meier method. Results: Both circulating lymphocyte count and lymphocyte percentage were significantly reduced in patients with HBV-ACLF (P < 0.001). The CD8+ T cell, CD4+ T cell, and CD16+CD56+ NK cell counts were significantly decreased in HBV-ACLF. Consistently, flow cytometric analysis showed that CD8+ T cell counts were significantly decreased in non-survivors, while no significant differences were found in CD4+ T cell, CD19+ B cell, or CD56+CD16+ NK cell counts. Furthermore, the group with the lower CD8+ T cell count displayed a significantly higher mortality rate compared with the group with the higher CD8+ T cell count. Conclusions: The abnormal prevalence of lymphocyte subsets may be important in the pathogenesis of HBV-ACLF. The decrease in CD8+ T cell counts may be related to poor survival in HBV-ACLF patients.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, School of Medicine, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China.,School of Medicine, Institution of Hepatology, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chun-Hua Hu
- Department of Infectious Diseases, School of Medicine, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China.,School of Medicine, Institution of Hepatology, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yi Chen
- School of Medicine, Institution of Hepatology, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Mi-Mi Zhou
- School of Medicine, Institution of Hepatology, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Jie Gao
- Department of Infectious Diseases, School of Medicine, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China.,School of Medicine, Institution of Hepatology, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Meng-Jun Fu
- Department of Infectious Diseases, School of Medicine, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China.,School of Medicine, Institution of Hepatology, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- School of Medicine, Institution of Hepatology, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jian-Zhou Li
- Department of Infectious Diseases, School of Medicine, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China.,School of Medicine, Institution of Hepatology, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tian-Yan Chen
- Department of Infectious Diseases, School of Medicine, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Clinical Research Center of Infectious Diseases, Xi'an, China
| | - Ying-Ren Zhao
- Department of Infectious Diseases, School of Medicine, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Clinical Research Center of Infectious Diseases, Xi'an, China
| | - Ying-Li He
- School of Medicine, Institution of Hepatology, First Affiliated Teaching Hospital, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Clinical Research Center of Infectious Diseases, Xi'an, China
| |
Collapse
|
20
|
Liver-Resident Memory CD8 + T Cells: Possible Roles in Chronic HBV Infection. Int J Mol Sci 2020; 22:ijms22010283. [PMID: 33396596 PMCID: PMC7795050 DOI: 10.3390/ijms22010283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 12/19/2022] Open
Abstract
Achieving a functional cure for chronic hepatitis B virus (HBV) infection or complete elimination of HBV covalently closed circular DNA (cccDNA) has been challenging in the treatment of patients with chronic HBV infection. Although novel antivirals are being investigated, improving HBV-specific adaptive immune responses is also important for durable viral clearance. Tissue-resident memory CD8+ T (TRM) cells were recently reported as a T-cell population that resides in peripheral tissues and does not recirculate. TRM cells have been studied in the livers of mice and humans. Liver TRM cells have distinct characteristics compared to T cells in peripheral blood or other tissues, which may be associated with the unique microenvironment of the liver. In this review, we describe the characteristics of liver TRM cells and their implications in chronic HBV infection. We emphasize that liver TRM cells can be an immunotherapeutic target for the treatment of chronic HBV infection.
Collapse
|
21
|
Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol 2020; 17:719-739. [PMID: 32759983 DOI: 10.1038/s41575-020-0334-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
In the past 40 years, liver transplantation has evolved from a high-risk procedure to one that offers high success rates for reversal of liver dysfunction and excellent patient and graft survival. The liver is the most tolerogenic of transplanted organs; indeed, immunosuppressive therapy can be completely withdrawn without rejection of the graft in carefully selected, stable long-term liver recipients. However, in other recipients, chronic allograft injury, late graft failure and the adverse effects of anti-rejection therapy remain important obstacles to improved success. The liver has a unique composition of parenchymal and immune cells that regulate innate and adaptive immunity and that can promote antigen-specific tolerance. Although the mechanisms underlying liver transplant tolerance are not well understood, important insights have been gained into how the local microenvironment, hepatic immune cells and specific molecular pathways can promote donor-specific tolerance. These insights provide a basis for the identification of potential clinical biomarkers that might correlate with tolerance or rejection and for the development of novel therapeutic targets. Innovative approaches aimed at promoting immunosuppressive drug minimization or withdrawal include the adoptive transfer of donor-derived or recipient-derived regulatory immune cells to promote liver transplant tolerance. In this Review, we summarize and discuss these developments and their implications for liver transplantation.
Collapse
Affiliation(s)
- Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Julien Vionnet
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK.,Transplantation Center, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK
| |
Collapse
|
22
|
Barili V, Boni C, Rossi M, Vecchi A, Zecca A, Penna A, Missale G, Ferrari C, Fisicaro P. Metabolic regulation of the HBV-specific T cell function. Antiviral Res 2020; 185:104989. [PMID: 33248194 DOI: 10.1016/j.antiviral.2020.104989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Chronically HBV infected subjects are more than 260 million worldwide; cirrhosis and liver cancer represent possible outcomes which affect around 700,000 patients per year. Both innate and adaptive immune responses are necessary for viral control and both have been shown to be defective in chronic patients. Metabolic remodeling is an essential process in T cell biology, particularly for T cell activation, differentiation and survival. Cellular metabolism relies on the conversion of nutrients into energy to support intracellular processes, and to generate fundamental intermediate components for cell proliferation and growth. Adaptive immune responses are the central mechanisms for the resolution of primary human infections leading to the activation of pathogen-specific B and T cell functions. In chronic HBV infection the anti-viral immune response fails to contain the virus and leads to persistent hepatic tissue damage which may finally result in liver cirrhosis and cancer. This T cell failure is associated with metabolic alterations suggesting that control of nutrient uptake and intracellular utilization as well as correct regulation of intracellular metabolic pathways are strategic for T cell differentiation during persistent chronic infections. This review will discuss some of the main features of the T cell metabolic processes which are relevant to the generation of an efficient antiviral response, with specific focus on their clinical relevance in chronic HBV infection in the perspective of possible strategies to correct deregulated metabolic pathways underlying T cell dysfunction of chronic HBV patients.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
23
|
McCaughan GW, Bowen DG, Bertolino PJ. Induction Phase of Spontaneous Liver Transplant Tolerance. Front Immunol 2020; 11:1908. [PMID: 33013840 PMCID: PMC7516030 DOI: 10.3389/fimmu.2020.01908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
The liver has long been known to possess tolerogenic properties. Early experiments in liver transplantation demonstrated that in animal models, hepatic allografts could be accepted across MHC-mismatch without the use of immunosuppression, and that transplantation of livers from the same donor was capable of inducing tolerance to other solid organs that would normally otherwise be rejected. Although this phenomenon is less pronounced in human liver transplantation, lower levels of immunosuppression are nevertheless required for graft acceptance than for other solid organs, and in a minority of individuals immunosuppression can be discontinued in the longer term. The mechanisms underlying this unique hepatic property have not yet been fully delineated, however it is clear that immunological events in the early period post-liver transplant are key to generation of hepatic allograft tolerance. Both the hepatic parenchyma and the large number of donor passenger leukocytes contained within the liver allograft have been demonstrated to contribute to the generation of donor-specific tolerance in the early post-transplant phase. In particular, the unique nature of hepatic-leukocyte interactions appears to play a crucial role in the ability of the liver to silence the recipient alloimmune response. In this review, we will summarize the evidence regarding the potential mechanisms that mediate the critical early phase in the generation of hepatic allograft tolerance.
Collapse
Affiliation(s)
- Geoffrey W McCaughan
- Liver Injury and Cancer Program, The Centenary Institute, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.,AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David G Bowen
- AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Liver Immunology Program, The Centenary Institute, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Patrick J Bertolino
- AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Liver Immunology Program, The Centenary Institute, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
24
|
Ficht X, Iannacone M. Immune surveillance of the liver by T cells. Sci Immunol 2020; 5:5/51/eaba2351. [PMID: 32887842 DOI: 10.1126/sciimmunol.aba2351] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
The liver is the target of several infectious, inflammatory, and neoplastic diseases, which affect hundreds of millions of people worldwide and cause an estimated death toll of more than 2 million people each year. Dysregulation of T cell responses has been implicated in the pathogenesis of these diseases; hence, it is critically important to understand the function and fate of T cells in the liver. Here, we provide an overview of the current knowledge on liver immune surveillance by conventional and invariant T cells and explore the complex cross-talk between immune cell subsets that determines the balance between hepatic immunity and tolerance.
Collapse
Affiliation(s)
- Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. .,Vita-Salute San Raffaele University, 20132 Milan, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
25
|
Jiang Y, Que W, Zhu P, Li XK. The Role of Diverse Liver Cells in Liver Transplantation Tolerance. Front Immunol 2020; 11:1203. [PMID: 32595648 PMCID: PMC7304488 DOI: 10.3389/fimmu.2020.01203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the ideal treatment approach for a variety of end-stage liver diseases. However, life-long, systemic immunosuppressive treatment after transplantation is required to prevent rejection and graft loss, which is associated with severe side effects, although liver allograft is considered more tolerogenic. Therefore, understanding the mechanism underlying the unique immunologically privileged liver organ is valuable for transplantation management and autoimmune disease treatment. The unique hepatic acinus anatomy and a complex cellular network constitute the immunosuppressive hepatic microenvironment, which are responsible for the tolerogenic properties of the liver. The hepatic microenvironment contains a variety of hepatic-resident immobile non-professional antigen-presenting cells, including hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, that are insufficient to optimally prime T cells locally and lead to the removal of alloreactive T cells due to the low expression of major histocompatibility complex (MHC) molecules, costimulatory molecules and proinflammatory cytokines but a rather high expression of coinhibitory molecules and anti-inflammatory cytokines. Hepatic dendritic cells (DCs) are generally immature and less immunogenic than splenic DCs and are also ineffective in priming naïve allogeneic T cells via the direct recognition pathway in recipient secondary lymphoid organs. Although natural killer cells and natural killer T cells are reportedly associated with liver tolerance, their roles in liver transplantation are multifaceted and need to be further clarified. Under these circumstances, T cells are prone to clonal deletion, clonal anergy and exhaustion, eventually leading to tolerance. Other proposed liver tolerance mechanisms, such as soluble donor MHC class I molecules, passenger leukocytes theory and a high-load antigen effect, have also been addressed. We herein comprehensively review the current evidence implicating the tolerogenic properties of diverse liver cells in liver transplantation tolerance.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
26
|
Dai H, Zheng Y, Thomson AW, Rogers NM. Transplant Tolerance Induction: Insights From the Liver. Front Immunol 2020; 11:1044. [PMID: 32582167 PMCID: PMC7289953 DOI: 10.3389/fimmu.2020.01044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
A comparison of pre-clinical transplant models and of solid organs transplanted in routine clinical practice demonstrates that the liver is most amenable to the development of immunological tolerance. This phenomenon arises in the absence of stringent conditioning regimens that accompany published tolerizing protocols for other organs, particularly the kidney. The unique immunologic properties of the liver have assisted our understanding of the alloimmune response and how it can be manipulated to improve graft function and survival. This review will address important findings following liver transplantation in both animals and humans, and how these have driven the understanding and development of therapeutic immunosuppressive options. We will discuss the liver's unique system of immune and non-immune cells that regulate immunity, yet maintain effective responses to pathogens, as well as mechanisms of liver transplant tolerance in pre-clinical models and humans, including current immunosuppressive drug withdrawal trials and biomarkers of tolerance. In addition, we will address innovative therapeutic strategies, including mesenchymal stem cell, regulatory T cell, and regulatory dendritic cell therapy to promote liver allograft tolerance or minimization of immunosuppression in the clinic.
Collapse
Affiliation(s)
- Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Yawen Zheng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China.,Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natasha M Rogers
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal Division, Westmead Hospital, Westmead, NSW, Australia.,Westmead Clinical School, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
27
|
Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, Laccabue D, Zecca A, Penna A, Missale G, Ferrari C, Boni C. Pathogenetic Mechanisms of T Cell Dysfunction in Chronic HBV Infection and Related Therapeutic Approaches. Front Immunol 2020; 11:849. [PMID: 32477347 PMCID: PMC7235343 DOI: 10.3389/fimmu.2020.00849] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A great effort of research has been devoted in the last few years to developing new anti-HBV therapies of finite duration that also provide effective sustained control of virus replication and antigen production. Among the potential therapeutic strategies, immune-modulation represents a promising option to cure HBV infection and the adaptive immune response is a rational target for novel therapeutic interventions, in consideration of the key role played by T cells in the control of virus infections. HBV-specific T cells are severely dysfunctional in chronic HBV infection as a result of several inhibitory mechanisms which are simultaneously active within the chronically inflamed liver. Indeed, the liver is a tolerogenic organ harboring different non-parenchymal cell populations which can serve as antigen presenting cells (APC) but are poorly efficient in effector T cell priming, with propensity to induce T cell tolerance rather than T cell activation, because of a poor expression of co-stimulatory molecules, up-regulation of the co-inhibitory ligands PD-L1 and PD-L2 upon IFN stimulation, and production of immune regulatory cytokines, such as IL10 and TGF-β. They include resident dendritic cells (DCs), comprising myeloid and plasmacytoid DCs, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs) as well as the hepatocytes themselves. Additional regulatory mechanisms which contribute to T cell attrition in the chronically infected liver are the high levels of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines, the up-regulation of inhibitory checkpoint receptor/ligand pairs, the expansion of regulatory cells, such as CD4+FOXp3+ Treg cells, myeloid-derived suppressor cells and NK cells. This review will deal with the interactions between immune cells and liver environment discussing the different mechanisms which contribute to T cell dysfunction in chronic hepatitis B, some of which are specifically activated in HBV infection and others which are instead common to chronic inflammatory liver diseases in general. Therapeutic interventions targeting dysregulated pathways and cellular functions will be also delineated.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
28
|
Ronzitti G, Gross DA, Mingozzi F. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front Immunol 2020; 11:670. [PMID: 32362898 PMCID: PMC7181373 DOI: 10.3389/fimmu.2020.00670] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are one of the most promising in vivo gene delivery tools. Several features make rAAV vectors an ideal platform for gene transfer. However, the high homology with the parental wild-type virus, which often infects humans, poses limitations in terms of immune responses associated with this vector platform. Both humoral and cell-mediated immunity to wild-type AAV have been documented in healthy donors, and, at least in the case of anti-AAV antibodies, have been shown to have a potentially high impact on the outcome of gene transfer. While several factors can contribute to the overall immunogenicity of rAAV vectors, vector design and the total vector dose appear to be responsible of immune-mediated toxicities. While preclinical models have been less than ideal in predicting the outcome of gene transfer in humans, the current preclinical body of evidence clearly demonstrates that rAAV vectors can trigger both innate and adaptive immune responses. Data gathered from clinical trials offers key learnings on the immunogenicity of AAV vectors, highlighting challenges as well as the potential strategies that could help unlock the full therapeutic potential of in vivo gene transfer.
Collapse
Affiliation(s)
- Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, Evry, France
| | | | | |
Collapse
|
29
|
Recent Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12040775. [PMID: 32218257 PMCID: PMC7226090 DOI: 10.3390/cancers12040775] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death since most patients are diagnosed at advanced stage and the current systemic treatment options using molecular-targeted drugs remain unsatisfactory. However, the recent success of cancer immunotherapies has revolutionized the landscape of cancer therapy. Since HCC is characterized by metachronous multicentric occurrence, immunotherapies that induce systemic and durable responses could be an appealing treatment option. Despite the suppressive milieu of the liver and tumor immunosurveillance escape mechanisms, clinical studies of checkpoint inhibitors in patients with advanced HCC have yielded promising results. Here, we provide an update on recent advances in HCC immunotherapies. First, we describe the unique tolerogenic properties of hepatic immunity and its interaction with HCC and then review the status of already or nearly available immune checkpoint blockade-based therapies as well as other immunotherapy strategies at the preclinical or clinical trial stage.
Collapse
|
30
|
Costa Verdera H, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 2020; 28:723-746. [PMID: 31972133 PMCID: PMC7054726 DOI: 10.1016/j.ymthe.2019.12.010] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors has demonstrated safety and long-term efficacy in a number of trials across target organs, including eye, liver, skeletal muscle, and the central nervous system. Since the initial evidence that AAV vectors can elicit capsid T cell responses in humans, which can affect the duration of transgene expression, much progress has been made in understanding and modulating AAV vector immunogenicity. It is now well established that exposure to wild-type AAV results in priming of the immune system against the virus, with development of both humoral and T cell immunity. Aside from the neutralizing effect of antibodies, the impact of pre-existing immunity to AAV on gene transfer is still poorly understood. Herein, we review data emerging from clinical trials across a broad range of gene therapy applications. Common features of immune responses to AAV can be found, suggesting, for example, that vector immunogenicity is dose-dependent, and that innate immunity plays an important role in the outcome of gene transfer. A range of host-specific factors are also likely to be important, and a comprehensive understanding of the mechanisms driving AAV vector immunogenicity in humans will be key to unlocking the full potential of in vivo gene therapy.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Genethon and INSERM U951, 91000 Evry, France; Sorbonne Université and INSERM U974, 75013 Paris, France
| | | | - Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; Spark Therapeutics, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Ali SE, Waddington JC, Park BK, Meng X. Definition of the Chemical and Immunological Signals Involved in Drug-Induced Liver Injury. Chem Res Toxicol 2019; 33:61-76. [PMID: 31682113 DOI: 10.1021/acs.chemrestox.9b00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Idiosyncratic drug-induced liver injury (iDILI), which is rare and often recognized only late in drug development, poses a major public health concern and impediment to drug development due to its high rate of morbidity and mortality. The mechanisms of DILI are not completely understood; both non-immune- and immune-mediated mechanisms have been proposed. Non-immune-mediated mechanisms including direct damage to hepatocytes, mitochondrial toxicity, interference with transporters, and alteration of bile ducts are well-known to be associated with drugs such as acetaminophen and diclofenac; whereas immune-mediated mechanisms involving activation of both adaptive and innate immune cells and the interactions of these cells with parenchymal cells have been proposed. The chemical signals involved in activation of both innate and adaptive immune responses are discussed with respect to recent scientific advances. In addition, the immunological signals including cytokine and chemokines that are involved in promoting liver injury are also reviewed. Finally, we discuss how liver tolerance and regeneration can have profound impact on the pathogenesis of iDILI. Continuous research in developing in vitro systems incorporating immune cells with liver cells and animal models with impaired liver tolerance will provide an opportunity for improved prediction and prevention of immune-mediated iDILI.
Collapse
Affiliation(s)
- Serat-E Ali
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - James C Waddington
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| |
Collapse
|
32
|
Abstract
The liver is an immunologically tolerant organ that is uniquely equipped to limit hypersensitivity to food-derived antigens and bacterial products through the portal vein and can feasibly accept liver allografts. The adaptive immune response is a major branch of the immune system that induces organ/tissue-localized and systematic responses against pathogens and tumors while promoting self-tolerance. Persistent infection of the liver with a virus or other pathogen typically results in tolerance, which is a key feature of the liver. The liver's immunosuppressive microenvironment means that hepatic adaptive immune cells become readily tolerogenic, promoting the death of effector cells and the “education” of regulatory cells. The above mechanisms may result in the clonal deletion, exhaustion, or inhibition of peripheral T cells, which are key players in the adaptive immune response. These tolerance mechanisms are believed to be responsible for almost all liver diseases. However, optimal protective adaptive immune responses may be achieved through checkpoint immunotherapy and the modulation of hepatic innate immune cells in the host. In this review, we focus on the mechanisms involved in hepatic adaptive immune tolerance, the liver diseases caused thereby, and the therapeutic strategies needed to overcome this tolerance.
Collapse
Affiliation(s)
- Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
33
|
Bartolo L, Li Chung Tong S, Chappert P, Urbain D, Collaud F, Colella P, Richard I, Ronzitti G, Demengeot J, Gross DA, Mingozzi F, Davoust J. Dual muscle-liver transduction imposes immune tolerance for muscle transgene engraftment despite preexisting immunity. JCI Insight 2019; 4:127008. [PMID: 31167976 DOI: 10.1172/jci.insight.127008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Immune responses to therapeutic transgenes are a potential hurdle to treat monogenic muscle disorders. These responses result from the neutralizing activity of transgene-specific B cells and cytotoxic T cells recruited upon gene transfer. We explored here how dual muscle-liver expression of a foreign transgene allows muscle transgene engraftment after adenoassociated viral vector delivery. We found in particular that induction of transgene-specific tolerance is imposed by concurrent muscle and liver targeting, resulting in the absence of CD8+ T cell responses to the transgene. This tolerance can be temporally decoupled, because transgene engraftment can be achieved in muscle weeks after liver transduction. Importantly, transgene-specific CD8+ T cell tolerance can be established despite preexisting immunity to the transgene. Whenever preexisting, transgene-specific CD4+ and CD8+ memory T cell responses are present, dual muscle-liver transduction turns polyclonal, transgene-specific CD8+ T cells into typically exhausted T cells with high programmed cell death 1 (PD-1) expression and lack of IFN-γ production. Our results demonstrate that successful transduction of muscle tissue can be achieved through liver-mediated control of humoral and cytotoxic T cell responses, even in the presence of preexisting immunity to the muscle-associated transgene.
Collapse
Affiliation(s)
- Laurent Bartolo
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Stéphanie Li Chung Tong
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Pascal Chappert
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Dominique Urbain
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Fanny Collaud
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | - Pasqualina Colella
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | - Isabelle Richard
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | - Giuseppe Ronzitti
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | | | - David A Gross
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Federico Mingozzi
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | - Jean Davoust
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| |
Collapse
|
34
|
Isogawa M, Murata Y, Kawashima K, Tanaka Y. How are HBV-specific CD8
+
T-cell Responses induced? Future Virol 2018; 13:825-827. [DOI: 10.2217/fvl-2018-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022]
Affiliation(s)
- Masanori Isogawa
- Department of Virology & Liver Unit Nagoya City University Graduate School of Medical Sciences 1 Kawasumi
Mizuho-ku
Nagoya
467-8601
Japan
| | - Yasuhiro Murata
- Department of Hepatobiliary Pancreatic & Transplant Surgery Mie University Graduate School of Medicine 2–174 Edobashi Tsu
Mie
514-8507
Japan
| | - Keigo Kawashima
- Department of Virology & Liver Unit Nagoya City University Graduate School of Medical Sciences 1 Kawasumi
Mizuho-ku
Nagoya
467-8601
Japan
- Department of Gastroenterology & Hepatology Yokohama City University School of Medicine 3–9 Fukuura
Kanazawa-ku
Yokohama
236-0004
Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver Unit Nagoya City University Graduate School of Medical Sciences 1 Kawasumi
Mizuho-ku
Nagoya
467-8601
Japan
| |
Collapse
|
35
|
Manske K, Kallin N, König V, Schneider A, Kurz S, Bosch M, Welz M, Cheng R, Bengsch B, Steiger K, Protzer U, Thimme R, Knolle PA, Wohlleber D. Outcome of Antiviral Immunity in the Liver Is Shaped by the Level of Antigen Expressed in Infected Hepatocytes. Hepatology 2018; 68:2089-2105. [PMID: 29729204 PMCID: PMC6585666 DOI: 10.1002/hep.30080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
The liver bears unique immune properties that support both immune tolerance and immunity, but the mechanisms responsible for clearance versus persistence of virus-infected hepatocytes remain unclear. Here, we dissect the factors determining the outcome of antiviral immunity using recombinant adenoviruses that reflect the hepatropism and hepatrophism of hepatitis viruses. We generated replication-deficient adenoviruses with equimolar expression of ovalbumin, luciferase, and green fluorescent protein driven by a strong ubiquitous cytomegalovirus (CMV) promoter (Ad-CMV-GOL) or by 100-fold weaker, yet hepatocyte-specific, transthyretin (TTR) promoter (Ad-TTR-GOL). Using in vivo bioluminescence to quantitatively and dynamically image luciferase activity, we demonstrated that Ad-TTR-GOL infection always persists, whereas Ad-CMV-GOL infection is always cleared, independent of the number of infected hepatocytes. Failure to clear Ad-TTR-GOL infection involved mechanisms acting during initiation as well as execution of antigen-specific immunity. First, hepatocyte-restricted antigen expression led to delayed and curtailed T-cell expansion-10,000-fold after Ad-CMV-GOL versus 150-fold after Ad-TTR-GOL-infection. Second, CD8 T-cells primed toward antigens selectively expressed by hepatocytes showed high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression levels similar to that seen in chronic hepatitis B. Third, Ad-TTR-GOL but not Ad-CMV-GOL-infected hepatocytes escaped being killed by effector T-cells while still inducing high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression, indicating different thresholds of T-cell receptor signaling relevant for triggering effector functions compared with exhaustion. Conclusion: Our study identifies deficits in the generation of CD8 T-cell immunity toward hepatocyte-expressed antigens and escape of infected hepatocytes expressing low viral antigen levels from effector T-cell killing as independent factors promoting viral persistence. This highlights the importance of addressing both the restauration of CD8 T-cell dysfunction and overcoming local hurdles of effector T-cell function to eliminate virus-infected hepatocytes.
Collapse
Affiliation(s)
- Katrin Manske
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Nina Kallin
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Verena König
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Annika Schneider
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Sandra Kurz
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Miriam Bosch
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Meike Welz
- Institute of Experimental ImmunologyUniversity Hospital Bonn, University of BonnGermany
| | - Ru‐Lin Cheng
- Institute of Experimental ImmunologyUniversity Hospital Bonn, University of BonnGermany
| | | | - Katja Steiger
- Institute of PathologyTechnical University of MunichGermany
| | - Ulrike Protzer
- Institute of Virology and Klinikum Rechts der IsarTechnical University of Munich and Helmholtz Center for Environment and HealthMunichGermany
- German Center for Infection ResearchMunichGermany
| | - Robert Thimme
- University Hospital FreiburgUniversity of FreiburgGermany
| | - Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
- Institute of Experimental ImmunologyUniversity Hospital Bonn, University of BonnGermany
- German Center for Infection ResearchMunichGermany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| |
Collapse
|
36
|
Whitehouse GP, Hope A, Sanchez-Fueyo A. Regulatory T-cell therapy in liver transplantation. Transpl Int 2018; 30:776-784. [PMID: 28608637 DOI: 10.1111/tri.12998] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/27/2017] [Accepted: 06/07/2017] [Indexed: 12/24/2022]
Abstract
Modern immunosuppression drug regimens have produced excellent short-term survival after liver transplantation but it is generally accepted that the side effects of these medications remain a significant contributing factor for less satisfactory long term outcomes. The liver has unique tolerogenic properties as evidenced by the higher rates of operational tolerance seen in liver transplant recipients compared to other solid organ transplants, and therefore, liver transplantation offers an attractive setting in which to study tolerizing therapies. CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) are crucial for maintenance of self-tolerance and prevention of autoimmune disease and are therefore an appealing potential candidate for use as a tolerizing cell therapy. In this review, we summarize the evidence from drug withdrawal trials of spontaneous operational tolerance in liver transplantation, the unique immunology of the hepatic microenvironment, the evidence for the use of CD4+ CD25+ FOXP3+ regulatory T cells as a tolerance inducing therapy in liver transplantation and the challenges in producing clinical grade Treg cell products.
Collapse
Affiliation(s)
- Gavin P Whitehouse
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, Medical Research Council Centre for Transplantation, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrew Hope
- CRF GMP Unit, NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Alberto Sanchez-Fueyo
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, Medical Research Council Centre for Transplantation, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
37
|
Mehrfeld C, Zenner S, Kornek M, Lukacs-Kornek V. The Contribution of Non-Professional Antigen-Presenting Cells to Immunity and Tolerance in the Liver. Front Immunol 2018; 9:635. [PMID: 29643856 PMCID: PMC5882789 DOI: 10.3389/fimmu.2018.00635] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
The liver represents a unique organ biased toward a tolerogenic milieu. Due to its anatomical location, it is constantly exposed to microbial and food-derived antigens from the gut and thus equipped with a complex cellular network that ensures dampening T-cell responses. Within this cellular network, parenchymal cells (hepatocytes), non-parenchymal cells (liver sinusoidal endothelial cells and hepatic stellate cells), and immune cells contribute directly or indirectly to this process. Despite this refractory bias, the liver is capable of mounting efficient T-cell responses. How the various antigen-presenting cell (APC) populations contribute to this process and how they handle danger signals determine the outcome of the generated immune responses. Importantly, liver mounted responses convey consequences not only for the local but also to systemic immunity. Here, we discuss various aspects of antigen presentation and its consequences by the non-professional APCs in the liver microenvironment.
Collapse
Affiliation(s)
- Christina Mehrfeld
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Steven Zenner
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Miroslaw Kornek
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | | |
Collapse
|
38
|
Maini MK, Pallett LJ. Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. Lancet Gastroenterol Hepatol 2018; 3:192-202. [PMID: 29870733 DOI: 10.1016/s2468-1253(18)30007-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) remains a major cause of morbidity and mortality worldwide. Treatments that can induce functional cure in patients chronically infected with this hepatotropic, non-cytopathic virus are desperately needed. Attempts to use therapeutic vaccines to expand the weak antiviral T-cell response and induce sustained immunity have been unsuccessful. However, exciting progress has been made in defining the molecular defects that must be overcome to harness T-cell immunity. A large arsenal of immunotherapeutic agents and direct-acting antivirals targeting multiple steps of the viral lifecycle is emerging. In this Review, we discuss how to translate the new insights into T-cell manipulation, combined with better understanding of patient heterogeneity, into optimisation of therapeutic vaccines against HBV. We review the opportunities and risks involved in boosting endogenous T-cell responses using combinations of next generation therapeutic vaccines and immunotherapy agents.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK.
| | - Laura J Pallett
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
39
|
TLR9-Mediated Conditioning of Liver Environment Is Essential for Successful Intrahepatic Immunotherapy and Effective Memory Recall. Mol Ther 2017; 25:2289-2298. [PMID: 28716576 DOI: 10.1016/j.ymthe.2017.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/08/2017] [Accepted: 06/18/2017] [Indexed: 01/11/2023] Open
Abstract
Immune defense against hepatotropic viruses such as hepatitis B (HBV) and hepatitis C (HCV) poses a major challenge for therapeutic approaches. Intrahepatic cytotoxic CD8 T cells that are crucial for an immune response against these viruses often become exhausted resulting in chronic infection. We elucidated the T cell response upon therapeutic vaccination in inducible transgenic mouse models in which variable percentages of antigen-expressing hepatocytes can be adjusted, providing mosaic antigen distribution and reflecting the varying viral antigen loads observed in patients. Vaccination-induced endogenous CD8 T cells could eliminate low antigen loads in liver but were functionally impaired if confronted with elevated antigen loads. Strikingly, only by conditioning the liver environment with TLR9 ligand prior and early after peripheral vaccination, successful immunization against high intrahepatic antigen density with its elimination was achieved. Moreover, TLR9 immunomodulation was also indispensable for functional memory recall after high frequency antigen challenge. Together, the results indicate that TLR9-mediated conditioning of liver environment during therapeutic vaccination or antigen reoccurrence is crucial for an efficacious intrahepatic T cell response.
Collapse
|
40
|
Abstract
BACKGROUND The liver immune environment is tightly regulated to balance immune activation with immune tolerance. Understanding the dominant immune pathways initiated in the liver is important because the liver is a site for cell transplantation, such as for islet and hepatocyte transplantation. The purpose of this study is to examine the consequences of alloimmune stimulation when allogeneic cells are transplanted to the liver in comparison to a different immune locale, such as the kidney. METHODS We investigated cellular and humoral immune responses when allogeneic hepatocytes are transplanted directly to the recipient liver by intraportal injection. A heterotopic kidney engraftment site was used for comparison to immune activation in the liver microenvironment. RESULTS Transplantation of allogeneic hepatocytes delivered directly to the liver, via recipient portal circulation, stimulated long-term, high magnitude CD8 T cell-mediated allocytotoxicity. CD8 T cells initiated significant in vivo allocytotoxicity as well as rapid rejection of hepatocytes transplanted to the liver even in the absence of secondary lymph nodes or CD4 T cells. In contrast, in the absence of recipient peripheral lymphoid tissue and CD4 T cells, CD8-mediated in vivo allocytotoxicity was abrogated, and rejection was delayed when hepatocellular allografts were transplanted to the kidney subcapsular site. CONCLUSIONS These results highlight the CD8-dominant proinflammatory immune responses unique to the liver microenvironment. Allogeneic cells transplanted directly to the liver do not enjoy immune privilege but rather require immunosuppression to prevent rejection by a robust and persistent CD8-dependent allocytotoxicity primed in the liver.
Collapse
|
41
|
Wohlleber D, Knolle PA. The role of liver sinusoidal cells in local hepatic immune surveillance. Clin Transl Immunology 2016; 5:e117. [PMID: 28090319 PMCID: PMC5192065 DOI: 10.1038/cti.2016.74] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Although the liver's function as unique immune organ regulating immunity has received a lot of attention over the last years, the mechanisms determining hepatic immune surveillance against infected hepatocytes remain less well defined. Liver sinusoidal cells, in particular, liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs), serve as physical platform for recruitment and anchoring of blood-borne immune cells in the liver. Liver sinusoidal cells also function as portal of entry for infectious microorganisms targeting the liver such as hepatotropic viruses, bacteria or parasites. At the same time, liver sinusoidal cells actively contribute to achieve immune surveillance against bacterial and viral infections. KCs function as adhesion hubs for CD8 T cells from the circulation, which initiates the interaction of virus-specific CD8 T cells with infected hepatocytes. Through their phagocytic function, KCs contribute to removal of bacteria from the circulation and engage in cross talk with sinusoidal lymphocyte populations to achieve elimination of phagocytosed bacteria. LSECs contribute to local immune surveillance through cross-presentation of viral antigens that causes antigen-specific retention of CD8 T cells from the circulation. Such cross-presentation of viral antigens activates CD8 T cells to release TNF that in turn triggers selective killing of virus-infected hepatocytes. Beyond major histocompatibility complex (MHC)-restricted T-cell immunity, CD1- and MR1-restricted innate-like lymphocytes are found in liver sinusoids whose roles in local immune surveillance against infection need to be defined. Thus, liver sinusoidal cell populations bear key functions for hepatic recruitment and for local activation of immune cells, which are both required for efficient immune surveillance against infection in the liver.
Collapse
Affiliation(s)
- Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München , München, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, München, Germany; Institute of Experimental Immunology, Universität Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
42
|
The CD8 T-cell response during tolerance induction in liver transplantation. Clin Transl Immunology 2016; 5:e102. [PMID: 27867515 PMCID: PMC5099425 DOI: 10.1038/cti.2016.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022] Open
Abstract
Both experimental and clinical studies have shown that the liver possesses unique tolerogenic properties. Liver allografts can be spontaneously accepted across complete major histocompatibility mismatch in some animal models. In addition, some liver transplant patients can be successfully withdrawn from immunosuppressive medications, developing ‘operational tolerance'. Multiple mechanisms have been shown to be involved in inducing and maintaining alloimmune tolerance associated with liver transplantation. Here, we focus on CD8 T-cell tolerance in this setting. We first discuss how alloreactive cytotoxic T-cell responses are generated against allografts, before reviewing how the liver parenchyma, donor passenger leucocytes and the host immune system function together to attenuate alloreactive CD8 T-cell responses to promote the long-term survival of liver transplants.
Collapse
|
43
|
Protective immunity to liver-stage malaria. Clin Transl Immunology 2016; 5:e105. [PMID: 27867517 PMCID: PMC5099428 DOI: 10.1038/cti.2016.60] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Despite decades of research and recent clinical trials, an efficacious long-lasting preventative vaccine for malaria remains elusive. This parasite infects mammals via mosquito bites, progressing through several stages including the relatively short asymptomatic liver stage followed by the more persistent cyclic blood stage, the latter of which is responsible for all disease symptoms. As the liver acts as a bottleneck to blood-stage infection, it represents a potential site for parasite and disease control. In this review, we discuss immunity to liver-stage malaria. It is hoped that the knowledge gained from animal models of malaria immunity will translate into a more powerful and effective vaccine to reduce this global health problem.
Collapse
|
44
|
Glab JA, Mbogo GW, Puthalakath H. BH3-Only Proteins in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:163-196. [PMID: 28069133 DOI: 10.1016/bs.ircmb.2016.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BH3-only proteins are proapoptotic members of the broader Bcl-2 family, which promote cell death by directly or indirectly activating Bax and Bak. The expression of BH3-only proteins is regulated both transcriptionally and posttranscriptionally in a cell type-specific and a tissue-specific manner. Research over the last 20 years has provided significant insights into their roles in tissue homeostasis and various pathologies, which in turn has led to the development of novel therapeutics for numerous diseases. In this review, a snapshot of the progress over this period is given, including our current understanding of their regulation, mode of action, role in mammalian development, and pathology.
Collapse
Affiliation(s)
- J A Glab
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, VIC, Australia
| | - G W Mbogo
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, VIC, Australia
| | - H Puthalakath
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, VIC, Australia.
| |
Collapse
|
45
|
Moreno-Cubero E, Larrubia JR. Specific CD8 + T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis. World J Gastroenterol 2016; 22:6469-6483. [PMID: 27605882 PMCID: PMC4968127 DOI: 10.3748/wjg.v22.i28.6469] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8+ T cell response. This process involves enhancement of negative co-stimulatory molecules, such as programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 2B4, Tim-3, CD160 and LAG-3, which is linked to intrahepatic overexpression of some of the cognate ligands, such as PD-L1, on antigen presenting cells and thereby favouring a tolerogenic environment. Therapies that disrupt these negative signalling mechanisms represent promising therapeutic tools with the potential to restore reactivity of the specific CD8+ T cell response. In this review we discuss the impressive in vitro and in vivo results that have been recently achieved in HCC, CHB and CHC by blocking these negative receptors with monoclonal antibodies against these immune checkpoint modulators. The article mainly focuses on the role of CTLA-4 and PD-1 blocking monoclonal antibodies, the first ones to have reached clinical practice. The humanized monoclonal antibodies against CTLA-4 (tremelimumab and ipilimumab) and PD-1 (nivolumab and pembrolizumab) have yielded good results in testing of HCC and chronic viral hepatitis patients. Trelimumab, in particular, has shown a significant increase in the time to progression in HCC, while nivolumab has shown a remarkable effect on hepatitis C viral load reduction. The research on the role of ipilimumab, nivolumab and pembrolizumab on HCC is currently underway.
Collapse
|
46
|
Demetris AJ, Bellamy COC, Gandhi CR, Prost S, Nakanuma Y, Stolz DB. Functional Immune Anatomy of the Liver-As an Allograft. Am J Transplant 2016; 16:1653-80. [PMID: 26848550 DOI: 10.1111/ajt.13749] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 01/25/2023]
Abstract
The liver is an immunoregulatory organ in which a tolerogenic microenvironment mitigates the relative "strength" of local immune responses. Paradoxically, necro-inflammatory diseases create the need for most liver transplants. Treatment of hepatitis B virus, hepatitis C virus, and acute T cell-mediated rejection have redirected focus on long-term allograft structural integrity. Understanding of insults should enable decades of morbidity-free survival after liver replacement because of these tolerogenic properties. Studies of long-term survivors show low-grade chronic inflammatory, fibrotic, and microvascular lesions, likely related to some combination of environment insults (i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. The resultant conundrum is familiar in transplantation: adequate immunosuppression produces chronic toxicities, while lightened immunosuppression leads to sensitization, immunological injury, and structural deterioration. The "balance" is more favorable for liver than other solid organ allografts. This occurs because of unique hepatic immune physiology and provides unintended benefits for allografts by modulating various afferent and efferent limbs of allogenic immune responses. This review is intended to provide a better understanding of liver immune microanatomy and physiology and thereby (a) the potential structural consequences of low-level, including allo-antibody-mediated injury; and (b) how liver allografts modulate immune reactions. Special attention is given to the microvasculature and hepatic mononuclear phagocytic system.
Collapse
Affiliation(s)
- A J Demetris
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - C O C Bellamy
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - C R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - S Prost
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Y Nakanuma
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - D B Stolz
- Center for Biologic Imaging, Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
47
|
Vo M, Holz LE, Wong YC, English K, Benseler V, McGuffog C, Azuma M, McCaughan GW, Bowen DG, Bertolino P. Effector T cell function rather than survival determines extent and duration of hepatitis in mice. J Hepatol 2016; 64:1327-38. [PMID: 26924452 DOI: 10.1016/j.jhep.2016.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/14/2016] [Accepted: 01/26/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Acute hepatitis is often mediated by cytotoxic T lymphocytes (CTLs); however, the intrinsic parameters that limit CTL-mediated liver injury are not well understood. METHODS To investigate whether acute liver damage is limited by molecules that decrease the lifespan or effector function of CTLs, we used a well-characterized transgenic (Tg) mouse model in which acute liver damage develops upon transfer of T cell receptor (TCR) Tg CD8 T cells. Recipient Tg mice received donor TCR Tg T cells deficient for either the pro-apoptotic molecule Bim, which regulates CTL survival, or suppressor of cytokine signaling-1 (SOCS-1), which controls expression of common gamma chain cytokines; the effects of anti-PD-L1 neutralizing antibodies were also assessed. RESULTS Use of Bim-deficient donor T cells and/or PD-L1 blockade increased the number of intrahepatic T cells without affecting the degree and kinetic of acute hepatitis. In contrast, SOCS-1-deficient T cells induced a heightened, prolonged acute hepatitis caused by their enhanced cytotoxic function and increased expansion. Although they inflicted more severe acute liver damage, SOCS-1-deficient T cells never precipitated chronic hepatitis and became exhausted. CONCLUSIONS The degree of acute hepatitis is regulated by the function of CD8 T cells, but is not affected by changes in CTL lifespan. Although manipulation of the examined parameters affected acute hepatitis, persistent hepatitis did not ensue, indicating that, in the presence of high intrahepatic antigen load, changes in these factors in isolation were not sufficient to prevent T cell exhaustion and mediate progression to chronic hepatitis.
Collapse
Affiliation(s)
- Michelle Vo
- Liver Immunology Program, Centenary Institute, Newtown, NSW, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital Newtown, NSW, and Faculty of Medicine, University of Sydney, NSW, Australia
| | - Lauren E Holz
- Liver Immunology Program, Centenary Institute, Newtown, NSW, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital Newtown, NSW, and Faculty of Medicine, University of Sydney, NSW, Australia; Current address: Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Yik Chun Wong
- Liver Immunology Program, Centenary Institute, Newtown, NSW, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital Newtown, NSW, and Faculty of Medicine, University of Sydney, NSW, Australia
| | - Kieran English
- Liver Immunology Program, Centenary Institute, Newtown, NSW, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital Newtown, NSW, and Faculty of Medicine, University of Sydney, NSW, Australia
| | - Volker Benseler
- Liver Immunology Program, Centenary Institute, Newtown, NSW, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital Newtown, NSW, and Faculty of Medicine, University of Sydney, NSW, Australia; Current address: Department of Surgery, University of Regensburg, Bavaria, Germany
| | - Claire McGuffog
- Liver Immunology Program, Centenary Institute, Newtown, NSW, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital Newtown, NSW, and Faculty of Medicine, University of Sydney, NSW, Australia
| | - Miyuki Azuma
- Department of Molecular Immunology Graduate School, Tokyo Medical and Dental University, Yushima, Tokyo, Japan
| | - Geoffrey W McCaughan
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital Newtown, NSW, and Faculty of Medicine, University of Sydney, NSW, Australia; Liver Injury and Cancer Program, Centenary Institute, Newtown, NSW, Australia
| | - David G Bowen
- Liver Immunology Program, Centenary Institute, Newtown, NSW, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital Newtown, NSW, and Faculty of Medicine, University of Sydney, NSW, Australia.
| | - Patrick Bertolino
- Liver Immunology Program, Centenary Institute, Newtown, NSW, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital Newtown, NSW, and Faculty of Medicine, University of Sydney, NSW, Australia.
| |
Collapse
|
48
|
Hamilton-Williams EE, Bergot AS, Reeves PLS, Steptoe RJ. Maintenance of peripheral tolerance to islet antigens. J Autoimmun 2016; 72:118-25. [PMID: 27255733 DOI: 10.1016/j.jaut.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/04/2023]
Abstract
Reestablishment of immune tolerance to the insulin-producing beta cells is the desired goal for type 1 diabetes (T1D) treatment and prevention. Immune tolerance to multiple islet antigens is defective in individuals with T1D, but the mechanisms involved are multifaceted and may involve loss of thymic and peripheral tolerance. In this review we discuss our current understanding of the varied mechanisms by which peripheral tolerance to islet antigens is maintained in healthy individuals where genetic protection from T1D is present and how this fails in those with genetic susceptibility to disease. Novel findings in regards to expression of neo-islet antigens, non-classical regulatory cell subsets and the impact of specific genetic variants on tolerance induction are discussed.
Collapse
Affiliation(s)
- Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Peta L S Reeves
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
49
|
Knolle PA. Staying local-antigen presentation in the liver. Curr Opin Immunol 2016; 40:36-42. [PMID: 26974478 DOI: 10.1016/j.coi.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/26/2016] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
The liver is known as organ with unique immune competence. Besides its unique microenvironment that is determined by gut-derived portal venous blood constituents and the presence of enzymes with immune regulatory properties, liver antigen presenting cell populations regulate antigen-specific immunity in a local fashion. In addition to bone marrow-derived dendritic cells and myeloid cells such as macrophages and monocytes, also truly liver-resident cell populations function as antigen presenting cells such as liver sinusoidal endothelial cells and hepatocytes. The functional outcome of antigen-presentation by these cell populations is diverse and ranges from generation of regulatory CD4 cells, to induction of memory CD8 T cells or deletional tolerance, which generates a complex network of antigen-presenting cells that determines hepatic immune regulation and local immune surveillance against viral infection.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology Technische Universität München, Germany.
| |
Collapse
|
50
|
Abstract
The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.
Collapse
Affiliation(s)
- Felix Heymann
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|