1
|
Zhu Y, Cao S. Unraveling the Complexities of Myeloid-Derived Suppressor Cells in Inflammatory Bowel Disease. Int J Mol Sci 2025; 26:3291. [PMID: 40244120 PMCID: PMC11989781 DOI: 10.3390/ijms26073291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) regulate immune responses in many pathological conditions, one of which is inflammatory bowel disease (IBD), an incurable chronic disorder of the digestive tract and beyond. The pathophysiology of IBD remains unclear, likely involving aberrant innate and adaptive immunity. Studies have reported altered population of MDSCs in patients with IBD. However, their distribution varies among patients and different preclinical models of IBD. The expansion and activation of MDSCs are likely driven by various stimuli during intestinal inflammation, but the in-depth mechanisms remain poorly understood. The role of MDSCs in the pathogenesis of IBD appears to be paradoxical. In addition to intestinal inflammation, suppressive MDSCs may promote colitis-to-colon cancer transition. In this Review, we summarize recent progresses on the features, activation, and roles of MDSCs in the development of IBD and IBD-associated colon cancer.
Collapse
Affiliation(s)
| | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
2
|
Cheng X, Shao P, Wang X, Jiang J, Chen J, Zhu J, Zhu W, Li Y, Zhang J, Chen J, Huang Z. Myeloid-Derived Suppressor Cell Accumulation Drives Intestinal Fibrosis through mCCL6/hCCL15 Chemokine-Mediated Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411711. [PMID: 39739231 PMCID: PMC11848553 DOI: 10.1002/advs.202411711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Indexed: 01/02/2025]
Abstract
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models. Depletion of MDSCs significantly reduces fibrosis, highlighting their key role in the fibrotic process. Mechanistically, MDSC-derived mCCL6 activates fibroblasts via the CCR1-MAPK signaling, and interventions targeting this axis, including neutralizing antibodies, a CCR1 antagonist, or fibroblast-specific Ccr1 knockout mice reduce fibrosis. In CD patients with stenosis, human CCL15, analogous to mCCL6, is found to be elevated in MDSCs and activated fibroblasts. Additionally, CXCR2 and CCR2 ligands are identified as key mediators of MDSC recruitment in intestinal fibrosis. Blocking MDSC recruitment with CXCR2 and CCR2 antagonists alleviates intestinal fibrosis. These findings suggest that strategies targeting MDSC recruitment and mCCL6/hCCL15 signaling could offer therapeutic benefits for intestinal fibrosis.
Collapse
Affiliation(s)
- Xiaohui Cheng
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Pingwen Shao
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - XinTong Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Juan Jiang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiahui Chen
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jie Zhu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Weiming Zhu
- Department of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjingJiangsu210002China
| | - Yi Li
- Department of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjingJiangsu210002China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- State Key Laboratory of Analytical Chemistry for Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- NJU Xishan Institute of Applied BiotechnologyXishan DistrictWuxiJiangsu214101China
| |
Collapse
|
3
|
Lu ZH, Ding Y, Wang YJ, Chen C, Yao XR, Yuan XM, Bu F, Bao H, Dong YW, Zhou Q, Li L, Chen T, Li Y, Zhou JY, Wang Q, Shi GP, Jiang F, Chen YG. Early administration of Wumei Wan inhibit myeloid-derived suppressor cells via PI3K/Akt pathway and amino acids metabolism to prevent colitis-associated colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118260. [PMID: 38685367 DOI: 10.1016/j.jep.2024.118260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wumei Wan (WMW), a traditional Chinese medicine prescription, has been proved to be effective in treating Colitis-associated colorectal cancer (CAC), but it has not been proven to be effective in different stages of CAC. AIM OF THE STUDY The purpose of our study is to investigate the therapeutic effect and mechanism of WMW on the progression of CAC. MATERIALS AND METHODS Azioximethane (AOM) and dextran sulfate sodium (DSS) were used to treat mice for the purpose of establishing CAC models. WMW was administered in different stages of CAC. The presentative chemical components in WMW were confirmed by LC-MS/MS under the optimized conditions. The detection of inflammatory cytokines in the serum and colon of mice were estimated by qRT-PCR and ELISA. The changes of T cells and myeloid-derived suppressor cells (MDSCs) in each group were detected by flow cytometry. The metabolic components in serum of mice were detected by UPLC-MS/MS. Expression of genes and proteins were detected by eukaryotic transcriptomics and Western blot to explore the key pathway of WMW in preventing CAC. RESULTS WMW had significant effect on inhibiting inflammatory responses and tumors during the early development stage of CAC when compared to other times. WMW increased the length of mice's colons, reduced the level of IL-1β, IL-6, TNF-α in colon tissues, and effectively alleviated colonic inflammation, and improved the pathological damage of colon tissues. WMW could significantly reduce the infiltration of MDSCs in the spleen, increase CD4+ T cells and CD8+ T cells in the spleen of CAC mice, and effectively reform the immune microenvironment in CAC mice. Transcriptomics analysis revealed that 2204 genes had different patterns of overlap in the colon tissues of mice between control group, AOM + DSS group, and early administration of WMW group. And KEGG enrichment analysis showed that PI3K/Akt signaling pathway, ECM-receptor interaction, IL-17 signaling pathway, MAPK signaling pathway, pancreatic secretion, thermogenesis, and Rap1 signaling pathway were all involved. The serum metabolomics results of WMW showed that the metabolic compositions of the control group, AOM + DSS group and the early stage of WMW were different, and 42 differential metabolites with the opposite trends of changes were screened. The metabolic pathways mainly included pyrimidine metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, and purine metabolism. And amino acids and related metabolites may play an important role in WMW prevention of CAC. CONCLUSION WMW can effectively prevent the occurrence and development of CAC, especially in the initial stage. WMW can reduce the immune infiltration of MDSCs in the early stage. Early intervention of WMW can improve the metabolic disorder caused by AOM + DSS, especially correct the amino acid metabolism. PI3K/Akt signaling pathway was inhabited in early administration of WMW, which can regulate the amplification and function of MDSCs.
Collapse
Affiliation(s)
- Zhi-Hua Lu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Ding
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yu-Ji Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing-Ran Yao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Min Yuan
- Department of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Bu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Han Bao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Wei Dong
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiao Zhou
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Li
- Department of Colorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Tuo Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yang Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Jin-Yong Zhou
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, China
| | - Qiong Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Guo-Ping Shi
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| | - Feng Jiang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Yu-Gen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
4
|
Xiao J, Guo X, Lin Y, Wang Z. The causal relationship between immune cell-mediated gut microbiota and ulcerative colitis: a bidirectional two-sample, mediation Mendelian randomization analysis. Front Nutr 2024; 11:1433545. [PMID: 39525506 PMCID: PMC11545678 DOI: 10.3389/fnut.2024.1433545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Numerous studies have highlighted the close association between gut microbiota and the development of ulcerative colitis (UC), yet research on whether immune cells mediate this process remains scarce. This study utilizes various Mendelian randomization (MR) methods to investigate the causal relationship between gut microbiota and UC, further exploring the mediating role of immune cells in this process. Methods Genome-wide association study (GWAS) summary statistics for 473 gut microbiota, 731 immune cell phenotypes, and UC were obtained from the GWAS catalog database. Single nucleotide polymorphisms (SNP) were used as instrumental variables (IV) to validate the causal relationship between gut microbiota and UC through two-sample MR and Bayesian weighted MR (BWMR), and reverse MR was employed to explore the presence of reverse causal effects. Two-step MR was applied to identify immune cell mediators and evaluate their mediation effects. Results The study revealed a causal relationship between 20 gut microbiota and UC, with 14 microbiota acting as protective factors for UC and 6 as risk factors. Mediation MR identified 26 immune cell mediators, among which the association between CD11b on Mo MDSC and Bifidobacterium bifidum (B. bifidum) was most significant (p = 0.0017, OR = 1.4540, 95% CI: 1.1504-1.8378). Mediation MR analysis indicated that the mediation effect of CD11b on Mo MDSC between B. bifidum and UC was -0.0385, with a mediation effect ratio of 16.67%. Conclusion There is a clear causal relationship between certain gut microbiota and UC, and CD11b on Mo MDSC is a significant mediator between B. bifidum and UC, providing new insights for the clinical treatment of UC.
Collapse
Affiliation(s)
- Jinyin Xiao
- Department of Anorectal, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, The First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Youwei Lin
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zhenquan Wang
- Department of Anorectal, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Mandal M, Rakib A, Mamun MAA, Kumar S, Park F, Hwang DJ, Li W, Miller DD, Singh UP. DJ-X-013 reduces LPS-induced inflammation, modulates Th17/ myeloid-derived suppressor cells, and alters NF-κB expression to ameliorate experimental colitis. Biomed Pharmacother 2024; 179:117379. [PMID: 39255739 PMCID: PMC11479677 DOI: 10.1016/j.biopha.2024.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
SCOPE Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition of unknown etiology, although recent evidence suggests that it is caused by an excessive immune response to mucosal antigens. We determined the anti-inflammatory properties of novel compound DJ-X-013 in vitro in lipopolysaccharide (LPS)-induced macrophages and in an in vivo dextran sodium sulfate (DSS)-induced model of colitis. METHODS AND RESULTS To evaluate the anti-inflammatory properties of DJ-X-013, we used LPS-activated RAW 264.7 macrophages in vitro and a DSS-induced experimental model of colitis in vivo. We examine cellular morphology, and tissue architecture by histology, flow cytometry, RT-qPCR, multiplex, and immunoblot analysis to perform cellular and molecular studies. DJ-X-013 treatment altered cell morphology and expression of inflammatory cytokines in LPS-activated macrophages as compared to cells treated with LPS alone. DJ-X-013 also impeded the migration of RAW 264.7 macrophages by modulating cytoskeletal organization and suppressed the expression of NF-κB and inflammatory markers as compared to LPS alone. DJ-X-013 treatment improved body weight, and colon length and attenuated inflammation in the colon of DSS-induced colitis. Intriguingly, DSS-challenged mice treated with DJ-X-013 induced the numbers of myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and natural killer T cells (NKT) in the colon lamina propria (LP) relative to DSS. DJ-X-013 also reduced the influx of neutrophils, TNF-α producing macrophages, restricted the number of Th17 cells, and suppressed inflammatory cytokines and NF-κB in the LP relative to DSS. CONCLUSION DJ-X-013 is proposed to be a therapeutic strategy for ameliorating inflammation and experimental colitis.
Collapse
Affiliation(s)
- Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Md Abdullah Al Mamun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
6
|
Maier JA, Castiglioni S, Petrelli A, Cannatelli R, Ferretti F, Pellegrino G, Sarzi Puttini P, Fiorina P, Ardizzone S. Immune-Mediated Inflammatory Diseases and Cancer - a dangerous liaison. Front Immunol 2024; 15:1436581. [PMID: 39359726 PMCID: PMC11445042 DOI: 10.3389/fimmu.2024.1436581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Patients with Immune-Mediated Inflammatory Diseases (IMIDs) are known to have an elevated risk of developing cancer, but the exact causative factors remain subject to ongoing debate. This narrative review aims to present the available evidence concerning the intricate relationship between these two conditions. Environmental influences and genetic predisposition lead to a dysregulated immune response resulting in chronic inflammation, which is crucial in the pathogenesis of IMIDs and oncogenic processes. Mechanisms such as the inflammatory microenvironment, aberrant intercellular communication due to abnormal cytokine levels, excessive reparative responses, and pathological angiogenesis are involved. The chronic immunosuppression resulting from IMIDs treatments further adds to the complexity of the pathogenic scenario. In conclusion, this review highlights critical gaps in the current literature, suggesting potential avenues for future research. The intricate interplay between IMIDs and cancer necessitates more investigation to deepen our understanding and improve patient management.
Collapse
Affiliation(s)
- Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Alessandra Petrelli
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | | | | | | | - Piercarlo Sarzi Puttini
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Paolo Fiorina
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sandro Ardizzone
- Gastroenterology Unit, ASST Fatebenefratelli-Sacco, Milano, Italy
| |
Collapse
|
7
|
Sarkar D, Pramanik A, Das D, Bhattacharyya S. Shifting phenotype and differentiation of CD11b +Gr.1 + immature heterogeneous myeloid derived adjuster cells support inflammation and induce regulators of IL17A in imiquimod induced psoriasis. Inflamm Res 2024; 73:1581-1599. [PMID: 39052064 DOI: 10.1007/s00011-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE AND DESIGN The exact immunological mechanism of widespread chronic inflammatory skin disorder psoriasis has not been fully established. CD11b+Gr.1+ myeloid-derived cells are immature heterogeneous cells with T-cell suppressive property in neoplasia; however, influence of these cells on adaptive immunity is highly contextual; therefore, we dubbed these cells as myeloid-derived adjuster cells (MDAC). We studied imiquimod induced psoriasis in mouse model and evaluated for the first time the RORγt-NFAT1 axis in MDACs and the function, differentiation and interaction of these cells with T cells. MATERIALS AND METHODS The status of T cells and MDACs; their functionality and differentiation properties, and the roles of RORγt and NFAT1 in MDACs were evaluated using flow cytometry, qRT-PCR and confocal imaging. RESULTS We found gradual increase in T cells and MDACs and an increase in the number of IL17 -secreting MDACs and T cells in the skin of psoriatic animals. We also noted that MDAC differentiation is biased toward M1 macrophages and DCs which perpetuate inflammation. We found that psoriatic MDACs were unable to suppress T-cell proliferation or activation but seemingly helped these T cells produce more IL17. Inhibition of the RORγt/NFAT1 axis in MDACs increased the suppressive nature of MDACs, allowing these cells to suppress the activity of psoriatic T-cells. CONCLUSION Our results indicate that altered MDAC properties in psoriatic condition sustains pathological inflammation and RORγt and NFAT1 as promising intervention target for psoriasis management.
Collapse
Affiliation(s)
- Debanjan Sarkar
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India
| | - Anik Pramanik
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India
| | - Dona Das
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India
| | - Sankar Bhattacharyya
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India.
| |
Collapse
|
8
|
Zhang Y, Kang Q, He L, Chan KI, Gu H, Xue W, Zhong Z, Tan W. Exploring the immunometabolic potential of Danggui Buxue Decoction for the treatment of IBD-related colorectal cancer. Chin Med 2024; 19:117. [PMID: 39210410 PMCID: PMC11360867 DOI: 10.1186/s13020-024-00978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Danggui Buxue (DGBX) decoction is a classical prescription composed of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), used to enrich blood, and nourish Qi in Chinese medicine, with the potential to recover energy and stimulate metabolism. Chronic inflammation is a risk factor in the development of inflammatory bowel disease (IBD)-related colorectal cancer (CRC). More importantly, AR and ASR have anti-inflammatory and anti-cancer activities, as well as prefiguring a potential effect on inflammation-cancer transformation. We, therefore, aimed to review the immunometabolism potential of DGBX decoction and its components in this malignant transformation, to provide a helpful complement to manage the risk of IBD-CRC. The present study investigates the multifaceted roles of DGBX decoction and its entire components AR and ASR, including anti-inflammation effects, anti-cancer properties, immune regulation, and metabolic regulation. This assessment is informed by a synthesis of scholarly literature, with more than two hundred articles retrieved from PubMed, Web of Science, and Scopus databases within the past two decades. The search strategy employed utilized keywords such as "Danggui Buxue", "Astragali Radix", "Angelicae Sinensis Radix", "Inflammation", and "Metabolism", alongside the related synonyms, with a particular emphasis on high-quality research and studies yielding significant findings. The potential of DGBX decoction in modulating immunometabolism holds promise for the treatment of IBD-related CRC. It is particularly relevant given the heterogeneity of CRC and the growing trend towards personalized medicine, but the precise and detailed mechanism necessitate further in vivo validation and extensive clinical studies to substantiate the immunometabolic modulation and delineate the pathways involved.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China
| | - Hui Gu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Xue
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Kim JE, Han D, Kim KH, Seo A, Moon JJ, Jeong JS, Kim JH, Kang E, Bae E, Kim YC, Lee JW, Cha RH, Kim DK, Oh KH, Kim YS, Jung HY, Yang SH. Protective effect of Cyclo(His-Pro) on peritoneal fibrosis through regulation of HDAC3 expression. FASEB J 2024; 38:e23819. [PMID: 38984942 DOI: 10.1096/fj.202400854r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Peritoneal dialysis is a common treatment for end-stage renal disease, but complications often force its discontinuation. Preventive treatments for peritoneal inflammation and fibrosis are currently lacking. Cyclo(His-Pro) (CHP), a naturally occurring cyclic dipeptide, has demonstrated protective effects in various fibrotic diseases, yet its potential role in peritoneal fibrosis (PF) remains uncertain. In a mouse model of induced PF, CHP was administered, and quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry was employed to identify PF-related protein signaling pathways. The results were further validated using human primary cultured mesothelial cells. This analysis revealed the involvement of histone deacetylase 3 (HDAC3) in the PF signaling pathway. CHP administration effectively mitigated PF in both peritoneal tissue and human primary cultured mesothelial cells, concurrently regulating fibrosis-related markers and HDAC3 expression. Moreover, CHP enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) while suppressing forkhead box protein M1 (FOXM1), known to inhibit Nrf2 transcription through its interaction with HDAC3. CHP also displayed an impact on spleen myeloid-derived suppressor cells, suggesting an immunomodulatory effect. Notably, CHP improved mitochondrial function in peritoneal tissue, resulting in increased mitochondrial membrane potential and adenosine triphosphate production. This study suggests that CHP can significantly prevent PF in peritoneal dialysis patients by modulating HDAC3 expression and associated signaling pathways, reducing fibrosis and inflammation markers, and improving mitochondrial function.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Seoul National University Hospital, Seoul, Korea
| | - Kyu Hong Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Areum Seo
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jong Joo Moon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin Seon Jeong
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Ji Hye Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Eunjeong Kang
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center, Goyang, Korea
| | - Ran-Hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hoe-Yune Jung
- R&D Center, NovMetaPharma Co., Ltd, Pohang, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Seung Hee Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Nepal MR, Shah S, Kang KT. Dual roles of myeloid-derived suppressor cells in various diseases: a review. Arch Pharm Res 2024; 47:597-616. [PMID: 39008186 DOI: 10.1007/s12272-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that originate from bone marrow stem cells. In pathological conditions, such as autoimmune disorders, allergies, infections, and cancer, normal myelopoiesis is altered to facilitate the formation of MDSCs. MDSCs were first shown to promote cancer initiation and progression by immunosuppression with the assistance of various chemokines and cytokines. Recently, various studies have demonstrated that MDSCs play two distinct roles depending on the physiological and pathological conditions. MDSCs have protective roles in autoimmune disorders (such as uveoretinitis, multiple sclerosis, rheumatoid arthritis, ankylosing spondylitis, type 1 diabetes, autoimmune hepatitis, inflammatory bowel disease, alopecia areata, and systemic lupus erythematosus), allergies, and organ transplantation. However, they play negative roles in infections and various cancers. Several immunosuppressive functions and mechanisms of MDSCs have been determined in different disease conditions. This review comprehensively discusses the associations between MDSCs and various pathological conditions and briefly describes therapeutic approaches.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Sajita Shah
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- The Comprehensive Cancer Center, Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Women's University, Seoul, South Korea.
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea.
| |
Collapse
|
11
|
Surico PL, Lee S, Singh RB, Naderi A, Bhullar S, Blanco T, Chen Y, Dana R. Local administration of myeloid-derived suppressor cells prevents progression of immune-mediated dry eye disease. Exp Eye Res 2024; 242:109871. [PMID: 38527580 PMCID: PMC11055659 DOI: 10.1016/j.exer.2024.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/12/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of immature hematopoietic precursors with known immunoregulatory functions. The immunosuppressive role of MDSCs has been highlighted in several inflammatory ophthalmic disorders; however, their therapeutic application in suppressing the immune-mediated changes in dry eye disease (DED) has not been studied. We observed significant reduction in antigen presenting cell (APC) frequencies and their maturation in the presence of MDSCs. Moreover, co-culturing MDSCs with T helper 17 cells (Th17) resulted in reduced Th17 frequencies and their IL-17 expression. On the contrary, MDSCs maintained regulatory T cell frequencies and enhanced their function in-vitro. Furthermore, we delineated the role of interleukin-10 (IL-10) secreted by MDSCs in their immunoregulatory functions. We confirmed these results by flow cytometry analysis and observed that treatment with MDSCs in DED mice effectively suppressed the maturation of APCs, pathogenic Th17 response, and maintained Treg function and significantly ameliorated the disease. The results in this study highlight the potential therapeutic application of MDSCs in treating refractory DED.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Seokjoo Lee
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rohan Bir Singh
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amirreza Naderi
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shilpy Bhullar
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yihe Chen
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Wu GL, Li L, Chen XY, Zhang WF, Wu JB, Yu X, Chen HJ. Machine learning-based B cell-related diagnostic biomarker signature and molecular subtypes characteristic of ulcerative colitis. Aging (Albany NY) 2024; 16:2774-2788. [PMID: 38319729 PMCID: PMC10911385 DOI: 10.18632/aging.205510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
As an inflammatory bowel disease, ulcerative colitis (UC) does not respond well to current treatments. It is of positive clinical significance to further study the pathogenesis of UC and find new therapeutic targets. B lymphocytes play an important role in the pathogenesis of UC. The effect of anti-CD20 therapy on UC also provides new evidence for the involvement of B cells in UC process additionally, suggesting the important role and potential therapeutic value of B cells in UC. In this study, we screened the most critical immune cell-related gene modules associated with UC and found that activated B cells were closely related to the gene modules. Subsequently, key activated B cell-associated gene (BRG) signatures were obtained based on WGCNA and differential expression analysis, and three overlapping BRG-associated genes were obtained by RF and LASSO algorithms as BRG-related diagnostic biomarkers for UC. Nomogram model was further performed to evaluate the diagnostic ability of BRG-related diagnostic biomarkers, subsequently followed by UC molecular subsets identification and immunoinfiltration analysis. We also further verified the expressions of the three screened BRGs in vitro by using an LPS-induced NCM460 cell line model. Our results provide new evidence and potential intervention targets for the role of B cells in UC from a new perspective.
Collapse
Affiliation(s)
- Guo-Liang Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Li Li
- Department of Endocrinology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xiao-Yao Chen
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Wei-Feng Zhang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Jun-Bo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, Hunan 421001, China
| | - Xiaoning Yu
- Department of Geriatrics, Hematology and Oncology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Hong-Jin Chen
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| |
Collapse
|
13
|
Xiong X, Zhang Y, Wen Y. Diverse functions of myeloid-derived suppressor cells in autoimmune diseases. Immunol Res 2024; 72:34-49. [PMID: 37733169 PMCID: PMC10811123 DOI: 10.1007/s12026-023-09421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Since myeloid-derived suppressor cells (MDSCs) were found suppressing immune responses in cancer and other pathological conditions, subsequent researchers have pinned their hopes on the suppressive function against immune damage in autoimmune diseases. However, recent studies have found key distinctions of MDSC immune effects in cancer and autoimmunity. These include not only suppression and immune tolerance, but MDSCs also possess pro-inflammatory effects and exacerbate immune disorders during autoimmunity, while promoting T cell proliferation, inducing Th17 cell differentiation, releasing pro-inflammatory cytokines, and causing direct tissue damage. Additionally, MDSCs could interact with surrounding cells to directly cause tissue damage or repair, sometimes even as an inflammatory indicator in line with disease severity. These diverse manifestations could be partially attributed to the heterogeneity of MDSCs, but not all. The different disease types, disease states, and cytokine profiles alter the diverse phenotypes and functions of MDSCs, thus leading to the impairment or obversion of MDSC suppression. In this review, we summarize the functions of MDSCs in several autoimmune diseases and attempt to elucidate the mechanisms behind their actions.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Wang B, Wang L, Shang R, Xie L. MDSC suppresses T cell antitumor immunity in CAC via GPNMB in a MyD88-dependent manner. Cancer Med 2024; 13:e6887. [PMID: 38140790 PMCID: PMC10807660 DOI: 10.1002/cam4.6887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) played an essential role in tumor microenvironment to suppress host antitumor immunity and help cancer cells escape immune surveillance. However, the molecular mechanism behind tumor evasion mediated by MDSCs is not fully understood. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is considered to associate with tumor initiation, metastasis and angiogenesis. Blocking GPNMB function is a potentially valuable therapy for cancer by eliminating GPNMB+MDSCs. Our previous study has proved that blockage the MyD88 signaling with the MyD88 inhibitor, TJ-M2010-5, may completely prevent the development of CAC in mice, accompanying with downregulation of GPNMB mRNA in the inhibitor-treated mice of CAC. METHODS We here focus on the underlying the relationship between GPNMB function and MyD88 signaling pathway activation in MDSCs' antitumor activity in CAC. RESULTS CAC development in the mouse model is associated with expanded GPNMB+MDSCs by a MyD88-dependent pathway. The GPNMB expression on MDSCs is associated with MyD88 signaling activation. The inhibitory effect of MDSCs on T cell proliferation, activation and antitumor cytotoxicity in CAC is mediated by GPNMB in a MyD8-dependent manner. CONCLUSION MyD88 signaling pathway plays an essential role in GPNMB+MDSC-mediated tumor immune escape during CAC development and is a promising focus for revealing the mechanisms of MDSC that facilitate immunosuppression and tumor progression.
Collapse
Affiliation(s)
- Bo Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| | - Lin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
15
|
Shao F, Pan J, Xie Y, Ding J, Sun X, Xia L, Zhu D, Wang S, Qi C. Sulforaphane Attenuates AOM/DSS-Induced Colorectal Tumorigenesis in Mice via Inhibition of Intestinal Inflammation. Nutr Cancer 2023; 76:137-148. [PMID: 37897077 DOI: 10.1080/01635581.2023.2274622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Sulforaphane (SFN) is a compound derived from cruciferous plants. It has received considerable attention in recent years due to its effectiveness in cancer prevention and anti-inflammatory properties. The purpose of this study was to evaluate the antitumor potential of sulforaphane on colitis-associated carcinogenesis (CAC) through the establishment of a mouse model with AOM/DSS. First, AOM/DSS and DSS-induced model were established and administered SFN for 10 wk, and then the severity of colitis-associated colon cancer was examined macroscopically and histologically. Subsequently, immune cells and cytokines in the tumor microenvironment (TME) were quantified. Finally, the influence of sulforaphane was also investigated using different colon cell lines. We found that sulforaphane treatment decreased tumor volume, myeloid-derived suppressor cells (MDSC) expansion, the expression of the proinflammatory cytokine IL-1β, and the level of IL-10 in serum. Also, it enhanced the antitumor activities of CD8+ T cells and significantly reduced tumorigenesis as induced by AOM/DSS. SFN also attenuated intestinal inflammation in DSS-induced chronic colitis by reshaping the inflammatory microenvironment. This work demonstrates that sulforaphane suppresses carcinogenesis-associated intestinal inflammation and prevents AOM/DSS-induced intestinal tumorigenesis and progression.
Collapse
Affiliation(s)
- Fang Shao
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Jie Pan
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Yewen Xie
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Jun Ding
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Xiao Sun
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Lei Xia
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Dawei Zhu
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Shizhong Wang
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Chunjian Qi
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| |
Collapse
|
16
|
Bekić M, Tomić S. Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 2023; 53:e2250345. [PMID: 37748117 DOI: 10.1002/eji.202250345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are well recognized as critical factors in the pathology of tumors. However, their roles in autoimmune diseases are still unclear, which hampers the development of efficient immunotherapies. The role of different MDSCs subsets in multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and systemic lupus erythematosus displayed different mechanisms of immune suppression, and several studies pointed to MDSCs' capacity to induce T-helper (Th)17 cells and tissue damage. These results also suggested that MDSCs could be present in different functional states and utilize different mechanisms for controlling the activity of T and B cells. Therefore, various therapeutic strategies should be employed to restore homeostasis in autoimmune diseases. The therapies harnessing MDSCs could be designed either as cell therapy or rely on the expansion and activation of MDSCs in vivo, or their depletion. Cumulatively, MDSCs are inevitable players in autoimmunity, and rational approaches in developing therapies are required to avoid the adverse effects of MDSCs and harness their suppressive mechanisms to improve the overall efficacy of autoimmunity therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| |
Collapse
|
17
|
Wang Y, Liu H, Zhang Z, Bian D, Shao K, Wang S, Ding Y. G-MDSC-derived exosomes mediate the differentiation of M-MDSC into M2 macrophages promoting colitis-to-cancer transition. J Immunother Cancer 2023; 11:e006166. [PMID: 37364932 PMCID: PMC10410840 DOI: 10.1136/jitc-2022-006166] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUNDS In inflammatory bowel disease microenvironment, transdifferentiation of myeloid-derived suppressor cells (MDSCs) and M2 macrophage accumulation are crucial for the transition of colitis-to-cancer. New insights into the cross-talk and the underling mechanism between MDSCs and M2 macrophage during colitis-to-cancer transition are opening new avenues for colitis-associated cancer (CAC) prevention and treatment. METHODS The role and underlying mechanism that granulocytic MDSCs (G-MDSCs) or exosomes (Exo) regulates the differentiation of monocytic MDSCs (M-MDSCs) into M2 macrophages were investigated using immunofluorescence, FACS, IB analysis, etc, and employing siRNA and antibodies. In vivo efficacy and mechanistic studies were conducted with dextran sulfate sodium-induced CAC mice, employed IL-6 Abs and STAT3 inhibitor. RESULTS G-MDSCs promote the differentiation of M-MDSC into M2 macrophages through exosomal miR-93-5 p which downregulating STAT3 activity in M-MDSC. IL-6 is responsible for miR-93-5 p enrichment in G-MDSC exosomes (GM-Exo). Mechanistically, chronic inflammation-driven IL-6 promote the synthesis of miR-93-5 p in G-MDSC via IL-6R/JAK/STAT3 pathway. Early use of IL-6 Abs enhances the effect of STAT3 inhibitor against CAC. CONCLUSIONS IL-6-driven secretion of G-MDSC exosomal miR-93-5 p promotes the differentiation of M-MDSC into M2 macrophages and involves a STAT3 signaling mechanism that promote colitis-to-cancer transition. Combining STAT3 inhibitors with strategies that inhibit IL-6-mediated G-MDSC exosomal miR-93-5 p production is beneficial for the prevention and treatment of CAC.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, Dermatology, and Endocrinology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yangcheng, China
| | - Hongli Liu
- Department of Clinical Laboratory, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Zhe Zhang
- Department of Laboratory Medicine, Dermatology, and Endocrinology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yangcheng, China
| | - Dezhi Bian
- Department of Laboratory Medicine, Dermatology, and Endocrinology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yangcheng, China
| | - Keke Shao
- Department of Laboratory Medicine, Dermatology, and Endocrinology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yangcheng, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine Jiangsu University, Zhenjiang, China
| | - Yanxia Ding
- Department of Laboratory Medicine, Dermatology, and Endocrinology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yangcheng, China
| |
Collapse
|
18
|
Zhang J, Zhang Y, Yang Z, Cheng D, Zhang H, Wei L, Liu C, Yan F, Li C, Dong G, Wang C, Shi D, Xiong H. Inducible nitric oxide synthase-expressing myeloid-derived suppressor cells regulated by interleukin 35 contribute to the pathogenesis of psoriasis. Front Immunol 2023; 14:1091541. [PMID: 36969174 PMCID: PMC10034090 DOI: 10.3389/fimmu.2023.1091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Although psoriasis is classified as a T cell-mediated inflammatory disease, the contribution of myeloid cells to the pathogenesis of psoriasis is not fully understood. In the present study, we demonstrated that the expression of the anti-inflammatory cytokine interleukin-35 (IL-35) was significantly increased in patients with psoriasis with a marked increase in the number of myeloid-derived suppressor cells (MDSCs). Similar results were obtained in an imiquimod-induced psoriasis mouse model. IL-35 reduced the total number of MDSCs and their subtypes in the spleens and psoriatic skin lesions, ameliorating psoriasis. IL-35 also reduced the expression of inducible nitric oxide synthase in MDSCs, although it had no significant effect on interleukin-10 expression. Adoptive transfer of MDSCs from imiquimod-challenged mice aggravated the disease and weakened the effect of IL-35 in the recipient mice. In addition, mice transferred with MDSCs isolated from inducible nitric oxide synthase knockout mice had milder disease than those with wild-type MDSCs. Furthermore, wild-type MDSCs reversed the effects of IL-35, while MDSCs isolated from inducible nitric oxide synthase knockout mice did not affect IL-35 treatment. In summary, IL-35 may play a critical role in the regulation of iNOS-expressing MDSCs in the pathogenesis of psoriasis, highlighting IL-35 as a novel therapeutic strategy for patients with chronic psoriasis or other cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yunsheng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhiya Yang
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Li Wei
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Chen Liu
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dongmei Shi
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
- *Correspondence: Huabao Xiong, ; Dongmei Shi,
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Dongmei Shi,
| |
Collapse
|
19
|
Subramanyam SH, Hriczko JT, Pappas A, Schippers A, Wagner N, Ohl K, Tenbrock K. Tofacitinib fails to prevent T cell transfer colitis in mice but ameliorates disease activity. Sci Rep 2023; 13:3762. [PMID: 36882462 PMCID: PMC9992375 DOI: 10.1038/s41598-023-30616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Tofactinib is a JAK inhibitor approved for ulcerative colitis in humans. Despite of its' proven effectiveness in humans, mechanistic data are scarce on the effectiveness of Tofactinib in experimental colitis in mice. We induced experimental colitis by transfer of CD4+CD25- isolated T cells into RAG2-/- (T and B cell deficient) mice and treated these mice with tofacitinib for 5-6 weeks either with a dosage of 10 or 40 mg/kg body weight immediately after CD4+ transfer or started treatment after first symptoms of disease for several weeks. While treatment with tofacitinib immediately after transfer resulted in an enhanced expansion of CD4+ T cells and did not prevent occurrence of colitis, treatment after start of symptoms of colitis ameliorated disease activity on a clinical basis and in histological analyses. Tofacitinib is effective in the treatment of murine experimental T cell transfer colitis, however does not prevent occurrence of disease.
Collapse
Affiliation(s)
| | - Judit Turyne Hriczko
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Angeliki Pappas
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Nobert Wagner
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Li W, Zhao Y, Wang Y, He Z, Zhang L, Yuan B, Li C, Luo Z, Gao B, Yan M. Deciphering the sequential changes of monocytes/macrophages in the progression of IDD with longitudinal approach using single-cell transcriptome. Front Immunol 2023; 14:1090637. [PMID: 36817437 PMCID: PMC9929188 DOI: 10.3389/fimmu.2023.1090637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disk degeneration (IDD) is a chronic inflammatory disease with intricate connections between immune infiltration and oxidative stress (OS). Complex cell niches exist in degenerative intervertebral disk (IVD) and interact with each other and regulate the disk homeostasis together. However, few studies have used longitudinal approach to describe the immune response of IDD progression. Here, we conducted conjoint analysis of bulk-RNA sequencing and single-cell sequencing, together with a series of techniques like weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, and differential analysis, to systematically decipher the difference in OS-related functions of different cell populations within degenerative IVD tissues, and further depicted the longitudinal alterations of immune cells, especially monocytes/macrophages in the progression of IDD. The OS-related genes CYP1A1, MMP1, CCND1, and NQO1 are highly expressed and might be diagnostic biomarkers for the progression of IDD. Further landscape of IVD microenvironment showed distinct changes in cell proportions and characteristics at late degeneration compared to early degeneration of IDD. Monocytes/macrophages were classified into five distinct subpopulations with different roles. The trajectory lineage analysis revealed transcriptome alterations from effector monocytes/macrophages and regulatory macrophages to other subtypes during the evolution process and identified monocytes/macrophage subpopulations that had rapidly experienced the activation of inflammatory or anti-inflammatory responses. This study further proposed that personalized therapeutic strategies are needed to be formulated based on specific monocyte/macrophage subtypes and degenerative stages of IDD.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Linyuan Zhang
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Bin Yuan
- Department of Spine Surgery, Daxing Hospital, Xi'an, Shaanxi, China
| | - Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
21
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
22
|
Xu D, Li C, Xu Y, Huang M, Cui D, Xie J. Myeloid-derived suppressor cell: A crucial player in autoimmune diseases. Front Immunol 2022; 13:1021612. [PMID: 36569895 PMCID: PMC9780445 DOI: 10.3389/fimmu.2022.1021612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are identified as a highly heterogeneous group of immature cells derived from bone marrow and play critical immunosuppressive functions in autoimmune diseases. Accumulating evidence indicates that the pathophysiology of autoimmune diseases was closely related to genetic mutations and epigenetic modifications, with the latter more common. Epigenetic modifications, which involve DNA methylation, covalent histone modification, and non-coding RNA-mediated regulation, refer to inheritable and potentially reversible changes in DNA and chromatin that regulate gene expression without altering the DNA sequence. Recently, numerous reports have shown that epigenetic modifications in MDSCs play important roles in the differentiation and development of MDSCs and their suppressive functions. The molecular mechanisms of differentiation and development of MDSCs and their regulatory roles in the initiation and progression of autoimmune diseases have been extensively studied, but the exact function of MDSCs remains controversial. Therefore, the biological and epigenetic regulation of MDSCs in autoimmune diseases still needs to be further characterized. This review provides a detailed summary of the current research on the regulatory roles of DNA methylation, histone modifications, and non-coding RNAs in the development and immunosuppressive activity of MDSCs, and further summarizes the distinct role of MDSCs in the pathogenesis of autoimmune diseases, in order to provide help for the diagnosis and treatment of diseases from the perspective of epigenetic regulation of MDSCs.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Cheng Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Mingyue Huang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| |
Collapse
|
23
|
Sezaki M, Hayashi Y, Nakato G, Wang Y, Nakata S, Biswas S, Morishima T, Fakruddin M, Moon J, Ahn S, Kim P, Miyamoto Y, Baba H, Fukuda S, Takizawa H. Hematopoietic stem and progenitor cells integrate microbial signals to promote post-inflammation gut tissue repair. EMBO J 2022; 41:e110712. [PMID: 36254590 PMCID: PMC9670188 DOI: 10.15252/embj.2022110712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/13/2023] Open
Abstract
Bone marrow (BM)-resident hematopoietic stem and progenitor cells (HSPCs) are often activated following bacterial insults to replenish the host hemato-immune system, but how they integrate the associated tissue damage signals to initiate distal tissue repair is largely unknown. Here, we show that acute gut inflammation expands HSPCs in the BM and directs them to inflamed mesenteric lymph nodes through GM-CSFR activation for further expansion and potential differentiation into Ly6C+ /G+ myeloid cells specialized in gut tissue repair. We identified this process to be mediated by Bacteroides, a commensal gram-negative bacteria that activates innate immune signaling. These findings establish cross-organ communication between the BM and distant inflamed sites, whereby a certain subset of multipotent progenitors is specified to respond to imminent hematopoietic demands and to alleviate inflammatory symptoms.
Collapse
Affiliation(s)
- Maiko Sezaki
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Yoshikazu Hayashi
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Division of Functional Structure, Department of Morphological BiologyFukuoka Dental CollegeFukuokaJapan
| | - Gaku Nakato
- Gut Environmental Design GroupKanagawa Institute of Industrial Science and TechnologyKawasakiJapan
| | - Yuxin Wang
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Department of Hematology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Sayuri Nakata
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Subinoy Biswas
- Department of ImmunologyUniversity of PittsburghPittsburghPAUSA
| | - Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Md Fakruddin
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Jieun Moon
- Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Soyeon Ahn
- Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| | - Shinji Fukuda
- Gut Environmental Design GroupKanagawa Institute of Industrial Science and TechnologyKawasakiJapan
- Institute for Advanced BiosciencesKeio UniversityYamagata‐TsuruokaJapan
- Transborder Medical Research CenterUniversity of TsukubaTsukubaJapan
- Laboratory for Regenerative MicrobiologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| |
Collapse
|
24
|
Radojević D, Bekić M, Gruden-Movsesijan A, Ilić N, Dinić M, Bisenić A, Golić N, Vučević D, Đokić J, Tomić S. Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis. Gut Microbes 2022; 14:2127455. [PMID: 36184742 PMCID: PMC9543149 DOI: 10.1080/19490976.2022.2127455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Over-activated myeloid cells and disturbance in gut microbiota composition are critical factors contributing to the pathogenesis of Multiple Sclerosis (MS). Myeloid-derived suppressor cells (MDSCs) emerged as promising regulators of chronic inflammatory diseases, including autoimmune diseases. However, it remained unclear whether MDSCs display any therapeutic potential in MS, and how this therapy modulates gut microbiota composition. Here, we assessed the potential of in vitro generated bone marrow-derived MDSCs to ameliorate experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats and investigated how their application associates with the changes in gut microbiota composition. MDSCs differentiated with prostaglandin (PG)E2 (MDSC-PGE2) and control MDSCs (differentiated without PGE2) displayed strong immunosuppressive properties in vitro, but only MDSC-PGE2 significantly ameliorated EAE symptoms. This effect correlated with a reduced infiltration of Th17 and IFN-γ-producing NK cells, and an increased proportion of regulatory T cells in the CNS and spleen. Importantly, both MDSCs and MDSC-PGE2 prevented EAE-induced reduction of gut microbiota diversity, but only MDSC-PGE2 prevented the extensive alterations in gut microbiota composition following their early migration into Payer's patches and mesenteric lymph nodes. This phenomenon was related to the significant enrichment of gut microbial taxa with potential immunoregulatory properties, as well as higher levels of butyrate, propionate, and putrescine in feces. This study provides new insights into the host-microbiota interactions in EAE, suggesting that activated MDSCs could be potentially used as an efficient therapy for acute phases of MS. Considering a significant association between the efficacy of MDSC-PGE2 and gut microbiota composition, our findings also provide a rationale for further exploring the specific microbial metabolites in MS therapy.
Collapse
Affiliation(s)
- Dušan Radojević
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Nataša Ilić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Bisenić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Vučević
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia,CONTACT Jelena Đokić Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, 111042 Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia,Sergej Tomić Institute for the Application of Nuclear Energy, 11080 Belgrade, Banatska 31b, Belgrade, Serbia
| |
Collapse
|
25
|
Zhao F, Gong W, Song J, Shen Z, Cui D. The paradoxical role of MDSCs in inflammatory bowel diseases: From bench to bedside. Front Immunol 2022; 13:1021634. [PMID: 36189262 PMCID: PMC9520533 DOI: 10.3389/fimmu.2022.1021634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of bone marrow derived heterogeneous cells, which is known for their immunosuppressive functions especially in tumors. Recently, MDSCs have receiving increasing attention in pathological conditions like infection, inflammation and autoimmune diseases. Inflammatory bowel diseases (IBD) are a series of immune-dysfunctional autoimmune diseases characterized by relapsing intestinal inflammation. The role of MDSCs in IBD remains controversial. Although most studies in vitro demonstrated its anti-inflammatory effects by inhibiting the proliferation and function of T cells, it was reported that MDSCs failed to relieve inflammation but even promoted inflammatory responses in experimental IBD. Here we summarize recent insights into the role of MDSCs in the development of IBD and the potential of MDSCs-targeted therapy.
Collapse
Affiliation(s)
- Fan Zhao
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaojiao Song
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| |
Collapse
|
26
|
Monocytic myeloid-derived suppressive cells mitigate over-adipogenesis of bone marrow microenvironment in aplastic anemia by inhibiting CD8 + T cells. Cell Death Dis 2022; 13:620. [PMID: 35851002 PMCID: PMC9293984 DOI: 10.1038/s41419-022-05080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023]
Abstract
Aplastic anemia (AA) is a blood disorder resulted from over-activated T-cell related hematopoietic failure, with the characterization of hypocellularity and enhanced adipogenic differentiation of mesenchymal stroma cells (MSCs) in bone marrow (BM). However, little is known about the relationship between immune imbalance and polarized adipogenic abnormity of BM microenvironment in this disease entity. In the present study, we differentiated BM-MSCs into osteoblastic or adipogenic lineages to mimic the osteo-adipogenic differentiation. Activated CD8+ T cells and interferon-γ (IFN-γ) were found to stimulate adipogenesis of BM-MSCs either in vitro or in vivo of AA mouse model. Interestingly, myeloid-derived suppressive cells (MDSCs), one of the immune-regulating populations, were decreased within BM of AA mice. We found that it was not CD11b+Ly6G+Ly6C- granulocytic-MDSCs (gMDSCs) but CD11b+Ly6G-Ly6C+ monocytic-MDSCs (mMDSCs) inhibiting both T cell proliferation and IFN-γ production via inducible nitric oxide synthetase (iNOS) pathway. Single-cell RNA-sequencing (scRNA-seq) of AA- and mMDSCs-treated murine BM cells revealed that mMDSCs transfusion could reconstitute BM hematopoietic progenitors by inhibiting T cells population and signature cytokines and decreasing immature Adipo-Cxcl12-abundant reticular cells within BM. Multi-injection of mMDSCs into AA mice reduced intra-BM T cells infiltration and suppressed BM adipogenesis, which subsequently restored the intra-BM immune balance and eventually prevented pancytopenia and hypo-hematopoiesis. In conclusion, adoptive transfusion of mMDSCs might be a novel immune-regulating strategy to treat AA, accounting for not only restoring the intra-BM immune balance but also improving stroma's multi-differentiating microenvironment.
Collapse
|
27
|
Kiran S, Rakib A, Moore BM, Singh UP. Cannabinoid Receptor 2 (CB2) Inverse Agonist SMM-189 Induces Expression of Endogenous CB2 and Protein Kinase A That Differentially Modulates the Immune Response and Suppresses Experimental Colitis. Pharmaceutics 2022; 14:pharmaceutics14050936. [PMID: 35631522 PMCID: PMC9147685 DOI: 10.3390/pharmaceutics14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022] Open
Abstract
The causes of Crohn’s disease (CD) and ulcerative colitis (UC), the two most common forms of inflammatory bowel disease (IBD), are multi-factorial and include dysregulation of immune cells in the intestine. Cannabinoids mediate protection against intestinal inflammation by binding to the G-protein coupled cannabinoid receptors 1 and 2 (CB1 and CB2). Here, we investigate the effects of the CB2 inverse agonist SMM-189 on dextran sodium sulfate (DSS)-induced experimental colitis. We observed that SMM-189 effectively attenuated the overall clinical score, reversed colitis-associated pathogenesis, and increased both body weight and colon length. Treatment with SMM-189 also increased the expression of CB2 and protein kinase A (PKA) in colon lamina propria lymphocytes (LPLs). We noticed alterations in the percentage of Th17, neutrophils, and natural killer T (NKT) cells in the spleen, mesenteric lymph nodes (MLNs), and LPLs of mice with DSS-induced colitis after treatment with SMM-189 relative to DSS alone. Further, myeloid-derived suppressor cells (MDSCs) during colitis progression increased with SMM-189 treatment as compared to DSS alone or with control cohorts. These findings suggest that SMM-189 may ameliorate experimental colitis by inducing the expression of endogenous CB2 and PKA in LPLs, increasing numbers of MDSCs in the spleen, and reducing numbers of Th17 cells and neutrophils in the spleen, MLNs, and LPLs. Taken together, these data support the idea that SMM-189 may be developed as a safe novel therapeutic target for IBD.
Collapse
|
28
|
Deng H, Muthupalani S, Erdman S, Liu H, Niu Z, Wang TC, Fox JG. Translocation of Helicobacter hepaticus synergizes with myeloid-derived suppressor cells and contributes to breast carcinogenesis. Oncoimmunology 2022; 11:2057399. [PMID: 35371619 PMCID: PMC8966989 DOI: 10.1080/2162402x.2022.2057399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microbial dysbiosis plays an important role in the development of intestinal diseases. Recent studies suggest a link between intestinal bacteria and mammary cancer. Here, we report that female ApcMin/+ mice infected with Helicobacter hepaticus exhibited an increased mammary and small/large intestine tumor burden compared with uninfected littermates. H. hepaticus DNA was detected in small/large intestine, mammary tumors, and adjacent lymph nodes, suggesting a migration pathway. CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) infiltrated and expressed high levels of Wnts, likely enhancing tumorigenesis through activation of Wnt/β-catenin pathway. Our previous studies indicated that histidine decarboxylase (Hdc) marks a population of myeloid-biased hematopoietic stem cells and granulocytic MDSCs. Cytokines/chemokines secreted by IL-17-expressing mast cells and tumor tissues promoted Hdc+ MDSCs expansion and trafficking toward mammary tumors. Adoptive transfer of MDSCs isolated from H. hepaticus-infected mice increased MDSCs frequencies in peripheral blood, mesenteric lymph nodes, mammary gland, and lymph nodes in recipient ApcMin/+ mice. The adoptive transfer of H. hepaticus primed MDSCs also increased the size and number of mammary tumors. Our results demonstrate that H. hepaticus can translocate from the intestine to mammary tissues to promote mammary tumorigenesis with MDSCs. Targeting bacteria and MDSCs may be useful for the prevention and therapy of extraintestinal cancers. Abbreviations: Helicobacter hepaticus, Hh; myeloid-derived suppressor cell, MDSC; histidine decarboxylase, Hdc; Breast cancer, BC; T regulatory, TR; inflammatory bowel disease, IBD; fluorescence in situ hybridization, FISH; myeloid-biased hematopoietic stem cells, MB-HSCs; granulocytic MDSCs, PMN-MDSCs; Lipopolysaccharide, LPS; Toll-like receptors, TLRs; Mast cells, MCs; Granulocyte-macrophage colony-stimulating factor, GM-CSF; epithelial–mesenchymal transition, EMT; Intestinal epithelial cells, IECs.
Collapse
Affiliation(s)
- Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - Susan Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haibo Liu
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhengchuan Niu
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
29
|
Tu J, Li W, Yang S, Yang P, Yan Q, Wang S, Lai K, Bai X, Wu C, Ding W, Cooper‐White J, Diwan A, Yang C, Yang H, Zou J. Single-Cell Transcriptome Profiling Reveals Multicellular Ecosystem of Nucleus Pulposus during Degeneration Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103631. [PMID: 34825784 PMCID: PMC8787427 DOI: 10.1002/advs.202103631] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Although degeneration of the nucleus pulposus (NP) is a major contributor to intervertebral disc degeneration (IVDD) and low back pain, the underlying molecular complexity and cellular heterogeneity remain poorly understood. Here, a comprehensive single-cell resolution transcript landscape of human NP is reported. Six novel human NP cells (NPCs) populations are identified by their distinct molecular signatures. The potential functional differences among NPC subpopulations are analyzed. Predictive transcripts, transcriptional factors, and signal pathways with respect to degeneration grades are explored. It is reported that fibroNPCs is the subpopulation for end-stage degeneration. CD90+NPCs are observed to be progenitor cells in degenerative NP tissues. NP-infiltrating immune cells comprise a previously unrecognized diversity of cell types, including granulocytic myeloid-derived suppressor cells (G-MDSCs). Integrin αM (CD11b) and oxidized low density lipoprotein receptor 1 (OLR1) as surface markers of NP-derived G-MDSCs are uncovered. The G-MDSCs are found to be enriched in mildly degenerated (grade II and III) NP tissues compared to severely degenerated (grade IV and V) NP tissues. Their immunosuppressive function and alleviation effects on NPCs' matrix degradation are revealed in vitro. Collectively, this study reveals the NPC-type complexity and phenotypic characteristics in NP, thereby providing new insights and clues for IVDD treatment.
Collapse
Affiliation(s)
- Ji Tu
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
| | - Wentian Li
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
| | - Sidong Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
- Department of Spine SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuang05000China
| | - Pengyi Yang
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
- Computational Systems Biology GroupChildren's Medical Research InstituteFaculty of Medicine and HealthThe University of SydneyWestmeadNSW2145Australia
| | - Qi Yan
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Shenyu Wang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Kaitao Lai
- The ANZAC Research InstituteConcord Repatriation General HospitalSydneyNSW2139Australia
- Concord Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNSW2139Australia
| | - Xupeng Bai
- Cancer Care CentreSt. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Cenhao Wu
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Wenyuan Ding
- Department of Spine SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuang05000China
| | - Justin Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQueensland4072Australia
| | - Ashish Diwan
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
- Spine ServiceDepartment of Orthopaedic SurgerySt. George HospitalKogarahNew South Wales2217Australia
| | - Cao Yang
- Department of Orthopaedic SurgeryWuhan Union HospitalTongji Medical SchoolHuazhong University of Science and TechnologyWuhanHubei430022China
| | - Huilin Yang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Jun Zou
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| |
Collapse
|
30
|
Bhat DK, Olkhanud PB, Gangaplara A, Seifuddin F, Pirooznia M, Biancotto A, Fantoni G, Pittman C, Francis B, Dagur PK, Saxena A, McCoy JP, Pfeiffer RM, Fitzhugh CD. Early Myeloid Derived Suppressor Cells (eMDSCs) Are Associated With High Donor Myeloid Chimerism Following Haploidentical HSCT for Sickle Cell Disease. Front Immunol 2021; 12:757279. [PMID: 34917079 PMCID: PMC8669726 DOI: 10.3389/fimmu.2021.757279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is a widely available curative option for patients with sickle cell disease (SCD). Our original non-myeloablative haplo-HSCT trial employing post-transplant (PT) cyclophosphamide had a low incidence of GVHD but had high rejection rates. Here, we aimed to evaluate immune reconstitution following haplo-HSCT and identify cytokines and cells associated with graft rejection/engraftment. 50 cytokines and 10 immune cell subsets were screened using multiplex-ELISA and flow cytometry, respectively, at baseline and PT-Days 30, 60, 100, and 180. We observed the most significant differences in cytokine levels between the engrafted and rejected groups at PT-Day 60, corresponding with clinical findings of secondary graft rejection. Of the 44 cytokines evaluated, plasma concentrations of 19 cytokines were different between the two groups at PT-Day 60. Factor analysis suggested two independent factors. The first factor (IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, and TGFb1 contributed significantly) was strongly associated with engraftment with OR = 2.7 (95%CI of 1.4 to 5.4), whereas the second factor (GROa and IL-18 contributed significantly) was not significantly associated with engraftment. Sufficient donor myeloid chimerism (DMC) is critical for the success of HSCT; here, we evaluated immune cells among high (H) DMC (DMC≥20%) and low (L) DMC (DMC<20%) groups along with engrafted and rejected groups. We found that early myeloid-derived suppressor cell (eMDSC) frequencies were elevated in engrafted patients and patients with HDMC at PT-Day 30 (P< 0.04 & P< 0.003, respectively). 9 of 20 patients were evaluated for the source of eMDSCs. The HDMC group had high mixed chimeric eMDSCs as compared to the LDMC group (P< 0.00001). We found a positive correlation between the frequencies of eMDSCs and Tregs at PT-Day 100 (r=0.72, P <0.0007); eMDSCs at BSL and Tregs at PT-Day 100 (r=0.63, P <0.004). Of 10 immune regulatory cells and 50 cytokines, we observed mixed chimeric eMDSCs and IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, TGFb1 as potential hits which could serve as prognostic markers in predicting allograft outcome towards engraftment following haploidentical HSCT employing post-transplant cyclophosphamide. The current findings need to be replicated and further explored in a larger cohort.
Collapse
Affiliation(s)
- Deepali K Bhat
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Purevdorj B Olkhanud
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Angélique Biancotto
- Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Giovanna Fantoni
- Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Corinne Pittman
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Berline Francis
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States
| | - Ankit Saxena
- Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States
| | - J Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Courtney D Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
31
|
Zimmermann C, Wagner AE. Impact of Food-Derived Bioactive Compounds on Intestinal Immunity. Biomolecules 2021; 11:biom11121901. [PMID: 34944544 PMCID: PMC8699755 DOI: 10.3390/biom11121901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal system is responsible for the digestion and the absorption of nutrients. At the same time, it is essentially involved in the maintenance of immune homeostasis. The strongest antigen contact in an organism takes place in the digestive system showing the importance of a host to develop mechanisms allowing to discriminate between harmful and harmless antigens. An efficient intestinal barrier and the presence of a large and complex part of the immune system in the gut support the host to implement this task. The continuous ingestion of harmless antigens via the diet requires an efficient immune response to reliably identify them as safe. However, in some cases the immune system accidentally identifies harmless antigens as dangerous leading to various diseases such as celiac disease, inflammatory bowel diseases and allergies. It has been shown that the intestinal immune function can be affected by bioactive compounds derived from the diet. The present review provides an overview on the mucosal immune reactions in the gut and how bioactive food ingredients including secondary plant metabolites and probiotics mediate its health promoting effects with regard to the intestinal immune homeostasis.
Collapse
|
32
|
Viana CEM, Matos DM, Oliveira MDF, da Costa AC, Filho TPDA, Filho PAM, Nunes FMM, Nogueira dos Santos T, Gonçalves RP, Queiroz JAN. Immunosuppressive CD14 +/HLA-DR low/‒ monocytes in patients with Chagas Disease. Acta Trop 2021; 224:106154. [PMID: 34599890 DOI: 10.1016/j.actatropica.2021.106154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
Chagas Disease (CD) is a neglected illness whose immunopathological mechanisms have not yet been plainly elucidated. The asymptomatic (indeterminate) form of CD is a long-term condition and approximately 20% to 35% of the individuals with this form evolve into one of the three chronic symptomatic clinical forms of CD, namely: cardiac, digestive or cardio-digestive (mixed). A variant of blood monocytes characterized by low expression of the HLA-DR antigen (CD14+/HLA-DRlow/‒) constitutes a subtype of myeloid-derived suppressor cells (MDSCs) whose main function is to regulate exacerbated inflammatory processes. The development of the symptomatic forms of CD can be related to the interaction between the host's immune system and the CD14+/HLA-DRlow/‒ immunosuppressive monocytes. Here, we evaluated, by flow cytometry, the absolute number and the HLA-DR antigenic density of this population of MDSCs in 57 patients with the diagnosis of CD: 34 with the symptomatic clinical forms (26 cardiac and 8 mixed) and 23 with the asymptomatic (indeterminate) form. The asymptomatic form exhibited a greater number of CD14+/HLA-DRlow/‒ monocytes and, accordingly, a low HLA-DR antigenic density, when compared to the symptomatic forms. It is possible to speculate that the predominance of CD14+/HLA-DRlow/- monocytes in the patients with the asymptomatic (indeterminate) form might have been a factor that could delay or even prevent the evolution of the asymptomatic form to the symptomatic forms of Chagas Disease.
Collapse
|
33
|
Choi YY, Seong KM, Lee HJ, Lee SS, Kim A. Expansion of monocytic myeloid-derived suppressor cells ameliorated intestinal inflammatory response by radiation through SOCS3 expression. Cell Death Dis 2021; 12:826. [PMID: 34480017 PMCID: PMC8417278 DOI: 10.1038/s41419-021-04103-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Radiation-induced colitis is a common clinical problem after radiation therapy and accidental radiation exposure. Myeloid-derived suppressor cells (MDSCs) have immunosuppressive functions that use a variety of mechanisms to alter both the innate and the adaptive immune systems. Here, we demonstrated that radiation exposure in mice promoted the expansion of splenic and intestinal MDSCs and caused intestinal inflammation due to the increased secretion of cytokines. Depletion of monocytic MDSCs using anti-Ly6C exacerbated radiation-induced colitis and altered the expression of inflammatory cytokine IL10. Adoptive transfers of 0.5 Gy-derived MDSCs ameliorated this radiation-induced colitis through the production IL10 and activation of both STAT3 and SOCS3 signaling. Intestinal-inflammation recovery using 0.5 Gy-induced MDSCs was assessed using histological grading of colitis, colon length, body weight, and survival rate. Using in vitro co-cultures, we found that 0.5 Gy-induced MDSCs had higher expression levels of IL10 and SOCS3 compared with 5 Gy-induced MDSCs. In addition, IL10 expression was not enhanced in SOCS3-depleted cells, even in the presence of 0.5 Gy-induced monocytic MDSCs. Collectively, the results indicate that 0.5 Gy-induced MDSCs play an important immunoregulatory role in this radiation-induced colitis mouse model by releasing anti-inflammatory cytokines and suggest that IL10-overexpressing mMDSCs may be potential immune-therapy targets for treating colitis.
Collapse
Affiliation(s)
- You Yeon Choi
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, 01812, Korea
| | - Ki Moon Seong
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, 01812, Korea
| | - Hyun Jung Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul, 01812, Korea
| | - Seung Sook Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul, 01812, Korea
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Science, Seoul, 01812, Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul, 01812, Korea.
| |
Collapse
|
34
|
Role of Myeloid-derived suppressor cell (MDSC) in autoimmunity and its potential as a therapeutic target. Inflammopharmacology 2021; 29:1307-1315. [PMID: 34283371 DOI: 10.1007/s10787-021-00846-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Myeloid suppressor cells (MDSCs) are an important class of immune-regulating cells that can suppress T cell function. Most of our knowledge about the function of MDSC comes from studies of cancer models. Recent studies, however, have greatly contributed to the description of MDSC involvement in autoimmune diseases. They are known as a cell population that may negatively affect immune responses by regulating the function of CD4+ and CD8+ cells, which makes them an attractive target for autoimmune diseases therapy. However, many questions about MDSC activation, differentiation, and inhibitory functions remain unanswered. In this study, we have summarized the role of MDSCs in various autoimmune diseases, and the potential of targeting them for therapeutic benefits has been discussed.
Collapse
|
35
|
Boreika R, Sitkauskiene B. Interleukin-32 in Pathogenesis of Atopic Diseases: Proinflammatory or Anti-Inflammatory Role? J Interferon Cytokine Res 2021; 41:235-243. [PMID: 34280028 DOI: 10.1089/jir.2020.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Atopic diseases, such as atopic dermatitis (AD), allergic asthma (AA), and allergic rhinitis (AR), are increasingly becoming a worldwide issue. This atopic triad originates at an early age and on a multifactorial basis, causing significant discomfort to susceptible individuals. The global case number is now reaching new highs, so exploring immune system regulation and its components is becoming critical. One cytokine, interleukin-32 (IL-32), is involved in inflammation and regulation of the immune system. It has nine isoforms that show varying degrees of expression, both intracellularly and extracellularly. IL-32 is secreted by immune cells, such as monocytes, macrophages, natural killer cells, and T cells, and by nonimmune cells, including fibroblasts, keratinocytes, and endothelial cells. Its production is regulated and augmented by microorganisms, mitogens, and other cytokines. Early studies demonstrated that IL-32 was an immune regulator that functioned to protect against inflammatory diseases, including AD, AA, and AR, and proposed a proinflammatory role for IL-32 in immune regulation and symptom exacerbation. However, several later reports suggested that IL-32 is downregulated in inflammatory diseases and exerts an anti-inflammatory effect. This review article focuses on recent findings regarding the detrimental and protective roles of IL-32 in development and management of inflammatory diseases. The exact role of IL-32 in AD, AA, and AR still remains to be elucidated. Future research should explore new avenues of IL-32 functionality in human inflammatory diseases.
Collapse
Affiliation(s)
- Rytis Boreika
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
36
|
Shahnazari M, Samadi P, Pourjafar M, Jalali A. Cell-based immunotherapy approaches for colorectal cancer: main achievements and challenges. Future Oncol 2021; 17:3253-3270. [PMID: 34156258 DOI: 10.2217/fon-2020-1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is becoming as a major treatment modality for multiple types of solid tumors, including subsets of colorectal cancers (CRCs). The successes with immunotherapy alone has largely been achieved in patients with advanced-stage mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H) CRCs. However, the benefits of immunotherapy have not been demonstrated to be effective in patients with proficient mismatch repair (pMMR) CRC, who are microsatellite-stable (MSS) or have low levels of microsatellite instability (MSI-L). Here, we provide a comprehensive review on the immune microenvironment of CRC tumors and describe the rapid pace of scientific changes. We discuss the tremendous promise of cell-based immunotherapy strategies that are under preclinical studies/clinical trials or being used in therapeutic paradigms.
Collapse
Affiliation(s)
- Mina Shahnazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran.,Department of Biological & Chemical Engineering Immunological Biotechnology, Aarhus University, Inge Lehmanns Gade 10, 8000 Aarhus C, Aarhus, Denmark
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran
| |
Collapse
|
37
|
Park MJ, Baek JA, Choi JW, Jang SG, Kim DS, Park SH, Cho ML, Kwok SK. Programmed Death-Ligand 1 Expression Potentiates the Immune Modulatory Function Of Myeloid-Derived Suppressor Cells in Systemic Lupus Erythematosus. Front Immunol 2021; 12:606024. [PMID: 33986739 PMCID: PMC8110929 DOI: 10.3389/fimmu.2021.606024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Multiple studies have explored the potential role of programmed death-ligand 1 (PD-L1) as a mediator of Myeloid-derived suppressor cells (MDSCs) effects in various cancers. However, the role PD-L1 expression in MDSCs on autoimmune disease is still largely unknown.This study was undertaken to whether MDSC expressing PD-L1 have more potent immunoregulatory activity and control autoimmunity more effectively in two murine models of lupus (MRL/lpr mice and Roquinsan/san mice). The populations of MDSC were increased in peripheral blood of lupus patients. The mRNA levels of immunosuppressive molecules were profoundly decreased in MDSCs from lupus patients and mice. Co-culture with splenocytes showed that PD-L1 expressing MDSCs from control mice expand both Treg cells and regulatory B cells more potently. Infusion of PD-L1 expressing MDSCs reduced autoantibody levels and degree of proteinuria and improved renal pathology of two animal models of lupus. Moreover, PD-L1 expressing MDSCs therapy can suppress double negative (CD4-CD8-CD3+) T cells, the major pathogenic immune cells and follicular helper T cells in MRL/lpr mice, and podocyte damage. Our results indicate PD-L1 expressing MDSCs have more potent immunoregualtory activity and ameliorate autoimmunity more profoundly. These findings suggest PD-L1 expressing MDSCs be a promising therapeutic strategy targeting systemic autoimmune diseases.
Collapse
Affiliation(s)
- Min-Jung Park
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Se Gwang Jang
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Da-Som Kim
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
38
|
Siemińska I, Poljańska E, Baran J. Granulocytes and Cells of Granulocyte Origin-The Relevant Players in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22073801. [PMID: 33917620 PMCID: PMC8038777 DOI: 10.3390/ijms22073801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancy and cause of cancer death worldwide, and it still remains a therapeutic challenge for western medicine. There is strong evidence that, in addition to genetic predispositions, environmental factors have also a substantial impact in CRC development. The risk of CRC is attributed, among others to dietary habits, alcohol consumption, whereas physical activity, food containing dietary fiber, dairy products, and calcium supplements have a protective effect. Despite progress in the available therapies, surgery remains a basic treatment option for CRC. Implementation of additional methods of treatment such as chemo- and/or targeted immunotherapy, improved survival rates, however, the results are still far from satisfactory. One of the reasons may be the lack of deeper understanding of the interactions between the tumor and different types of cells, including tumor infiltrating granulocytes. While the role of neutrophils is quite well explored in many cancers, role of eosinophils and basophils is often underestimated. As part of this review, we focused on the function of different granulocyte subsets in CRC, emphasizing the beneficial role of eosinophils and basophils, as well as dichotomic mode of neutrophils action. In addition, we addressed the current knowledge on cells of granulocyte origin, specifically granulocytic myeloid derived suppressor cells (Gr-MDSCs) and their role in development and progression of CRC.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Ewa Poljańska
- Laboratory Medicine, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Correspondence:
| |
Collapse
|
39
|
Zhao N, Wang G, Long S, Liu D, Gao J, Xu Y, Wang C, Wang A, Wang F, Hao Y, Ran X, Wang J, Su Y, Wang T. Neutrophils-derived Spink7 as one safeguard against experimental murine colitis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166125. [PMID: 33722746 DOI: 10.1016/j.bbadis.2021.166125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
The uncontrolled abnormal intestinal immune responses play important role in eliciting inflammatory bowel disease (IBD), yet the molecular events regulating intestinal inflammation during IBD remain poorly understood. Here, we describe an endogenous, homeostatic pattern that controls inflammatory responses in experimental murine colitis. We show that Spink7 (serine peptidase inhibitor, kazal type 7), the ortholog of human SPINK7, is significantly upregulated in dextran sodium sulfate (DSS)-induced murine colitis model. Spink7-deficient mice showed highly susceptible to experimental colitis characterized by enhanced weight loss, shorter colon length, higher disease activity index and increased colonic tissue destruction. Bone marrow reconstitution experiments demonstrated that expression of Spink7 in the immune compartment makes main contribution to its protective role in colitis. What's more, neutrophils are the primary sources of Spink7 in experimental murine colitis. Loss of Spink7 leads to augmented productions of multiple chemokines and cytokines in colitis. In summary, this study identifies neutrophils-derived endogenous Spink7-mediated control of chemokines/cytokines production as a molecular mechanism contributing to inflammation resolution during colitis.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Guojian Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Dengqun Liu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Preventive Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Jining Gao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yang Xu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Cheng Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Aiping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yuhui Hao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
40
|
Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A 2021; 118:2017762118. [PMID: 33836585 DOI: 10.1073/pnas.2017762118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The alteration of the enteric nervous system (ENS) and its role in neuroimmune modulation remain obscure in the pathogenesis of inflammatory bowel diseases (IBDs). Here, by using the xCell tool and the latest immunolabeling-enabled three-dimensional (3D) imaging of solvent-cleared organs technique, we found severe pathological damage of the entire ENS and decreased expression of choline acetyltransferase (ChAT) in IBD patients. As a result, acetylcholine (ACh), a major neurotransmitter of the nervous system synthesized by ChAT, was greatly reduced in colon tissues of both IBD patients and colitis mice. Importantly, administration of ACh via enema remarkably ameliorated colitis, which was proved to be directly dependent on monocytic myeloid-derived suppressor cells (M-MDSCs). Furthermore, ACh was demonstrated to promote interleukin-10 secretion of M-MDSCs and suppress the inflammation through activating the nAChR/ERK pathway. The present data reveal that the cholinergic signaling pathway in the ENS is impaired during colitis and uncover an ACh-MDSCs neuroimmune regulatory pathway, which may offer promising therapeutic strategies for IBDs.
Collapse
|
41
|
Kawai H, Oo MW, Tsujigiwa H, Nakano K, Takabatake K, Sukegawa S, Nagatsuka H. Potential role of myeloid-derived suppressor cells in transition from reaction to repair phase of bone healing process. Int J Med Sci 2021; 18:1824-1830. [PMID: 33746599 PMCID: PMC7976590 DOI: 10.7150/ijms.51946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 11/07/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with immunosuppressive functions; these cells play a key role in infection, immunization, chronic inflammation, and cancer. Recent studies have reported that immunosuppression plays an important role in the healing process of tissues and that Treg play an important role in fracture healing. MDSCs suppress active T cell proliferation and reduce the severity of arthritis in mice and humans. Together, these findings suggest that MDSCs play a role in bone biotransformation. In the present study, we examined the role of MDSCs in the bone healing process by creating a bone injury at the tibial epiphysis in mice. MDSCs were identified by CD11b and GR1 immunohistochemistry and their role in new bone formation was observed by detection of Runx2 and osteocalcin expression. Significant numbers of MDSCs were observed in transitional areas from the reactionary to repair stages. Interestingly, MDSCs exhibited Runx2 and osteocalcin expression in the transitional area but not in the reactionary area. And at the same area, cllagene-1 and ALP expression level increased in osteoblast progenitor cells. These data is suggesting that MDSCs emerge to suppress inflammation and support new bone formation. Here, we report, for the first time (to our knowledge), the role of MDSCs in the initiation of bone formation. MDSC appeared at the transition from inflammation to bone making and regulates bone healing by suppressing inflammation.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
42
|
Danggui Buxue Decoction Ameliorates Inflammatory Bowel Disease by Improving Inflammation and Rebuilding Intestinal Mucosal Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8853141. [PMID: 33531923 PMCID: PMC7837767 DOI: 10.1155/2021/8853141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
Objective This study aimed to determine whether Danggui Buxue decoction (DGBX) can improve inflammatory bowel disease (IBD) by regulating immunity and promoting intestinal mucosal repair. Method Dextran sulfate sodium (DSS) was used to induce the IBD model. Drugs (DGBX or saline) were administered to mice, which were randomly divided into three groups (control, model, and experimental groups). Hematoxylin and eosin staining of intestinal tissues was conducted to observe for morphological changes. Changes in cytokines and immune cells in the intestinal tissues were detected by enzyme-linked immunosorbent assay and flow cytometry. Immunofluorescence techniques were used to assess the status of the intestinal mucosal repair. Results This study found that treatment with DGBX can effectively improve the inflammatory state and pathological structure of the IBD model. DGBX not only can significantly change the composition of intestinal mucosal immune cells and promote the regression of inflammation but also significantly increase the proliferation of intestinal epithelial cells and promote the rapid repair of intestinal mucosal barrier injury compared with the model group (p < 0.05). Conclusion Taking these results, DGBX shows promising protective effects on IBD by regulating immunity and promoting intestinal mucosal repair.
Collapse
|
43
|
Zhang J, Hodges A, Chen SH, Pan PY. Myeloid-derived suppressor cells as cellular immunotherapy in transplantation and autoimmune diseases. Cell Immunol 2021; 362:104300. [PMID: 33582607 DOI: 10.1016/j.cellimm.2021.104300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which have been characterized for their immunosuppressive capacity through multiple mechanisms. These cells have been extensively studied in the field of tumor immunity. Emerging evidence has highlighted its essential role in maintaining immune tolerance in transplantation and autoimmunity. Because of their robust immune inhibitory activities, there has been growing interest in MDSC-based cellular therapy. Various pre-clinical studies have demonstrated that the adoptive transfer of MDCS represented a promising therapeutic strategy for immune-related disorders. In this review, we summarize relevant studies of MDSC-based cell therapy in transplantation and autoimmune diseases and discuss the challenges and future directions for clinical application of MDSC-based cell therapy.
Collapse
Affiliation(s)
- Jilu Zhang
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States.
| | - Alan Hodges
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States; Texas A&M College of Medicine, Bryan, TX, United States
| | - Shu-Hsia Chen
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States; Texas A&M College of Medicine, Bryan, TX, United States
| | - Ping-Ying Pan
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States; Texas A&M College of Medicine, Bryan, TX, United States.
| |
Collapse
|
44
|
The role of myeloid-derived suppressor cells in rheumatoid arthritis: An update. Life Sci 2021; 269:119083. [PMID: 33482191 DOI: 10.1016/j.lfs.2021.119083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that generally affects the joints. In the late stages of the disease, it can be associated with several complications. Although the exact etiology of RA is unknown, various studies have been performed to understand better the immunological mechanisms involved in the pathogenesis of RA. At the onset of the disease, various immune cells migrate to the joints and increase the recruitment of immune cells to the joints by several immunological mediators such as cytokines and chemokines. The function of specific immune cells in RA is well-established. The shift of immune responses to Th1 or Th17 is one of the most essential factors in the development of RA. Myeloid-derived suppressor cells (MDSCs), as a heterogeneous population of myeloid cells, play a regulatory role in the immune system that inhibits T cell activity through several mechanisms. Various studies have been performed on the function of these cells in RA, which in some cases have yielded conflicting results. Therefore, the purpose of this review article is to comprehensively understand the pro-inflammatory and anti-inflammatory functions of MDSCs in the pathogenesis of RA.
Collapse
|
45
|
Grohová A, Dáňová K, Adkins I, Šumník Z, Petruželková L, Obermannová B, Koloušková S, Špíšek R, Palová-Jelínková L. Myeloid - derived suppressor cells in Type 1 diabetes are an expanded population exhibiting diverse T-cell suppressor mechanisms. PLoS One 2020; 15:e0242092. [PMID: 33206686 PMCID: PMC7673497 DOI: 10.1371/journal.pone.0242092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) represent a heterogeneous group of immature myeloid cells with immunoregulatory function in cancer and autoimmune diseases. In humans, two subsets of MDSC were determined based on the characteristic surface markers, monocytic MDSC (M-MDSC) and granulocytic MDSC (G-MDSC). Expansion of MDSC has been reported in some murine models and patients with autoimmune diseases and their immune-suppressive properties were characterized. However, the exact role of MDSC in the pathogenesis of autoimmune diseases is more complex and/or controversial. In type 1 diabetes mellitus (T1D), the increased frequency of MDSC was found in the blood of T1D patients but their suppressor capacity was diminished. In our study, we assessed the role of M-MDSC in the pathogenesis of T1D and showed for the first time the increased frequency of M-MDSC not only in the blood of T1D patients but also in their at-risk relatives compared to healthy donors. T1D patients with inadequate long term metabolic control showed an elevation of M-MDSC compared to patients with better disease control. Furthermore, we described the positive correlation between the percentage of M-MDSC and Th17 cells and IFN-γ producing T cells in T1D patients and their at-risk relatives. Finally, we found that the ability of M-MDSC to suppress autologous T cells is efficient only at the high MDSC: T cells ratio and dependent on cell-cell-contact and TGF-β production. Our data show that the engagement of MDSC in the pathogenesis of T1D is evident, yet not entirely explored and more experiments are required to clarify whether MDSC are beneficial or harmful in T1D.
Collapse
Affiliation(s)
- Anna Grohová
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Klára Dáňová
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,SOTIO a.s., Prague, Czech Republic
| | - Irena Adkins
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,SOTIO a.s., Prague, Czech Republic
| | - Zdeněk Šumník
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Lenka Petruželková
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Barbora Obermannová
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stanislava Koloušková
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,SOTIO a.s., Prague, Czech Republic
| | - Lenka Palová-Jelínková
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,SOTIO a.s., Prague, Czech Republic
| |
Collapse
|
46
|
Valtierra-Alvarado MA, Castañeda Delgado JE, Ramírez-Talavera SI, Lugo-Villarino G, Dueñas-Arteaga F, Lugo-Sánchez A, Adame-Villalpando MS, Rivas-Santiago B, Enciso-Moreno J, Serrano CJ. Type 2 diabetes mellitus metabolic control correlates with the phenotype of human monocytes and monocyte-derived macrophages. J Diabetes Complications 2020; 34:107708. [PMID: 32843282 DOI: 10.1016/j.jdiacomp.2020.107708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
Abstract
AIMS Monocytes and macrophages express cell-surface markers indicative of their inflammatory and activation status. In this study, we investigated whether these markers are affected or correlated in non-obese T2D subjects, or glycemic/metabolic control variables. METHODS Clinical data was recorded, and peripheral blood drawn from T2D patients (n = 28) and control subjects (n = 27). Isolated monocytes were evaluated by flow cytometry for the expression of CD14, CD16, and the phenotypic markers for the different states of activation spectrum, such as pro-inflammatory (M1) (HLA-DR, CD86), anti-inflammatory/pro-resolving (M2) (CD163, CD206, MERTK, PD-L1) and metabolically-activated (MMe) (CD36, ABCA-1). From a subset of individuals, monocytes-derived macrophages (MDM) were obtained and evaluated for phenotypic markers. A correlation analysis was performed between the clinical variables and the marker expression. RESULTS The frequency of CD14++CD16- monocytes was lower in T2D patients and it correlates negatively with poor control in glycemic and metabolic variables. T2D monocytes expressed lower levels of HLA-DR, CD86, PD-L1, and CD163, which correlated negatively with poor metabolic control. In MDM from T2D patients, HLA-DR, CD86 and CD163 expression was lower and it inversely correlated with deficient glycemic or metabolic control parameters. CONCLUSION The glycemic/metabolic control associated with T2D influences monocyte and MDM phenotypes toward an immune-suppressive phenotype.
Collapse
Affiliation(s)
- M A Valtierra-Alvarado
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - J E Castañeda Delgado
- Cátedras CONACyT, Consejo Nacional de Ciencia y Tecnología (CONACyT-México), Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - S I Ramírez-Talavera
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - G Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - F Dueñas-Arteaga
- Universidad Autónoma de Zacatecas, Unidad Académica de Medicina Humana y Ciencias de la Salud, Zacatecas, Mexico
| | - A Lugo-Sánchez
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Universidad Autónoma de Zacatecas, Unidad Académica de Ciencias Químicas, Zacatecas, Mexico
| | - M S Adame-Villalpando
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Universidad Autónoma de Zacatecas, Unidad Académica de Ciencias Químicas, Zacatecas, Mexico
| | - B Rivas-Santiago
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico
| | - J Enciso-Moreno
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico
| | - C J Serrano
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico.
| |
Collapse
|
47
|
Wang Y, Ding Y, Deng Y, Zheng Y, Wang S. Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer 2020; 8:jitc-2020-000609. [PMID: 33051339 PMCID: PMC7555106 DOI: 10.1136/jitc-2020-000609] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Colitis-associated cancer (CAC) is a specific type of colorectal cancer that develops from inflammatory bowel disease (IBD). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are essential for the pathological processes of inflammation and cancer. Accumulating evidence indicates that MDSCs play different but vital roles during IBD and CAC development and impede CAC immunotherapy. New insights into the regulatory network of MDSCs in the CAC pathogenesis are opening new avenues for developing strategies to enhance the effectiveness of CAC treatment. In this review, we explore the role of MDSCs in chronic inflammation, dysplasia and CAC and summarize the potential CAC therapeutic strategies based on MDSC blockade.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yanxia Ding
- Department of Dermatology, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yijun Deng
- Department of Critical Care Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yu Zheng
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
48
|
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol 2020; 10:200111. [PMID: 32931721 PMCID: PMC7536076 DOI: 10.1098/rsob.200111] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic immune activation and inflammation are unwanted consequences of many pathological conditions, since they could lead to tissue damage and immune exhaustion, both of which can worsen the pathological condition status. In fact, the immune system is naturally equipped with immunoregulatory cells that can limit immune activation and inflammation. However, chronic activation of downregulatory immune responses is also associated with unwanted consequences that, in turn, could lead to disease progression as seen in the case of cancer and chronic infections. Myeloid-derived suppressor cells (MDSCs) are now considered to play a pivotal role in the pathogenesis of different inflammatory pathological conditions, including different types of cancer and chronic infections. As a potent immunosuppressor cell population, MDSCs can inhibit specific and non-specific immune responses via different mechanisms that, in turn, lead to disease persistence. One such mechanism by which MDSCs can activate their immunosuppressive effects is accomplished by secreting copious amounts of immunosuppressant molecules such as interleukin-10 (IL-10). In this article, we will focus on the pathological role of MDSC expansion in chronic inflammatory conditions including cancer, sepsis/infection, autoimmunity, asthma and ageing, as well as some of the mechanisms by which MDSCs/IL-10 contribute to the disease progression in such conditions.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Homa Darmani
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ammar Daoud
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
49
|
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Recent advances in myeloid-derived suppressor cell biology. Front Med 2020; 15:232-251. [PMID: 32876877 DOI: 10.1007/s11684-020-0797-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
Abstract
In recent years, studying the role of myeloid-derived suppressor cells (MDSCs) in many pathological inflammatory conditions has become a very active research area. Although the role of MDSCs in cancer is relatively well established, their role in non-cancerous pathological conditions remains in its infancy resulting in much confusion. Our objectives in this review are to address some recent advances in MDSC research in order to minimize such confusion and to provide an insight into their function in the context of other diseases. The following topics will be specifically focused upon: (1) definition and characterization of MDSCs; (2) whether all MDSC populations consist of immature cells; (3) technical issues in MDSC isolation, estimation and characterization; (4) the origin of MDSCs and their anatomical distribution in health and disease; (5) mediators of MDSC expansion and accumulation; (6) factors that determine the expansion of one MDSC population over the other; (7) the Yin and Yang roles of MDSCs. Moreover, the functions of MDSCs will be addressed throughout the text.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ammar Daoud
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
50
|
IL-17A-producing γδ T cells promote liver pathology in acute murine schistosomiasis. Parasit Vectors 2020; 13:334. [PMID: 32611373 PMCID: PMC7329544 DOI: 10.1186/s13071-020-04200-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background The main symptoms of schistosomiasis are granuloma and fibrosis, caused by Schistosoma eggs. Numerous types of cells and cytokines are involved in the progression of Schistosoma infection. As a class of innate immune cells, γδ T cells play critical roles in the early immune response. However, their role in modulating granuloma and fibrosis remains to be clarified. Methods Liver fibrosis in wild-type (WT) mice and T cell receptor (TCR) δ knockout (KO) mice infected with Schistosoma japonicum was examined via Masson’s trichrome staining of collagen deposition and quantitative reverse transcriptase-PCR (RT-PCR) of fibrosis-related genes. Granuloma was detected by hematoxylin-eosin (H&E) staining and quantified. Flow cytometry was used for immune cell profiling and for detecting cytokine secretion. The abundance of the related cytokines was measured using quantitative RT-PCR. Results The livers of S. japonicum-infected mice had significantly increased proportions of interleukin (IL)-17A producing γδ T cells and secreted IL-17A. Compared with the WT mice, TCR δ deficiency resulted in reduced pathological impairment and fibrosis in the liver and increased survival in infected mice. In addition, the profibrogenic effects of γδ T cells in infected mice were associated with enhanced CD11b+Gr-1+ cells, concurrent with increased expression of transforming growth factor (TGF)-β in the liver. Conclusions In this mouse model of Schistosoma infection, γδ T cells may promote liver fibrosis by recruiting CD11b+Gr-1+ cells. These findings shed new light on the pathogenesis of liver pathology in murine schistosomiasis.![]()
Collapse
|