1
|
Cirovic A, Satarug S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. Int J Mol Sci 2024; 25:1851. [PMID: 38339129 PMCID: PMC10855822 DOI: 10.3390/ijms25031851] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Mahdiani S, Omidkhoda N, Heidari S, Hayes AW, Karimi G. Protective effect of luteolin against chemical and natural toxicants by targeting NF-κB pathway. Biofactors 2022; 48:744-762. [PMID: 35861671 DOI: 10.1002/biof.1876] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Humans are continuously exposed to environmental, occupational, consumer and household products, food, and pharmaceutical substances. Luteolin, a flavone from the flavonoids family of compounds, is found in different fruits and vegetables. LUT is a strong anti-inflammatory (via inhibition of NF-κB, ERK1/2, MAPK, JNK, IL-6, IL-8, and TNF-α) and antioxidant agent (reducing ROS and enhancement of endogenous antioxidants). LUT can chelate transition metal ions responsible for ROS generation and consequently repress lipoxygenase. It has been proven that NF-κB, as a commom cellular pathway plays a considerable role in the progression of inflammatory process and stimulates the expression of genes encoding inducible pro-inflammatory enzymes (iNOS and COX-2) and cytokines including IL-1β, IL-6, and TNF-α. This review summarizes the available literature discussing LUT and its potential protective role against pharmaceuticals-, metals-, and environmental compounds-induced toxicities. Furthermore, the review explains the involved protective mechanisms, especially inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Michigan State University, East Lansing, Michigan, USA
- University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Gacem MA, Abd-Elsalam KA. Nanomaterials for the Reduction of Mycotoxins in Cereals. CEREAL DISEASES: NANOBIOTECHNOLOGICAL APPROACHES FOR DIAGNOSIS AND MANAGEMENT 2022:371-406. [DOI: 10.1007/978-981-19-3120-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Besaratinia A, Caliri AW, Tommasi S. Hydroxychloroquine induces oxidative DNA damage and mutation in mammalian cells. DNA Repair (Amst) 2021; 106:103180. [PMID: 34298488 PMCID: PMC8435022 DOI: 10.1016/j.dnarep.2021.103180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Since the early stages of the pandemic, hydroxychloroquine (HCQ), a widely used drug with good safety profile in clinic, has come to the forefront of research on drug repurposing for COVID-19 treatment/prevention. Despite the decades-long use of HCQ in the treatment of diseases, such as malaria and autoimmune disorders, the exact mechanisms of action of this drug are only beginning to be understood. To date, no data are available on the genotoxic potential of HCQ in vitro or in vivo. The present study is the first investigation of the DNA damaging- and mutagenic effects of HCQ in mammalian cells in vitro, at concentrations that are comparable to clinically achievable doses in patient populations. We demonstrate significant induction of a representative oxidative DNA damage (8-oxodG) in primary mouse embryonic fibroblasts (MEFs) treated with HCQ at 5 and 25 μM concentrations (P = 0.020 and P = 0.029, respectively), as determined by enzyme-linked immunosorbent assay. Furthermore, we show significant mutagenicity of HCQ, manifest as 2.2- and 1.8-fold increases in relative cII mutant frequency in primary and spontaneously immortalized Big Blue® MEFs, respectively, treated with 25 μM dose of this drug (P = 0.005 and P = 0.012, respectively). The observed genotoxic effects of HCQ in vitro, achievable at clinically relevant doses, are novel and important, and may have significant implications for safety monitoring in patient populations. Given the substantial number of the world's population receiving HCQ for the treatment of various chronic diseases or in the context of clinical trials for COVID-19, our findings warrant further investigations into the biological consequences of therapeutic/preventive use of this drug.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA.
| | - Andrew W Caliri
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| | - Stella Tommasi
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| |
Collapse
|
5
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Gillman R, Lopes Floro K, Wankell M, Hebbard L. The role of DNA damage and repair in liver cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188493. [PMID: 33316376 DOI: 10.1016/j.bbcan.2020.188493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is rapidly becoming a major cause of global mortality due to the ever-increasing prevalence of obesity. DNA damage is known to play an important role in cancer initiation, however DNA repair systems are also vital for the survival of cancer cells. Given the function of the liver and its exposure to the gut, it is likely that DNA damage and repair would be of particular importance in hepatocellular carcinoma. However, many contemporary reports have neglected the role of individual pathways of DNA damage and repair in their hypotheses. This review, therefore, aims to provide a concise overview for researchers in the field of liver cancer to understand the pathways of DNA damage and repair and their individual roles in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rhys Gillman
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Kylie Lopes Floro
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Department of Radiation Oncology, Townsville University Hospital, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia; Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia.
| |
Collapse
|
7
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Marko D, Oswald IP, Piersma A, Routledge M, Schlatter J, Baert K, Gergelova P, Wallace H. Risk assessment of aflatoxins in food. EFSA J 2020; 18:e06040. [PMID: 32874256 PMCID: PMC7447885 DOI: 10.2903/j.efsa.2020.6040] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain-based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while 'liquid milk' and 'fermented milk products' were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 μg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in-line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.
Collapse
|
8
|
Singh C, Prakash C, Mishra P, Tiwari KN, Mishra SK, More RS, Kumar V, Singh J. Hepatoprotective efficacy of Premna integrifolia L. leaves against aflatoxin B1-induced toxicity in mice. Toxicon 2019; 166:88-100. [DOI: 10.1016/j.toxicon.2019.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
|
9
|
Bogen KT. Inflammation as a Cancer Co-Initiator: New Mechanistic Model Predicts Low/Negligible Risk at Noninflammatory Carcinogen Doses. Dose Response 2019; 17:1559325819847834. [PMID: 31205456 PMCID: PMC6537503 DOI: 10.1177/1559325819847834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/10/2023] Open
Abstract
Linear-no-threshold (LNT) risk extrapolation has long been applied to estimate risks posed by low-level environmental carcinogen exposures, based on the 60-year-old multistage somatic mutation/clonal expansion (MSM) cancer theory. Recent evidence supports an alternative theory: Malignant tumors arise most efficiently from a stem cell that incurs requisite mutations and also is activated by inflammation to an epigenetically mediated and maintained state of adaptive hyperplasia (AH). This new inflammation-MSM (ISM) theory posits that inflammation-activated stem cells normally restricted to sites of injury-induced inflammation and tissue repair become uniquely susceptible to efficient carcinogenesis if normal post-inflammation AH termination is blocked by mutation. This theory posits that inflammation generally thus co-initiates cancer and transiently amplifies activated stem cells, implying that MSM theory (eg, the 2-stage stochastic "Moolgavkar, Venzon, Knudson [MVK]" model) is incomplete. Because inflammation dose-response typically is not LNT, the ISM theory predicts this is also true for most (perhaps all) carcinogens. The ISM (but not the MVK) model is shown to be consistent with recent data showing ∼100% carcinoma incidence (but not DNA adducts) in livers of rats exposed to aflatoxin B1 and was eliminated when that dose was co-administered with a highly potent anti-inflammatory agent. Experimental approaches to test ISM theory more robustly are discussed.
Collapse
|
10
|
McCullough AK, Lloyd RS. Mechanisms underlying aflatoxin-associated mutagenesis - Implications in carcinogenesis. DNA Repair (Amst) 2019; 77:76-86. [PMID: 30897375 PMCID: PMC6959417 DOI: 10.1016/j.dnarep.2019.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023]
Abstract
Chronic dietary exposure to aflatoxin B1 (AFB1), concomitant with hepatitis B infection is associated with a significant increased risk for hepatocellular carcinomas (HCCs) in people living in Southeast Asia and sub-Saharan Africa. Human exposures to AFB1 occur through the consumption of foods that are contaminated with pervasive molds, including Aspergillus flavus. Even though dietary exposures to aflatoxins constitute the second largest global environmental risk factor for cancer development, there are still significant questions concerning the molecular mechanisms driving carcinogenesis and what factors may modulate an individual's risk for HCC. The objective of this review is to summarize key discoveries that established the association of chronic inflammation (most commonly associated with hepatitis B viral (HBV) infection) and environmental exposures to aflatoxin with increased HCC risk. Special emphasis will be given to recent investigations that have: 1) refined the aflatoxin-associated mutagenic signature, 2) expanded the DNA repair mechanisms that limit mutagenesis via adduct removal prior to replication-induced mutagenesis, 3) implicated a specific DNA polymerase in the error-prone bypass and resulting mutagenesis, and 4) identified human polymorphic variants that may modulate individual susceptibility to aflatoxin-induced cancers. Collectively, these investigations revealed that specific sequence contexts are differentially resistant against, or prone to, aflatoxin-induced mutagenesis and that these associations are remarkably similar between in vitro and in vivo analyses. These recent investigations also established DNA polymerase ζ as the major polymerase that confers the G to T transversion signature. Additionally, although the nucleotide excision repair (NER) pathway has been previously shown to repair aflatoxin-induced DNA adducts, recent murine data demonstrated that NEIL1-initiated base excision repair was significantly more important than NER relative to the removal of the highly mutagenic AFB1-Fapy-dG adducts. These data suggest that inactivating polymorphic variants of NEIL1 could be a potential driver of HCCs in aflatoxin-exposed populations.
Collapse
Affiliation(s)
- Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
11
|
Wang H, Liao P, Zeng SX, Lu H. It takes a team: a gain-of-function story of p53-R249S. J Mol Cell Biol 2019; 11:277-283. [PMID: 30608603 PMCID: PMC6487778 DOI: 10.1093/jmcb/mjy086] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/03/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
Gain-of-function (GOF), the most malicious oncogenic activity of a cancer-promoting protein, is well illustrated to three hotspot p53 mutations at R248, R175, and R273 with distinct molecular mechanisms. Yet, less is known about another hotspot p53 mutant, R249S (p53-R249S). p53-R249S is the sole hotspot mutation in hepatocellular carcinoma (HCC) that is highly associated with chronic hepatitis B virus (HBV) infection and dietary exposure to aflatoxin B1 (AFB1). Its GOF is suggested by the facts that this mutant is associated with earlier onset of HCC and poorer prognosis of cancer patients and that its overexpression drives HCC proliferation and tumorigenesis. By contrast, simply knocking in this mutant in normal mice did not show apparent GOF activity. Hence, the GOF activity for p53-R249S and its underlying mechanisms have been elusive until recent findings offered some new insights. This review will discuss these findings as well as their clinical significance and implications for the development of a strategy to target multiple molecules as a therapy for p53-R249S-harboring HCC.
Collapse
Affiliation(s)
- Huai Wang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
12
|
Desai A, Sandhu S, Lai JP, Sandhu DS. Hepatocellular carcinoma in non-cirrhotic liver: A comprehensive review. World J Hepatol 2019; 11:1-18. [PMID: 30705715 PMCID: PMC6354117 DOI: 10.4254/wjh.v11.i1.1] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/04/2018] [Accepted: 12/22/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, which in turns accounts for the sixth most common cancer worldwide. Despite being the 6th most common cancer it is the second leading cause of cancer related deaths. HCC typically arises in the background of cirrhosis, however, about 20% of cases can develop in a non-cirrhotic liver. This particular subgroup of HCC generally presents at an advanced stage as surveillance is not performed in a non-cirrhotic liver. HCC in non-cirrhotic patients is clinically silent in its early stages because of lack of symptoms and surveillance imaging; and higher hepatic reserve in this population. Interestingly, F3 fibrosis in non-alcoholic fatty liver disease, hepatitis B virus and hepatitis C virus infections are associated with high risk of developing HCC. Even though considerable progress has been made in the management of this entity, there is a dire need for implementation of surveillance strategies in the patient population at risk, to decrease the disease burden at presentation and improve the prognosis of these patients. This comprehensive review details the epidemiology, risk factors, clinical features, diagnosis and management of HCC in non-cirrhotic patients and provides future directions for research.
Collapse
Affiliation(s)
- Aakash Desai
- Department of Internal Medicine, Case Western Reserve University/MetroHealth Medical Center, Cleveland, OH 44109, United States
| | - Sonia Sandhu
- Department of Hematology and Oncology, Cleveland Clinic/Akron General Medical Center, Akron, OH 44307, United States
| | - Jin-Ping Lai
- Department of Pathology, University of Florida, Gainsville, FL 32611, United States
| | - Dalbir Singh Sandhu
- Division of Gastroenterology and Hepatology, Case Western Reserve University/MetroHealth Medical Center, Cleveland, OH 44109, the United States.
| |
Collapse
|
13
|
Muhammad I, Wang H, Sun X, Wang X, Han M, Lu Z, Cheng P, Hussain MA, Zhang X. Dual Role of Dietary Curcumin Through Attenuating AFB 1-Induced Oxidative Stress and Liver Injury via Modulating Liver Phase-I and Phase-II Enzymes Involved in AFB 1 Bioactivation and Detoxification. Front Pharmacol 2018; 9:554. [PMID: 29887802 PMCID: PMC5981209 DOI: 10.3389/fphar.2018.00554] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
It is well understood that liver cytochrome p450 enzymes are responsible for AFB1 bioactivation, while phase-II enzymes regulated by the transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2) are involved in detoxification of AFB1. In this study, we explored the potential of curcumin to prevent AFB1-induced liver injury by modulating liver phase-I and phase-II enzymes along with Nrf2 involved in AFB1 bioactivation and detoxification. Arbor Acres broiler were divided into four groups including control group (G1; fed only basal feed), curcumin alone-treated group (G2; 450 mg/kg feed), AFB1-fed group (G3; 5 mg/kg feed), and curcumin plus AFB1 group (G4; 5 mg AFB1+450 mg curcumin/kg feed). After 28 days, liver and blood samples were collected for different analyses. Histological and phenotypic results revealed that AFB1-induced liver injury was partially ameliorated by curcumin supplementation. Compared to AFB1 alone-treated group, serum biochemical parameters and liver antioxidant status showed that curcumin supplementation significantly prevented AFB1-induced liver injury. RT-PCR and western blot results revealed that curcumin inhibited CYP enzymes-mediated bioactivation of AFB1 at mRNA and protein level. Transcription factor Nrf2, its downstream genes such as GSTA3, and GSTM2 mRNA, and protein expression level significantly upregulated via dietary curcumin. In addition, GSTs enzyme activity was enhanced with dietary curcumin which plays a crucial role in AFB1-detoxification. Conclusively, the study provided a scientific basis for the use of curcumin in broiler's diet and contributed to explore the multi-target preventive actions of curcumin against AFB1-induced liver injury through the modulation of phase-I and phase-II enzymes, and its potent anti-oxidative effects.
Collapse
Affiliation(s)
- Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - He Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqi Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinghe Wang
- Laboratory of Veterinary Pathology, Faculty of Basic Veterinary Science, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Meiyu Han
- Changchun Dirui Medical Company Ltd., Changchun, China
| | - Ziyin Lu
- College of Life Science Engineering, Shenyang Institute of Technology, Fushun, China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | | | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Malla S, Kadimisetty K, Jiang D, Choudhary D, Rusling JF. Pathways of Metabolite-Related Damage to a Synthetic p53 Gene Exon 7 Oligonucleotide Using Magnetic Enzyme Bioreactor Beads and LC-MS/MS Sequencing. Biochemistry 2018; 57:3883-3893. [PMID: 29750510 DOI: 10.1021/acs.biochem.8b00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reactive metabolites of environmental chemicals and drugs can cause site specific damage to the p53 tumor suppressor gene in a major pathway for genotoxicity. We report here a high-throughput, cell-free, 96-well plate magnetic bead-enzyme system interfaced with LC-MS/MS sequencing for bioactivating test chemicals and identifying resulting adduction sites on genes. Bioactivated aflatoxin B1 was reacted with a 32 bp exon 7 fragment of the p53 gene using eight microsomal cytochrome (cyt) P450 enzymes from different organs coated on magnetic beads. All cyt P450s converted aflatoxin B1 to aflatoxin B1-8,9-epoxide that adducts guanine (G) in codon 249, with subsequent depurination to give abasic sites and then strand breaks. This is the first demonstration in a cell-free medium that the aflatoxin B1 metabolite selectively causes abasic site formation and strand breaks at codon 249 of the p53 probe, corresponding to the chemical pathway and mutations of p53 in human liver cells and tumors. Molecular modeling supports the view that binding of aflatoxin B1-8,9-epoxide to G in codon 249 precedes the SN2 adduction reaction. Among a range of metabolic enzymes characteristic of different organs, human liver microsomes and cyt P450 3A5 supersomes showed the highest bioactivation rate for p53 exon 7 damage. This method of identifying metabolite-related gene damage sites may facilitate predictions of organ specific cancers for test chemicals via correlations with mutation sites.
Collapse
Affiliation(s)
- Spundana Malla
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Karteek Kadimisetty
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Di Jiang
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Dharamainder Choudhary
- Department of Surgery and Neag Cancer Center , UConn Health , Farmington , Connecticut 06032 , United States
| | - James F Rusling
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States.,Department of Surgery and Neag Cancer Center , UConn Health , Farmington , Connecticut 06032 , United States.,Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States.,School of Chemistry , National University of Ireland at Galway , Galway , Ireland
| |
Collapse
|
15
|
Abstract
A number of transgenic animal models and mutation detection systems have been developed for mutagenicity testing of carcinogens in mammalian cells. Of these, transgenic mice and the Lambda (λ) Select cII Mutation Detection System have been employed for mutagenicity experiments by many research groups worldwide. Here, we describe a detailed protocol for the Lambda Select cII mutation assay, which can be applied to cultured cells of transgenic mice/rats or the corresponding animals treated with a chemical/physical agent of interest. The protocol consists of the following steps: (1) isolation of genomic DNA from the cells or organs/tissues of transgenic animals treated in vitro or in vivo, respectively, with a test compound; (2) recovery of the lambda shuttle vector carrying a mutational reporter gene (i.e., cII transgene) from the genomic DNA; (3) packaging of the rescued vectors into infectious bacteriophages; (4) infecting a host bacteria and culturing under selective conditions to allow propagation of the induced cII mutations; and (5) scoring the cII-mutants and DNA sequence analysis to determine the cII mutant frequency and mutation spectrum, respectively.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California;
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California
| |
Collapse
|
16
|
Moore MM, Schoeny RS, Becker RA, White K, Pottenger LH. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action. Crit Rev Toxicol 2018; 48:312-337. [PMID: 29431554 DOI: 10.1080/10408444.2017.1423462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) are frameworks starting with a molecular initiating event (MIE), followed by key events (KEs) linked by KE relationships (KERs), ultimately resulting in a specific adverse outcome. Relevant data for the pathway and each KE/KER are evaluated to assess biological plausibility, weight-of-evidence, and confidence. We aimed to describe an AOP relevant to chemicals directly inducing mutation in cancer critical gene(s), via the formation of chemical-specific pro-mutagenic DNA adduct(s), as an early critical step in tumor etiology. Such chemicals have mutagenic modes-of-action (MOA) for tumor induction. To assist with developing this AOP, Aflatoxin B1 (AFB1) was selected as a case study because it has a rich database and is considered to have a mutagenic MOA. AFB1 information was used to define specific KEs, KERs, and to inform development of a generic AOP for mutagen-induced hepatocellular carcinoma (HCC). In assessing the AFB1 information, it became clear that existing data are, in fact, not optimal and for some KEs/KERs, the definitive data are not available. In particular, while there is substantial information that AFB1 can induce mutations (based on a number of mutation assays), the definitive evidence - the ability to induce mutation in the cancer critical gene(s) in the tumor target tissue - is not available. Thus, it is necessary to consider the patterns of results in the weight-of-evidence for KEs and KERs. It was important to determine whether there was sufficient evidence that AFB1 can induce the necessary critical mutations early in the carcinogenic process, which was the case.
Collapse
Affiliation(s)
- Martha M Moore
- a Ramboll Environ US Corporation , Little Rock , AR , USA
| | | | | | | | | |
Collapse
|
17
|
Besaratinia A, Zheng A, Bates SE, Tommasi S. Mutation Analysis in Cultured Cells of Transgenic Rodents. Int J Mol Sci 2018; 19:E262. [PMID: 29337872 PMCID: PMC5796208 DOI: 10.3390/ijms19010262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
To comply with guiding principles for the ethical use of animals for experimental research, the field of mutation research has witnessed a shift of interest from large-scale in vivo animal experiments to small-sized in vitro studies. Mutation assays in cultured cells of transgenic rodents constitute, in many ways, viable alternatives to in vivo mutagenicity experiments in the corresponding animals. A variety of transgenic rodent cell culture models and mutation detection systems have been developed for mutagenicity testing of carcinogens. Of these, transgenic Big Blue® (Stratagene Corp., La Jolla, CA, USA, acquired by Agilent Technologies Inc., Santa Clara, CA, USA, BioReliance/Sigma-Aldrich Corp., Darmstadt, Germany) mouse embryonic fibroblasts and the λ Select cII Mutation Detection System have been used by many research groups to investigate the mutagenic effects of a wide range of chemical and/or physical carcinogens. Here, we review techniques and principles involved in preparation and culturing of Big Blue® mouse embryonic fibroblasts, treatment in vitro with chemical/physical agent(s) of interest, determination of the cII mutant frequency by the λ Select cII assay and establishment of the mutation spectrum by DNA sequencing. We describe various approaches for data analysis and interpretation of the results. Furthermore, we highlight representative studies in which the Big Blue® mouse cell culture model and the λ Select cII assay have been used for mutagenicity testing of diverse carcinogens. We delineate the advantages of this approach and discuss its limitations, while underscoring auxiliary methods, where applicable.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Albert Zheng
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Steven E Bates
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Stella Tommasi
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
18
|
Kim J, Park SH, Do KH, Kim D, Moon Y. Interference with mutagenic aflatoxin B1-induced checkpoints through antagonistic action of ochratoxin A in intestinal cancer cells: a molecular explanation on potential risk of crosstalk between carcinogens. Oncotarget 2018; 7:39627-39639. [PMID: 27119350 PMCID: PMC5129958 DOI: 10.18632/oncotarget.8914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
Foodborne aflatoxin B1 (AFB1) and ochratoxin A (OTA) cause genotoxic injury and subsequent tumor formation. As a biomarker of oncogenic stimulation by genotoxic mycotoxins, p53-triggered Mdm2 was assessed in intestinal cancer cells. AFB1 increased Mdm2 reporter expression in a dose-dependent manner. However, this was strongly antagonized by OTA treatment. As a positive transcription factor of Mdm2 expression, p53 levels were also increased by AFB1 alone and reduced by OTA. With marginal cell death responses, AFB1 induced p53-mediated S phase arrest and cell cycle-regulating target genes, which was completely suppressed by OTA. Although enterocyte-dominant CYP3A5 counteracted AFB1-induced DNA damage, expression of CYP3A5 was decreased by OTA or AFB1. Instead, OTA enhanced expression of another metabolic inactivating enzyme CYP3A4, attenuation of formation of AFB1-DNA adduct and p53-mediated cell cycle checking responses to the mutagens. Finally, the growth of intestinal cancer cells exposed to the mycotoxin mixture significantly exceeded the expected growth calculated from that of cells treated with each mycotoxin. Although AFB1-induced mutagen formation was decreased by OTA, interference with checkpoints through antagonistic action of OTA may contribute to the survival of tumor cells with deleterious mutations by genotoxic mycotoxins, potently increasing the risk of carcinogenesis.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Kee Hun Do
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Dongwook Kim
- National Institute of Animal Science, RDA, Wanju, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan, South Korea
| |
Collapse
|
19
|
Xiang X, Qin H, You X, Wang Y, Qi L, Ma L, Xiang B, Zhong J, Li L. Expression of P62 in hepatocellular carcinoma involving hepatitis B virus infection and aflatoxin B1 exposure. Cancer Med 2017; 6:2357-2369. [PMID: 28941211 PMCID: PMC5633547 DOI: 10.1002/cam4.1176] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/23/2017] [Accepted: 08/04/2017] [Indexed: 01/27/2023] Open
Abstract
This study aims to clarify the relationship and mechanism between expression of autophagy-related protein P62 and prognosis of patients with hepatocellular carcinoma (HCC) involving chronic hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure. HCC patients who underwent resection were divided into three groups: HBV(+)/AFB1(+) (n = 26), HBV(+)/AFB1(-) (n = 68), and HBV(-)/AFB1(-) (n = 14). The groups were compared in terms of mRNA and protein levels of P62, disease-free survival (DFS), and overall survival (OS) and the expression of NRF2, Nqo1, and AKR7A3 in P62 high-expression and low-expression group. HBV(+)/AFB1(+) group has lower DFS and OS, and higher P62 expression than in the other two groups. P62 expression generally correlated with elevated NRF2 and Nqo1 expression, and reduced AKR7A3 expression. Patients expressing high levels of P62 showed significantly lower DFS and OS rates than patients expressing low levels. HCC involving HBV infection and AFB1 exposure is associated with relatively high risk of tumor recurrence, and this poor prognosis may relate to high P62 expression. High P62 expression activates the NRF2 pathway, promotes tumor recurrence. The downregulation of AKR7A3 also reduced liver detoxification of aflatoxin B1.
Collapse
Affiliation(s)
- Xiao Xiang
- Department of Hepatobiliary SurgeryAffiliated Tumor Hospital of Guangxi Medical UniversityGuangxi Cancer InstituteHospital Oncology SchoolGuangxi Cancer CenterNanning530021China
| | - Hong‐Gui Qin
- Department of Hepatobiliary SurgeryAffiliated Tumor Hospital of Guangxi Medical UniversityGuangxi Cancer InstituteHospital Oncology SchoolGuangxi Cancer CenterNanning530021China
| | - Xue‐Mei You
- Department of Hepatobiliary SurgeryAffiliated Tumor Hospital of Guangxi Medical UniversityGuangxi Cancer InstituteHospital Oncology SchoolGuangxi Cancer CenterNanning530021China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research CenterNanning530021China
| | - Yan‐Yan Wang
- Department of Hepatobiliary SurgeryAffiliated Tumor Hospital of Guangxi Medical UniversityGuangxi Cancer InstituteHospital Oncology SchoolGuangxi Cancer CenterNanning530021China
| | - Lu‐Nan Qi
- Department of Hepatobiliary SurgeryAffiliated Tumor Hospital of Guangxi Medical UniversityGuangxi Cancer InstituteHospital Oncology SchoolGuangxi Cancer CenterNanning530021China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research CenterNanning530021China
| | - Liang Ma
- Department of Hepatobiliary SurgeryAffiliated Tumor Hospital of Guangxi Medical UniversityGuangxi Cancer InstituteHospital Oncology SchoolGuangxi Cancer CenterNanning530021China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research CenterNanning530021China
| | - Bang‐De Xiang
- Department of Hepatobiliary SurgeryAffiliated Tumor Hospital of Guangxi Medical UniversityGuangxi Cancer InstituteHospital Oncology SchoolGuangxi Cancer CenterNanning530021China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research CenterNanning530021China
| | - Jian‐Hong Zhong
- Department of Hepatobiliary SurgeryAffiliated Tumor Hospital of Guangxi Medical UniversityGuangxi Cancer InstituteHospital Oncology SchoolGuangxi Cancer CenterNanning530021China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research CenterNanning530021China
| | - Le‐Qun Li
- Department of Hepatobiliary SurgeryAffiliated Tumor Hospital of Guangxi Medical UniversityGuangxi Cancer InstituteHospital Oncology SchoolGuangxi Cancer CenterNanning530021China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research CenterNanning530021China
| |
Collapse
|
20
|
Tommasi S, Bates SE, Behar RZ, Talbot P, Besaratinia A. Limited mutagenicity of electronic cigarettes in mouse or human cells in vitro. Lung Cancer 2017; 112:41-46. [PMID: 29191599 DOI: 10.1016/j.lungcan.2017.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Electronic cigarettes (e-cig), which are promoted as safe alternatives to tobacco cigarettes or as aides to smoking cessation, are becoming increasingly popular among adult chronic smokers and adolescents experimenting with tobacco products. Despite the known presence of toxicants and carcinogens in e-cig liquid and vapor, the possible carcinogenic effects of e-cig use in humans are unknown. MATERIALS AND METHODS We have utilized two validated in vitro model systems to investigate whether e-cig vapor induces mutation in mouse or human cells. We have exposed transgenic mouse fibroblasts in vitro to e-cig vapor extracts prepared from three popular brands, and determined the induction of mutagenesis in a reporter gene, the cII transgene. Furthermore, we have treated the pSP189 plasmid with e-cig vapor extract, transfected human fibroblast cells with the e-cig-treated plasmid, and screened for the induced mutations in the supF gene. RESULTS AND CONCLUSION We observed no statistically significant increases in relative mutant frequency in the cII transgene or supF gene in the e-cig treated mouse or human cells, respectively. Our data indicate that e-cig vapor extracts from the selected brands and at concentrations tested in this study have limited mutagenicity in both mouse and human cells in vitro.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Steven E Bates
- Department of Cancer Biology, Beckman Research Institute at City of Hope , Duarte, CA, 91010, USA
| | - Rachel Z Behar
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Prue Talbot
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
21
|
Nik-Zainal S, Morganella S. Mutational Signatures in Breast Cancer: The Problem at the DNA Level. Clin Cancer Res 2017; 23:2617-2629. [PMID: 28572256 PMCID: PMC5458139 DOI: 10.1158/1078-0432.ccr-16-2810] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/27/2017] [Accepted: 04/07/2017] [Indexed: 01/09/2023]
Abstract
A breast cancer genome is a record of the historic mutagenic activity that has occurred throughout the development of the tumor. Indeed, every mutation may be informative. Although driver mutations were the main focus of cancer research for a long time, passenger mutational signatures, the imprints of DNA damage and DNA repair processes that have been operative during tumorigenesis, are also biologically illuminating. This review is a chronicle of how the concept of mutational signatures arose and brings the reader up-to-date on this field, particularly in breast cancer. Mutational signatures have now been advanced to include mutational processes that involve rearrangements, and novel cancer biological insights have been gained through studying these in great detail. Furthermore, there are efforts to take this field into the clinical sphere. If validated, mutational signatures could thus form an additional weapon in the arsenal of cancer precision diagnostics and therapeutic stratification in the modern war against cancer. Clin Cancer Res; 23(11); 2617-29. ©2017 AACRSee all articles in this CCR Focus section, "Breast Cancer Research: From Base Pairs to Populations."
Collapse
Affiliation(s)
- Serena Nik-Zainal
- Wellcome Trust Sanger Institute, Hinxton Genome Campus, Cambridge, United Kingdom.
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sandro Morganella
- Wellcome Trust Sanger Institute, Hinxton Genome Campus, Cambridge, United Kingdom
| |
Collapse
|
22
|
Forthcoming Challenges in Mycotoxins Toxicology Research for Safer Food-A Need for Multi-Omics Approach. Toxins (Basel) 2017; 9:toxins9010018. [PMID: 28054977 PMCID: PMC5308250 DOI: 10.3390/toxins9010018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 01/18/2023] Open
Abstract
The presence of mycotoxins in food represents a severe threat for public health and welfare, and poses relevant research challenges in the food toxicology field. Nowadays, food toxicologists have to provide answers to food-related toxicological issues, but at the same time they should provide the appropriate knowledge in background to effectively support the evidence-based decision-making in food safety. Therefore, keeping in mind that regulatory actions should be based on sound scientific findings, the present opinion addresses the main challenges in providing reliable data for supporting the risk assessment of foodborne mycotoxins.
Collapse
|
23
|
Shi J, He J, Lin J, Sun X, Sun F, Ou C, Jiang C. Distinct response of the hepatic transcriptome to Aflatoxin B1 induced hepatocellular carcinogenesis and resistance in rats. Sci Rep 2016; 6:31898. [PMID: 27545718 PMCID: PMC4992951 DOI: 10.1038/srep31898] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022] Open
Abstract
Aflatoxin is a natural potent carcinogen and a major cause of liver cancer. However, the molecular mechanisms of hepatocellular carcinogenesis remain largely unexplored. In this study, we profiled global gene expression in liver tissues of rats that developed hepatocellular carcinoma (HCC) from aflatoxin B1 (AFB1) administration and those that were AFB1-resistant, as well as rats without AFB1 exposure as a control. AFB1 exposure resulted in extensive perturbation in gene expression with different functions in HCC and AFB1 resistance (AR) samples. The differentially expressed genes (DEGs) in HCC sample were enriched for cell proliferation, cell adhesion and vasculature development that largely contribute to carcinogenesis. Anti-apoptosis genes were up-regulated in HCC sample whereas apoptosis-induction genes were up-regulated in AR sample. AFB1 exposure also caused extensive alteration in expression level of lncRNAs. Among all the 4511 annotated lncRNAs, half of them were highly expressed only in HCC sample and up-regulated a group of protein-coding genes with cancer-related functions: apoptosis regulation, DNA repair, and cell cycle. Intriguingly, these genes were down-regulated by lncRNAs highly expressed in AR sample. Collectively, apoptosis is the critical biological process for carcinogenesis in response to AFB1 exposure through changes in expression level of both protein-coding and lncRNA genes.
Collapse
Affiliation(s)
- Jiejun Shi
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.,Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiangtu He
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jing Lin
- Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin Sun
- Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chao Ou
- Department of Clinical Laboratory, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Cizhong Jiang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.,Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Xue R, Li R, Guo H, Guo L, Su Z, Ni X, Qi L, Zhang T, Li Q, Zhang Z, Xie XS, Bai F, Zhang N. Variable Intra-Tumor Genomic Heterogeneity of Multiple Lesions in Patients With Hepatocellular Carcinoma. Gastroenterology 2016; 150:998-1008. [PMID: 26752112 DOI: 10.1053/j.gastro.2015.12.033] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/11/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Many patients with hepatocellular carcinoma (HCC) have multiple lesions (primary tumors, intrahepatic metastases, multiple occurrences, satellite nodules, and tumor thrombi); these have been associated with a poor prognosis and tumor recurrence after surgery. We investigated the clonal relationship among these lesions on the basis of genetic features. METHODS We collected 43 lesions and 10 matched control samples (blood or nontumorous liver) from 10 patients with hepatitis B virus-associated HCC treated at Tianjin Cancer Hospital (China) from January 2013 through May 2014. We performed exome and low-depth, whole-genome sequencing on these samples. Genomic aberrations, including somatic mutations and copy number variations, were identified using germline DNA as control. We compared the genetic features of different lesions from each patient and constructed phylogenetic trees to depict their evolutionary histories. RESULTS In each patient, mutations shared by all the lesions were called ubiquitous mutations. The percentage of ubiquitous mutations varied from 8% to 97% among patients, indicating variation in the extent of intratumor heterogeneity. Branched evolution was evident, with somatic mutations, hepatitis B virus integrations, and copy number variations identified on both the trunks and branches of the phylogenetic trees. Intrahepatic metastases and tumor thrombi contained some, but not all, of the mutations detected in their matched primary lesions. By contrast, satellite nodules shared approximately 90% of mutations detected in primary lesions. In a patient with multicentric tumors, 6 lesions were assigned to 2 distinct groups, based on significant differences in genetic features. In another patient with combined hepatocellular and intrahepatic cholangiocarcinoma, the physically separate HCC and cholangiocarcinoma lesions shared 102 mutations. CONCLUSIONS The extent of intratumor heterogeneity varies considerably among patients with HCC. Therefore, sequence analysis of a single lesion cannot completely characterize the genomic features of HCC in some patients. Genomic comparisons of multiple lesions associated with HCCs will provide important information on the genetic changes associated with tumor progression.
Collapse
Affiliation(s)
- Ruidong Xue
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - Ruoyan Li
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - Hua Guo
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lin Guo
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhe Su
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - Xiaohui Ni
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China; Department of Pathology, Harvard University, Cambridge, Massachusetts
| | - Lisha Qi
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ti Zhang
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Li
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zemin Zhang
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - Xiaoliang Sunney Xie
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China; Department of Pathology, Harvard University, Cambridge, Massachusetts
| | - Fan Bai
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China.
| | - Ning Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
25
|
De Ruyck K, De Boevre M, Huybrechts I, De Saeger S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 766:32-41. [PMID: 26596546 DOI: 10.1016/j.mrrev.2015.07.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/05/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
Mycotoxins, toxic secondary metabolites of fungi, affect global agriculture so prolifically that they are virtually ubiquitous at some concentration in the average human diet. Studies of in vitro and in vivo toxicity are discussed, leading to investigations of co-exposed mycotoxins, as well as carcinogenic effects. Some of the most common and toxicologically significant mycotoxins, such as the aflatoxins, ochratoxins, fumonisins, deoxynivalenol, T-2 toxin, HT-2 toxin, patulin, zearalenone, and some ergot alkaloids are outlined. The wide variety of pathogenic mechanisms these compounds employ are shown capable of inducing a complex set of interactions. Of particular note are potential synergisms between mycotoxins with regard to carcinogenic attributable risk, indicating an important field for future study.
Collapse
Affiliation(s)
- Karl De Ruyck
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Inge Huybrechts
- International Agency for Research on Cancer, Dietary Exposure Assessment Group, 150 Cours Albert Thomas, 69008 Lyon, France.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
26
|
Chitapanarux T, Phornphutkul K. Risk Factors for the Development of Hepatocellular Carcinoma in Thailand. J Clin Transl Hepatol 2015; 3:182-8. [PMID: 26623264 PMCID: PMC4663199 DOI: 10.14218/jcth.2015.00025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. The incidence of HCC is on the rise in Thailand, where it has become the most common malignancy in males and the third most common in females. Here, we review some of the risk factors that have contributed to this increase in HCC incidence in the Thai population. Hepatitis B virus (HBV) is the main etiologic risk factor for HCC, followed by hepatitis C virus (HCV). Patients with HBV genotype C have a higher positive rate of hepatitis B early antigen (HBeAg) and progress to cirrhosis and HCC earlier than genotype B. For HCV patients, 16% developed HCC associated cirrhosis by year 5 after diagnosis, and the cumulative risk for death from HCC at year 10 was 60%. Dietary exposure to the fungal hepatocarcinogen aflatoxin B1 has been shown to interact synergistically with HBV infection to increase the risk of early onset HCC. Chronic alcohol abuse remains an important risk factor for malignant transformation of hepatocytes, frequently in association with alcohol-induced cirrhosis. In recent years, obesity and metabolic syndrome have markedly increased the incidence of HCC and are important causes of HCC in some resource-rich regions.
Collapse
Affiliation(s)
- Taned Chitapanarux
- Division of Gastrohepatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Correspondence to: Taned Chitapanarux, Division of Gastrohepatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand. Tel: +66-53-945482, Fax: +66-53-945481, E-mail:
| | - Kannika Phornphutkul
- Division of Gastrohepatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Gastrohepatology unit, Rajavej Chiang Mai Hospital, Chiang Mai, Thailand
| |
Collapse
|
27
|
Dissecting genetic and environmental mutation signatures with model organisms. Trends Genet 2015; 31:465-74. [PMID: 25940384 DOI: 10.1016/j.tig.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon.
Collapse
|
28
|
Qureshi H, Hamid SS, Ali SS, Anwar J, Siddiqui AA, Khan NA. Cytotoxic effects of aflatoxin B1 on human brain microvascular endothelial cells of the blood-brain barrier. Med Mycol 2015; 53:409-16. [DOI: 10.1093/mmy/myv010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Qi LN, Bai T, Chen ZS, Wu FX, Chen YY, De Xiang B, Peng T, Han ZG, Li LQ. The p53 mutation spectrum in hepatocellular carcinoma from Guangxi, China : role of chronic hepatitis B virus infection and aflatoxin B1 exposure. Liver Int 2015; 35:999-1009. [PMID: 24461059 DOI: 10.1111/liv.12460] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/24/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS p53 is one of the most frequently mutated human tumour suppressor genes. Chronic infection with hepatitis B virus (HBV) and exposure to aflatoxin B1 (AFB1) induces p53 mutations in hepatocellular carcinoma (HCC) tissue. The aims of present study are to investigate the p53 mutation spectrum in HBV- and AFB1-related hepatocarcinogenesis in patients with hepatocellular carcinoma (HCC) in Guangxi, China. METHODS Tumour and adjacent liver tissue were collected from 397 HCC patients who were subdivided into HBV(+)/AFB1(+), HBV(+)/AFB1(-), HBV(-)/AFB1(+) and HBV(-)/AFB1(-) four groups. All 11 exons of the p53 gene were PCR-amplified and sequenced. Immunohistochemistry was used to evaluate the effect of mutations on the expression of p53 protein. RESULTS AND CONCLUSIONS P53 mutations were detected in 223 HCC samples, 13 adjacent liver tissue samples and only 1 of 68 normal liver tissue samples. The mutation sites concentrated at exon 4, 5, 6, 7, 8, 9 and no mutation was detected in exon 1, 2, 3, 10 and 11. The most frequently occurring mutation was in codon 249 (R249S) in exon 7. Patients in the HBV(+)/AFB1(+) and HBV(-)/AFB1(+) groups had significantly higher mutation rates compared with patients in the HBV(+)/AFB1(-) and HBV(-)/AFB1(-) groups. P53 mutation status and HBV/AFB1 status were independent predictors of tumour recurrence after surgery. Immunohistochemical analysis revealed that p53 gene mutations were correlated with the p53 expression. In Guangxi area, the significant association between AFB1-induced p53 mutations and the expression of p53 protein suggest an important role for p53 mutations in carcinogenesis of HCC.
Collapse
Affiliation(s)
- Lu-Nan Qi
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Meier B, Cooke SL, Weiss J, Bailly AP, Alexandrov LB, Marshall J, Raine K, Maddison M, Anderson E, Stratton MR, Gartner A, Campbell PJ. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res 2014; 24:1624-36. [PMID: 25030888 PMCID: PMC4199376 DOI: 10.1101/gr.175547.114] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage–fusion–bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling “chromoanasynthesis,” a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Susanna L Cooke
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Joerg Weiss
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Aymeric P Bailly
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom; CRBM/CNRS UMR5237, University of Montpellier, Montpellier 34293, France
| | - Ludmil B Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - John Marshall
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Mark Maddison
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Elizabeth Anderson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom; Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
31
|
Tu T, Budzinska MA, Maczurek AE, Cheng R, Di Bartolomeo A, Warner FJ, McCaughan GW, McLennan SV, Shackel NA. Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development. Int J Mol Sci 2014; 15:9422-58. [PMID: 24871369 PMCID: PMC4100103 DOI: 10.3390/ijms15069422] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer that is derived from hepatocytes and is characterised by high mortality rate and poor prognosis. While HCC is driven by cumulative changes in the hepatocyte genome, it is increasingly recognised that the liver microenvironment plays a pivotal role in HCC propensity, progression and treatment response. The microenvironmental stimuli that have been recognised as being involved in HCC pathogenesis are diverse and include intrahepatic cell subpopulations, such as immune and stellate cells, pathogens, such as hepatitis viruses, and non-cellular factors, such as abnormal extracellular matrix (ECM) and tissue hypoxia. Recently, a number of novel environmental influences have been shown to have an equally dramatic, but previously unrecognized, role in HCC progression. Novel aspects, including diet, gastrointestinal tract (GIT) microflora and circulating microvesicles, are now being recognized as increasingly important in HCC pathogenesis. This review will outline aspects of the HCC microenvironment, including the potential role of GIT microflora and microvesicles, in providing new insights into tumourigenesis and identifying potential novel targets in the treatment of HCC.
Collapse
Affiliation(s)
- Thomas Tu
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | | | - Robert Cheng
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | - Anna Di Bartolomeo
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Fiona J Warner
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | - Susan V McLennan
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
32
|
Lin YC, Li L, Makarova AV, Burgers PM, Stone MP, Lloyd RS. Error-prone replication bypass of the primary aflatoxin B1 DNA adduct, AFB1-N7-Gua. J Biol Chem 2014; 289:18497-506. [PMID: 24838242 DOI: 10.1074/jbc.m114.561563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinomas (HCCs) are the third leading cause of cancer deaths worldwide. The highest rates of early onset HCCs occur in geographical regions with high aflatoxin B1 (AFB1) exposure, concomitant with hepatitis B infection. Although the carcinogenic basis of AFB1 has been ascribed to its mutagenic effects, the mutagenic property of the primary AFB1-DNA adduct, AFB1-N7-Gua, in mammalian cells has not been studied extensively. Taking advantage of the ability to create vectors containing a site-specific DNA adduct, the mutagenic potential was determined in primate cells. This adduct was highly mutagenic following replication in COS-7 cells, with a mutation frequency of 45%. The spectrum of mutations was predominantly G to T base substitutions, a result that is consistent with previous mutation data derived from aflatoxin-associated HCCs. To assess which DNA polymerases (pol) might contribute to the mutational outcome, in vitro replication studies were performed. Unexpectedly, replicative pol δ and the error-prone translesion synthesis pol ζ were able to accurately bypass AFB1-N7-Gua. In contrast, replication bypass using pol κ was shown to occur with low fidelity and could account for the commonly detected G to T transversions.
Collapse
Affiliation(s)
- Ying-Chih Lin
- From the Cancer Biology Program, Oregon Institute of Occupational Health Sciences, and
| | - Liang Li
- the Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, and
| | - Alena V Makarova
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Peter M Burgers
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Michael P Stone
- the Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, and
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239,
| |
Collapse
|
33
|
Anitha S, Raghunadharao D, Waliyar F, Sudini H, Parveen M, Rao R, Kumar PL. The association between exposure to aflatoxin, mutation in TP53, infection with hepatitis B virus, and occurrence of liver disease in a selected population in Hyderabad, India. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 766:23-8. [PMID: 24657665 DOI: 10.1016/j.mrgentox.2013.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/30/2013] [Accepted: 12/28/2013] [Indexed: 02/07/2023]
Abstract
Aflatoxin B1 is a carcinogen produced by Aspergillus flavus and a few related fungi that are often present in many food substances. It interacts synergistically with Hepatitis B or C virus (HBV, HBC) infection, thereby increasing the risk of hepatocellular carcinoma (HCC). The G to T transversion at the third position of codon 249 (AGG) of the TP53 gene, substituting arginine to serine, is the most common aflatoxin-induced mutation linked to HCC. This study examined mutations in TP53 by PCR-RFLP analysis and by measurement of an aflatoxin-albumin adduct as a biomarker for human exposure of aflatoxin B1 by indirect-competitive ELISA, in samples collected from healthy controls as well as patients with hepatitis in Hyderabad, Andhra Pradesh, India. A total of 238 blood samples were analyzed the presence of the G to T mutation. Eighteen of these samples were from HBV-positive subjects, 112 of these were from subjects who had HBV-induced liver cirrhosis, and 108 samples were taken from subjects without HBV infection or liver cirrhosis (control group). The G to T mutation was detected in 10 samples, 8 of which were from subjects positive to both HBV and aflatoxin-albumin adduct in blood (p=0.07); whilst two were from individuals who were HBV-negative, but positive for the aflatoxin-albumin adduct (p=0.14). The aflatoxin-albumin adduct was detected in 37 of 238 samples, 29 samples were from HBV-positive subjects and eight were from individuals who were positive for both HBV and the TP53 mutation (p=0.07). The concentration of aflatoxin-albumin adduct ranged from 2.5 to 667pg/mg albumin. Despite low incidence of the G to T mutation, its detection in subjects positive to aflatoxin-adducts is indicative of a strong association between the mutation and aflatoxin exposure in India.
Collapse
Affiliation(s)
- S Anitha
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
| | - D Raghunadharao
- Department of Medical Oncology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad 500 082, India
| | | | - H Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | - M Parveen
- Department of Medical Gastroenterology, PGIMS, Rohtak 124001, India
| | - Ratna Rao
- Department of Microbiology and Immunoserology, Apollo Health City, Jubilee Hills, Hyderabad 500 033, India
| | - P Lava Kumar
- International Institute of Tropical agriculture (IITA), PMB 5320, Ibadan, Nigeria
| |
Collapse
|
34
|
Lin YC, Li L, Makarova AV, Burgers PM, Stone MP, Lloyd RS. Molecular basis of aflatoxin-induced mutagenesis-role of the aflatoxin B1-formamidopyrimidine adduct. Carcinogenesis 2014; 35:1461-8. [PMID: 24398669 DOI: 10.1093/carcin/bgu003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a known carcinogen associated with early-onset hepatocellular carcinoma (HCC) and is thought to contribute to over half a million new HCCs per year. Although some of the fundamental risk factors are established, the molecular basis of AFB1-induced mutagenesis in primate cells has not been rigorously investigated. To gain insights into genome instability that is produced as a result of replicating DNAs containing AFB1 adducts, site-specific mutagenesis assays were used to establish the mutagenic potential of the persistent ring-opened AFB1 adduct, AFB1-formamidopyrimidine (AFB1-FAPY). This lesion was highly mutagenic, yielding replication error frequencies of 97%, with the predominant base substitution being a G to T transversion. This transversion is consistent with previous mutational data derived from aflatoxin-associated HCCs. In vitro translesion synthesis assays demonstrated that polymerase (pol) ζ was the most likely candidate polymerase that is responsible for the G to T mutations induced by this adduct.
Collapse
Affiliation(s)
- Ying-Chih Lin
- Oregon Institute of Occupational Health Sciences and Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Liang Li
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA and
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA and
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
35
|
Qi LN, Li LQ, Chen YY, Chen ZH, Bai T, Xiang BD, Qin X, Xiao KY, Peng MH, Liu ZM, Liu TW, Qin X, Li S, Han ZG, Mo ZN, Santella RM, Winkler CA, O’Brien SJ, Peng T. Genome-wide and differential proteomic analysis of hepatitis B virus and aflatoxin B1 related hepatocellular carcinoma in Guangxi, China. PLoS One 2013; 8:e83465. [PMID: 24391771 PMCID: PMC3877066 DOI: 10.1371/journal.pone.0083465] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023] Open
Abstract
Both hepatitis B virus (HBV) and aflatoxin B1 (AFB1) exposure can cause liver damage as well as increase the probability of hepatocellular carcinoma (HCC). To investigate the underlying genetic changes that may influence development of HCC associated with HBV infection and AFB1 exposure, HCC patients were subdivided into 4 groups depending upon HBV and AFB1 exposure status: (HBV(+)/AFB1(+), HBV(+)/AFB1(-), HBV(-)/AFB1(+), HBV(-)/AFB1(-)). Genetic abnormalities and protein expression profiles were analyzed by array-based comparative genomic hybridization and isobaric tagging for quantitation. A total of 573 chromosomal aberrations (CNAs) including 184 increased and 389 decreased were detected in our study population. Twenty-five recurrently altered regions (RARs; chromosomal alterations observed in ≥10 patients) in chromosomes were identified. Loss of 4q13.3-q35.2, 13q12.1-q21.2 and gain of 7q11.2-q35 were observed with a higher frequency in the HBV(+)/AFB1(+), HBV(+)/AFB1(-) and HBV(-)/AFB1(+) groups compared to the HBV(-)/AFB(-) group. Loss of 8p12-p23.2 was associated with high TNM stage tumors (P = 0.038) and was an unfavorable prognostic factor for tumor-free survival (P =0.045). A total of 133 differentially expressed proteins were identified in iTRAQ proteomics analysis, 69 (51.8%) of which mapped within identified RARs. The most common biological processes affected by HBV and AFB1 status in HCC tumorigenesis were detoxification and drug metabolism pathways, antigen processing and anti-apoptosis pathways. Expression of AKR1B10 was increased significantly in the HBV(+)/AFB1(+) and HBV(-)/AFB1(+) groups. A significant correlation between the expression of AKR1B10 mRNA and protein levels as well as AKR1B10 copy number was observered, which suggest that AKR1B10 may play a role in AFB1-related hepatocarcinogenesis. In summary, a number of genetic and gene expression alterations were found to be associated with HBV and AFB1- related HCC. The possible synergistic effects of HBV and AFB1 in hepatocarcinogenesis warrant further investigations.
Collapse
Affiliation(s)
- Lu-Nan Qi
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yuan-Yuan Chen
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zhao-Hong Chen
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiao Qin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Kai-Yin Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Min-Hao Peng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zhi-Ming Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tang-Wei Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Ze-Guang Han
- China National Human Genome Center at Shanghai, Shanghai, China
| | - Zeng-Nan Mo
- Department of Urology and Nephrology Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Cheryl A. Winkler
- Laboratory of Genomic Diversity, National Cancer Institute, NIH, Frederick, Maryland, United States of America
| | - Stephen J. O’Brien
- Laboratory of Genomic Diversity, National Cancer Institute, NIH, Frederick, Maryland, United States of America
| | - Tao Peng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
- Laboratory of Genomic Diversity, National Cancer Institute, NIH, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep 2013; 33:BSR20130065. [PMID: 24003888 PMCID: PMC3728989 DOI: 10.1042/bsr20130065] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
p53 is a key protein that participates in cell-cycle control, and its malfunction can lead to cancer. This tumour suppressor protein has three main domains; the N-terminal transactivation domain, the CTD (C-terminal domain) and the core domain (p53C) that constitutes the sequence-specific DBD (DNA-binding region). Most p53 mutations related to cancer development are found in the DBD. Aggregation of p53 into amyloid oligomers and fibrils has been shown. Moreover, amyloid aggregates of both the mutant and WT (wild-type) forms of p53 were detected in tumour tissues. We propose that if p53 aggregation occurred, it would be a crucial aspect of cancer development, as p53 would lose its WT functions in an aggregated state. Mutant p53 can also exert a dominant-negative regulatory effect on WT p53. Herein, we discuss the dominant-negative effect in light of p53 aggregation and the fact that amyloid-like mutant p53 can convert WT p53 into more aggregated species, leading into gain of function in addition to the loss of tumour suppressor function. In summary, the results obtained in the last decade indicate that cancer may have characteristics in common with amyloidogenic and prion diseases.
Collapse
|
37
|
Ortiz-Cuaran S, Cox D, Villar S, Friesen MD, Durand G, Chabrier A, Khuhaprema T, Sangrajrang S, Ognjanovic S, Groopman JD, Hainaut P, Le Calvez-Kelm F. Association between TP53 R249S mutation and polymorphisms in TP53 intron 1 in hepatocellular carcinoma. Genes Chromosomes Cancer 2013; 52:912-9. [PMID: 23836507 DOI: 10.1002/gcc.22086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/05/2013] [Indexed: 02/03/2023] Open
Abstract
Over 100 single nucleotide polymorphisms (SNP) are validated in the TP53 tumor suppressor gene. They define haplotypes, which may differ in their activities. Therefore, mutation in cancer may occur at different rates depending upon haplotypes. However, these associations may be masked by differences in mutations types and causes of mutagenesis. We have analyzed the associations between 19 SNPs spanning the TP53 locus and a single specific aflatoxin-induced TP53 mutation (R249S) in 85 in hepatocellular carcinoma cases and 132 controls from Thailand. An association with R249S mutation (P = 0.007) was observed for a combination of two SNPs (rs17882227 and rs8064946) in a linkage disequilibrium block extending from upstream of exon 1 to the first half of intron 1. This domain contains two coding sequences overlapping with TP53 (WRAP53 and Hp53int1) suggesting that sequences in TP53 intron 1 encode transcripts that may modulate R249S mutation rate in HCC.
Collapse
|
38
|
Yang X, Zhang Z, Wang X, Wang Y, Zhang X, Lu H, Wang SL. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage. Toxicol Appl Pharmacol 2013; 270:114-21. [DOI: 10.1016/j.taap.2013.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
39
|
Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 2013; 216:587-98. [PMID: 23540489 DOI: 10.1016/j.ijheh.2013.02.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 12/24/2022]
Abstract
Heavy metals that are harmful to humans include arsenic, cadmium, chromium, lead, mercury, and nickel. Some metals or their related compounds may even cause cancer. However, the mechanism underlying heavy metal-induced cancer remains unclear. Increasing data show a link between heavy metal exposure and aberrant changes in both genetic and epigenetic factors via non-targeted multiple toxicogenomic technologies of the transcriptome, proteome, metabolome, and epigenome. These modifications due to heavy metal exposure might provide a better understanding of environmental disorders. Such informative changes following heavy metal exposure might also be useful for screening of biomarker-monitored exposure to environmental pollutants and/or predicting the risk of disease. We summarize advances in high-throughput toxicogenomic-based technologies and studies related to exposure to individual heavy metal and/or mixtures and propose the underlying mechanism of action and toxicant signatures. Integrative multi-level expression analysis of the toxicity of heavy metals via system toxicology-based methodologies combined with statistical and computational tools might clarify the biological pathways involved in carcinogenic processes. Although standard in vitro and in vivo endpoint testing of mutagenicity and carcinogenicity are considered a complementary approach linked to disease, we also suggest that further evaluation of prominent biomarkers reflecting effects, responses, and disease susceptibility might be diagnostic. Furthermore, we discuss challenges in toxicogenomic applications for toxicological studies of metal mixtures and epidemiological research. Taken together, this review presents toxicogenomic data that will be useful for improvement of the knowledge of carcinogenesis and the development of better strategies for health risk assessment.
Collapse
|
40
|
Chittmittrapap S, Chieochansin T, Chaiteerakij R, Treeprasertsuk S, Klaikaew N, Tangkijvanich P, Komolmit P, Poovorawan Y. Prevalence of aflatoxin induced p53 mutation at codon 249 (R249s) in hepatocellular carcinoma patients with and without hepatitis B surface antigen (HBsAg). Asian Pac J Cancer Prev 2013; 14:7675-7679. [PMID: 24460352 DOI: 10.7314/apjcp.2013.14.12.7675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A missense mutation in exon 7 (R249S) of the p53 tumor suppressor gene is characteristic of aflatoxin B1 (AFB1) exposure. AFB1 is believed to have a synergistic effect on hepatitis virus B (HBV) carcinogenesis. However, results of studies comparing R249S prevalence among patients are conflicting. The aim of this study was to determine the prevalence of the R249S mutation in hepatocellular carcinoma (HCC) patients with or without positive HBsAg. MATERIALS AND METHODS Paraffin embedded liver tissues were obtained from 124 HCC patients who underwent liver resection and liver biopsy in King Chulalongkorn Memorial Hospital. Restriction fragment length polymorphism (RFLP) was utilized to detect the R249S mutation. Positive results were confirmed by direct sequencing. RESULTS Sixty four (52%) patients were positive for HBsAg and 18 (15%) were anti-HCV positive. 12 specimens tested positive by RFLP. Ten HCC patients (8.1%) were confirmed to be R249S positive by Sanger sequencing (AGG to AGT). Out of these 10, six were HBsAg positive, and out of the remaining 4, two were anti-HCV positive. The R249S prevalence among HCC patients with positive HBsAg was 9.4% compared to 6.7% for HBsAg negative samples. Patients with the R249S mutation were younger (55±10 vs 60±13 year-old) and tended to have a more advanced Edmonson-Steiner grade of HCC, although differences did not reach statistical significance. CONCLUSIONS Our study shows moderate prevalence of aflatoxin B1-related p53 mutation (R249S) in HCC with or without HBsAg. HBsAg positive status was not associated with R249S prevalence.
Collapse
Affiliation(s)
- Salyavit Chittmittrapap
- Liver Disease and Liver Cancer Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The ability of a chemical to induce mutations has long been a driver in the cancer risk assessment process. The default strategy has been that mutagenic chemicals demonstrate linear cancer dose responses, especially at low exposure levels. In the absence of additional confounding information, this is a reasonable approach, because risk assessment is appropriately considered as being protective of human health. The concept of mode of action has allowed for an opportunity to move off this default position; mutagenicity is now not considered as the driver but rather the mode of action is. In a more precise way, it is the set of key events that define a mode of action that is fundamental in defining the shape of a cancer dose response. A key event is an informative bioindicator of the cancer response and as such should be predictive of the tumor response, at least in a qualitative way. A clear example of the use of key events in cancer risk assessment is for DNA reactive chemicals. A series of such key events is initiated by the production of DNA damage in target cells from direct interaction of the chemical with DNA leading to the production of mutations by misreplication that results in enhanced cell replication. This enhanced cell replication eventually leads to the development of preneoplastic cells and ultimately overt neoplasms. The response of each of these key events to dose of the chemical can inform the cancer dose-response curve shape. Thus, the dose-response curve for any DNA-reactive chemical can be predicted from knowledge of its mode of action and the behavior of the induced key events.
Collapse
Affiliation(s)
- R Julian Preston
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| |
Collapse
|
42
|
Yang XJ, Lu HY, Li ZY, Bian Q, Qiu LL, Li Z, Liu Q, Li J, Wang X, Wang SL. Cytochrome P450 2A13 mediates aflatoxin B1-induced cytotoxicity and apoptosis in human bronchial epithelial cells. Toxicology 2012; 300:138-48. [DOI: 10.1016/j.tox.2012.06.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/24/2012] [Accepted: 06/16/2012] [Indexed: 02/07/2023]
|
43
|
Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, Zhu ZD, Zhou B, Liu XY, Liu RF, Fei QL, Chen H, Cai B, Zhou B, Xiao HS, Qin LX, Han ZG. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet 2012; 44:1117-21. [PMID: 22922871 DOI: 10.1038/ng.2391] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 08/01/2012] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and shows a propensity to metastasize and infiltrate adjacent and more distant tissues. HCC is associated with multiple risk factors, including hepatitis B virus (HBV) infection, which is especially prevalent in China. Here, we used exome sequencing to identify somatic mutations in ten HBV-positive individuals with HCC with portal vein tumor thromboses (PVTTs), intrahepatic metastases. Both C:G>A:T and T:A>A:T transversions were frequently found among the 331 non-silent mutations. Notably, ARID1A, which encodes a component of the SWI/SNF chromatin remodeling complex, was mutated in 14 of 110 (13%) HBV-associated HCC specimens. We used RNA interference to assess the roles of 91 of the confirmed mutated genes in cellular survival. The results suggest that seven of these genes, including VCAM1 and CDK14, may confer growth and infiltration capacity to HCC cells. This study provides a view of the landscape of somatic mutations that may be implicated in advanced HCC.
Collapse
Affiliation(s)
- Jian Huang
- Human Genome Center of Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Villar S, Ortiz-Cuaran S, Abedi-Ardekani B, Gouas D, Nogueira da Costa A, Plymoth A, Khuhaprema T, Kalalak A, Sangrajrang S, Friesen MD, Groopman JD, Hainaut P. Aflatoxin-induced TP53 R249S mutation in hepatocellular carcinoma in Thailand: association with tumors developing in the absence of liver cirrhosis. PLoS One 2012. [PMID: 22675488 DOI: 10.1371/-journal.pone.0037707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary Liver Cancer (PLC) is the leading cause of death by cancer among males in Thailand and the 3(rd) among females. Most cases are hepatocellular carcinoma (HCC) but cholangiocarcinomas represent between 4 and 80% of liver cancers depending upon geographic area. Most HCC are associated with chronic infection by Hepatitis B Virus while a G → T mutation at codon 249 of the TP53 gene, R249S, specific for exposure to aflatoxin, is detected in tumors for up to 30% of cases. We have used Short Oligonucleotide Mass Analysis (SOMA) to quantify free circulating R249S-mutated DNA in plasma using blood specimens collected in a hospital case:control study. Plasma R249S-mutated DNA was detectable at low concentrations (≥ 67 copies/mL) in 53 to 64% of patients with primary liver cancer or chronic liver disease and in 19% of controls. 44% of patients with HCC and no evidence of cirrhosis had plasma concentrations of R249S-mutated DNA ≥ 150 copies/mL, compared to 21% in patients with both HCC and cirrhosis, 22% in patients with cholangiocarcinoma, 12% in patients with non-cancer chronic liver disease and 3% of subjects in the reference group. Thus, plasma concentrations of R249S-mutated DNA ≥ 150 copies/mL tended to be more common in patients with HCC developing without pre-existing cirrhosis (p = 0.027). Overall, these results support the preferential occurrence of R249S-mutated DNA in HCC developing in the absence of cirrhosis in a context of HBV chronic infection.
Collapse
|
45
|
Villar S, Ortiz-Cuaran S, Abedi-Ardekani B, Gouas D, Nogueira da Costa A, Plymoth A, Khuhaprema T, Kalalak A, Sangrajrang S, Friesen MD, Groopman JD, Hainaut P. Aflatoxin-induced TP53 R249S mutation in hepatocellular carcinoma in Thailand: association with tumors developing in the absence of liver cirrhosis. PLoS One 2012; 7:e37707. [PMID: 22675488 PMCID: PMC3366967 DOI: 10.1371/journal.pone.0037707] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/23/2012] [Indexed: 01/26/2023] Open
Abstract
Primary Liver Cancer (PLC) is the leading cause of death by cancer among males in Thailand and the 3rd among females. Most cases are hepatocellular carcinoma (HCC) but cholangiocarcinomas represent between 4 and 80% of liver cancers depending upon geographic area. Most HCC are associated with chronic infection by Hepatitis B Virus while a G→T mutation at codon 249 of the TP53 gene, R249S, specific for exposure to aflatoxin, is detected in tumors for up to 30% of cases. We have used Short Oligonucleotide Mass Analysis (SOMA) to quantify free circulating R249S-mutated DNA in plasma using blood specimens collected in a hospital case:control study. Plasma R249S-mutated DNA was detectable at low concentrations (≥67 copies/mL) in 53 to 64% of patients with primary liver cancer or chronic liver disease and in 19% of controls. 44% of patients with HCC and no evidence of cirrhosis had plasma concentrations of R249S-mutated DNA ≥150 copies/mL, compared to 21% in patients with both HCC and cirrhosis, 22% in patients with cholangiocarcinoma, 12% in patients with non-cancer chronic liver disease and 3% of subjects in the reference group. Thus, plasma concentrations of R249S-mutated DNA ≥150 copies/mL tended to be more common in patients with HCC developing without pre-existing cirrhosis (p = 0.027). Overall, these results support the preferential occurrence of R249S-mutated DNA in HCC developing in the absence of cirrhosis in a context of HBV chronic infection.
Collapse
MESH Headings
- Adult
- Aflatoxins/adverse effects
- Aged
- Amino Acid Substitution/genetics
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- DNA, Neoplasm/blood
- Female
- Geography
- Hepatitis B Surface Antigens/immunology
- Hepatitis C Antibodies/immunology
- Hepatitis, Chronic/blood
- Hepatitis, Chronic/complications
- Hepatitis, Chronic/immunology
- Humans
- Liver Cirrhosis/blood
- Liver Cirrhosis/complications
- Liver Neoplasms/blood
- Liver Neoplasms/chemically induced
- Liver Neoplasms/complications
- Liver Neoplasms/genetics
- Male
- Middle Aged
- Mutation/genetics
- Thailand
- Tumor Suppressor Protein p53/genetics
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
| | | | | | - Doriane Gouas
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | | - Marlin D. Friesen
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John D. Groopman
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Pierre Hainaut
- International Agency for Research on Cancer, Lyon, France
- International Prevention Research Institute, Lyon, France
- * E-mail:
| |
Collapse
|
46
|
Waly Raphael S, Yangde Z, YuXiang C. Hepatocellular carcinoma: focus on different aspects of management. ISRN ONCOLOGY 2012; 2012:421673. [PMID: 22655206 PMCID: PMC3359687 DOI: 10.5402/2012/421673] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 03/04/2012] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third cause of cancer-related mortality worldwide. Its incidence is clearly arising comprised by the prevalence of major risk factors mainly hepatitis B and hepatitis C. The population at risk is composed of chronic liver patients at the stage of extensive fibrosis or cirrhosis. The monitoring programs of this population have allowed early detection of disease management to promote a radical therapy. Understanding the carcinogenic process and the mastery of the staging systems remain essential keys in diagnosis and treatment of HCC. Recent advances in diagnosis and new treatments have made important impacts on the disease by increasing survival rates and improving quality of life for HCC patients. This paper outlines the different management aspects of HCC which include epidemiology, prevention, carcinogenesis, staging systems, diagnosis, surveillance, and the treatment.
Collapse
Affiliation(s)
- Sene Waly Raphael
- National Hepatobiliary and Enteric Surgery Research Center of Ministry of Health, Central South University, Changsha, Hunan 410008, China
| | - Zhang Yangde
- National Hepatobiliary and Enteric Surgery Research Center of Ministry of Health, Central South University, Changsha, Hunan 410008, China
| | - Chen YuXiang
- National Hepatobiliary and Enteric Surgery Research Center of Ministry of Health, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
47
|
Population attributable risk of aflatoxin-related liver cancer: systematic review and meta-analysis. Eur J Cancer 2012; 48:2125-36. [PMID: 22405700 DOI: 10.1016/j.ejca.2012.02.009] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/03/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Over 4 billion people worldwide are exposed to dietary aflatoxins, which cause liver cancer (hepatocellular carcinoma, HCC) in humans. However, the population attributable risk (PAR) of aflatoxin-related HCC remains unclear. METHODS In our systematic review and meta-analysis of epidemiological studies, summary odds ratios (ORs) of aflatoxin-related HCC with 95% confidence intervals were calculated in HBV+ and HBV- individuals, as well as the general population. We calculated the PAR of aflatoxin-related HCC for each study as well as the combined studies, accounting for HBV status. RESULTS Seventeen studies with 1680 HCC cases and 3052 controls were identified from 479 articles. All eligible studies were conducted in China, Taiwan, or sub-Saharan Africa. The PAR of aflatoxin-related HCC was estimated at 17% (14-19%) overall, and higher in HBV+ (21%) than HBV- (8.8%) populations. If the one study that contributed most to heterogeneity in the analysis is excluded, the summarised OR of HCC with 95% CI is 73.0 (36.0-148.3) from the combined effects of aflatoxin and HBV, 11.3 (6.75-18.9) from HBV only and 6.37 (3.74-10.86) from aflatoxin only. The PAR of aflatoxin-related HCC increases to 23% (21-24%). The PAR has decreased over time in certain Taiwanese and Chinese populations. CONCLUSIONS In high exposure areas, aflatoxin multiplicatively interacts with HBV to induce HCC; reducing aflatoxin exposure to non-detectable levels could reduce HCC cases in high-risk areas by about 23%. The decreasing PAR of aflatoxin-related HCC reflects the benefits of public health interventions to reduce aflatoxin and HBV.
Collapse
|
48
|
Lereau M, Gouas D, Villar S, Besaratinia A, Hautefeuille A, Berthillon P, Martel-Planche G, Nogueira da Costa A, Ortiz-Cuaran S, Hantz O, Pfeifer GP, Hainaut P, Chemin I. Interactions between hepatitis B virus and aflatoxin B(1): effects on p53 induction in HepaRG cells. J Gen Virol 2012; 93:640-650. [PMID: 22113009 DOI: 10.1099/vir.0.032482-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Infection by hepatitis B virus (HBV) and dietary exposure to aflatoxin B(1) (AFB(1)) are the main risk factors for the development of chronic liver disease and hepatocellular carcinoma (HCC). How these factors cooperate is still largely unknown. AFB(1) activation leads to DNA adduction and mutagenesis, with a specific mutation at codon 249 in TP53 (p.R249S). So far, only limited studies have addressed the effects of AFB(1) on HBV replication. We have analysed the effects of both risk factors on p53 induction during HBV infection in HepaRG, a cell line with hepatocyte-like morphology that metabolizes AFB(1) and supports HBV infection. Exposure to AFB(1) up to 5 µM induced a downregulation of HBV replication after 48 h, as measured by a decrease in viral antigens in the culture medium (HBsAg, HBeAg and large envelope protein) and in intracellular levels of HBV transcripts, DNA and HBsAg. Conversely, HBV infection did not significantly modify AFB(1)-DNA adduct formation or repair as assessed by immunodot-blot assay, and the induction of p53 in response to AFB(1) was similar in infected and non-infected HepaRG cells. Overall, our results suggest that AFB(1) exposure decreases HBV replication, whereas DNA damage by AFB(1) and subsequent p53 induction is not affected by the presence of the virus. Thus, in HepaRG cell line, AFB(1) and HBV do not cooperate to increase DNA damage by AFB(1). Further studies on the effects of both factors in a context of chronicity are needed to better understand synergistic effects.
Collapse
Affiliation(s)
- Myriam Lereau
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
- INSERM U1052, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France
| | - Doriane Gouas
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Stéphanie Villar
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Ahmad Besaratinia
- Department of Cancer Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Agnès Hautefeuille
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | | | - Ghislaine Martel-Planche
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - André Nogueira da Costa
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Sandra Ortiz-Cuaran
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Olivier Hantz
- INSERM U1052, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France
| | - Gerd P Pfeifer
- Department of Cancer Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Pierre Hainaut
- International Center for Research and Training, Hospital AC Camargo, Rua Pirapitinguí 204, São Paulo SP 01508 - 020, Brazil
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Isabelle Chemin
- INSERM U1052, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France
| |
Collapse
|
49
|
Villar S, Le Roux-Goglin E, Gouas DA, Plymoth A, Ferro G, Boniol M, Lereau M, Bah E, Hall AJ, Wild CP, Mendy M, Norder H, van der Sande M, Whittle H, Friesen MD, Groopman JD, Hainaut P. Seasonal variation in TP53 R249S-mutated serum DNA with aflatoxin exposure and hepatitis B virus infection. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1635-1640. [PMID: 21768053 PMCID: PMC3226502 DOI: 10.1289/ehp.1103539] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection and dietary aflatoxin B1 (AFB1) exposure are etiological factors for hepatocellular carcinoma (HCC) in countries with hot, humid climates. HCC often harbors a TP53 (tumor protein p53) mutation at codon 249 (R249S). In chronic carriers, 1762T/1764A mutations in the HBV X gene are associated with increased HCC risk. Both mutations have been detected in circulating cell-free DNA (CFDNA) from asymptomatic HBV carriers. OBJECTIVE We evaluated seasonal variation in R249S and HBV in relation to AFB1 exposure. METHODS R249S was quantitated by mass spectrometry in CFDNA in a cross-sectional survey of 473 asymptomatic subjects (237 HBV carriers and 236 noncarriers) recruited in three villages in the Gambia over a 10-month period. 1762T/1764A HBV mutations were detected by quantitative polymerase chain reaction. In addition, the HBV S gene was sequenced in 99 subjects positive for HBV surface antigen (HBsAg). RESULTS We observed a seasonal variation of serum R249S levels. Positivity for R249S and average concentration were significantly higher in HBsAg-positive subjects surveyed during April-July (61%; 5,690 ± 11,300 R249S copies/mL serum) than in those surveyed October-March [32% and 480 ± 1,030 copies/mL serum (odds ratio = 3.59; 95% confidence interval: 2.05, 6.30; p < 0.001)]. Positivity for HBV e antigen (HBeAg) (a marker of HBV replication) and viral DNA load also varied seasonally, with 15-30% of subjects surveyed between April and June HBeAg positive, compared with < 10% surveyed during other months. We detected 1762T/1764A mutations in 8% of carriers, half of whom were positive for R249S. We found HBV genotype E in 95 of 99 HBsAg-positive subjects. CONCLUSION R249S is detectable in CFDNA of asymptomatic subjects. Evidence of temporal and quantitative variations suggests an interaction among AFB1 exposure, HBV positivity, and replication on TP53 mutation formation or persistence.
Collapse
Affiliation(s)
- Stéphanie Villar
- Molecular Carcinogenesis Group, International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 2011; 9:171. [PMID: 21985599 PMCID: PMC3213217 DOI: 10.1186/1479-5876-9-171] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/10/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with multiple genetic aberrations. Several molecular pathways involved in the regulation of proliferation and cell death are implicated in the hepatocarcinogenesis. The major etiological factors for HCC are both hepatitis B virus (HBV) and hepatitis C virus infection (HCV). Continuous oxidative stress, which results from the generation of reactive oxygen species (ROS) by environmental factors or cellular mitochondrial dysfunction, has recently been associated with hepatocarcinogenesis. On the other hand, a distinctive pathological hallmark of HCC is a dramatic down-regulation of oxido-reductive enzymes that constitute the most important free radical scavenger systems represented by catalase, superoxide dismutase and glutathione peroxidase. The multikinase inhibitor sorafenib represents the most promising target agent that has undergone extensive investigation up to phase III clinical trials in patients with advanced HCC. The combination with other target-based agents could potentiate the clinical benefits obtained by sorafenib alone. In fact, a phase II multicenter study has demonstrated that the combination between sorafenib and octreotide LAR (So.LAR protocol) was active and well tolerated in advanced HCC patients. The detection of molecular factors predictive of response to anti-cancer agents such as sorafenib and the identification of mechanisms of resistance to anti-cancer agents may probably represent the direction to improve the treatment of HCC.
Collapse
Affiliation(s)
- Monica Marra
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Ignazio M Sordelli
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Monica Lamberti
- Departement of Experimental Medicine, Sezione di Medicina del lavoro, Igiene e Tossicologia Industriale, Second University of Naples, Naples, Italy
| | - Luciano Tarantino
- Interventional US Unit, Department of Medicine, S. Giovanni di Dio Hospital, 80059 Torre del Greco (Naples), Italy
| | - Aldo Giudice
- Animal Facility Unit, National Institute of Tumours "Fondazione G. Pascale" of Naples, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alberto Abbruzzese
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Rossella Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Marina Accardo
- Department of Morphopathology, II University Naples, Napoli, Italy
| | - Massimo Agresti
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Pasquale Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| |
Collapse
|