1
|
Peña-Asensio J, Calvo H, Torralba M, Miquel J, Sanz-de-Villalobos E, Larrubia JR. Gamma-Chain Receptor Cytokines & PD-1 Manipulation to Restore HCV-Specific CD8 + T Cell Response during Chronic Hepatitis C. Cells 2021; 10:cells10030538. [PMID: 33802622 PMCID: PMC8001543 DOI: 10.3390/cells10030538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV)-specific CD8+ T cell response is essential in natural HCV infection control, but it becomes exhausted during persistent infection. Nowadays, chronic HCV infection can be resolved by direct acting anti-viral treatment, but there are still some non-responders that could benefit from CD8+ T cell response restoration. To become fully reactive, T cell needs the complete release of T cell receptor (TCR) signalling but, during exhaustion this is blocked by the PD-1 effect on CD28 triggering. The T cell pool sensitive to PD-1 modulation is the progenitor subset but not the terminally differentiated effector population. Nevertheless, the blockade of PD-1/PD-L1 checkpoint cannot be always enough to restore this pool. This is due to the HCV ability to impair other co-stimulatory mechanisms and metabolic pathways and to induce a pro-apoptotic state besides the TCR signalling impairment. In this sense, gamma-chain receptor cytokines involved in memory generation and maintenance, such as low-level IL-2, IL-7, IL-15, and IL-21, might carry out a positive effect on metabolic reprogramming, apoptosis blockade and restoration of co-stimulatory signalling. This review sheds light on the role of combinatory immunotherapeutic strategies to restore a reactive anti-HCV T cell response based on the mixture of PD-1 blocking plus IL-2/IL-7/IL-15/IL-21 treatment.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Gene Expression Regulation
- Hepacivirus/immunology
- Hepacivirus/pathogenicity
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Host-Pathogen Interactions/drug effects
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immune Checkpoint Inhibitors/therapeutic use
- Immunity, Cellular/drug effects
- Immunotherapy/methods
- Interleukins/genetics
- Interleukins/immunology
- Interleukins/therapeutic use
- Lymphocyte Activation/drug effects
- Precursor Cells, T-Lymphoid/drug effects
- Precursor Cells, T-Lymphoid/immunology
- Precursor Cells, T-Lymphoid/virology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell, gamma-delta/agonists
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Julia Peña-Asensio
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Department of Biology of Systems, University of Alcalá, E-28805 Alcalá de Henares, Spain
| | - Henar Calvo
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
| | - Miguel Torralba
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Service of Internal Medicine, Guadalajara University Hospital, E-19002 Guadalajara, Spain
- Department of Medicine & Medical Specialties, University of Alcalá, E-28805 Alcalá de Henares, Spain
| | - Joaquín Miquel
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
| | - Eduardo Sanz-de-Villalobos
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
| | - Juan-Ramón Larrubia
- Translational Hepatology Unit, Guadalajara University Hospital, E-19002 Guadalajara, Spain; (J.P.-A.); (H.C.); (M.T.); (J.M.); (E.S.-d.-V.)
- Section of Gastroenterology & Hepatology, Guadalajara University Hospital, E-19002 Guadalajara, Spain
- Department of Medicine & Medical Specialties, University of Alcalá, E-28805 Alcalá de Henares, Spain
- Correspondence: ; Tel.: +34-949-20-9200
| |
Collapse
|
2
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
3
|
Immune system control of hepatitis C virus infection. Curr Opin Virol 2020; 46:36-44. [PMID: 33137689 DOI: 10.1016/j.coviro.2020.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/11/2020] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) remains a global public health problem even though more than 95% of infections can be cured by treatment with direct-acting antiviral agents. Resolution of viremia post antiviral therapy does not lead to protective immunity and therefore reinfections can occur. Immune cell detection of HCV activates signaling pathways that produce interferons and trigger the innate immune response against the virus, preventing HCV replication and spread. Cells in the innate immune system, including natural killer, dendritic, and Kupffer cells, interact with infected hepatocytes and present viral antigens to T and B cells where their effector responses contribute to infection outcome. Despite the immune activation, HCV can evade the host response and establish persistent infection. Plans to understand the correlates of protection and strategies to activate proper innate and adaptive immune responses are needed for development of an effective prophylactic vaccine that stimulates protective immunity and limits HCV transmission.
Collapse
|
4
|
Peña-Asensio J, Sanz-de-Villalobos E, Miquel J, Larrubia JR. Tumor necrosis family receptor superfamily member 9/tumor necrosis factor receptor-associated factor 1 pathway on hepatitis C viral persistence and natural history. World J Hepatol 2020; 12:754-765. [PMID: 33200014 PMCID: PMC7643212 DOI: 10.4254/wjh.v12.i10.754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is an excellent immunological model for understanding the mechanisms developed by non-cytopathic viruses and tumors to evade the adaptative immune response. The antigen-specific cytotoxic T cell response is essential for keeping HCV under control, but during persistent infection, these cells become exhausted or even deleted. The exhaustion process is progressive and depends on the infection duration and level of antigenemia. During high antigenic load and long duration of infection, T cells become extremely exhausted and ultimately disappear due to apoptosis. The development of exhaustion involves the impairment of positive co-stimulation induced by regulatory cytokines, such as transforming growth factor beta 1. This cytokine downregulates tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1), the signal transducer of the T cell co-stimulatory molecule TNFR superfamily member 9 (known as 4-1BB). This impairment correlates with the low reactivity of T cells and an exhaustion phenotype. Treatment with interleukin-7 in vitro restores TRAF1 expression and rescues T cell effector function. The process of TRAF1 loss and its in vitro recovery is hierarchical, and more affected by severe disease progression. In conclusion, TRAF1 dynamics on T cells define a new pathogenic model that describes some aspects of the natural history of HCV, and sheds light on novel immunotherapy strategies for chronic viral infections and cancer.
Collapse
Affiliation(s)
- Julia Peña-Asensio
- Department of Systems Biology, Guadalajara University Hospital. University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Eduardo Sanz-de-Villalobos
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Joaquín Miquel
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Juan Ramón Larrubia
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| |
Collapse
|
5
|
Hakim MS, Rahmadika N, Jariah ROA. Expressions of inhibitory checkpoint molecules in acute and chronic HBV and HCV infections: Implications for therapeutic monitoring and personalized therapy. Rev Med Virol 2019; 30:e2094. [DOI: 10.1002/rmv.2094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and NursingUniversitas Gadjah Mada Yogyakarta Indonesia
| | - Nofri Rahmadika
- Infectious Disease Research Center, Faculty of MedicineUniversitas Padjadjaran Bandung Indonesia
| | - Rizka O. A. Jariah
- Department of Health Science, Faculty of Vocational StudiesUniversitas Airlangga Surabaya Indonesia
| |
Collapse
|
6
|
Villani R, Vendemiale G, Serviddio G. Molecular Mechanisms Involved in HCC Recurrence after Direct-Acting Antiviral Therapy. Int J Mol Sci 2018; 20:ijms20010049. [PMID: 30583555 PMCID: PMC6337751 DOI: 10.3390/ijms20010049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis C is associated with a high risk of developing hepatocellular carcinoma (HCC) because of a direct effect of the Hepatitis C Virus (HCV) proteins and an indirect oncogenic effect of chronic inflammation and impaired immune response. The treatment of chronic hepatitis C markedly reduces all-cause mortality; in fact, interferon-based treatment has shown a reduction of HCC incidence of more than 70%. The recent introduction of the highly effective direct-acting antivirals (DAAs) has completely changed the scenario of chronic hepatitis C (CHC) with rates of HCV cure over 90%. However, an unexpectedly high incidence of HCC recurrence was observed in patients after DAA treatment (27% versus 0.4–2% in patients who received interferon treatment). The mechanism that underlies the high rate of tumor relapse is currently unknown and is one of the main issues in hepatology. We reviewed the possible mechanisms involved in HCC recurrence after DAA treatment.
Collapse
MESH Headings
- Animals
- Antiviral Agents/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/epidemiology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/virology
- Hepacivirus/drug effects
- Hepacivirus/immunology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/epidemiology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Humans
- Incidence
- Interferons/therapeutic use
- Liver Neoplasms/drug therapy
- Liver Neoplasms/epidemiology
- Liver Neoplasms/immunology
- Liver Neoplasms/virology
- Macrophages/drug effects
- Monocytes/drug effects
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/virology
- Neutrophils/drug effects
Collapse
Affiliation(s)
- Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Gianluigi Vendemiale
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Gaetano Serviddio
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| |
Collapse
|
7
|
Shrivastava S, Bhatta M, Ward H, Romani S, Lee R, Rosenthal E, Osinusi A, Kohli A, Masur H, Kottilil S, Wilson E. Multitarget Direct-Acting Antiviral Therapy Is Associated With Superior Immunologic Recovery in Patients Coinfected With Human Immunodeficiency Virus and Hepatitis C Virus. Hepatol Commun 2018; 2:1451-1466. [PMID: 30556035 PMCID: PMC6287478 DOI: 10.1002/hep4.1258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Patients coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) have higher levels of immune activation, impaired antigen‐specific responses, and accelerated fibrogenesis compared to patients monoinfected with HCV. Whether different direct‐acting antiviral (DAA) combinations have differential effects on immunophenotypes and functions following successful HCV therapy remain unknown. Therefore, we aimed to assess the peripheral T‐cell immunophenotypes and functions in patients coinfected with HIV/HCV who were successfully treated with combination DAA treatment regimens. We analyzed peripheral blood mononuclear cells (PBMCs) at baseline and at the time of sustained viral response (SVR) from subjects treated with three different combination DAA regimens: daclatasvir (DCV) and asunaprevir (ASV) for 24 weeks (CONQUER 2‐DAA), DCV/ASV/beclabuvir (BCV) for 12 weeks (CONQUER 3‐DAA), and sofosbuvir (SOF) and ledipasvir (LDV) for 12 weeks (ERADICATE study). We used flow cytometry to assess T‐cell phenotypes (activation and exhaustion) and HCV‐specific T‐cell functions (cytokine secretion and cytotoxicity). Statistical analyses were conducted using the Wilcoxon matched‐pairs signed‐rank test with P < 0.05 considered significant. Overall, there was an improvement in T‐cell exhaustion markers, a decrease in T‐cell activation, an increase in the effector memory population, and improved T‐cell function after achieving SVR, with the largest effects noted with CONQUER 3‐DAA treatment. Conclusion: Treatment with DCV/ASV/BCV in patients coinfected with HIV/HCV resulted in greater restoration of the T‐cell impairments and perturbations associated with HIV/HCV coinfection to an extent that was greater than that observed in either two‐drug regimens. We showed that different DAA‐based therapies have different immunologic outcomes after successful HCV treatment in patients coinfected with HIV/HCV. This information will be beneficial for providers when selecting the regimens for patients coinfected with HIV/HCV.
Collapse
Affiliation(s)
- Shikha Shrivastava
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Manasa Bhatta
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD.,Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Haley Ward
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD.,Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Sara Romani
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Rebecca Lee
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Elana Rosenthal
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | | | - Anita Kohli
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Henry Masur
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Shyam Kottilil
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Eleanor Wilson
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| |
Collapse
|
8
|
Hofmann M, Wieland D, Pircher H, Thimme R. Memory vs memory-like: The different facets of CD8+T-cell memory in HCV infection. Immunol Rev 2018; 283:232-237. [DOI: 10.1111/imr.12642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Maike Hofmann
- Department of Medicine II; University Hospital Freiburg; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Dominik Wieland
- Department of Medicine II; University Hospital Freiburg; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Hanspeter Pircher
- Institute for Immunology; Medical Center; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Robert Thimme
- Department of Medicine II; University Hospital Freiburg; Faculty of Medicine; University of Freiburg; Freiburg Germany
| |
Collapse
|
9
|
Wieland D, Kemming J, Schuch A, Emmerich F, Knolle P, Neumann-Haefelin C, Held W, Zehn D, Hofmann M, Thimme R. TCF1 + hepatitis C virus-specific CD8 + T cells are maintained after cessation of chronic antigen stimulation. Nat Commun 2017; 8:15050. [PMID: 28466857 PMCID: PMC5418623 DOI: 10.1038/ncomms15050] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Differentiation and fate of virus-specific CD8+ T cells after cessation of chronic antigen stimulation is unclear. Here we show that a TCF1+CD127+PD1+ hepatitis C virus (HCV)-specific CD8+ T-cell subset exists in chronically infected patients with phenotypic features of T-cell exhaustion and memory, both before and after treatment with direct acting antiviral (DAA) agents. This subset is maintained during, and for a long duration after, HCV elimination. After antigen re-challenge the less differentiated TCF1+CD127+PD1+ population expands, which is accompanied by emergence of terminally exhausted TCF1-CD127-PD1hi HCV-specific CD8+ T cells. These results suggest the TCF1+CD127+PD1+ HCV-specific CD8+ T-cell subset has memory-like characteristics, including antigen-independent survival and recall proliferation. We thus provide evidence for the establishment of memory-like virus-specific CD8+ T cells in a clinically relevant setting of chronic viral infection and we uncover their fate after cessation of chronic antigen stimulation, implicating a potential strategy for antiviral immunotherapy.
Collapse
Affiliation(s)
- Dominik Wieland
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Janine Kemming
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Anita Schuch
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Florian Emmerich
- Institute for Cell and Gene Therapy, University Hospital Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaningerstr. 22, München 81675, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Werner Held
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 155, Ch. Des Boveresses, Epalinges 1066, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Weihenstephaner Berg 3, Freising 85354, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| |
Collapse
|
10
|
Modulation of Hepatitis C Virus-Specific CD8 Effector T-Cell Function with Antiviral Effect in Infectious Hepatitis C Virus Coculture Model. J Virol 2017; 91:JVI.02129-16. [PMID: 28275182 DOI: 10.1128/jvi.02129-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
The antiviral effects of hepatitis C virus (HCV)-specific CD8 T cells have been shown in an HCV replicon system but not in an authentic infectious HCV cell culture (HCVcc) system. Here, we developed tools to examine the antigenicity of HCV-infected HLA-A2-positive Huh7.5 hepatoma cells (Huh7.5A2 cells) in activating HCV-specific CD8 T cells and the downstream antiviral effects. Infectious HCV epitope mutants encoding the well-defined genotype 1a-derived HLA-A2-restricted HCV NS3-1073 or NS5-2594 epitope were generated from a genotype 2a-derived HCV clone (Jc1Gluc2A) by site-directed mutagenesis. CD8 T-cell lines specific for NS3-1073 and NS5-2594 were expanded from HCV-seropositive persons by peptide stimulation in vitro or engineered from HCV-seronegative donor T cells by transduction of a lentiviral vector expressing HCV-specific T-cell receptors. HCV-specific CD8 T cells were cocultured with Huh7.5 cells that were pulsed with titrating doses of HCV epitope peptides or infected with HCV epitope mutants. HCV-specific CD8 T-cell activation (CD107a, gamma interferon, macrophage inflammatory protein 1β, tumor necrosis factor alpha) was dependent on the peptide concentrations and the relative percentages of HCV-infected Huh7.5A2 cells. HCV-infected Huh7.5A2 cells activated HCV-specific CD8 T cells at levels comparable to those achieved with 0.1 to 2 μM pulsed peptides, providing a novel estimate of the level at which endogenously processed HCV epitopes are presented on HCV-infected cells. While HCV-specific CD8 T-cell activation with cytolytic and antiviral effects was blunted by PD-L1 expression on HCV-infected Huh7.5A2 cells, resulting in the improved viability of Huh7.5A2 cells, PD-1 blockade reversed this effect, producing enhanced cytolytic elimination of HCV-infected Huh7.5A2 cells. Our findings, obtained using an infectious HCVcc system, show that the HCV-specific CD8 T-cell function is modulated by antigen expression levels, the percentage of HCV-infected cells, and the PD-1/PD-L1 pathways and has antiviral and cytotoxic effects.IMPORTANCE We developed several novel molecular and immunological tools to study the interactions among HCV, HCV-infected hepatocytes, and HCV-specific CD8 T cells. Using these tools, we show the level at which HCV-infected hepatoma cells present endogenously processed HCV epitopes to HCV-specific CD8 T cells with antiviral and cytotoxic effects. We also show the marked protective effect of PD-L1 expression on HCV-infected hepatoma cells against HCV-specific CD8 T cells.
Collapse
|
11
|
Hepatitis C Virus-Specific T Cell Receptor mRNA-Engineered Human T Cells: Impact of Antigen Specificity on Functional Properties. J Virol 2017; 91:JVI.00010-17. [PMID: 28228595 DOI: 10.1128/jvi.00010-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/07/2017] [Indexed: 01/07/2023] Open
Abstract
Therapy with genetically modified autologous T cells has shown great promise in cancer therapy. For an efficient control of hepatitis C virus (HCV) infection, cytotoxic T cells (CTL) are pivotal, but persistence of activated T cells may lead to liver toxicity. Here, anti-HCV T cell receptors (TCRs) recognizing the HCV nonstructural (NS) NS3 or NS5 viral peptide target were examined by mRNA transfection of human peripheral blood lymphocytes (PBLs) derived from healthy donors as well as chronically infected HCV patients. Immunological analysis shows that while the CTLs expressing the NS5-specific TCR reduced HCV RNA replication by a noncytotoxic mechanism, the NS3-specific TCR-redirected CTLs were polyfunctional and inhibited HCV RNA replication through antigen-specific cytotoxicity. Transcriptome signatures from these two types of CTL responses revealed uniquely expressed gene clusters upon encountering hepatoma target cells presenting endogenously expressed HCV proteins. The NS3 TCR induced a rapid expression of apoptotic signaling pathways and formation of embryonic gene clusters, whereas the NS5A TCR activation induced extended proliferative and metabolic pathways as the HCV target cells survived. Our results provide detailed insights into basic HCV T cell immunology and have clinical relevance for redirecting T cells to target virally infected hepatoma cells.IMPORTANCE Due to the protective ability of HCV-specific T cells and the hepatotoxic potential that they possess, there is a great need for the understanding of the functional aspects of HCV-specific T cells. To circumvent the low level of precursor frequency in patients, we engineered primary CD8+ T cells by mRNA TCR vectors to confer HCV specificity to new T cells. HCV TCRs that differ in antigen specificity and polyfunctionality were examined. mRNA TCR engineering of peripheral blood lymphocytes from healthy donors or chronically infected HCV patients resulted in strikingly high levels of HCV TCR expression and HCV-specific responses. While a cytotoxicity response from a polyfunctional T cell activation caused hepatotoxicity and the rapid induction of apoptotic signaling pathways, the noncytotoxic T cell activation showed extended proliferative, metabolic pathways and persistence of HCV target cells. Our results provide detailed insights into basic HCV T cell immunology and have clinical relevance for immune protection of HCV-associated diseases.
Collapse
|
12
|
Callendret B, Eccleston HB, Satterfield W, Capone S, Folgori A, Cortese R, Nicosia A, Walker CM. Persistent hepatitis C viral replication despite priming of functional CD8+ T cells by combined therapy with a vaccine and a direct-acting antiviral. Hepatology 2016; 63:1442-54. [PMID: 26513111 PMCID: PMC4840073 DOI: 10.1002/hep.28309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Exhaustion of antiviral CD8(+) T cells contributes to persistence of hepatitis C viral (HCV) infection. This immune response has proved difficult to restore by therapeutic vaccination, even when HCV replication is suppressed using antiviral regimens containing type I interferon. Because immunomodulatory effects of type I interferon may be a factor in poor T-cell priming, we undertook therapeutic vaccination in two chronically infected chimpanzees during treatment with a direct-acting antiviral (DAA) targeting the HCV NS5b polymerase protein. Immunization with genetic vaccines encoding the HCV NS3-NS5b nonstructural proteins during DAA treatment resulted in a multifunctional CD8(+) T-cell response. However, these antiviral CD8(+) T cells did not prevent persistent replication of DAA-resistant HCV variants that emerged during treatment. Most vaccine-induced CD8(+) T cells targeted class I epitopes that were not conserved in the circulating virus. Exhausted intrahepatic CD8(+) T-cell targeting-conserved epitopes did not expand after vaccination, with a notable exception. A sustained, multifunctional CD8(+) T-cell response against at least one intact class I epitope was detected in blood after vaccination. Persistence of HCV was not due to mutational escape of this epitope. Instead, failure to control HCV replication was likely caused by localized exhaustion in the liver, where CD8(+) T-cell expression of the inhibitory receptor programmed cell death 1 increased 25-fold compared with those in circulation. CONCLUSION Treatment with a DAA during therapeutic vaccination provided transient control of HCV replication and a multifunctional T-cell response, primarily against nonconserved class I epitopes; exhaustion of liver-infiltrating CD8(+) T cells that target conserved epitopes may not be averted when DAA therapy fails prematurely due to emergence of resistant HCV variants.
Collapse
Affiliation(s)
- Benoit Callendret
- Center for Vaccines and Immunity, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Heather B. Eccleston
- Center for Vaccines and Immunity, Nationwide Children’s Hospital, Columbus, OH 43205
| | - William Satterfield
- Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, TX 78602
| | | | | | | | - Alfredo Nicosia
- ReiThera, viale Citta’ d’Europa 679, 00144, Rome, Italy,KEIRES, Bäumleingasse 18, CH 4051, Basel, Switzerland,CEINGE, via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Christopher M. Walker
- Center for Vaccines and Immunity, Nationwide Children’s Hospital, Columbus, OH 43205,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, 80131, Naples, Italy
| |
Collapse
|
13
|
Knuschke T, Rotan O, Bayer W, Sokolova V, Hansen W, Sparwasser T, Dittmer U, Epple M, Buer J, Westendorf AM. Combination of nanoparticle-based therapeutic vaccination and transient ablation of regulatory T cells enhances anti-viral immunity during chronic retroviral infection. Retrovirology 2016; 13:24. [PMID: 27076190 PMCID: PMC4831142 DOI: 10.1186/s12977-016-0258-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 02/05/2023] Open
Abstract
Background Regulatory T cells (Tregs) have been shown to limit anti-viral immunity during chronic retroviral infection and to restrict vaccine-induced T cell responses. The objective of the study was to assess whether a combinational therapy of nanoparticle-based therapeutic vaccination and concomitant transient ablation of Tregs augments anti-viral immunity and improves virus control in chronically retrovirus-infected mice. Therefore, chronically Friend retrovirus (FV)-infected mice were immunized with calcium phosphate (CaP) nanoparticles functionalized with TLR9 ligand CpG and CD8+ or CD4+ T cell epitope peptides (GagL85–93 or Env gp70123–141) of FV. In addition, Tregs were ablated during the immunization process. Reactivation of CD4+ and CD8+ effector T cells was analysed and the viral loads were determined. Results Therapeutic vaccination of chronically FV-infected mice with functionalized CaP nanoparticles transiently reactivated cytotoxic CD8+ T cells and significantly reduced the viral loads. Transient ablation of Tregs during nanoparticle-based therapeutic vaccination strongly enhanced anti-viral immunity and further decreased viral burden. Conclusion Our data illustrate a crucial role for CD4+ Foxp3+ Tregs in the suppression of anti-viral T cell responses during therapeutic vaccination against chronic retroviral infection. Thus, the combination of transient Treg ablation and therapeutic nanoparticle-based vaccination confers robust and sustained anti-viral immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0258-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Olga Rotan
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Wibke Bayer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Viktoriya Sokolova
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Medicine, 30625, Hannover, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
14
|
Immune-surveillance through exhausted effector T-cells. Curr Opin Virol 2016; 16:49-54. [PMID: 26826950 DOI: 10.1016/j.coviro.2016.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
Pathogens such as the human immunodeficiency virus (HIV), the hepatitis B and C virus (HBV, HCV) and certain strains of the rodent lymphocytic choriomeningitis virus (LCMV) establish a state of persisting viral replication. This occurs besides strong adoptive immune responses and the induction of large numbers of activated pathogen-specific T-cells. The failure of the immune system to clear these viruses is typically attributed to a loss of effector T-cell function-a phenomenon referred to as T-cell exhaustion. Though largely accepted, this loss of function concept is being more and more challenged by comprehensive clinical and experimental observations which highlight that T-cells in chronic infections are more functional than previously considered. Here, we highlight examples that demonstrate that such T-cells mediate a profound form of immune-surveillance. We also briefly discuss the opportunities and limitations of employing 'exhausted' T-cells for therapeutic purposes.
Collapse
|
15
|
Quarleri JF, Oubiña JR. Hepatitis C virus strategies to evade the specific-T cell response: a possible mission favoring its persistence. Ann Hepatol 2016; 15:17-26. [PMID: 26626636 DOI: 10.5604/16652681.1184193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus. The number of HCV-infected individuals worldwide is estimated to be approximately 200 million. The vast majority of HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. The interaction between HCV and the host have a pivotal role in viral fitness, persistence, pathogenicity, and disease progression. The control of HCV infection requires both effective innate and adaptive immune responses. The HCV clearance during acute infection is associated with an early induction of the innate and a delayed initiation of the adaptive immune responses. However, in the vast majority of acute HCV infections, these responses are overcome and the virus persistence almost inexorably occurs. Recently, several host- and virus-related mechanisms responsible for the failure of both the innate and the adaptive immune responses have been recognized. Among the latter, the wide range of escape mutations to evade the specific-T-and B-cell responses as well as the T cell anergy and the CD8+ T cell exhaustion together with the interference with its function after prolonged virus exposure hold a pivotal role. Other HCV strategies include the modification or manipulation of molecules playing key roles in the induction of the interferon response and its induced effector proteins. In this review, we attempt to gain insights on the main T cell immune evasion strategies used by the virus in order to favor its persistence.
Collapse
Affiliation(s)
- Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Argentina
| | - José Raúl Oubiña
- Instituto de Microbiología y Parasitología Médica (IMPAM), Universidad de Buenos Aires-CONICET, Argentina
| |
Collapse
|
16
|
Burchill MA, Golden-Mason L, Wind-Rotolo M, Rosen HR. Memory re-differentiation and reduced lymphocyte activation in chronic HCV-infected patients receiving direct-acting antivirals. J Viral Hepat 2015; 22:983-91. [PMID: 26482547 DOI: 10.1111/jvh.12465] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/12/2015] [Indexed: 12/14/2022]
Abstract
Recently, the treatment of HCV has advanced significantly due to the introduction of direct-acting antivirals (DAAs). Studies using interferon (IFN)-containing regimens failed to consistently show restoration of immunologic responses. Therefore, IFN-free DAA formulations provide a unique opportunity to dissect the immunologic effect of HCV cure. This study investigates the restoration of the immune compartment as a consequence of rapid viral clearance in patients successfully treated with DAAs and in the absence of IFN and ribavirin. Here, we evaluate the immunologic changes that occurred following DAA-mediated HCV cure. Peripheral blood from nineteen previously treatment-naïve patients with chronic HCV genotype 1a/1b who received an IFN and ribavirin-free regimen of daclatasvir, asunaprevir and BMS-791325 was evaluated. Immune reconstitution occurs in patients in whom HCV was successfully eradicated via DAA therapy. Restoration of the CD4(+) T-cell compartment in the peripheral blood and a re-differentiation of the T lymphocyte memory compartment resulted in a more effector memory cell population and a reduction in expression in the co-inhibitory molecule TIGIT in bulk T lymphocytes. Furthermore, we observed a partial reversal of the exhausted phenotype in HCV-specific CD8(+) T cells and a dampening of the activation state in peripheral NK cells. Collectively, our data provide the groundwork for dissecting the effect of DAA therapy on the immune system and identifying novel mechanisms by which chronic HCV infection exerts immunosuppressive effects on T cells through the recently described co-inhibitory molecule TIGIT.
Collapse
Affiliation(s)
- M A Burchill
- Department of Medicine, Division of GI/Heaptology, University of Colorado-Denver, Aurora, CO, USA
| | - L Golden-Mason
- Department of Medicine, Division of GI/Heaptology, University of Colorado-Denver, Aurora, CO, USA
| | - M Wind-Rotolo
- Bristol-Myers Squibb, Exploratory Clinical and Translational Research, Lawrenceville, NJ, USA
| | - H R Rosen
- Department of Medicine, Division of GI/Heaptology, University of Colorado-Denver, Aurora, CO, USA
| |
Collapse
|
17
|
Abstract
Despite advances in therapy, hepatitis C virus infection remains a major global health issue with 3 to 4 million incident cases and 170 million prevalent chronic infections. Complex, partially understood, host-virus interactions determine whether an acute infection with hepatitis C resolves, as occurs in approximately 30% of cases, or generates a persistent hepatic infection, as occurs in the remainder. Once chronic infection is established, the velocity of hepatocyte injury and resultant fibrosis is significantly modulated by immunologic as well as environmental factors. Immunomodulation has been the backbone of antiviral therapy despite poor understanding of its mechanism of action.
Collapse
Affiliation(s)
- David E. Kaplan
- Medicine and Research Services, Philadelphia VA Medical Center, Philadelphia PA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania
| |
Collapse
|
18
|
Martini H, Citro A, Martire C, D'Ettorre G, Labbadia G, Accapezzato D, Piconese S, De Marzio P, Cavallari EN, Calvo L, Rizzo F, Severa M, Coccia EM, Grazi GL, Di Filippo S, Sidney J, Vullo V, Sette A, Barnaba V. Apoptotic Epitope-Specific CD8+ T Cells and Interferon Signaling Intersect in Chronic Hepatitis C Virus Infection. J Infect Dis 2015; 213:674-83. [PMID: 26386427 DOI: 10.1093/infdis/jiv460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
CD8(+) T cells specific to caspase-cleaved antigens derived from apoptotic T cells represent a principal player in chronic immune activation. Here, we found that both apoptotic epitope-specific and hepatitis C virus (HCV)-specific CD8(+) T cells were mostly confined within the effector memory (EM) or terminally differentiated EM CD45RA(+) cell subsets expressing a dysfunctional T-helper 1-like signature program in chronic HCV infection. However, apoptotic epitope-specific CD8(+) T cells produced tumor necrosis factor α and interleukin 2 at the intrahepatic level significantly more than HCV-specific CD8(+) T cells, despite both populations expressing high levels of programmed death 1 receptor. Contextually, only apoptotic epitope-specific CD8(+) T cells correlated with both interferon-stimulated gene levels in T cells and hepatic fibrosis score. Together, these data suggest that, compared with HCV-specific CD8(+) T cells, apoptotic epitope-specific CD8(+) T cells can better sustain chronic immune activation, owing to their capacity to produce tumor necrosis factor α, and exhibit greater resistance to inhibitory signals during chronic HCV infection.
Collapse
Affiliation(s)
| | | | | | - Gabriella D'Ettorre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma
| | | | | | | | | | - Eugenio N Cavallari
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma
| | | | - Fabiana Rizzo
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità
| | - Martina Severa
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità
| | - Eliana M Coccia
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità
| | - Gian Luca Grazi
- Chirurgia Epato-bilio-pancreatica, Istituto Nazionale dei Tumori Regina Elena
| | - Simona Di Filippo
- Chirurgia Epato-bilio-pancreatica, Istituto Nazionale dei Tumori Regina Elena
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Vincenzo Vullo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
19
|
Larrubia JR, Moreno-Cubero E, Miquel J, Sanz-de-Villalobos E. Hepatitis C virus-specific cytotoxic T cell response restoration after treatment-induced hepatitis C virus control. World J Gastroenterol 2015; 21:3480-3491. [PMID: 25834312 PMCID: PMC4375569 DOI: 10.3748/wjg.v21.i12.3480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/10/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV)-specific cytotoxic T cell (CTL) response plays a major role in viral control during spontaneous infection resolution. These cells develop an exhausted and pro-apoptotic status during chronic onset, being unable to get rid of HCV. The role of this response in contributing to sustained viral response (SVR) after anti-HCV is controversial. Recent studies show that after successful interferon-based anti-HCV treatment, HCV traces are still detectable and this correlates with a peak of HCV-specific CTL response activation, probably responsible for maintaining SVR by subsequent complete HCV clearing. Moreover, SVR patients’ serum is still able to induce HCV infection in naïve chimpanzees, suggesting that the infection could be under the control of the immune system after a successful treatment, being transmissible in absence of this adaptive response. At least theoretically, treatment-induced viral load decrease could allow an effective HCV-specific CTL response reestablishment. This effect has been recently described with anti-HCV interferon-free regimes, based on direct-acting antivirals. Nevertheless, this is to some extent controversial with interferon-based therapies, due to the detrimental immunoregulatory α-interferon effect on T cells. Moreover, HCV-specific CTL response features during anti-HCV treatment could be a predictive factor of SVR that could have clinical implications in patient management. In this review, the recent knowledge about the role of HCV-specific CTL response in the development of SVR after anti-HCV treatment is discussed.
Collapse
|
20
|
Mutational escape of CD8+ T cell epitopes: implications for prevention and therapy of persistent hepatitis virus infections. Med Microbiol Immunol 2014; 204:29-38. [PMID: 25537849 PMCID: PMC4305108 DOI: 10.1007/s00430-014-0372-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022]
Abstract
Over the past two decades, much has been learned about how human viruses evade T cell immunity to establish persistent infection. The lessons are particularly relevant to two hepatotropic viruses, HBV and HCV, that are very significant global public health problems. Although HCV and HBV are very different, the natural history of persistent infections with these viruses in humans shares some common features including failure of T cell immunity. During recent years, large sequence studies of HCV have characterized intra-host evolution as well as sequence diversity between hosts in great detail. Combined with studies of CD8+ T cell phenotype and function, it is now apparent that the T cell response shapes viral evolution. In turn, HCV sequence diversity influences the quality of the CD8+ T cell response and thus infection outcome. Here, we review published studies of CD8+ T cell selection pressure and mutational escape of the virus. Potential consequences for therapeutic strategies to restore T cell immunity against persistent human viruses, most notably HBV, are discussed.
Collapse
|
21
|
Heim MH, Thimme R. Innate and adaptive immune responses in HCV infections. J Hepatol 2014; 61:S14-25. [PMID: 25443342 DOI: 10.1016/j.jhep.2014.06.035] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus has been identified a quarter of a decade ago as a leading cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously during acute infection. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN) induced genes, and a delayed induction of adaptive immune responses. However, the majority of patients is unable to clear the virus and develops viral persistence in face of an ongoing innate and adaptive immune response. The virus has developed several strategies to escape these immune responses. For example, to escape innate immunity, the HCV NS3/4A protease can efficiently cleave and inactivate two important signalling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce IFNs, i.e., the mitochondrial anti-viral signalling protein (MAVS) and the Toll-IL-1 receptor-domain-containing adaptor-inducing IFN-β (TRIF). Despite these escape mechanisms, IFN-stimulated genes (ISGs) are induced in a large proportion of patients with chronic infection. Of note, chronically HCV infected patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cell compartments that are not accessible to anti-viral IFN-stimulated effector systems, or direct antagonism of effector systems by viral proteins. Escape from adaptive immune responses can be achieved by emergence of viral escape mutations that avoid recognition by antibodies and T cells. In addition, chronic infection is characterized by the presence of functionally and phenotypically altered NK and T cell responses that are unable to clear the virus but most likely contribute to the ongoing liver disease. In this review, we will summarize current knowledge about the role of innate and adaptive immune responses in determining the outcome of HCV infection.
Collapse
Affiliation(s)
- Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
22
|
Callendret B, Eccleston HB, Hall S, Satterfield W, Capone S, Folgori A, Cortese R, Nicosia A, Walker CM. T-cell immunity and hepatitis C virus reinfection after cure of chronic hepatitis C with an interferon-free antiviral regimen in a chimpanzee. Hepatology 2014; 60:1531-40. [PMID: 24975498 PMCID: PMC4242208 DOI: 10.1002/hep.27278] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/20/2014] [Indexed: 01/15/2023]
Abstract
UNLABELLED Memory CD8+ T cells generated by spontaneous resolution of hepatitis C virus (HCV) infection rapidly control secondary infections and reduce the risk of virus persistence. Here, CD8+ T-cell immunity and response to reinfection were assessed in a chimpanzee cured of an earlier chronic infection with an interferon (IFN)-free antiviral regimen. CD8+ T cells expanded from liver immediately before and 2 years after cure of chronic infection with two direct-acting antivirals (DAAs) targeted epitopes in the E2, nonstructural (NS)5a, and NS5b proteins. A second infection to assess CD8+ T-cell responsiveness resulted in rapid suppression of HCV replication by week 2, but viremia rebounded 3 weeks later and the infection persisted. The E2, NS5a, and NS5b proteins remained dominant CD8+ T-cell targets after reinfection. Resurgent HCV replication was temporally associated with mutational escape of NS5a and NS5b class I epitopes that had also mutated during the first chronic infection. Two epitopes in E2 remained intact throughout both persistent infections. Intrahepatic CD8+ T cells targeting intact and escape-prone epitopes differed in expression of phenotypic markers of functional exhaustion 2 years after successful DAA therapy and in the capacity to expand in liver upon reinfection. CONCLUSIONS The intrahepatic HCV-specific CD8+ T-cell repertoire established during chronic infection was narrowly focused, but very stable, after cure with DAA. Existing intrahepatic CD8+ T cells targeting dominant epitopes of the challenge virus failed to prevent persistence. Vaccination after DAA cure may be necessary to broaden T-cell responses and reduce the risk of a second persistent infection.
Collapse
Affiliation(s)
- Benoit Callendret
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Association between IL7RA polymorphisms and the successful therapy against HCV in HIV/HCV-coinfected patients. Eur J Clin Microbiol Infect Dis 2014; 34:385-93. [PMID: 25236396 DOI: 10.1007/s10096-014-2245-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/04/2014] [Indexed: 01/17/2023]
Abstract
Interleukin-7 (IL-7) is a critical factor in maintaining or inducing effective antiviral CD4+ and CD8+ T-cell responses. The aim of this study was to examine the association of interleukin-7 receptor-α (IL7RA) polymorphisms with a sustained virologic response (SVR) after hepatitis C virus (HCV) therapy with pegylated interferon-alpha plus ribavirin (pegIFNα/ribavirin) in 177 human immunodeficiency virus (HIV)/HCV-coinfected patients. We performed a retrospective study in 177 naïve patients who started HCV treatment. The IL7RA rs6897932, rs987106, and rs3194051 polymorphisms were genotyped by the GoldenGate® assay. An SVR was defined as undetectable HCV viral load through 24 weeks after the end of HCV treatment. The highest SVR rate was found in patients with the rs6897932 CC (p = 0.029) and rs3194051 GG (p = 0.002) genotypes, and HCV genotypes 2/3 (GT2/3) infected patients with the rs987106 AA genotype (p = 0.048). Additionally, carriers of the rs3194051 GG genotype had a higher likelihood of achieving an SVR [adjusted odds ratio (aOR) = 5.32; 95 % confidence interval (CI) = 1.07-26.94; p = 0.040] than patients with the rs3194051 AA/AG genotype, while rs6897932 CC (aOR = 0.63; p = 0.205) and rs987106 AA (aOR = 0.60; p = 0.213) were not significant. Moreover, three major haplotypes were found: 46.6 % for CTA, 32.4 % for CAG, and 20.7 % for TAA haplotypes. Patients infected with GT2/3 and carriers of the CTA haplotype had lower odds of achieving an SVR (aOR = 0.08; p = 0.004) and the CAG haplotype (favorable alleles) had higher odds of achieving an SVR than other haplotypes (aOR = 21.96; p < 0.001). IL7RA polymorphisms seem to play a significant role in the virological response to pegIFNα/ribavirin therapy in HIV/HCV-coinfected patients, in particular among patients infected with HCV GT2/3.
Collapse
|
24
|
Maini MK, Schurich A. Direct-acting antivirals trump interferon-alpha in their capacity to rescue exhausted T cells upon HCV clearance. J Hepatol 2014; 61:459-61. [PMID: 24953024 DOI: 10.1016/j.jhep.2014.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity, UCL, London, UK.
| | | |
Collapse
|
25
|
Martin B, Hennecke N, Lohmann V, Kayser A, Neumann-Haefelin C, Kukolj G, Böcher WO, Thimme R. Restoration of HCV-specific CD8+ T cell function by interferon-free therapy. J Hepatol 2014; 61:538-43. [PMID: 24905492 DOI: 10.1016/j.jhep.2014.05.043] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Chronic hepatitis C virus (HCV) infection is characterised by a failure of virus-specific CD8+ T cells that is mainly caused by viral escape and T cell exhaustion. Constant antigen stimulation has been suggested to contribute to HCV-specific CD8+ T cell exhaustion. However, IFN-based therapies failed to recover HCV-specific CD8+ T cell function suggesting that the damage to CD8+ T cells may be permanent even after antigen removal. It was therefore the objective of this study to analyse the impact of inhibition of ongoing viral replication by IFN-free therapy with direct acting antivirals (DAA) on the phenotype and function of HCV-specific CD8+ T cells. METHODS Virus-specific CD8+ T cells obtained from a patient cohort of 51 previously untreated chronically infected patients undergoing IFN-free therapy with a combination of faldaprevir (a protease inhibitor) and deleobuvir (a non-nucleoside polymerase inhibitor) with or without ribavirin were analysed ex vivo and after in vitro expansion at baseline, wk4, wk 12, and after treatment. RESULTS Our results show the rapid restoration of proliferative HCV-specific CD8+ T cells in the majority of patients with SVR12 within 4 weeks of therapy suggesting that IFN-free therapy mediated antigen removal may restore CD8+ T cell function. CONCLUSIONS This study indicates a specific restoration of proliferative HCV-specific CD8+ T cells under IFN-free therapy. This is in contrast to PegIFN-based therapies that have been shown not to restore T cell function during and after chronic infection.
Collapse
Affiliation(s)
- Bianca Martin
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Nadine Hennecke
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Antonin Kayser
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
26
|
Serti E, Werner JM, Chattergoon M, Cox AL, Lohmann V, Rehermann B. Monocytes activate natural killer cells via inflammasome-induced interleukin 18 in response to hepatitis C virus replication. Gastroenterology 2014; 147:209-220.e3. [PMID: 24685721 PMCID: PMC4469643 DOI: 10.1053/j.gastro.2014.03.046] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Production of interferon (IFN)-γ by natural killer (NK) cells is attenuated during chronic infection with hepatitis C virus (HCV). We investigated whether this is due to intrinsic or extrinsic mechanisms of NK cells. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from patients with chronic HCV infection or uninfected blood donors (controls); NK cells and monocytes were isolated or eliminated. We cultured hepatoma cells that express luciferase-tagged subgenomic HCV replicons (Huh7/HCV replicon cells) or their HCV-negative counterparts (Huh7) with NK cells in the presence or absence of other populations of PBMCs. Antiviral activity, cytotoxicity, and cytokine production were assessed. RESULTS NK cells produced greater amounts of IFN-γ when PBMC were cocultured with Huh7/HCV replicon cells than with Huh7 cells; NK cells and PBMCs from controls suppressed HCV replication to a greater extent than those from patients with chronic HCV infection. This antiviral effect was predominantly mediated by tumor necrosis factor (TNF)-α and IFN-γ. The antiviral activity of NK cells and their production of IFN-γ were reduced when they were used in coculture alone (rather than with PBMC), or after depletion of CD14(+) monocytes, after knockdown of the inflammasome in monocytes, or after neutralization of interleukin-18, which is regulated by the inflammasome. These findings indicate a role for monocytes in NK cell activation. Compared with control monocytes, monocytes from patients with chronic HCV infection had reduced TNF-α-mediated (direct) and reduced NK cell-mediated (indirect) antiviral effects. Control monocytes increased the antiviral effects of NK cells from patients with chronic HCV infection and their production of IFN-γ. CONCLUSIONS Monocytes sense cells that contain replicating HCV and respond by producing interleukin-18 via the inflammasome and by activating NK cells. Patients with chronic HCV infection have reduced monocyte function, attenuating NK cell IFN-γ-mediated responses.
Collapse
Affiliation(s)
- Elisavet Serti
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD,
USA
| | - Jens M. Werner
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD,
USA
| | - Michael Chattergoon
- Division of Infectious Diseases, Johns Hopkins School of Medicine,
Baltimore, MD, USA
| | - Andrea L. Cox
- Division of Infectious Diseases, Johns Hopkins School of Medicine,
Baltimore, MD, USA
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of
Heidelberg, Heidelberg, Germany
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
27
|
Su SS, He H, Kong LB, Zhang YG, Zhao SX, Wang RQ, Zheng HW, Sun DX, Nan YM, Yu J. Regulatory phenotype, PD-1 and TLR3 expression in T cells and monocytes from HCV patients undergoing antiviral therapy: a randomized clinical trial. PLoS One 2014; 9:e93620. [PMID: 24709775 PMCID: PMC3977904 DOI: 10.1371/journal.pone.0093620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND & AIMS The cellular immunity has a profound impact on the status of hepatitis C virus (HCV) infection. However, the response of cellular immunity on the virological response in patients with antiviral treatment remains largely unclear. We aimed to clarify the response of peripheral T cells and monocytes in chronic hepatitis C patients with antiviral treatment. METHODS Patients with chronic hepatitis C were treated either with interferon alpha-2b plus ribavirin (n = 37) or with pegylated interferon alpha-2a plus ribavirin (n = 33) for up to 24 weeks. Frequencies of peripheral regulatory T-cells (Tregs), programmed death-1 (PD-1) expressing CD4+ T-cells or CD8+ T-cells and toll-like receptor (TLR) 3 expressing CD14+ monocytes were evaluated by flow cytometry in patients at baseline, 12 and 24 weeks following treatment and in 20 healthy controls. RESULTS Frequencies of Tregs, PD-1 and TLR3 expressing cells were higher in patients than those in control subjects (P<0.05). Patients with complete early virological response (cEVR) showed lower Tregs, PD-1 expressing CD4+ or CD8+ T-cells than those without cEVR at 12 weeks (P<0.05). Patients with low TLR3 expressing CD14+ monocytes at baseline had a high rate of cEVR (P<0.05). CONCLUSIONS Low peripheral TLR3 expressing CD14+ monocytes at baseline could serve as a predictor for cEVR of antiviral therapy in chronic HCV-infected patients. The cEVR rates were significantly increased in the patients with reduced circulating Tregs, PD-1 expressing CD4+ or CD8+ T-cells. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR10001090.
Collapse
Affiliation(s)
- Shan-shan Su
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huan He
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling-bo Kong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu-guo Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Su-xian Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rong-qi Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huan-wei Zheng
- Department of Infectious Disease, The Fifth Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Dian-xing Sun
- Department of Liver Disease, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yue-min Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- * E-mail:
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Dietze KK, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, Dittmer U. Combining regulatory T cell depletion and inhibitory receptor blockade improves reactivation of exhausted virus-specific CD8+ T cells and efficiently reduces chronic retroviral loads. PLoS Pathog 2013; 9:e1003798. [PMID: 24339778 PMCID: PMC3855586 DOI: 10.1371/journal.ppat.1003798] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/14/2013] [Indexed: 01/03/2023] Open
Abstract
Chronic infections with human viruses, such as HIV and HCV, or mouse viruses, such as LCMV or Friend Virus (FV), result in functional exhaustion of CD8+ T cells. Two main mechanisms have been described that mediate this exhaustion: expression of inhibitory receptors on CD8+ T cells and expansion of regulatory T cells (Tregs) that suppress CD8+ T cell activity. Several studies show that blockage of one of these pathways results in reactivation of CD8+ T cells and partial reduction in chronic viral loads. Using blocking antibodies against PD-1 ligand and Tim-3 and transgenic mice in which Tregs can be selectively ablated, we compared these two treatment strategies and combined them for the first time in a model of chronic retrovirus infection. Blocking inhibitory receptors was more efficient than transient depletion of Tregs in reactivating exhausted CD8+ T cells and reducing viral set points. However, a combination therapy was superior to any single treatment and further augmented CD8+ T cell responses and resulted in a sustained reduction in chronic viral loads. These results demonstrate that Tregs and inhibitory receptors are non-overlapping factors in the maintenance of chronic viral infections and that immunotherapies targeting both pathways may be a promising strategy to treat chronic infectious diseases. A loss of function, the so-called ‘exhaustion’ of CD8+ T cells, is a hallmark of many chronic infections. The T cell exhaustion is mediated by two main mechanisms, the expression of inhibitory receptors on CD8+ T cells and virus-induced expansion of regulatory T cells (Tregs), which suppress CD8+ T cell activity. Several mouse studies revealed a reactivation of CD8+ T cells and reduction in chronic viral loads after blockage of one of these pathways. These results initiated a number of clinical studies mainly with cancer patients, in which blocking antibodies were used to interfere with inhibitory receptor signaling or drugs that deplete Tregs. For the first time we combined the two therapeutic approaches by using transgenic mice in which Tregs can be selectively ablated and injection of blocking antibodies in a chronic retroviral infection. The results indicate that the combination therapy was superior to any single treatment in further augmenting CD8+ T cell responses and reducing chronic viral loads. Our findings demonstrate that Tregs and inhibitory receptors are non-overlapping factors in the maintenance of chronic viral infections and that immunotherapies targeting both pathways may be a promising new strategy to treat chronic infectious diseases.
Collapse
Affiliation(s)
- Kirsten K. Dietze
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Freya Kretzmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
29
|
Sumida K, Shimoda S, Iwasaka S, Hisamoto S, Kawanaka H, Akahoshi T, Ikegami T, Shirabe K, Shimono N, Maehara Y, Selmi C, Gershwin ME, Akashi K. Characteristics of splenic CD8+ T cell exhaustion in patients with hepatitis C. Clin Exp Immunol 2013; 174:172-8. [PMID: 23773130 DOI: 10.1111/cei.12158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 01/21/2023] Open
Abstract
There is increasing interest in the role of T cell exhaustion and it is well known that the natural history of chronic hepatitis C virus infection (HCV) is modulated by CD8(+) T cell immunobiology. There are many pathways that alter the presence of exhaustive T cells and, in particular, they are functionally impaired by inhibitory receptors, such as programmed death-1 (PD-1) and T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3). We obtained spleen, liver and peripheral blood (before and after splenectomy) lymphoid cells from 25 patients with HCV-related cirrhosis undergoing liver transplantation for end-stage disease or splenectomy for portal hypertension. In all samples we performed an extensive phenotypic study of exhaustion markers [PD-1, Tim-3, interferon (IFN)-γ) and their ligands (PD-L1, PD-L2, galectin-9] in CD8(+) T cell subpopulations (both total and HCV-specific) and in antigen-presenting cells (APC; monocytes and dendritic cells). In the spleen, total and HCV-specific CD8(+) T cells demonstrated enhanced markers of exhaustion, predominantly in the effector memory subpopulation. Similarly, splenic APC over-expressed inhibitory receptor ligands when compared to peripheral blood. Finally, when peripheral blood CD8(+) T cells were compared before and after splenectomy, markers of exhaustion were reduced in splenic CD8(+) T cells and APC. Our data in HCV-related cirrhosis suggest that CD8(+) T cells in the spleen manifest a significantly higher exhaustion compared to peripheral blood and may thus contribute to the failure to control HCV. Counteracting this process may contribute to inducing an effective immune response to HCV.
Collapse
Affiliation(s)
- K Sumida
- Department of Medicine and Biosystemic Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Larrubia JR, Lokhande MU, Moreno-Cubero E, García-Garzón S, Miquel J, Parra-Cid T, González-Praetorious A, Perna C, Lázaro A, Sanz-de-Villalobos E. HCV-specific CD8+ cell detection at week 12 of chronic hepatitis C treatment with PEG-interferon-α2b/ribavirin correlates with infection resolution. Cell Immunol 2013; 286:31-8. [PMID: 24287274 DOI: 10.1016/j.cellimm.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022]
Abstract
Lower than 2-log viral-load (VL) decrease at week 12 (w12) of chronic hepatitis C (CHC) treatment with Peg-interferon/ribavirin has 100% negative predictive value (PV) of sustained virologic response (SVR), and this could be related with absence of HCV-specific cytotoxic T lymphocyte (CTL) response. In this study, percentage of cases with SVR, according to peripheral HCV-specific cytotoxic response at w12, was analysed (Group-1: detection(+), Group-2: detection(-)). SVR was higher in group-1 (93%) than in group-2 (47%) (p=0.003). An increase on HCV-specific CTL frequency between baseline and w12 and higher specific reactivity were observed in group-1 (p=0.011 and p=0.025). HCV-specific CTL detection at w12 correlated with level of VL decrease (p=0.016, r=0.389), and among HCV genotype-1 patients with either early or delayed virologic response (EDVR), 100% positive PV of SVR was observed. In summary, HCV-specific CTL detection at w12 of Peg-interferon/ribavirin treatment correlates with SVR and in EDVR genotype-1 cases predicts SVR.
Collapse
MESH Headings
- Adult
- Antiviral Agents/therapeutic use
- Biomarkers/analysis
- Drug Therapy, Combination
- Female
- Hepacivirus/drug effects
- Hepacivirus/immunology
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Humans
- Interferon-alpha/therapeutic use
- Lymphocyte Count
- Male
- Middle Aged
- Polyethylene Glycols/therapeutic use
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/immunology
- Recombinant Proteins/therapeutic use
- Ribavirin/therapeutic use
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Treatment Outcome
- Viral Load/drug effects
Collapse
Affiliation(s)
- Juan-Ramón Larrubia
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| | - Megha-Uttam Lokhande
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| | - Elia Moreno-Cubero
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| | - Silvia García-Garzón
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| | - Joaquín Miquel
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| | - Trinidad Parra-Cid
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| | - Alejandro González-Praetorious
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| | - Cristian Perna
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| | - Alicia Lázaro
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| | - Eduardo Sanz-de-Villalobos
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Donante de Sangre St., 19002 Guadalajara, Spain.
| |
Collapse
|
31
|
Abstract
Since the discovery of hepatitis C virus (HCV) by molecular cloning almost a quarter of a century ago, unprecedented at the time because the virus had never been grown in cell culture or detected serologically, there have been impressive strides in many facets of our understanding of the natural history of the disease, the viral life cycle, the pathogenesis, and antiviral therapy. It is apparent that the virus has developed multiple strategies to evade immune surveillance and eradication. This Review covers what we currently understand of the temporal and spatial immunological changes within the human innate and adaptive host immune responses that ultimately determine the outcomes of HCV infection.
Collapse
|