1
|
Wu Z, Wang X, Shi S, Kong D, Ren C, Bian L, Gu Y, An F, Zhan Q, Yan C, Hu C, Chen Y, Jiang R, Chen J. Heterogeneity of T cells regulates tumor immunity mediated by Helicobacter pylori infection in gastric cancer. BMC Cancer 2025; 25:567. [PMID: 40155861 PMCID: PMC11954285 DOI: 10.1186/s12885-025-13957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
The impact of Helicobacter pylori (H. pylori) status on gastric cancer survival remains unclear. In this study, we conducted a prognostic analysis of 488 gastric cancer patients and performed single-cell RNA sequencing (scRNA-seq) on 18,717 T cells from six tumor samples with varying H. pylori statuses. Our findings revealed that gastric cancer patients with H. pylori infection had significantly longer survival times compared to those with negative H. pylori status. After unsupervised re-clustering of T cells based on scRNA-seq data, we identified ten CD4+ and twelve CD8+ clusters. Among them, four CD8+ T cell clusters exhibited distinct distributions based on H. pylori infection status. One cluster, marked by CXCL13, showed high levels of IFNG and GZMB in H. pylori-infected patients, while another cluster, which expressed immune suppression related genes like AREG and PTGER2, was predominantly comprised of cells from non-infected patients. High PTGER2 expression was significantly associated with worse prognosis in patients with high CD8 expression. These insights advance our understanding of H. pylori's influence on T cell responses in gastric cancer, aiding in treatment and prognostic strategies.
Collapse
Affiliation(s)
- Zhisheng Wu
- School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Xinya Wang
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Shujing Shi
- Department of Rehabilitation, School of Sport and Health, Nanjing Sport Institute, Nanjing, China
| | - Deyuan Kong
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Lijun Bian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanliang Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fangmei An
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qiang Zhan
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Caiwang Yan
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chupeng Hu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| | - Yun Chen
- School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China.
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Research center for clinical oncology, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Runqiu Jiang
- Jiangsu Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Martini C, Araba V, Beniani M, Armoa Ortiz P, Simmons M, Chalbi M, Mellouk A, El Bakkouri M, Calmettes C. Unraveling the crystal structure of the HpaA adhesin: insights into cell adhesion function and epitope localization of a Helicobacter pylori vaccine candidate. mBio 2024; 15:e0295223. [PMID: 38376163 PMCID: PMC10936181 DOI: 10.1128/mbio.02952-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Helicobacter pylori is a bacterium that exhibits strict host restriction to humans and non-human primates, and the bacterium is widely acknowledged as a significant etiological factor in the development of chronic gastritis, peptic ulcers, and gastric cancers. The pathogenic potential of this organism lies in its adeptness at colonizing the gastric mucosa, which is facilitated by a diverse repertoire of virulence factors, including adhesins that promote the attachment of the bacteria to the gastric epithelium. Among these adhesins, HpaA stands out due to its conserved nature and pivotal role in establishing H. pylori colonization. Moreover, this lipoprotein holds promise as an antigen for the development of effective H. pylori vaccines, thus attracting considerable attention for in-depth investigations into its molecular function and identification of binding determinants. Here, we present the elucidation of the crystallographic structure of HpaA at 2.9 Å resolution. The folding adopts an elongated protein shape, which is distinctive to the Helicobacteraceae family, and features an apical domain extension that plays a critical role in the cell-adhesion activity on gastric epithelial cells. Our study also demonstrates the ability of HpaA to induce TNF-α expression in macrophages, highlighting a novel role as an immunoregulatory effector promoting the pro-inflammatory response in vitro. These findings not only contribute to a deeper comprehension of the multifaceted role of HpaA in H. pylori pathogenesis but also establish a fundamental basis for the design and development of structure-based derivatives, aimed at enhancing the efficacy of H. pylori vaccines. IMPORTANCE Helicobacter pylori is a bacterium that can cause chronic gastritis, peptic ulcers, and gastric cancers. The bacterium adheres to the lining of the stomach using proteins called adhesins. One of these proteins, HpaA, is particularly important for H. pylori colonization and is considered a promising vaccine candidate against H. pylori infections. In this work, we determined the atomic structure of HpaA, identifying a characteristic protein fold to the Helicobacter family and delineating specific amino acids that are crucial to support the attachment to the gastric cells. Additionally, we discovered that HpaA can trigger the production of TNF-α, a proinflammatory molecule, in macrophages. These findings provide valuable insights into how H. pylori causes disease and suggest that HpaA has a dual role in both attachment and immune activation. This knowledge could contribute to the development of improved vaccine strategies for preventing H. pylori infections.
Collapse
Affiliation(s)
- Cyrielle Martini
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Victoria Araba
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Meriem Beniani
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Paula Armoa Ortiz
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Mimi Simmons
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Mariem Chalbi
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Abdelkader Mellouk
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Majida El Bakkouri
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Charles Calmettes
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, Québec city, Québec, Canada
| |
Collapse
|
3
|
Karataş L, Tatar Z, James EA, Colakogullari M. Investigating Associations between HLA-DR Genotype, H. pylori Infection, and Anti-CagA IgA Seropositivity in a Turkish Gastritis Cohort. Genes (Basel) 2024; 15:339. [PMID: 38540398 PMCID: PMC10969812 DOI: 10.3390/genes15030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 06/14/2024] Open
Abstract
Helicobacter pylori (H. pylori) is associated with gastric inflammation and mucosal antibodies against its cytotoxin-associated gene A (CagA) are protective. Vaccine-elicited immunity against H. pylori requires MHC class II expression, indicating that CD4+ T cells are protective. We hypothesized that the HLA-DR genotypes in human populations include protective alleles that more effectively bind immunogenic CagA peptide fragments and susceptible alleles with an impaired capacity to present CagA peptides. We recruited patients (n = 170) admitted for gastroendoscopy procedures and performed high-resolution HLA-DRB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.2% positive) and H. pylori classified as positive or negative in gastric mucosal tissue slides (72.9% positive). Pearson Chi-square analysis revealed that H. pylori infection was significantly increased in DRB1*11:04-positive individuals (p = 0.027). Anti-CagA IgA was significantly decreased in DRB1*11:04 positive individuals (p = 0.041). In contrast, anti-CagA IgA was significantly increased in DRB1*03:01 positive individuals (p = 0.030). For these HLA-DRB1 alleles of interest, we utilized two in silico prediction methods to compare their capacity to present CagA peptides. Both methods predicted increased numbers of peptides for DRB1*03:01 than DRB1*11:04. In addition, both alleles preferred distinctively different CagA 15mer peptide sequences for high affinity binding. These observations suggest that DRB1*11:04 is a susceptible genotype with impaired CagA immunity, whereas DRB1*03:01 is a protective genotype that promotes enhanced CagA immunity.
Collapse
Affiliation(s)
- Lokman Karataş
- Health Sciences Institution, Istanbul Medipol University, Istanbul 34815, Turkey;
- HLA Laboratory, Istinye University, Istanbul 34010, Turkey
| | - Zeynep Tatar
- Patomer Pathology Laboratory, Fatih, Istanbul 34096, Turkey;
| | - Eddie A. James
- Translational Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Mukaddes Colakogullari
- Clinical Biochemistry Department, Faculty of Medicine, Izmir Democracy University, Izmir 35140, Turkey
| |
Collapse
|
4
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Teng Y, Xie R, Xu J, Wang P, Chen W, Shan Z, Yan Z, Mao F, Cheng P, Peng L, Zhang J, Tian W, Yang S, Zhao Y, Chen W, Zou Q, Zhuang Y. Tubulointerstitial nephritis antigen-like 1 is a novel matricellular protein that promotes gastric bacterial colonization and gastritis in the setting of Helicobacter pylori infection. Cell Mol Immunol 2023; 20:924-940. [PMID: 37336990 PMCID: PMC10387474 DOI: 10.1038/s41423-023-01055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
The interaction between the gastric epithelium and immune cells plays key roles in H. pylori-associated pathology. Here, we demonstrate a procolonization and proinflammatory role of tubulointerstitial nephritis antigen-like 1 (TINAGL1), a newly discovered matricellular protein, in H. pylori infection. Increased TINAGL1 production by gastric epithelial cells (GECs) in the infected gastric mucosa was synergistically induced by H. pylori and IL-1β via the ERK-SP1 pathway in a cagA-dependent manner. Elevated human gastric TINAGL1 correlated with H. pylori colonization and the severity of gastritis, and mouse TINAGL1 derived from non-bone marrow-derived cells promoted bacterial colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Tinagl1-/- and Tinagl1ΔGEC mice and were increased in mice injected with mouse TINAGL1. Mechanistically, TINAGL1 suppressed CCL21 expression and promoted CCL2 production in GECs by directly binding to integrin α5β1 to inhibit ERK and activate the NF-κB pathway, respectively, which not only led to decreased gastric influx of moDCs via CCL21-CCR7-dependent migration and, as a direct consequence, reduced the bacterial clearance capacity of the H. pylori-specific Th1 response, thereby promoting H. pylori colonization, but also resulted in increased gastric influx of Ly6Chigh monocytes via CCL2-CCR2-dependent migration. In turn, TINAGL1 induced the production of the proinflammatory protein S100A11 by Ly6Chigh monocytes, promoting H. pylori-associated gastritis. In summary, we identified a model in which TINAGL1 collectively ensures H. pylori persistence and promotes gastritis.
Collapse
Affiliation(s)
- Yongsheng Teng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Rui Xie
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingyu Xu
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Pan Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Wanyan Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Zhiguo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zongbao Yan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fangyuan Mao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Wenqing Tian
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongliang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yuan Zhuang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China.
| |
Collapse
|
6
|
Sun H, He T, Wu Y, Yuan H, Ning J, Zhang Z, Deng X, Li B, Wu C. Cytotoxin-Associated Gene A-Negative Helicobacter pylori Promotes Gastric Mucosal CX3CR1+CD4+ Effector Memory T Cell Recruitment in Mice. Front Microbiol 2022; 13:813774. [PMID: 35154057 PMCID: PMC8829513 DOI: 10.3389/fmicb.2022.813774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Helicobacter pylori can cause many kinds of gastric disorders, ranging from gastritis to gastric cancer. Cytotoxin-associated gene A (CagA)+H. pylori is more likely to cause gastric histopathologic damage than CagA–H. pylori. However, the underlying mechanism needs to be further investigated. Materials and methods Mice were intragastrically administered equal amounts of CagA+ or CagA–H. pylori. Four weeks later, 24 chemokines in stomachs were measured using a mouse chemokine array, and the phenotypes of the recruited gastric CD4+ T cells were analyzed. The migration pathway was evaluated. Finally, the correlation between each pair among the recruited CD4+ T cell sub-population, H. pylori colonization level, and histopathologic damage score were determined by Pearson correlation analysis. Results The concentration of chemokines, CCL3 and CX3CL1, were significantly elevated in CagA–H. pylori-infected gastric mucosa than in CagA+H. pylori-infected gastric mucosa. Among them, CX3CL1 secreted by gastric epithelial cells, which was elicited more effectively by CagA–H. pylori than by the CagA+ strain, dramatically promoted mucosal CD4+ T cell migration. The expression of CX3CR1, the only known receptor of CX3CL1, was upregulated on the surface of gastric CD4+ T cells in CagA–H. pylori-infected stomach. In addition, most of the CX3CR1-positive gastric CD4+ T cells were CD44+CD69–CCR7– effector memory T cells (Tem). Pearson correlation analysis showed that the recruited CX3CR1+CD4+ Tem cell population was negatively correlated with H. pylori colonization level and histopathologic damage score. Conclusion CagA–H. pylori promotes gastric mucosal CX3CR1+CD4+ Tem recruitment in mice.
Collapse
Affiliation(s)
- Heqiang Sun
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yanan Wu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhenhua Zhang
- Department of Gastroenterology of the 305 Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xinli Deng
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Bin Li,
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Chao Wu,
| |
Collapse
|
7
|
Xie W, Zhao W, Zou Z, Kong L, Yang L. Oral multivalent epitope vaccine, based on UreB, HpaA, CAT, and LTB, for prevention and treatment of Helicobacter pylori infection in C57BL / 6 mice. Helicobacter 2021; 26:e12807. [PMID: 33847026 DOI: 10.1111/hel.12807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND As the resistance of Helicobacter pylori to traditional triple therapy is gradually revealed, an increasing number of people are focusing on vaccine treatments for H. pylori infection. Epitope vaccines are a promising strategy for the treatment of H. pylori infection, and multivalent vaccines will be more effective than monovalent vaccines. MATERIALS AND METHODS In this study, we designed a multivalent vaccine named LHUC, which consists of the adjuvant LTB as well as three Th cell epitopes (HpaA154-171 , UreB237-251, and UreB546-561 ) and five B-cell epitopes (UreB349-363 , UreB327-334 , CAT394-405 , CAT387-397, and HpaA132-141 ) from UreB, HpaA, and catalase. In BALB/c mice, the specificity and immunogenicity of the fusion peptide LHUC and the neutralization of H. pylori urease and catalase by the specific IgG elicited by LHUC were evaluated. The preventive and therapeutic effects of LHUC were evaluated in C57BL/6 mice infected with H. pylori. RESULTS The results showed that compared with LTB and PBS, LHUC induced specific IgG and IgA antibody production in mice, and IgG antibodies significantly inhibited the H. pylori urease and catalase activities in vitro. Additionally, by detecting the levels of IFN-γ, IL-4, and IL-17 in lymphocyte supernatants, we proved that LHUC could activate Th1, Th2, and Th17 mixed T-cell immune responses in vivo. Finally, a C57BL/6 mouse model of gastric infection with H. pylori was established. The results showed that compared with the effects of LTB and PBS, the prevention and treatment effects of oral inoculation with LHUC significantly inhibited bacterial colonization. CONCLUSIONS In conclusion, LHUC, a multivalent vaccine based on multiple H. pylori antigens, is a promising and safe vaccine that can effectively reduce the colonization of H. pylori in the stomach.
Collapse
Affiliation(s)
- Wenwei Xie
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Wenfeng Zhao
- Department of Biochemistry, China Pharmaceutical university, Nanjing, China
| | - Ziling Zou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Mao FY, Lv YP, Hao CJ, Teng YS, Liu YG, Cheng P, Yang SM, Chen W, Liu T, Zou QM, Xie R, Xu JY, Zhuang Y. Helicobacter pylori-Induced Rev-erbα Fosters Gastric Bacteria Colonization by Impairing Host Innate and Adaptive Defense. Cell Mol Gastroenterol Hepatol 2021; 12:395-425. [PMID: 33676046 PMCID: PMC8255816 DOI: 10.1016/j.jcmgh.2021.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Rev-erbα represents a powerful transcriptional repressor involved in immunity. However, the regulation, function, and clinical relevance of Rev-erbα in Helicobacter pylori infection are presently unknown. METHODS Rev-erbα was examined in gastric samples from H pylori-infected patients and mice. Gastric epithelial cells (GECs) were isolated and infected with H pylori for Rev-erbα regulation assays. Gastric tissues from Rev-erbα-/- and wild-type (littermate control) mice or these mice adoptively transferred with CD4+ T cells from IFN-γ-/- and wild-type mice, bone marrow chimera mice and mice with in vivo pharmacological activation or inhibition of Rev-erbα were examined for bacteria colonization. GECs, CD45+CD11c-Ly6G-CD11b+CD68- myeloid cells and CD4+ T cells were isolated, stimulated and/or cultured for Rev-erbα function assays. RESULTS Rev-erbα was increased in gastric mucosa of H pylori-infected patients and mice. H pylori induced GECs to express Rev-erbα via the phosphorylated cagA that activated ERK signaling pathway to mediate NF-κB directly binding to Rev-erbα promoter, which resulted in increased bacteria colonization within gastric mucosa. Mechanistically, Rev-erbα in GECs not only directly suppressed Reg3b and β-defensin-1 expression, which resulted in impaired bactericidal effects against H pylori of these antibacterial proteins in vitro and in vivo; but also directly inhibited chemokine CCL21 expression, which led to decreased gastric influx of CD45+CD11c-Ly6G-CD11b+CD68- myeloid cells by CCL21-CCR7-dependent migration and, as a direct consequence, reduced bacterial clearing capacity of H pylori-specific Th1 cell response. CONCLUSIONS Overall, this study identifies a model involving Rev-erbα, which collectively ensures gastric bacterial persistence by suppressing host gene expression required for local innate and adaptive defense against H pylori.
Collapse
Affiliation(s)
- Fang-Yuan Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Yi-Pin Lv
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Chuan-Jie Hao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Yong-Sheng Teng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Yu-Gang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Shi-Ming Yang
- Department of Gastroenterology, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Australia
| | - Tao Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China,Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China,Correspondence Address correspondence to: Yuan Zhuang, National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China.fax: (86)023-68752315.
| |
Collapse
|
9
|
Xie J, Wen J, Chen C, Luo M, Hu B, Wu D, Ye J, Lin Y, Ning L, Ning Y, Li Y. Notch 1 Is Involved in CD4 + T Cell Differentiation Into Th1 Subtype During Helicobacter pylori Infection. Front Cell Infect Microbiol 2020; 10:575271. [PMID: 33224898 PMCID: PMC7667190 DOI: 10.3389/fcimb.2020.575271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection induces CD4+ T differentiation cells into IFN-γ-producing Th1 cells. However, the details of mechanism underlying this process remain unclear. Notch signal pathway has been reported to regulate the differentiation of CD4+ T cells into Th1 subtype in many Th1-mediated inflammatory disorders but not yet in H. pylori infection. In the present study, the mRNA expression pattern of CD4+ T cells in H. pylori-infected patients differed from that of healthy control using Human Signal Transduction Pathway Finder RT2 Profiler PCR Array, and this alteration was associated with Notch signal pathway, as analyzed by Bioinformation. Quantitative real-time PCR showed that the mRNA expression of Notch1 and its target gene Hes-1 in CD4+ T cells of H. pylori-infected individuals increased compared with the healthy controls. In addition, the mRNA expression of Th1 master transcription factor T-bet and Th1 signature cytokine IFN-γ was both upregulated in H. pylori-infected individuals and positively correlated with Notch1 expression. The increased protein level of Notch1 and IFN-γ were also observed in H. pylori-infected individuals confirmed by flow cytometry and ELISA. In vitro, inhibition of Notch signaling decreased the mRNA expression of Notch1, Hes-1, T-bet, and IFN-γ, and reduced the protein levels of Notch1 and IFN-γ and the secretion of IFN-γ in CD4+ T cells stimulated by H. pylori. Collectively, this is the first evidence that Notch1 is upregulated and involved in the differentiation of Th1 cells during H. pylori infection, which will facilitate exploiting Notch1 as a therapeutic target for the control of H. pylori infection.
Collapse
Affiliation(s)
- Jinling Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Affiliated Xinhui People's Hospital, Southern Medical University, Jiangmen, China
| | - Junjie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chuxi Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meiqun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bingxin Hu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Danlin Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jianbin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yanqing Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijun Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Zhang J, Jing H, Luo P, Zhang X, Zou Q. Design, implementation, and outcomes of an elective course on preliminary structural biology for undergraduate students majoring in biotechnology. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:168-174. [PMID: 31663671 DOI: 10.1002/bmb.21312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Biotechnological pharmaceuticals is a key course offered to third-year undergraduates majoring in biotechnology in our university. However, students often experience difficulties in understanding the principles of related technologies. In this study, we developed and implemented an elective course on preliminary structural biology for biotechnology undergraduates, aiming at reinforcing the principles of these technologies by experimental practice. The course was composed of three phases and lasted for 15 weeks, 18 students were randomly divided into six teams and were encouraged to design, prepare, carry out, and conclude a project on their own. The main contents of their project were cloning, expression, purification, and crystal screening of HpaA, a lipoprotein from the gastric pathogen Helicobacter pylori. Examination scores of biotechnology pharmaceuticals were used to assess learning outcomes. The results showed that students who participated in this course gained higher scores in the final examination, and they performed better on the questions specifically related to the elective course. These results demonstrated that the course enhanced students' understanding of the technologies involved in this course by practical applications. Thus, this elective course was effective in helping biotechnology undergraduates to learn the theory and application of biological technologies, and the experience gained in this course may be useful for other technology-based courses.
Collapse
Affiliation(s)
- Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Lérias JR, Paraschoudi G, de Sousa E, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Microbes as Master Immunomodulators: Immunopathology, Cancer and Personalized Immunotherapies. Front Cell Dev Biol 2020; 7:362. [PMID: 32039196 PMCID: PMC6989410 DOI: 10.3389/fcell.2019.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The intricate interplay between the immune system and microbes is an essential part of the physiological homeostasis in health and disease. Immunological recognition of commensal microbes, such as bacterial species resident in the gut or lung as well as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV), in combination with a balanced immune regulation, is central to achieve immune-protection. Emerging evidence suggests that immune responses primed to guard against commensal microbes may cause unexpected pathological outcomes, e.g., chronic inflammation and/or malignant transformation. Furthermore, translocation of immune cells from one anatomical compartment to another, i.e., the gut-lung axis via the lymphatics or blood has been identified as an important factor in perpetrating systemic inflammation, tissue destruction, as well as modulating host-protective immune responses. We present in this review immune response patterns to pathogenic as well as non-pathogenic microbes and how these immune-recognition profiles affect local immune responses or malignant transformation. We discuss personalized immunological therapies which, directly or indirectly, target host biological pathways modulated by antimicrobial immune responses.
Collapse
Affiliation(s)
- Joana R. Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - Antonio Beltrán
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
12
|
Hornburg D, Kruse T, Anderl F, Daschkin C, Semper RP, Klar K, Guenther A, Mejías-Luque R, Schneiderhan-Marra N, Mann M, Meissner F, Gerhard M. A mass spectrometry guided approach for the identification of novel vaccine candidates in gram-negative pathogens. Sci Rep 2019; 9:17401. [PMID: 31758014 PMCID: PMC6874673 DOI: 10.1038/s41598-019-53493-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
Vaccination is the most effective method to prevent infectious diseases. However, approaches to identify novel vaccine candidates are commonly laborious and protracted. While surface proteins are suitable vaccine candidates and can elicit antibacterial antibody responses, systematic approaches to define surfomes from gram-negatives have rarely been successful. Here we developed a combined discovery-driven mass spectrometry and computational strategy to identify bacterial vaccine candidates and validate their immunogenicity using a highly prevalent gram-negative pathogen, Helicobacter pylori, as a model organism. We efficiently isolated surface antigens by enzymatic cleavage, with a design of experiment based strategy to experimentally dissect cell surface-exposed from cytosolic proteins. From a total of 1,153 quantified bacterial proteins, we thereby identified 72 surface exposed antigens and further prioritized candidates by computational homology inference within and across species. We next tested candidate-specific immune responses. All candidates were recognized in sera from infected patients, and readily induced antibody responses after vaccination of mice. The candidate jhp_0775 induced specific B and T cell responses and significantly reduced colonization levels in mouse therapeutic vaccination studies. In infected humans, we further show that jhp_0775 is immunogenic and activates IFNγ secretion from peripheral CD4+ and CD8+ T cells. Our strategy provides a generic preclinical screening, selection and validation process for novel vaccine candidates against gram-negative bacteria, which could be employed to other gram-negative pathogens.
Collapse
Affiliation(s)
- Daniel Hornburg
- Max-Planck-Institute for Biochemistry, Martinsried, Germany
- Stanford University, School of Medicine, San Francisco, USA
| | - Tobias Kruse
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- ImevaX GmbH, Munich, Germany
| | - Florian Anderl
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- ImevaX GmbH, Munich, Germany
| | - Christina Daschkin
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Raphaela P Semper
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for infection research, partner site Munich, Munich, Germany
| | | | - Anna Guenther
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for infection research, partner site Munich, Munich, Germany
| | | | - Matthias Mann
- Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Felix Meissner
- Max-Planck-Institute for Biochemistry, Martinsried, Germany.
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.
- ImevaX GmbH, Munich, Germany.
- German Center for infection research, partner site Munich, Munich, Germany.
| |
Collapse
|
13
|
Guo L, Hong D, Wang S, Zhang F, Tang F, Wu T, Chu Y, Liu H, He M, Yang H, Yin R, Liu K. Therapeutic Protection Against H. pylori Infection in Mongolian Gerbils by Oral Immunization With a Tetravalent Epitope-Based Vaccine With Polysaccharide Adjuvant. Front Immunol 2019; 10:1185. [PMID: 31191547 PMCID: PMC6546824 DOI: 10.3389/fimmu.2019.01185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Urease is an effective target for design of a therapeutic epitope vaccine against Helicobacter pylori (H. pylori). In our previous studies, an epitope vaccine CTB-UE containing Th and B epitopes from H. pylori urease was constructed, and the CTB-UE vaccine could provide therapeutic effect on H. pylori infection in mice. However, a multivalent vaccine, combining different antigens participating in different aspects of H. pylori colonization and pathogenesis, may be more effective as a therapeutic vaccine than a univalent vaccine targetting urease. Therefore, a multivalent epitope vaccine FVpE, containing Th1-type immune adjuvant NAP, three selected functional fragments from CagA and VacA, and an urease multi-epitope peptide (UE) from CTB-UE, was constructed in this study and expected to obtain better sterilizing immunity than the univalent epitope vaccine CTB-UE. The therapeutic effect of multivalent epitope vaccine FVpE with polysaccharide adjuvant (PA) was evaluated in H. pylori-infected Mongolian gerbil model. The results showed that both FvpE and CTB-UE vaccine could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect on H. pylori urease activity. However, only FVpE could induce high levels of specific antibodies to CagA, VacA, and NAP. In addition, oral therapeutic immunization with FVpE plus PA significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils compared with oral immunization with CTB-UE plus PA, or FVpE only, and the FVpE vaccine with PA even exhibited sterilizing immunity. The protection of FVpE was related to the mixed CD4+ T cell responses and epitope-specific antibodies against various H. pylori antigens. These results indicate that a multivalent epitope vaccine targetting various H. pylori antigens could be a promising candidate against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dantong Hong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shue Wang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Fan Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Tao Wu
- Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuankui Chu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Meng He
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hua Yang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Runting Yin
- Center for Cell Therapy, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
14
|
Zendehdel A, Roham M. Biological evidence of the relationship between
Helicobacter pylori
and associated extragastric diseases. J Cell Biochem 2019; 120:12128-12140. [PMID: 30977160 DOI: 10.1002/jcb.28681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Abolfazl Zendehdel
- Department of Geriatric Medicine, Ziaeian Hospital Tehran University of Medical Sciences Tehran Iran
| | - Maryam Roham
- Antimicrobial‐Resistant Research Center Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Yang Y, Chen L, Sun HW, Guo H, Song Z, You Y, Yang LY, Tong YN, Gao JN, Zeng H, Yang WC, Zou QM. Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori. J Nanobiotechnology 2019; 17:6. [PMID: 30660182 PMCID: PMC6339695 DOI: 10.1186/s12951-019-0441-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection remains a global public health issue, especially in Asia. Due to the emergence of antibiotic-resistant strains and the complexity of H. pylori infection, conventional vaccination is the best way to control the disease. Our previous study found that the N-acetyl-neuroaminyllactose-binding hemagglutinin protein (HpaA) is an effective protective antigen for vaccination against H. pylori infection, and intranasal immunization with the immunodominant HpaA epitope peptide (HpaA 154-171, P22, MEGVLIPAGFIKVTILEP) in conjunction with a CpG adjuvant decreased bacterial colonization in H. pylori-infected mice. However, to confer more robust and effective protection against H. pylori infection, an optimized delivery system is needed to enhance the P22-specific memory T cell response. RESULTS In this study, an intranasal nanoemulsion (NE) delivery system offering high vaccine efficacy without obvious cytotoxicity was designed and produced. We found that this highly stable system significantly prolonged the nasal residence time and enhanced the cellular uptake of the epitope peptide, which powerfully boosted the specific Th1 responses of the NE-P22 vaccine, thus reducing bacterial colonization without CpG. Furthermore, the protection efficacy was further enhanced by combining the NE-P22 vaccine with CpG. CONCLUSION This epitope-loaded nanoemulsion delivery system was shown to extend antigen release and elicit potent Th1 response, it is an applicable delivery system for intranasal vaccine against H. pylori.
Collapse
Affiliation(s)
- Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Hong-wu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hong Guo
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ying You
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liu-yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ya-nan Tong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ji-ning Gao
- Institute of Combined Injury of PLA, College of Military Preventive Medicine, Third Military Medical University of Chinese PLA, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wu-chen Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Department of Hematology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Quan-ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Yang WC, Sun HW, Sun HQ, Yuan HM, Li B, Li HB, Hu J, Yang Y, Zou QM, Guo H, Wu C, Chen L. Intranasal immunization with immunodominant epitope peptides derived from HpaA conjugated with CpG adjuvant protected mice against Helicobacter pylori infection. Vaccine 2018; 36:6301-6306. [DOI: 10.1016/j.vaccine.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/15/2018] [Accepted: 09/01/2018] [Indexed: 01/07/2023]
|
17
|
Bagheri N, Salimzadeh L, Shirzad H. The role of T helper 1-cell response in Helicobacter pylori-infection. Microb Pathog 2018; 123:1-8. [PMID: 29936093 DOI: 10.1016/j.micpath.2018.06.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) is a human pathogen affecting over 50% of the world population. This pathogen is usually associated with chronic inflammation of the gastric mucosa that can lead to peptic ulcer disease (PUD) and gastric cancer (GC), especially in susceptible individuals. These outcomes have been attributed to the interaction of several factors, including host genetic susceptibility, local innate and adaptive immune responses, virulence factors of H. pylori, and environmental factors. T helper (Th) cell subsets and their signature cytokines especially IFN-γ, contribute to anti-bacterial response, but at the mean time sustaining chronic inflammatory responses in the site of infection. It has been acknowledged that H. pylori-infection results in a Th1-dominant response and that inflammation of the gastric mucosa depends mainly on Th1 cell responses. But, the mechanism of the role of Th1 cell responses in H. pylori-infection has not yet been clearly explained. In this review, we will focus on the role of Th1 involved in H. pylori-infection, its interaction with Th17/Treg cells and its association with the clinical consequences of the infection.
Collapse
Affiliation(s)
- Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Loghman Salimzadeh
- Department of Microbiology and Immunology Programme, National University of Singapore, Singapore
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
18
|
Ning Y, Ye J, Wen J, Wu D, Chen Z, Lin Y, Hu B, Luo M, Luo J, Ning L, Li Y. Identification of Two Lpp20 CD4 + T Cell Epitopes in Helicobacter pylori-Infected Subjects. Front Microbiol 2018; 9:884. [PMID: 29875738 PMCID: PMC5974113 DOI: 10.3389/fmicb.2018.00884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2018] [Indexed: 12/22/2022] Open
Abstract
Antigen-specific CD4+ T cells play an essential role in effective immunity against Helicobacter pylori (H. pylori) infection. Lpp20, a conserved lipoprotein of H. pylori, has been investigated as one of major protective antigens for vaccination strategies. Our previous study identified two H-2d-restricted CD4+ T cell epitopes within Lpp20 and an epitope vaccine based on these epitopes was constructed, which protected mice in prophylactic and therapeutic vaccination against H. pylori infection. Immunodominant CD4+ T cell response is an important feature of antiviral, antibacterial, and antitumor cellular immunity. However, while many immunodominant HLA-restricted CD4+ T cell epitopes of H. pylori protective antigens have been identified, immunodominant HLA-restricted Lpp20 CD4+ T cell epitope has not been elucidated. In this study, a systematic method was used to comprehensively evaluate the immunodominant Lpp20-specific CD4+ T cell response in H. pylori-infected patients. Using in vitro recombinant Lpp20 (rLpp20)-specific expanded T cell lines from H. pylori-infected subjects and 27 18mer overlapping synthetic peptides spanned the whole Lpp20 protein, we have shown that L55-72 and L79-96 harbored dominant epitopes for CD4+ T cell responses. Then the core sequence within these two 18mer dominant epitopes was screened by various extended or truncated 13mer peptides. The immunodominant epitope was mapped to L57-69 and L83-95. Various Epstein-Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCLs) with different HLA alleles were used as antigen presenting cell (APC) to present peptides to CD4+ T cells. The restriction molecules were determined by HLA class-antibody blocking. L57-69 was restricted by DRB1-1501 and L83-95 by DRB1-1602. The epitopes were recognized on autologous dendritic cells (DCs) loaded with rLpp20 but also those pulsed with whole cell lysates of H. pylori (HP-WCL), suggesting that these epitopes are naturally processed and presented by APC. CD4+ T cells were isolated from H. pylori-infected patients and stimulated with L57-69 and L83-95. These two epitopes were able to stimulate CD4+ T cell proliferation. This study may be of value for the future development of potential H. pylori vaccine.
Collapse
Affiliation(s)
- Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jianbin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junjie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Danlin Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhongbiao Chen
- Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Yanqing Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bingxin Hu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meiqun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Luo
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Hu J, Chen L, Yang W, Li B, Sun H, Wei S, He Y, Zhao Z, Yang S, Zou Q, Chen W, Guo H, Wu C. Systematic identification of immunodominant CD4+ T cell responses to HpaA in Helicobacter pylori infected individuals. Oncotarget 2018; 7:54380-54391. [PMID: 27509059 PMCID: PMC5342349 DOI: 10.18632/oncotarget.11092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
In mice, antigen-specific CD4+ T cell response is indispensible for the protective immunity against Helicobacter pylori (H. pylori). It has been demonstrated that neuraminyllactose-binding hemagglutinin (HpaA) immunization protected mice from H. pylori infection in a CD4+ T cell dependent manner. However, much remains unclear concerning the human CD4+ T cell responses to HpaA. We conducted a systematic study here to explore the immunodominant, HpaA-specific CD4+ T cell responses in H. pylori infected individuals. We found that HpaA-specific CD4+ T cell responses varied remarkably in their magnitude and had broad epitope-specificity. Importantly, the main responses focused on two regions: HpaA76-105 and HpaA130-159. The HLA-DRB1*0901 restricted HpaA142-159 specific CD4+ T cell response was the most immunodominant response at a population level. The immunodominant epitope HpaA142-159 was naturally presented and highly conserved. We also demonstrated that it was not the broad peptide specificity, but the strength of HpaA specific CD4+ T cell responses associated with gastric diseases potentially caused by H. pylori infection. Such investigation will aid development of novel vaccines against H. pylori infection.
Collapse
Affiliation(s)
- Jian Hu
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China.,Department of Intensive Care Unit, Chengdu Military General Hospital, Chengdu, PR China
| | - Li Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China.,Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Wuchen Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China.,Department of Hematology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Heqiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Shanshan Wei
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Yafei He
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Shiming Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Weisan Chen
- T Cell Laboratory, La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Hong Guo
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
20
|
Sun H, Yuan H, Tan R, Li B, Guo G, Zhang J, Jing H, Qin Y, Zhao Z, Zou Q, Wu C. Immunodominant antigens that induce Th1 and Th17 responses protect mice against Helicobacter pylori infection. Oncotarget 2018; 9:12050-12063. [PMID: 29552292 PMCID: PMC5844728 DOI: 10.18632/oncotarget.23927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori has infected more than half of the world's population, causing gastritis, gastric ulcers, gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. The oral recombinant Helicobacter pylori vaccine currently used has made great progress in addressing this problem, however, its efficacy and longevity still need to be improved. Th1 and Th17 cells play essential roles in local protection against Helicobacter pylori in the stomach mucosa. Additionally, protective immunodominant antigens are the preferred for a vaccine. In this work, Helicobacter pylori whole cell lysate was separated into 30 groups based on molecular weight by molecular sieve chromatography. The group best promoting CD4 T cells proliferation was selected and evaluated by immunization. The detail proteins were then analyzed by LC-MS/MS and expressed in Escherichia coli. Eleven proteins were selected and the dominant ones were demonstrated. As a result, three protective immunodominant antigens, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta, were selected from Helicobacter pylori whole cell. Two of them (inosine 5'-monophosphate dehydrogenase and type II citrate synthase) were newly identified, and one (urease subunit beta) was confirmed as previously reported. The mixture of the three antigens showed satisfactory protective efficiency, with significant lower H. pylori colonization level (P < 0.001) and stronger Th1 (P < 0.001) and Th17 (P < 0.001) responses than PBS control group. Thus, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta are three protective antigens inducing dominant Th1 and Th17 responses to defend against Helicobacter pylori infection.
Collapse
Affiliation(s)
- Heqiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hanmei Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Ranjing Tan
- Department of Dermatology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Gang Guo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Yi Qin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
21
|
Nezafat N, Eslami M, Negahdaripour M, Rahbar MR, Ghasemi Y. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. MOLECULAR BIOSYSTEMS 2017; 13:699-713. [PMID: 28194462 DOI: 10.1039/c6mb00772d] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Helicobacter pylori is the cunning bacterium that can live in the stomachs of many people without any symptoms, but gradually can lead to gastric cancer. Due to various obstacles, which are related to anti-H. pylori antibiotic therapy, recently developing an anti-H. pylori vaccine has attracted more attention. In this study, different immunoinformatics and computational vaccinology approaches were employed to design an efficient multi-epitope oral vaccine against H. pylori. Our multi-epitope vaccine is composed of heat labile enterotoxin IIc B (LT-IIc) that is used as a mucosal adjuvant to enhance vaccine immunogenicity for oral immunization, cartilage oligomeric matrix protein (COMP) to increase vaccine stability in acidic pH of gut, one experimentally protective antigen, OipA, and two hypothetical protective antigens, HP0487 and HP0906, and "CTGKSC" peptide motif that target epithelial microfold cells (M cells) to enhance vaccine uptake from the gut barrier. All the aforesaid segments were joined to each other by proper linkers. The vaccine construct was modeled, validated, and refined by different programs to achieve a high-quality 3D structure. The resulting high-quality model was applied for conformational B-cell epitopes selection and docking analyses with a toll-like receptor 2 (TLR2). Moreover, molecular dynamics studies demonstrated that the protein-TLR2 docked model was stable during simulation time. We believe that our vaccine candidate can induce mucosal sIgA and IgG antibodies, and Th1/Th2/Th17-mediated protective immunity that are crucial for eradicating H. pylori infection. In sum, the computational results suggest that our newly designed vaccine could serve as a promising anti-H. pylori vaccine candidate.
Collapse
Affiliation(s)
- Navid Nezafat
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Rahbar
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. and Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Chen L, Anthony A, Oveissi S, Huang M, Zanker D, Xiao K, Wu C, Zou Q, Chen W. Broad-Based CD4 + T Cell Responses to Influenza A Virus in a Healthy Individual Who Lacks Typical Immunodominance Hierarchy. Front Immunol 2017; 8:375. [PMID: 28421076 PMCID: PMC5377932 DOI: 10.3389/fimmu.2017.00375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/15/2017] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) infection is a significant cause of morbidity and mortality worldwide. CD4+ T cell responses have been shown to be important for influenza protection in mouse models and in human volunteers. IAV antigen-specific CD4+ T cell responses were found to focus on matrix 1 (M1) and nucleoprotein (NP) at the protein antigen level. At the epitope level, only several epitopes within M1 and NP were recognized by CD4+ T cells. And the epitope-specific CD4+ T cell responses showed a typical immunodominance hierarchy in most of the healthy individuals studied. In this study, we reported one case of atypical immunodominance hierarchy of CD4+ T cell responses to IAV. M1 and NP were still the immunodominant targets of CD4+ T cell responses. However, CD4+ T cell responses specific to 11 epitopes derived from M1 and NP were detected and showed no significant immunodominance hierarchy. Such an atypical pattern is likely determined by the individual's HLA alleles. These findings will help us better understand the anti-IAV immunity as a whole and improve future vaccines against IAV.
Collapse
Affiliation(s)
- Li Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China.,T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Anjaleena Anthony
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Sara Oveissi
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Miaojuan Huang
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Damien Zanker
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Kun Xiao
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- T Cell Laboratory, School of Molecular Science, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
23
|
Matsuo Y, Kido Y, Akada J, Shiota S, Binh TT, Trang TTH, Dung HDQ, Tung PH, Tri TD, Thuan NPM, Tam LQ, Nam BC, Khien VV, Yamaoka Y. Novel CagA ELISA exhibits enhanced sensitivity of Helicobacter pylori CagA antibody. World J Gastroenterol 2017; 23:48-59. [PMID: 28104980 PMCID: PMC5221286 DOI: 10.3748/wjg.v23.i1.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/03/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To develop a novel Helicobacter pylori (H. pylori) CagA antibody enzyme-linked immunosorbent assay (ELISA) suitable for detecting serum anti-CagA antibodies with high sensitivity.
METHODS Recombinant East Asian-type CagA protein was purified and immobilized for ELISA. Serum samples from 217 Vietnamese individuals (110 H. pylori-infected and 107 uninfected individuals) were applied. Conventional ELISA from Western-type CagA and our East Asian-type CagA ELISA were evaluated by comparing 38 subjects with the Western-type genotype and 72 subjects with the East Asian-type cagA genotype. Histological scores of the gastric mucosa were determined using the updated Sydney System to examine the relationship with anti-CagA antibody titers.
RESULTS Recombinant 70-100 kDa fragments were immobilized on the ELISA plate. In ROC analysis, the area under the curve of our East Asian-type CagA ELISA was comparable to that of conventional CagA ELISA. The sensitivity of the two ELISAs differed depending on the cagA genotype. The sensitivity of East Asian-type CagA ELISA was higher for subjects infected with East Asian-type cagA H. pylori (P < 0.001), and the sensitivity of the conventional CagA ELISA tended to be higher for subjects infected with Western cagA H. pylori (P = 0.056). The titer of anti-CagA antibody tended to correlate with monocyte infiltration scores (r = 0.25, P = 0.058) and was inversely correlated with H. pylori density (r = -0.26, P = 0.043).
CONCLUSION The novel ELISA is useful to detect anti-CagA antibodies in East Asian countries, and the titer may be a marker for predicting chronic gastritis.
Collapse
|
24
|
Interferon-based hepatitis C therapy in a safety net hospital: access, efficacy, and safety. Eur J Gastroenterol Hepatol 2017; 29:10-16. [PMID: 27755117 DOI: 10.1097/meg.0000000000000755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS This study assesses the efficacy, accessibility, and safety of hepatitis C virus (HCV) treatment in a safety net hospital population. METHODS Patients at Denver Health receiving pegylated interferon for HCV infection between 2008 and 2012 were included in this retrospective study. Sociodemographic, biochemical, and virologic data were collected on each patient. The primary outcomes were the rate of sustained virologic response and early treatment discontinuation, with reason for discontinuation documented. Multivariable analyses were performed to identify factors associated with the primary outcomes. RESULTS Detectable HCV antibodies were found in 2912 patients, and 1630 had a detectable viral load. Eighty percent of these patients were uninsured/underinsured. Only 46% were seen in the hepatology clinic, and 8% received interferon-based HCV treatment. Of the 125 patients treated with interferon-containing regimens, 54% had genotype 1 infection. The overall rate of sustained virologic response (SVR) was 47%. Rapid virologic response, low FIB-4 score combined with age, and increasing number of days on therapy were associated with SVR in multivariable analysis. Therapy was prematurely discontinued in 43% of patients related to being lost to follow-up (30%), null response (24%), and intolerance to pegylated interferon/ribavirin (24%). Genotype 1 infection and unfavorable viral kinetics were associated with premature treatment discontinuation in multivariable analysis. There were no statistically significant associations between age, sex, ethnicity, race, diabetes, BMI, psychiatric comorbidities, income, employment status, homelessness, or insurance status and the primary outcomes. CONCLUSION An acceptable SVR rate is achievable in a safety net patient population. Addressing the barriers to care will be paramount when using direct-acting antivirals.
Collapse
|
25
|
Yang HJ, Zhang JY, Wei C, Yang LY, Zuo QF, Zhuang Y, Feng YJ, Srinivas S, Zeng H, Zou QM. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection. PLoS One 2016; 11:e0149638. [PMID: 26895191 PMCID: PMC4764517 DOI: 10.1371/journal.pone.0149638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/03/2016] [Indexed: 12/15/2022] Open
Abstract
Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d) crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine.
Collapse
Affiliation(s)
- Hui-Jie Yang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Jin-Yong Zhang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Chao Wei
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Liu-Yang Yang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Qian-Fei Zuo
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Yuan Zhuang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - You-Jun Feng
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Swaminath Srinivas
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, United States of America
| | - Hao Zeng
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
- * E-mail: (HZ); (QMZ)
| | - Quan-Ming Zou
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
- * E-mail: (HZ); (QMZ)
| |
Collapse
|
26
|
Yang J, Dai LX, Pan X, Wang H, Li B, Zhu J, Li MY, Shi XL, Wang BN. Protection against Helicobacter pylori infection in BALB/c mice by oral administration of multi-epitope vaccine of CTB-UreI-UreB. Pathog Dis 2015; 73:ftv026. [PMID: 25846576 DOI: 10.1093/femspd/ftv026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2015] [Indexed: 12/26/2022] Open
Abstract
Chronic gastric infection by the Gram-negative bacterium Helicobacter pylori (H. pylori) is strongly associated with gastritis, gastric ulcer and the development of distal gastric carcinoma and gastric mucosal lymphoma in humans. Antibiotic treatment of H. pylori is becoming less effective because of increasing antibiotic resistance; other treatment approaches such as specifically targeted methods, etc. to destroy this organism would be beneficial. An epitope vaccine is a promising option for protection against H. pylori infection. In this study, a multi-epitope vaccine was constructed by linking cholera toxin B subunit (CTB), two antigenic fragments of H. pylori urease I subunit (UreI20-29, UreI98-107) and four antigenic fragments of H. pylori urease B subunit (UreB12-23, UreB229-251, UreB327-400, UreB515-561), resulting in the recombinant CTB-UreI-UreB (BIB). Its protective effect against H. pylori infection was evaluated in BALB/c mice. Significant protection against H. pylori challenge was achieved in BALB/c mice immunized with BIB (15/18, 83.3%), rIB plus rCTB (6/18, 33.3%) and rIB (2/18, 11.1%) separately, while no protective effect was found in the mice immunized with either adjuvant rCTB alone or PBS. The induction of significant protection against H. pylori is possibly mediated by specific serum IgA and mucosal sIgA antibodies, and a mixed Th1/Th2/Th17 cells response. This multi-epitope vaccine might be a promising vaccine candidate that helps to control H. pylori infection.
Collapse
Affiliation(s)
- Jing Yang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China Sichuan Vaccine Technology Co. Ltd, Chengdu, Sichuan 610041, People's Republic of China Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Lv-xia Dai
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China Experiment Teaching Center of Clinical Medicine, Chengdu College of Medicine, Chengdu, Sichuan 610500, People's Republic of China
| | - Xing Pan
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China Sichuan Vaccine Technology Co. Ltd, Chengdu, Sichuan 610041, People's Republic of China
| | - Hongren Wang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Bei Li
- Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Jie Zhu
- Sichuan Vaccine Technology Co. Ltd, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming-yuan Li
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xin-Li Shi
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, People's Republic of China
| | - Bao-ning Wang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
27
|
Price JC, Murphy RC, Shvachko VA, Pauly MP, Manos MM. Effectiveness of telaprevir and boceprevir triple therapy for patients with hepatitis C virus infection in a large integrated care setting. Dig Dis Sci 2014; 59:3043-52. [PMID: 25102983 PMCID: PMC4237658 DOI: 10.1007/s10620-014-3294-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/13/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND In 2011, the FDA approved telaprevir (TVR) and boceprevir (BOC) for use with pegylated interferon and ribavirin to treat hepatitis C virus (HCV) genotype 1. We aimed to evaluate the real-world application, tolerability, and effectiveness of TVR- and BOC-based HCV treatment in a large integrated care setting. METHODS We utilized Northern California Kaiser Permanente Medical Care Program (KPNC) electronic databases and medical records to study the experience of all KPNC patients who initiated TVR or BOC from June 2011 to March 2012. RESULTS Compared with the pool of 5,194 treatment-eligible patients, the 352 treatment initiators were more likely to be cirrhotic (24 vs. 10%, p < 0.001) and treatment-experienced (44 vs. 22%, p < 0.001). Among the treatment initiators, 211 received TVR and 141 BOC. Overall, 31% discontinued treatment prematurely; 16% of patients stopped treatment early because of side effects. One patient with cirrhosis died of sepsis during treatment. Premature discontinuation was highest among TVR-treated cirrhotic patients (58%). Sustained virologic response (SVR) was achieved in 55% overall and was similar comparing the TVR (56%)- and BOC (53%)-treated groups. The only independent predictors of treatment failure were cirrhosis at baseline [odds ratio (OR) for SVR 0.44, p = 0.004] and prior partial or null response (OR for SVR 0.57, p = 0.02). CONCLUSIONS In the initial application of TVR and BOC, patients with cirrhosis and prior treatment failure were prioritized for treatment. In this real-world experience, most patients successfully completed a full treatment course. However, side effect-related premature discontinuations were common, and SVR rates were lower than reported in clinical trials.
Collapse
Affiliation(s)
- Jennifer C. Price
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Francisco, San Francisco, California, United States
| | - Rosemary C. Murphy
- Viral Hepatitis Registry, Division of Research, Kaiser Permanente Northern California, Oakland, California, United States
| | - Valentina A. Shvachko
- Viral Hepatitis Registry, Division of Research, Kaiser Permanente Northern California, Oakland, California, United States
| | - Mary Pat Pauly
- Viral Hepatitis Registry, Division of Research, Kaiser Permanente Northern California, Oakland, California, United States
| | - M. Michele Manos
- Viral Hepatitis Registry, Division of Research, Kaiser Permanente Northern California, Oakland, California, United States
| |
Collapse
|
28
|
Immunodominant CD4+ T-cell responses to influenza A virus in healthy individuals focus on matrix 1 and nucleoprotein. J Virol 2014; 88:11760-73. [PMID: 25078703 DOI: 10.1128/jvi.01631-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen-specific CD4(+) T cells are essential for effective virus-specific host responses, with recent human challenge studies (in volunteers) establishing their importance for influenza A virus (IAV)-specific immunity. However, while many IAV CD4(+) T cell epitopes have been identified, few are known to stimulate immunodominant CD4(+) T cell responses. Moreover, much remains unclear concerning the major antigen(s) responded to by the human CD4(+) T cells and the extents and magnitudes of these responses. We initiated a systematic screen of immunodominant CD4(+) T cell responses to IAV in healthy individuals. Using in vitro expanded-multispecificity IAV-specific T cell lines and individual IAV protein antigens produced by recombinant vaccinia viruses, we found that the internal matrix protein 1 (M1) and nucleoprotein (NP) were the immunodominant targets of CD4(+) T cell responses. Ten epitopes derived from M1 and NP were definitively characterized. Furthermore, epitope sequence conservation analysis established that immunodominance correlated with an increased frequency of mutations, reflecting the fact that these prominent epitopes are under greater selective pressure. Such evidence that particular CD4(+) T cells are important for protection/recovery is of value for the development of novel IAV vaccines and for our understanding of different profiles of susceptibility to these major pathogens. Importance: Influenza virus causes half a million deaths annually. CD4(+) T cell responses have been shown to be important for protection against influenza and for recovery. CD4(+) T cell responses are also critical for efficient CD8(+) T cell response and antibody response. As immunodominant T cells generally play a more important role, characterizing these immunodominant responses is critical for influenza vaccine development. We show here that the internal matrix protein 1 (M1) and nucleoprotein (NP), rather than the surface proteins reported previously, are the immunodominant targets of CD4(+) T cell responses. Interestingly, these immunodominant epitope regions accumulated many mutations over time, which likely indicates increased immune pressure. These findings have significant implications for the design of T cell-based influenza vaccines.
Collapse
|
29
|
Zhang S, Desrosiers J, Aponte-Pieras JR, DaSilva K, Fast LD, Terry F, Martin WD, De Groot AS, Moise L, Moss SF. Human immune responses to H. pylori HLA Class II epitopes identified by immunoinformatic methods. PLoS One 2014; 9:e94974. [PMID: 24740005 PMCID: PMC3989244 DOI: 10.1371/journal.pone.0094974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/21/2014] [Indexed: 12/30/2022] Open
Abstract
H. pylori persists in the human stomach over decades and promotes several adverse clinical sequelae including gastritis, peptic ulcers and gastric cancer that are linked to the induction and subsequent evasion of chronic gastric inflammation. Emerging evidence indicates that H. pylori infection may also protect against asthma and some other immune-mediated conditions through regulatory T cell effects outside the stomach. To characterize the complexity of the CD4+ T cell response generated during H. pylori infection, computational methods were previously used to generate a panel of 90 predicted epitopes conserved among H. pylori genomes that broadly cover HLA Class II diversity for maximum population coverage. Here, these sequences were tested individually for their ability to induce in vitro responses in peripheral blood mononuclear cells by interferon-γ ELISpot assay. The average number of spot-forming cells/million PBMCs was significantly elevated in H. pylori-infected subjects over uninfected persons. Ten of the 90 peptides stimulated IFN-γ secretion in the H. pylori-infected group only, whereas two out of the 90 peptides elicited a detectable IFN-γ response in the H. pylori-uninfected subjects but no response in the H. pylori-infected group. Cytokine ELISA measurements performed using in vitro PBMC culture supernatants demonstrated significantly higher levels of TNF-α, IL-2, IL-4, IL-6, IL-10, and TGF-β1 in the H. pylori-infected subjects, whereas IL-17A expression was not related to the subjects H. pylori-infection status. Our results indicate that the human T cell responses to these 90 peptides are generally increased in actively H. pylori-infected, compared with H. pylori-naïve, subjects. This information will improve understanding of the complex immune response to H. pylori, aiding rational epitope-driven vaccine design as well as helping identify other H. pylori epitopes with potentially immunoregulatory effects.
Collapse
Affiliation(s)
- Songhua Zhang
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Joseph Desrosiers
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Jose R. Aponte-Pieras
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Kristen DaSilva
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Loren D. Fast
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
- Division of Hematology and Oncology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Frances Terry
- EpiVax, Inc., Providence, Rhode Island, United States of America
| | | | - Anne S. De Groot
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
- EpiVax, Inc., Providence, Rhode Island, United States of America
| | - Leonard Moise
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
- EpiVax, Inc., Providence, Rhode Island, United States of America
| | - Steven F. Moss
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
30
|
Pachathundikandi SK, Tegtmeyer N, Backert S. Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 2013; 4:454-74. [PMID: 24280762 PMCID: PMC3928158 DOI: 10.4161/gmic.27001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Helicobacter pylori infections can induce pathologies ranging from chronic gastritis, peptic ulceration to gastric cancer. Bacterial isolates harbor numerous well-known adhesins, vacuolating cytotoxin VacA, protease HtrA, urease, peptidoglycan, and type IV secretion systems (T4SS). It appears that H. pylori targets more than 40 known host protein receptors on epithelial or immune cells. A series of T4SS components such as CagL, CagI, CagY, and CagA can bind to the integrin α 5β 1 receptor. Other targeted membrane-based receptors include the integrins αvβ 3, αvβ 5, and β 2 (CD18), RPTP-α/β, GP130, E-cadherin, fibronectin, laminin, CD46, CD74, ICAM1/LFA1, T-cell receptor, Toll-like receptors, and receptor tyrosine kinases EGFR, ErbB2, ErbB3, and c-Met. In addition, H. pylori is able to activate the intracellular receptors NOD1, NOD2, and NLRP3 with important roles in innate immunity. Here we review the interplay of various bacterial factors with host protein receptors. The contribution of these interactions to signal transduction and pathogenesis is discussed.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This review focuses on new aspects of recently published guidelines for the management of Helicobacter pylori infection as well as progress in diagnostic tests and treatment regimens. We also discuss new strategies for gastric cancer prevention. RECENT FINDINGS The general recommendation to treat H. pylori infection whenever diagnosed still faces resistance for reasons that are pertinent to the diversity of related clinical outcomes and to the complexity of eradication regimens. Thus, new updated guidelines for the management of H. pylori infection have been released in several continents. Progress has been made in molecular diagnostic tests for the detection of antibiotic resistance and serological tests for the detection of advanced gastric atrophic changes. Effective quadruple therapies in various combinations of 'traditional drugs' have been introduced with sequential or concomitant order of administration. Moreover, traditional drugs in a new galenic formulation have been introduced to overcome increasing H. pylori antibiotic resistance. Effective strategies for gastric cancer prevention have been adopted in some countries with high gastric cancer incidence, and have successfully contributed to lower the gastric cancer incidence. A screen-and-treat strategy for individuals at increased risk for gastric cancer needs to be further explored also in areas with low/moderate incidence of gastric cancer. SUMMARY New guidelines share many universal similarities across countries but respect and emphasize specific needs and requirements in individual communities. Various combinations of traditional drugs have been successfully introduced to overcome the increasing H. pylori antibiotic resistance. Gastric cancer prevention by a screen and treat strategy showed promising results.
Collapse
|
32
|
De Groot AS, Einck L, Moise L, Chambers M, Ballantyne J, Malone RW, Ardito M, Martin W. Making vaccines "on demand": a potential solution for emerging pathogens and biodefense? Hum Vaccin Immunother 2013; 9:1877-84. [PMID: 23877094 PMCID: PMC3906351 DOI: 10.4161/hv.25611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/18/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
The integrated US Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) has made great strides in strategic preparedness and response capabilities. There have been numerous advances in planning, biothreat countermeasure development, licensure, manufacturing, stockpiling and deployment. Increased biodefense surveillance capability has dramatically improved, while new tools and increased awareness have fostered rapid identification of new potential public health pathogens. Unfortunately, structural delays in vaccine design, development, manufacture, clinical testing and licensure processes remain significant obstacles to an effective national biodefense rapid response capability. This is particularly true for the very real threat of "novel pathogens" such as the avian-origin influenzas H7N9 and H5N1, and new coronaviruses such as hCoV-EMC. Conventional approaches to vaccine development, production, clinical testing and licensure are incompatible with the prompt deployment needed for an effective public health response. An alternative approach, proposed here, is to apply computational vaccine design tools and rapid production technologies that now make it possible to engineer vaccines for novel emerging pathogen and WMD biowarfare agent countermeasures in record time. These new tools have the potential to significantly reduce the time needed to design string-of-epitope vaccines for previously unknown pathogens. The design process-from genome to gene sequence, ready to insert in a DNA plasmid-can now be accomplished in less than 24 h. While these vaccines are by no means "standard," the need for innovation in the vaccine design and production process is great. Should such vaccines be developed, their 60-d start-to-finish timeline would represent a 2-fold faster response than the current standard.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, Inc.; Providence, RI USA
- Institute for Immunology and Informatics; University of Rhode Island; Providence, RI USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Over the last decades, it has become evident that chronic infection by Helicobacter pylori is achieved by colonizing an almost exclusive niche and hiding from many of the host's cellular immune defense mechanisms. Although recent years have seen progress in our understanding of the innate and adaptive immune response against H. pylori, it is still uncertain how to promote the development of immunity with the final goal of a successful vaccine. Research published in the last year revealed an intriguing mutual regulation of innate response mechanisms of mucosal epithelial cells by the host and H. pylori, respectively. A further focus was put on the interaction between H. pylori and dendritic cells, with some emphasis on the inflammasome and the resulting T-cell responses. Moreover, the function of microRNAs in macrophages and gastric MALT lymphoma development has been studied in more detail. Several novel antigens and adjuvants have been tested as vaccination strategies, primarily in mice. In this review, we present a concise summary of advances in the area of inflammation, immunity, and vaccines during the last twelve months.
Collapse
Affiliation(s)
- Manuel Koch
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | |
Collapse
|