1
|
Younossi ZM, Kremer AE, Swain MG, Jones D, Bowlus C, Trauner M, Henry L, Gerber L. Assessment of fatigue and its impact in chronic liver disease. J Hepatol 2024; 81:726-742. [PMID: 38670320 DOI: 10.1016/j.jhep.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Patient-reported outcomes (PROs), such as health-related quality of life (HRQL), are important outcome measures for patients with chronic liver diseases (CLDs). Presence of cirrhosis and advanced liver disease have been associated with worsened HRQL and fatigue. On the other hand, some patients with earlier stages of CLD also experience fatigue, causing PRO impairment. Treatment for some CLDs may improve HRQL and, sometimes, levels of fatigue. We aimed to provide an in-depth expert review of concepts related to fatigue and HRQL in patients with primary biliary cholangitis, hepatitis C virus and MASLD (metabolic dysfunction-associated steatotic liver disease). A panel of experts in fatigue and CLD reviewed and discussed the literature and collaborated to provide this expert review of fatigue in CLD. Herein, we review and report on the complexity of fatigue, highlighting that it is comprised of peripheral (neuromuscular failure, often in conjunction with submaximal cardiorespiratory function) and central (central nervous system dysfunction) causes. Fatigue and HRQL are measured using validated self-report instruments. Additionally, fatigue can be measured through objective tests (e.g. grip strength). Fatigue has deleterious effects on HRQL and one's ability to be physically active and socially engaged but does not always correlate with CLD severity. Treatments for hepatitis C virus and MASLD can improve levels of fatigue and HRQL, but current treatments for primary biliary cholangitis do not seem to affect levels of fatigue. We conclude that obtaining PRO data, including on HRQL and fatigue, is essential for determining the comprehensive burden of CLD and its potential treatments.
Collapse
Affiliation(s)
- Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA; The Global Liver Council, Washington DC, USA.
| | - Andreas E Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Mark G Swain
- Professor of Medicine, Cal Wenzel Family Foundation Chair in Hepatology, University of Calgary Liver Unit, Calgary, Canada
| | - David Jones
- Professor of Liver Immunology, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher Bowlus
- Lena Valente Professor and Chief, Division of Gastroenterology and Hepatology, University of California Davis, United States
| | - Michael Trauner
- Div. of Gastroenterology & Hepatology, Dept. of Internal Medicine III, MedUni Wien, Medical University of Vienna, Austria
| | - Linda Henry
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA; The Global Liver Council, Washington DC, USA; Center for Outcomes Research in Liver Diseases, Washington DC, USA
| | - Lynn Gerber
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA; The Global Liver Council, Washington DC, USA
| |
Collapse
|
2
|
Hawwari I, Rossnagel L, Rosero N, Maasewerd S, Vasconcelos MB, Jentzsch M, Demczuk A, Teichmann LL, Meffert L, Bertheloot D, Ribeiro LS, Kallabis S, Meissner F, Arditi M, Atici AE, Noval Rivas M, Franklin BS. Platelet transcription factors license the pro-inflammatory cytokine response of human monocytes. EMBO Mol Med 2024; 16:1901-1929. [PMID: 38977927 PMCID: PMC11319489 DOI: 10.1038/s44321-024-00093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
In humans, blood Classical CD14+ monocytes contribute to host defense by secreting large amounts of pro-inflammatory cytokines. Their aberrant activity causes hyper-inflammation and life-threatening cytokine storms, while dysfunctional monocytes are associated with 'immunoparalysis', a state of immune hypo responsiveness and reduced pro-inflammatory gene expression, predisposing individuals to opportunistic infections. Understanding how monocyte functions are regulated is critical to prevent these harmful outcomes. We reveal platelets' vital role in the pro-inflammatory cytokine responses of human monocytes. Naturally low platelet counts in patients with immune thrombocytopenia or removal of platelets from healthy monocytes result in monocyte immunoparalysis, marked by impaired cytokine response to immune challenge and weakened host defense transcriptional programs. Remarkably, supplementing monocytes with fresh platelets reverses these conditions. We discovered that platelets serve as reservoirs of key cytokine transcription regulators, such as NF-κB and MAPK p38, and pinpointed the enrichment of platelet NF-κB2 in human monocytes by proteomics. Platelets proportionally restore impaired cytokine production in human monocytes lacking MAPK p38α, NF-κB p65, and NF-κB2. We uncovered a vesicle-mediated platelet-monocyte-propagation of inflammatory transcription regulators, positioning platelets as central checkpoints in monocyte inflammation.
Collapse
Affiliation(s)
- Ibrahim Hawwari
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
| | - Lukas Rossnagel
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nathalia Rosero
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Salie Maasewerd
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Marius Jentzsch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Agnieszka Demczuk
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lino L Teichmann
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Lisa Meffert
- Department of Medicine III, University Hospital Bonn, Bonn, Germany
| | - Damien Bertheloot
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lucas S Ribeiro
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sebastian Kallabis
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Felix Meissner
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asli E Atici
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Almishri W, Altonsy MO, Swain MG. Cholestatic liver disease leads to significant adaptative changes in neural circuits regulating social behavior in mice to enhance sociability. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167100. [PMID: 38412926 DOI: 10.1016/j.bbadis.2024.167100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND & AIMS Cholestatic liver diseases (CLD) are commonly associated with behavioral changes, including social isolation, that negatively affects patient quality of life and remains unaltered by current therapies. It remains unclear whether CLD-associated social dysfunction stems from a direct effect on the brain, or from the psychological impact of CLD. The psychological component of disease is absent in animals, so we investigated the impact of CLD on social behavior and gene expression profiles in key social behavior-regulating brain regions in a mouse model. METHODS CLD due to bile duct ligation was used with the three-chamber sociability test for behavioral phenotyping. Differentially expressed gene (DEG) signatures were delineated in 3 key brain regions regulating social behavior using RNA-seq. Ingenuity Pathway Analysis (IPA®) was applied to streamline DEG data interpretation and integrate findings with social behavior-regulating pathways to identify important brain molecular networks and regulatory mechanisms disrupted in CLD. RESULTS CLD mice exhibited enhanced social interactive behavior and significantly altered gene expression in each of the three social behavior-regulating brain regions examined. DEG signatures in BDL mice were associated with key IPA®-identified social behavior-regulating pathways including Oxytocin in Brain Signaling, GABA Receptor Signaling, Dopamine Receptor Signaling, and Glutamate Receptor Signaling. CONCLUSIONS CLD causes complex alterations in gene expression profiles in key social behavior-regulating brain areas/pathways linked to enhanced social interactive behavior. These findings, if paralleled in CLD patients, suggest that CLD-associated reductions in social interactions predominantly relate to psychological impacts of disease and may inform new approaches to improve management.
Collapse
Affiliation(s)
- Wagdi Almishri
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Mohammed O Altonsy
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mark G Swain
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; University of Calgary Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Panzer B, Kopp CW, Neumayer C, Koppensteiner R, Jozkowicz A, Poledniczek M, Gremmel T, Jilma B, Wadowski PP. Toll-like Receptors as Pro-Thrombotic Drivers in Viral Infections: A Narrative Review. Cells 2023; 12:1865. [PMID: 37508529 PMCID: PMC10377790 DOI: 10.3390/cells12141865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptors (TLRs) have a critical role in the pathogenesis and disease course of viral infections. The induced pro-inflammatory responses result in the disturbance of the endovascular surface layer and impair vascular homeostasis. The injury of the vessel wall further promotes pro-thrombotic and pro-coagulatory processes, eventually leading to micro-vessel plugging and tissue necrosis. Moreover, TLRs have a direct role in the sensing of viruses and platelet activation. TLR-mediated upregulation of von Willebrand factor release and neutrophil, as well as macrophage extra-cellular trap formation, further contribute to (micro-) thrombotic processes during inflammation. The following review focuses on TLR signaling pathways of TLRs expressed in humans provoking pro-thrombotic responses, which determine patient outcome during viral infections, especially in those with cardiovascular diseases.
Collapse
Affiliation(s)
- Benjamin Panzer
- Department of Cardiology, Wilhelminenspital, 1090 Vienna, Austria
| | - Christoph W Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicja Jozkowicz
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Medical Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gremmel
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patricia P Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Claeys W, Van Hoecke L, Lernout H, De Nolf C, Van Imschoot G, Van Wonterghem E, Verhaege D, Castelein J, Geerts A, Van Steenkiste C, Vandenbroucke RE. Experimental hepatic encephalopathy causes early but sustained glial transcriptional changes. J Neuroinflammation 2023; 20:130. [PMID: 37248507 DOI: 10.1186/s12974-023-02814-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of liver cirrhosis, associated with high morbidity and mortality, for which no brain-targeted therapies exist at present. The interplay between hyperammonemia and inflammation is thought to drive HE development. As such, astrocytes, the most important ammonia-metabolizing cells in the brain, and microglia, the main immunomodulatory cells in the brain, have been heavily implicated in HE development. As insight into cellular perturbations driving brain pathology remains largely elusive, we aimed to investigate cell-type specific transcriptomic changes in the HE brain. In the recently established mouse bile duct ligation (BDL) model of HE, we performed RNA-Seq of sorted astrocytes and microglia at 14 and 28 days after induction. This revealed a marked transcriptional response in both cell types which was most pronounced in microglia. In both cell types, pathways related to inflammation and hypoxia, mechanisms commonly implicated in HE, were enriched. Additionally, astrocytes exhibited increased corticoid receptor and oxidative stress signaling, whereas microglial transcriptome changes were linked to immune cell attraction. Accordingly, both monocytes and neutrophils accumulated in the BDL mouse brain. Time-dependent changes were limited in both cell types, suggesting early establishment of a pathological phenotype. While HE is often considered a unique form of encephalopathy, astrocytic and microglial transcriptomes showed significant overlap with previously established gene expression signatures in other neuroinflammatory diseases like septic encephalopathy and stroke, suggesting common pathophysiological mechanisms. Our dataset identifies key molecular mechanisms involved in preclinical HE and provides a valuable resource for development of novel glial-directed therapeutic strategies.
Collapse
Affiliation(s)
- Wouter Claeys
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Liver Research Center Ghent, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Hannah Lernout
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- IBD Research Unit, Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
| | - Clint De Nolf
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
| | - Griet Van Imschoot
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Elien Van Wonterghem
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Daan Verhaege
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Jonas Castelein
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Liver Research Center Ghent, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, Antwerp University, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation. Sci Rep 2022; 12:17558. [PMID: 36266427 PMCID: PMC9585018 DOI: 10.1038/s41598-022-22423-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of chronic liver disease, characterized by an altered mental state and hyperammonemia. Insight into the brain pathophysiology of HE is limited due to a paucity of well-characterized HE models beyond the rat bile duct ligation (BDL) model. Here, we assess the presence of HE characteristics in the mouse BDL model. We show that BDL in C57Bl/6j mice induces motor dysfunction, progressive liver fibrosis, liver function failure and hyperammonemia, all hallmarks of HE. Swiss mice however fail to replicate the same phenotype, underscoring the importance of careful strain selection. Next, in-depth characterisation of metabolic disturbances in the cerebrospinal fluid of BDL mice shows glutamine accumulation and transient decreases in taurine and choline, indicative of brain ammonia overload. Moreover, mouse BDL induces glial cell dysfunction, namely microglial morphological changes with neuroinflammation and astrocyte reactivity with blood-brain barrier (BBB) disruption. Finally, we identify putative novel mechanisms involved in central HE pathophysiology, like bile acid accumulation and tryptophan-kynurenine pathway alterations. Our study provides the first comprehensive evaluation of a mouse model of HE in chronic liver disease. Additionally, this study further underscores the importance of neuroinflammation in the central effects of chronic liver disease.
Collapse
|
7
|
Avgustinovich DF, Tenditnik MV, Bondar NP, Marenina MK, Zhanaeva SY, Lvova MN, Katokhin AV, Pavlov KS, Evseenko VI, Tolstikova TG. Behavioral effects and inflammatory markers in the brain and periphery after repeated social defeat stress burdened by Opisthorchis felineus infection in mice. Physiol Behav 2022; 252:113846. [PMID: 35594930 DOI: 10.1016/j.physbeh.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
The combination of 4-week repeated social defeat stress (RSDS) and Opisthorchis felineus infection was modeled in C57BL/6 mice. Various parameters were compared between three experimental groups of male mice (SS: mice subjected to RSDS, OF: mice infected with O. felineus, and OF + SS: mice subjected to both adverse factors) and behavior-tested and intact (INT) controls. The combination caused liver hypertrophy and increased the blood level of proinflammatory cytokine interleukin 6 and proteolytic activity of cathepsin B in the hippocampus. Meanwhile, hypertrophy of the spleen and of adrenal glands was noticeable. Anxious behavior in the elevated plus-maze test was predominantly due to the infection, with synergistic effects of an interaction of the two adverse factors on multiple parameters in OF + SS mice. Depression-like behavior in the forced swimming test was caused only by RSDS and was equally pronounced in SS mice and OF + SS mice. Helminths attenuated the activities of cathepsin B in the liver and hypothalamus (which were high in SS mice) and increased cathepsin L activity in the liver. The highest blood level of corticosterone was seen in SS mice but was decreased to control levels by the trematode infection. OF mice had the lowest level of corticosterone, comparable to that in INT mice. Thus, the first data were obtained on the ability of O. felineus helminths-even at the immature stage-to modulate the effects of RSDS, thereby affecting functional connections of the host, namely "helminths → liver↔brain axis."
Collapse
Affiliation(s)
- Damira F Avgustinovich
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia; Group of Mechanochemistry of Organic Substances, Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk, Russia.
| | - Mikhail V Tenditnik
- Laboratory of Experimental Models of Neurodegenerative Processes, Scientific-Research Institute of Neurosciences and Medicine, SB RAS, Novosibirsk, Russia
| | - Natalia P Bondar
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Mariya K Marenina
- Department of Medicinal Chemistry, Laboratory of Pharmacological Research, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| | - Svetlana Ya Zhanaeva
- Department of Psychoneuroimmunology, Scientific-Research Institute of Neurosciences and Medicine, SB RAS, Novosibirsk, Russia
| | - Maria N Lvova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia
| | - Alexey V Katokhin
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia
| | - Konstantin S Pavlov
- Laboratory of Experimental Models of Neurodegenerative Processes, Scientific-Research Institute of Neurosciences and Medicine, SB RAS, Novosibirsk, Russia
| | - Veronica I Evseenko
- Group of Mechanochemistry of Organic Substances, Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk, Russia
| | - Tatiana G Tolstikova
- Department of Medicinal Chemistry, Laboratory of Pharmacological Research, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| |
Collapse
|
8
|
Clinical Significance of PAC-1, CD62P, and Platelet-Leukocyte Aggregates in Acute Ischemic Stroke. Bull Exp Biol Med 2022; 172:543-548. [DOI: 10.1007/s10517-022-05429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 10/18/2022]
|
9
|
Cai J, Wu J, Fang S, Liu S, Wang T, Li Y, Zou J, Shi R, Wang Z, Yang L, Ma Y. Cultured bear bile powder ameliorates acute liver injury in cholestatic mice via inhibition of hepatic inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114829. [PMID: 34763041 DOI: 10.1016/j.jep.2021.114829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural bear bile powder (NBBP) is a traditional Chinese medicine used for treating liver dysfunction. Cultured bear bile powder (CBBP), which is produced using biotransformation of chicken bile, acts as an appropriate substitute for NBBP when treating cholestatic liver injury. AIM OF THE STUDY To investigate the molecular mechanisms underlying the hepatoprotective effects of CBBP in an α-naphthylisothiocyanate (ANIT)-induced cholestatic mouse model. MATERIALS AND METHODS Cholestatic mice were pretreated with CBBP or NBBP via oral gavage once a day for two weeks. Their blood biochemistry and liver histopathology were then evaluated using standard protocols. Western blot analyses, real-time polymerase chain reaction, and immunohistochemistry were used to evaluate changes in the protein levels and gene expression profiles of factors associated with hepatic inflammation and apoptosis in cholestatic mice. RESULTS CBBP significantly decreased the serum indices of liver injury, and ameliorated neutrophil infiltration and hepatocyte necrosis within liver tissue of cholestatic mice. Expression of the inflammatory factors, such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, monocyte chemoattractant protein-1, and intercellular adhesion molecule 1, was significantly reduced in CBBP-treated cholestatic mice. Moreover, proteins involved in the toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-kappa B (TLR4/Myd88/NF-κB) signaling pathway, such as CD14, TLR4, Myd88, and NF-κB, that were increased in cholestatic mice, were downregulated by CBBP. Meanwhile, increased expression of the apoptosis-related proteins, caspase-3 and Bax, in cholestatic mice was reversed by CBBP treatment. CONCLUSION CBBP treatment alleviates ANIT-induced cholestasis and liver injury by reducing hepatocyte inflammation and apoptosis.
Collapse
Affiliation(s)
- Jingyi Cai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Su Fang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoyong Liu
- Shanghai Kai Bao Pharmaceutical CO. Ltd., Shanghai, 201401, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Juan Zou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Yang
- Center for Traditional Chinese Medicine of Complexity Systems, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Claeys W, Van Hoecke L, Lefere S, Geerts A, Verhelst X, Van Vlierberghe H, Degroote H, Devisscher L, Vandenbroucke RE, Van Steenkiste C. The neurogliovascular unit in hepatic encephalopathy. JHEP Rep 2021; 3:100352. [PMID: 34611619 PMCID: PMC8476774 DOI: 10.1016/j.jhepr.2021.100352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological complication of hepatic dysfunction and portosystemic shunting. It is highly prevalent in patients with cirrhosis and is associated with poor outcomes. New insights into the role of peripheral origins in HE have led to the development of innovative treatment strategies like faecal microbiota transplantation. However, this broadening of view has not been applied fully to perturbations in the central nervous system. The old paradigm that HE is the clinical manifestation of ammonia-induced astrocyte dysfunction and its secondary neuronal consequences requires updating. In this review, we will use the holistic concept of the neurogliovascular unit to describe central nervous system disturbances in HE, an approach that has proven instrumental in other neurological disorders. We will describe HE as a global dysfunction of the neurogliovascular unit, where blood flow and nutrient supply to the brain, as well as the function of the blood-brain barrier, are impaired. This leads to an accumulation of neurotoxic substances, chief among them ammonia and inflammatory mediators, causing dysfunction of astrocytes and microglia. Finally, glymphatic dysfunction impairs the clearance of these neurotoxins, further aggravating their effect on the brain. Taking a broader view of central nervous system alterations in liver disease could serve as the basis for further research into the specific brain pathophysiology of HE, as well as the development of therapeutic strategies specifically aimed at counteracting the often irreversible central nervous system damage seen in these patients.
Collapse
Key Words
- ABC, ATP-binding cassette
- ACLF, acute-on-chronic liver failure
- AD, acute decompensation
- ALF, acute liver failure
- AOM, azoxymethane
- AQP4, aquaporin 4
- Acute Liver Failure
- Ammonia
- BBB, blood-brain barrier
- BCRP, breast cancer resistance protein
- BDL, bile duct ligation
- Blood-brain barrier
- Brain edema
- CCL, chemokine ligand
- CCR, C-C chemokine receptor
- CE, cerebral oedema
- CLD, chronic liver disease
- CLDN, claudin
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Cirrhosis
- Energy metabolism
- GS, glutamine synthetase
- Glymphatic system
- HE, hepatic encephalopathy
- HO-1, heme oxygenase 1
- IL-, interleukin
- MMP-9, matrix metalloproteinase 9
- MRP, multidrug resistance associated protein
- NGVU
- NGVU, neurogliovascular unit
- NKCC1, Na-K-2Cl cotransporter 1
- Neuroinflammation
- OCLN, occludin
- ONS, oxidative and nitrosative stress
- Oxidative stress
- P-gp, P-glycoprotein
- PCA, portacaval anastomosis
- PSS, portosystemic shunt
- S1PR2, sphingosine-1-phosphate receptor 2
- SUR1, sulfonylurea receptor 1
- Systemic inflammation
- TAA, thioacetamide
- TGFβ, transforming growth factor beta
- TJ, tight junction
- TNF, tumour necrosis factor
- TNFR1, tumour necrosis factor receptor 1
- ZO, zonula occludens
- mPT, mitochondrial pore transition
Collapse
Affiliation(s)
- Wouter Claeys
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Helena Degroote
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Steenkiste
- Antwerp University, Department of Gastroenterology and Hepatology, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Liu JY, Cai YY, Ding ZY, Zhou ZY, Lv M, Liu H, Zheng LY, Li L, Luo YH, Xiao EH. Characterizing Fibrosis and Inflammation in a Partial Bile Duct Ligation Mouse Model by Multiparametric Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 55:1864-1874. [PMID: 34545977 PMCID: PMC9290705 DOI: 10.1002/jmri.27925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background Partial bile duct ligation (PBDL) model is a reliable cholestatic fibrosis experimental model that showed complex histopathological changes. Magnetic resonance imaging (MRI) features of PBDL have not been well characterized. Purpose To investigate the potential of MRI parameters in assessing fibrosis in PBDL and explore the relationships between MRI and pathological features. Animal Model Established PBDL models. Population Fifty‐four mice were randomly divided into four timepoints PBDL groups and one sham group. Field Strength/Sequence 3.0 T; MRI sequences included T1‐weighted fast spin‐echo (FSE), T2‐weighted single shot FSE, variable flip angle T1 mapping, multi‐echo SE T2 mapping, multi‐echo gradient‐echo T2* mapping, and multi‐b‐value diffusion‐weighted imaging. Assessment MRI examination was performed at the corresponding timepoints after surgery. Native T1, ΔT1 (T1native‐T1post), T2, T2*, apparent diffusion coefficient (ADC) values, histogram parameters (skewness and kurtosis), intravoxel incoherent motion parameters (f, D, and D*) within the entire ligated (PBDL), non‐ligated liver (PBDL), and whole liver (sham) were obtained. Fibrosis and inflammation were assessed in Masson and H&E staining slices using the Metavir and activity scoring system. Statistical Tests One‐way ANOVA, Spearman's rank correlation, and receiver operating characteristic curves were performed. P < 0.05 was considered statistically significant. Results Fibrosis and inflammation were finally staged as F3 and A3 in ligated livers but were not observed in non‐ligated or sham livers. Ligated livers displayed significantly elevated native T1, ΔT1, T2, and reduced ADC and T2* than other livers. Spearman's correlation showed better correlation with inflammation (r = 0.809) than fibrosis (r = 0.635) in T2 and both ΔT1 and ADC showed stronger correlation with fibrosis (r = 0.704 and r = −0.718) than inflammation (r = 0.564 and r = −0.550). Area under the curve (AUC) for ΔT1 performed the highest (0.896). When combined with all relative parameters, AUC increased to 0.956. Data Conclusion Multiparametric MRI can evaluate and differentiate pathological changes in PBDL. ΔT1 and ADC better correlated with fibrosis while T2 stronger with inflammation. Level of Evidence 1 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Jia-Yi Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ye-Yu Cai
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhu-Yuan Ding
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zi-Yi Zhou
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Lv
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Yun Zheng
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Medical Imaging Research Center, Central South University, Changsha, 410008, China
| |
Collapse
|
12
|
DeMorrow S, Cudalbu C, Davies N, Jayakumar AR, Rose CF. 2021 ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int 2021; 41:1474-1488. [PMID: 33900013 PMCID: PMC9812338 DOI: 10.1111/liv.14911] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
This working group of the International Society of Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) was commissioned to summarize and update current efforts in the development and characterization of animal models of hepatic encephalopathy (HE). As defined in humans, HE in animal models is based on the underlying degree and severity of liver pathology. Although hyperammonemia remains the key focus in the pathogenesis of HE, other factors associated with HE have been identified, together with recommended animal models, to help explore the pathogenesis and pathophysiological mechanisms of HE. While numerous methods to induce liver failure and disease exist, less have been characterized with neurological and neurobehavioural impairments. Moreover, there still remains a paucity of adequate animal models of Type C HE induced by alcohol, viruses and non-alcoholic fatty liver disease; the most common etiologies of chronic liver disease.
Collapse
Affiliation(s)
- S DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Texas, USA; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Texas, USA; Research division, Central Texas Veterans Healthcare System, Temple Texas USA.,Correspondance: Sharon DeMorrow, PhD, ; tel: +1-512-495-5779
| | - C Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - N Davies
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - AR Jayakumar
- General Medical Research, Neuropathology Section, R&D Service and South Florida VA Foundation for Research and Education Inc; Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami FL, USA
| | - CF Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| |
Collapse
|
13
|
Almishri W, Davis RP, Shaheen AA, Altonsy MO, Jenne CN, Swain MG. The Antidepressant Mirtazapine Rapidly Shifts Hepatic B Cell Populations and Functional Cytokine Signatures in the Mouse. Front Immunol 2021; 12:622537. [PMID: 33841403 PMCID: PMC8027111 DOI: 10.3389/fimmu.2021.622537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/08/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction B cells are important regulators of both adaptive and innate immunity. The normal liver contains significant numbers of B cells, and their numbers increase dramatically in immune-mediated liver diseases. Our previous observations suggest a hepatoprotective effect of the antidepressant mirtazapine in human and experimental immune-mediated liver disease. Therefore, we performed a series of experiments to determine the impact of mirtazapine treatment on hepatic B cell homeostasis, as reflected by B cell number, trafficking and phenotype using flow cytometry (FCM) and intravital microscopy (IVM) analysis. Mirtazapine treatment rapidly induced a significant reduction in total hepatic B cell numbers, paralleled by a compositional shift in the predominant hepatic B cell subtype from B2 to B1. This shift in hepatic B cells induced by mirtazapine treatment was associated with a striking increase in total hepatic levels of the chemokine CXCL10, and increased production of CXCL10 by hepatic macrophages and dendritic cells. Furthermore, mirtazapine treatment led to an upregulation of CXCR3, the cognate chemokine receptor for CXCL10, on hepatic B cells that remained in the liver post-mirtazapine. A significant role for CXCR3 in the hepatic retention of B cells post-mirtazapine was confirmed using CXCR3 receptor blockade. In addition, B cells remaining in the liver post-mirtazapine produced lower amounts of the proinflammatory Th1-like cytokines IFNγ, TNFα, and IL-6, and increased amounts of the Th2-like cytokine IL-4, after stimulation in vitro. Conclusion Mirtazapine treatment rapidly alters hepatic B cell populations, enhancing hepatic retention of CXCR3-expressing innate-like B cells that generate a more anti-inflammatory cytokine profile. Mirtazapine-induced hepatic B cell shifts could potentially represent a novel therapeutic approach to immune-mediated liver diseases characterized by B cell driven pathology.
Collapse
Affiliation(s)
- Wagdi Almishri
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Rachelle P Davis
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Abdel-Aziz Shaheen
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohammed O Altonsy
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Craig N Jenne
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Phaw NA, Leighton J, Dyson JK, Jones DE. Managing cognitive symptoms and fatigue in cholestatic liver disease. Expert Rev Gastroenterol Hepatol 2021; 15:235-241. [PMID: 33131347 DOI: 10.1080/17474124.2021.1844565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Patients with cholestatic diseases may develop fatigue and cognitive symptoms. The impact of symptom burden may be significant in some patients. To date, there are no effective pharmacological therapies to improve cognitive symptoms or fatigue in cholestasis and we are wholly reliant on supportive approaches. Area covered: This review provides an overview of cognitive symptoms and fatigue in the cholestatic liver disease primary biliary cholangitis (PBC), including pathophysiology and our approach to the management of these symptoms. Expert opinion: The impact of fatigue and cognitive symptoms on the perceived quality of life can be profound for patients with PBC. The pathophysiology of these symptoms is complex and poorly understood, making the development of therapeutic trials of symptom-directed therapies challenging. The current recommended management for fatigue and cognitive symptoms is mainly supportive.
Collapse
Affiliation(s)
- Naw April Phaw
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK.,Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Trust , Newcastle upon Tyne, England
| | - Jessica Leighton
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK
| | - Jessica Katharine Dyson
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK.,Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Trust , Newcastle upon Tyne, England
| | - David Ej Jones
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK.,Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Trust , Newcastle upon Tyne, England.,National Institute of Health Research Newcastle Biochemical Research Centre, Newcastle University School of Clinical Medical Sciences , Newcastle upon Tyne, UK
| |
Collapse
|
15
|
De Boeck A, Ahn BY, D'Mello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, Reichardt E, Goring KA, King J, Grisdale CJ, Grinshtein N, Hambardzumyan D, Reilly KM, Blough MD, Cairncross JG, Yong VW, Marra MA, Jones SJM, Kaplan DR, McCoy KD, Holland EC, Bose P, Chan JA, Robbins SM, Senger DL. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun 2020; 11:4997. [PMID: 33020472 PMCID: PMC7536425 DOI: 10.1038/s41467-020-18569-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.
Collapse
Affiliation(s)
- Astrid De Boeck
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Young Ahn
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xueqing Lun
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shyam V Menon
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mana M Alshehri
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Frank Szulzewsky
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Lubaba Khan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elliott Reichardt
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kimberly-Ann Goring
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer King
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cameron J Grisdale
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Natalie Grinshtein
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute and the Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Karlyne M Reilly
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Michael D Blough
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J Gregory Cairncross
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric C Holland
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Pinaki Bose
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephen M Robbins
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Donna L Senger
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
16
|
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108:1157-1182. [PMID: 32779243 DOI: 10.1002/jlb.4mr0620-701r] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.
Collapse
Affiliation(s)
- Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Immunology, Infectious Diseases and Obesity, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
17
|
Duszynski CC, Avati V, Lapointe AP, Scholkmann F, Dunn JF, Swain MG. Near-Infrared Spectroscopy Reveals Brain Hypoxia and Cerebrovascular Dysregulation in Primary Biliary Cholangitis. Hepatology 2020; 71:1408-1420. [PMID: 31535726 DOI: 10.1002/hep.30920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/24/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease linked to symptoms including fatigue and altered mood/cognition, indicating that chronic liver inflammation associated with PBC can impact brain function. We employed near-infrared spectroscopy (NIRS), a noninvasive neuroimaging technique, to determine whether patients with PBC exhibit reduced cerebral oxygen saturation (StO2 ) and altered patterns of microvascular cerebral blood perfusion and whether these alterations were associated with clinical phenotype. This observational case-control study was conducted at a tertiary hospital clinic (University of Calgary Liver Unit). APPROACH AND RESULTS Thirteen female patients with noncirrhotic PBC, seven female patients with cirrhotic PBC, and 11 healthy female controls were recruited by physician referral and word of mouth, respectively. NIRS was used to measure cerebral hemoglobin and oxygen saturation. A wavelet phase coherence method was used to estimate the coherent frequency coupling of temporal changes in cerebral hemodynamics. The PBC group demonstrated significantly reduced cerebral StO2 (P = 0.01, d = 0.84), indicating cerebral hypoxia, significantly increased cerebral deoxygenated hemoglobin concentration (P < 0.01, d = 0.86), and significantly reduced hemodynamic coherence in the low-frequency band (0.08-0.15 Hz) for oxygenated hemoglobin concentration (P = 0.02, d = 0.99) and total hemoglobin (tHb) concentration (P = 0.02, d = 0.50), indicating alterations in cerebrovascular activity. Complete biochemical response to ursodeoxycholic acid (UDCA) therapy in early patients with PBC was associated with increased cerebral tHb concentration and decreased hemodynamic coherence. CONCLUSIONS Using NIRS, patients with PBC were found to have hypoxia, increased cerebral hemoglobin concentration, and altered cerebrovascular activity, which were reversed in part in UDCA responders. In addition, symptoms and quality-of-life measures did not correlate with brain hypoxia or cerebrovascular dysregulation in patients with PBC.
Collapse
Affiliation(s)
- Chris C Duszynski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Calgary, Canada
| | - V Avati
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Snyder Institute for Chronic Diseases, Calgary, Canada
| | - A P Lapointe
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Calgary, Canada
| | - F Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - J F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Calgary, Canada
| | - M G Swain
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Snyder Institute for Chronic Diseases, Calgary, Canada
| |
Collapse
|
18
|
Ramadori P, Klag T, Malek NP, Heikenwalder M. Platelets in chronic liver disease, from bench to bedside. JHEP Rep 2019; 1:448-459. [PMID: 32039397 PMCID: PMC7005648 DOI: 10.1016/j.jhepr.2019.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
In the last decade, numerous studies revealed physiologic and pathophysiologic roles of platelets beyond haemostasis, a process to prevent and stop bleeding. These include the activation of the immune system and the promotion of inflammation, infection and cancer. Hence, the emerging view on the role of platelets has shifted - platelets are now seen as alert "sentinels" of the immune compartment, rather than passive bystanders. Herein, we review well-established and newly discovered features of platelets that define their natural role in maintaining blood haemostasis, but also their functional relationship with other cells of the immune system. We focus on recent studies underlining functional involvement of platelets in chronic liver diseases and cancer, as well as the effects of anti-platelet therapy in these contexts. Finally, we illustrate the potential of platelets as possible diagnostic and therapeutic tools in liver disease based on recently developed methodologies.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Thomas Klag
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Nisar Peter Malek
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
- Corresponding authors. Address: Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Tel.: 0049-6221423891, or Department of Internal Medicine I, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany, Tel.: 0049-70712982721.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- Corresponding authors. Address: Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Tel.: 0049-6221423891, or Department of Internal Medicine I, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany, Tel.: 0049-70712982721.
| |
Collapse
|
19
|
Loftis JM, Taylor J, Hudson R, Firsick EJ. Neuroinvasion and cognitive impairment in comorbid alcohol dependence and chronic viral infection: An initial investigation. J Neuroimmunol 2019; 335:577006. [PMID: 31325774 DOI: 10.1016/j.jneuroim.2019.577006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
Viruses that invade the central nervous system (CNS) can cause neuropsychiatric impairments. Similarly, chronic alcohol exposure can induce inflammatory responses that alter brain function. However, the effects of a chronic viral infection and comorbid alcohol use on neuroinflammation and behavior are not well-defined. We investigated the role of heavy alcohol intake in regulating inflammatory responses and behavioral signs of cognitive impairments in mice infected with lymphocytic choriomeningitis virus (LCMV) clone 13. LCMV-infected mice exposed to alcohol had increased peripheral inflammation and impaired cognitive function (as indicated by performance on the novel object recognition test). Initial findings suggest that brain region-specific dysregulation of microglial response to viral infection may contribute to cognitive impairments in the context of heavy alcohol use.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Abuse Research Center, Veterans Affairs Portland Health Care System, Oregon Health & Science University, Portland, OR, USA.
| | - Jonathan Taylor
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Rebekah Hudson
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Evan J Firsick
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
20
|
van de Wouw M, Boehme M, Dinan TG, Cryan JF. Monocyte mobilisation, microbiota & mental illness. Brain Behav Immun 2019; 81:74-91. [PMID: 31330299 DOI: 10.1016/j.bbi.2019.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal microbiome has emerged as a key player in regulating brain and behaviour. This has led to the strategy of targeting the gut microbiota to ameliorate disorders of the central nervous system. Understanding the underlying signalling pathways in which the microbiota impacts these disorders is crucial for the development of future therapeutics for improving CNS functionality. One of the major pathways through which the microbiota influences the brain is the immune system, where there is an increasing appreciation for the role of monocyte trafficking in regulating brain homeostasis. In this review, we will shed light on the role of monocyte trafficking as a relay of microbiota signals in conditions where the central nervous system is in disorder, such as stress, peripheral inflammation, ageing, traumatic brain injury, stroke, multiple sclerosis, Alzheimer's disease and Parkinson's disease. We also cover how the gastrointestinal microbiota is implicated in these mental illnesses. In addition, we aim to discuss how the monocyte system can be modulated by the gut microbiota to mitigate disorders of the central nervous system, which will lead to novel microbiota-targeted strategies.
Collapse
Affiliation(s)
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
21
|
Leiter O, Walker TL. Platelets: The missing link between the blood and brain? Prog Neurobiol 2019; 183:101695. [PMID: 31550515 DOI: 10.1016/j.pneurobio.2019.101695] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/19/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023]
Abstract
It is becoming increasingly clear that interactions between the peripheral immune system and the central nervous system are important in maintaining healthy brain function. Platelets are small blood cells traditionally known for their role in wound healing. However, platelets have recently been shown to exhibit many alternative functions. In this perspective, we summarize the repertoire of platelet functions, focusing on how these cells contribute to the maintenance of brain homeostasis and propose the mechanisms via which they could communicate with brain cells, including exosome and microparticle release and receptor interactions at local sites. In particular, we highlight the potential role that platelets play in maintaining brain plasticity via the modulation of new neuron generation from neural precursor cells, an interaction which could have important implications in the development of therapeutic interventions to promote cognitive function in aging and disease.
Collapse
Affiliation(s)
- Odette Leiter
- Queensland Brain Institute (QBI), The University of Queensland, Brisbane 4072, Australia.
| | - Tara L Walker
- Queensland Brain Institute (QBI), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
22
|
Xiao C, Bao G, Wei Q, Liu Y, Wang J, Ji Q, Huang Y. Effects of Trichophyton mentagrophytes infection on the immune response of rabbits. PeerJ 2019; 7:e7632. [PMID: 31579583 PMCID: PMC6756135 DOI: 10.7717/peerj.7632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Rabbit breeding has developed into a large-scale industry, and as such, the incidence of dermatophytosis in rabbits has become increasingly common. A rabbit model with Trichophyton mentagrophytes infection was established to study the changes within the immune responses after fungal infection. METHODS After the T. mentagrophytes challenge on skin, pathogens on the skin were isolated from the rabbits in the fungal infection (FI) groups 20 days. Fungal observation under microscope were carried out. Identification of strains was achieved by polymerase chain reaction (PCR) using the CDR1 gene. The collected anticoagulant blood samples were analyzed for various blood cell parameters. The levels of antibodies, including IgM and IgA, cytokines, including IL-2, IL-6, and macrophage colony-stimulating factor (M-CSF), and soluble CD4 and CD8 in the serum of the FI group vs. the control group were determined independently. RNA isolation from blood samples and fluorescence-based quantitative PCR were carried out for the mRNA level of M-csf 20 days after fungal challenge. RESULTS Our model resulted in typical symptoms of dermatophytosis on rabbit skin after challenged with fungus. Pathogens isolated from the infected rabbit skin were confirmed to be T. mentagrophytes by microscopic examination and PCR. The number of lymphocytes in the blood of the FI group was significantly decreased in comparison to the control group 2 days after the fungal challenge, but was significantly increased in comparison the control group 10 days after the fungal challenge (P < 0.01). Platelet counts of the FI group were significantly higher than in the control group at 2 (P < 0.05), 10 (P < 0.05), and 20 (P < 0.01) days after fungal challenge. The red blood cell distribution width of the FI group was significantly increased in comparison to that of the control group at 2, 10, and 20 days after fungal challenge (P < 0.01 for all days). The levels of antibodies (immunoglobulin (Ig) M and IgA (P < 0.01)), cytokines (interleukin (IL)-6 (P < 0.01), macrophage colony-stimulating factor (M-CSF) (P < 0.05)), and soluble CD4 (P < 0.01) and CD8 (P < 0.01) in the serum were significantly different between the FI and control groups. Serum M-csf mRNA level of the FI group was significantly higher than the control group 20 days after fungal challenge (P < 0.01). CONCLUSIONS This study demonstrates how the immune system responds to infection with T. mentagrophytes and provides potential targets for the prevention and treatment of dermatophytosis.
Collapse
Affiliation(s)
- Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
23
|
Mitchell CM, El Jordi O, Yamamoto BK. Inflammatory mechanisms of abused drugs. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Swain MG, Jones DEJ. Fatigue in chronic liver disease: New insights and therapeutic approaches. Liver Int 2019; 39:6-19. [PMID: 29935104 DOI: 10.1111/liv.13919] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
Abstract
The management of fatigue associated with chronic liver disease is a complex and major clinical challenge. Although fatigue can complicate many chronic diseases, it is particularly common in diseases with an inflammatory component. Fatigue can have both peripheral (i.e., neuromuscular) and central (i.e., resulting from changes in neurotransmission within the brain) causes. However, fatigue in chronic liver disease has strong social/contextual components and is often associated with behavioural alterations including depression and anxiety. Given the increasing awareness of patient-reported outcomes as important components of treatment outcomes and clinical research, there is a growing need to better understand and manage this poorly understood yet debilitating symptom. Although several pathophysiological mechanisms for explaining the development of fatigue have been generated, our understanding of fatigue in patients with chronic liver disease remains incomplete. A better understanding of the pathways and neurotransmitter systems involved may provide specific directed therapies. Currently, the management of fatigue in chronic liver disease can involve a combined use of methods to beneficially alter behavioural components and pharmacological interventions, of which several treatments have potential for the improved management of fatigue in chronic liver disease. However, evidence and consensus are lacking on the best approach and the most appropriate biochemical target(s) whilst clinical trials to address this issue have been few and limited by small sample size. In this review, we outline current understanding of the impact of fatigue and related symptoms in chronic liver disease, discuss theories of pathogenesis, and examine current and emerging approaches to its treatment.
Collapse
Affiliation(s)
- Mark G Swain
- Calgary Liver Unit, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David E J Jones
- Institute of Cellular Medicine, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
|
26
|
Chauhan A, Adams DH. Platelets Are Critical Drivers of Illness Behaviors During Liver Inflammation. Gastroenterology 2017; 153:1188-1190. [PMID: 29096821 DOI: 10.1053/j.gastro.2017.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Abhishek Chauhan
- Centre for Liver Research, Department of Immunology and Immunotherapy, University of Birmingham and Birmingham NIHR Biomedical Research Centre for Inflammation, Birmingham, UK.
| | - David H Adams
- Centre for Liver Research, Department of Immunology and Immunotherapy, University of Birmingham and Birmingham NIHR Biomedical Research Centre for Inflammation, Birmingham, UK
| |
Collapse
|