1
|
Xu J, Zhao X, Yang S, Tang M, Zhao R, Hu S. Chlorogenic acid and intestinal health: mechanistic insights and therapeutic applications. Food Funct 2025. [PMID: 40357998 DOI: 10.1039/d5fo00853k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Chlorogenic acid (CGA), a polyphenolic compound found in various plant species, has shown considerable potential in the treatment and management of several diseases due to its potent bioactive properties. Increasing evidence indicates that CGA exerts significant antioxidant, anti-inflammatory, and immunomodulatory effects by modulating key signaling pathways, including MAPK, PTEN/Akt, STAT3, and NF-κB/NLRP3. Furthermore, CGA enhances intestinal barrier function and positively influences the gut microbiota composition, making it a promising natural therapeutic agent for conditions such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer. This review provides a comprehensive summary of the most recent research on CGA's role in managing intestinal disorders. It first discusses CGA's chemical structure and pharmacokinetics (including absorption and metabolism), followed by an in-depth analysis of the mechanisms through which CGA mediates its therapeutic effects. These insights aim to advance our understanding of CGA's therapeutic potential in treating intestinal diseases.
Collapse
Affiliation(s)
- Jinzhao Xu
- College of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, P. R. China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130018, P. R. China.
| | - Xiao Zhao
- College of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, P. R. China.
- College of Equipment Management and Support, Engineering University of PAP, Xi'an, 710086, P. R. China
| | - Shuo Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130018, P. R. China.
| | - Mengqi Tang
- College of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, P. R. China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130018, P. R. China.
| | - Runan Zhao
- College of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, P. R. China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130018, P. R. China.
| |
Collapse
|
2
|
Xie S, Wang C, Song J, Zhang Y, Wang H, Chen X, Suo H. Lacticaseibacillus rhamnosus KY16 Improves Depression by Promoting Intestinal Secretion of 5-HTP and Altering the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21560-21573. [PMID: 39311539 DOI: 10.1021/acs.jafc.4c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Increasing research suggests a connection between gut microbiota and depressive disorders. Targeted changes to the intestinal flora may contribute to alleviating anxiety and depression. This study aimed to identify probiotics that could attenuate stress-induced abnormal behavior and explore potential mechanisms. The administration of LR.KY16 significantly reduced stress-induced abnormal behaviors and physiological dysfunction. The mechanism may be via regulating the structure of the intestinal microbiota in mice, increasing the abundance of Akkermansia muciniphila, prompting enterochromaffin cells to secrete 5-HTP in the gut, which enters the brain through the bloodstream and promotes the synthesis of 5-HT in the brain, and then activates brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) through the 5-HT1A receptor. In addition, LR.KY16 also increased the expression of claudin-7, occludin, and zonula occludens-1 (ZO-1) in the colon, inhibited microglial M1 polarization, and inhibited systemic inflammation.
Collapse
Affiliation(s)
- Shicai Xie
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
- National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
3
|
Fang Q, Qiu T, Ye T, Feng Z, Tian X, Cao Y, Bai J, Liu Y. Prenatal ozone exposure and variations of the gut microbiome: Evidence from a Chinese mother-infant cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116861. [PMID: 39137463 DOI: 10.1016/j.ecoenv.2024.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND The gut microbiome is central to human health, but the potential impact of ozone (O3) exposure on its establishment in early life has not been thoroughly examined. Therefore, this study aimed to investigate the relationship between prenatal O3 exposure and the variations of the human gut microbiome during the first two years of life. DESIGN A cohort study design was used. Pregnant women in the third trimester were recruited from an obstetric clinic, and long-term follow-ups were conducted after delivery. The gut microbiome was analyzed using the 16 S rRNA V3-V4 gene regions. Functional pathway analyses of gut microbial communities in neonates were performed using Tax4fun. The average concentrations of ambient O3 and other air pollutants from pregnancy to delivery were calculated using the China High Air Pollutants (CHAP) dataset, based on the permanent residential addresses of participants. Multiple linear regression and mixed linear models were utilized to investigate the associations between prenatal O3 exposure and gut microbiome features. RESULTS Prenatal O3 exposure did not significantly affect the gut microbial alpha diversity of mothers and neonates. However, it was found to be positively associated with the gut microbial alpha diversity in 24-month-old infants. Prenatal O3 exposure explained 13.1 % of the variation in neonatal gut microbial composition. After controlling for potential covariates, prenatal O3 exposure was associated with neonatal-specific gut microbial taxa and functional pathways. Furthermore, the mixed linear models showed that prenatal O3 exposure was negatively associated with variations of Streptococcus (p-value = 0.001, q-value = 0.005), Enterococcus (p-value = 0.001, q-value = 0.005), Escherichia-Shigella (p-value = 0.010, q-value = 0.025), and Bifidobacterium (p-value = 0.003, q-value = 0.010). CONCLUSIONS This study is the first to examine the effects of prenatal O3 exposure on gut microbial homeostasis and variations. It demonstrates that prenatal O3 exposure is associated with variations in certain aspects of the gut microbiome. These findings provide novel insights into the dynamics and establishment of the human microbiome during the first two years of life.
Collapse
Affiliation(s)
- Qingbo Fang
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Tianlai Qiu
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Tian Ye
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zijun Feng
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Xuqi Tian
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Yanan Cao
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA 30322, United States
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, 115 Donghu Road, Wuhan 430071, China; Research Center for Lifespan Health, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
4
|
Bu L, Wang C, Bai J, Song J, Zhang Y, Chen H, Suo H. Gut microbiome-based therapies for alleviating cognitive impairment: state of the field, limitations, and future perspectives. Food Funct 2024; 15:1116-1134. [PMID: 38224464 DOI: 10.1039/d3fo02307a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Cognitive impairment (CI) is a multifaceted neurological condition that can trigger negative emotions and a range of concurrent symptoms, imposing significant public health and economic burdens on society. Therefore, it is imperative to discover a remedy for CI. Nevertheless, the mechanisms behind the onset of this disease are multifactorial, which makes the search for effective amelioration difficult and complex, hindering the search for effective measures. Intriguingly, preclinical research indicates that gut microbiota by influencing brain function, plays an important role in the progression of CI. Furthermore, numerous preclinical studies have highlighted the potential of probiotics, prebiotics, fecal microbiota transplantation (FMT), and diet in modulating the gut microbiota, thereby ameliorating CI symptoms. This review provides a comprehensive evaluation of CI pathogenesis, emphasizing the contribution of gut microbiota disorders to CI development. It also summarizes and discusses current strategies and mechanisms centered on the synergistic role of gut microbiota modulation in the microbiota-gut-brain axis in CI development. Finally, problems with existing approaches are contemplated and the development of microbial modulation strategies as therapeutic approaches to promote and restore brain cognition is discussed. Further research considerations and directions are highlighted to provide ideas for future CI prevention and treatment strategies.
Collapse
Affiliation(s)
- Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Xizang 850000, China
| | - Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
5
|
Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023; 18:e0273890. [PMID: 37594987 PMCID: PMC10437823 DOI: 10.1371/journal.pone.0273890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research has suggested a role played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa involved in an exponentially complex web of interactions, plus host gene and reaction pathways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and differential abundance, and have proposed several taxa as elevated or reduced in ADHD compared to Control. Few studies have delved into the complex underlying dynamics ultimately responsible for the emergence of such metrics, leaving a largely incomplete, sometimes contradictory, and ultimately inconclusive picture. We aim to help complete this picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4 region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential abundance, and composition) to observe the degree of correspondence, or any new trends. We then estimate two-way ecological relationships by producing Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC correlations (p ≤ 0.01). We perform community detection to find clusters of taxa estimated to mutually cooperate along with their centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We finally summarize our results, providing conjectures on how they can guide future experiments, some methods for improving our experiments, and general implications for the field.
Collapse
Affiliation(s)
- Trevor Cickovski
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Gloria Aguirre
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Gorakh Tatke
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Alejandro Hermida
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Melanie Stollstorff
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
6
|
Xu H, Yang F, Bao Z. Gut microbiota and myocardial fibrosis. Eur J Pharmacol 2023; 940:175355. [PMID: 36309048 DOI: 10.1016/j.ejphar.2022.175355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/18/2023]
Abstract
Myocardial fibrosis (MF) is a pathophysiological condition that accompanies various myocardial diseases and comprises a damaged myocardial matrix repair process. Although fibrosis plays a vital role in repair, it ultimately alters cardiac systolic and diastolic functions. The gut microbiota is a complex and dynamic ecosystem with billions of microorganisms that produce bioactive compounds that influence host health and disease progression. Intestinal microbiota has been shown to correlate with cardiovascular disease, and dysbiosis of the intestinal microbiota is involved in the development of MF. In this review, we discuss the role of intestinal microbiota in the process of MF, including alterations in microbiota composition and the effects of metabolites. We also discuss how diet and medicines can affect cardiac fibrosis by influencing the gut microbiota, and potential future therapies targeting the gut-heart axis. A healthy gut microbiota can prevent disease, but dysbiosis can lead to various symptoms, including the induction of heart disease. In this review, we discuss the relevance of the gut-heart axis and the multiple pathways by which gut microbiota may affect cardiac fibrosis, including inflammatory factors, immune cells, and gut microbiota metabolites, such as trimethylamine-N-oxide (TMAO) and short-chain fatty acids (SCFAs). Finally, we discuss the involvement of gut microbiota in the treatment of cardiac fibrosis, including drugs, fecal microbiota transplantation, and oral probiotics or prebiotics. With future studies on the relationship between the heart and gut microbiota, we hope to find better ways to improve MF through the gut-heart axis.
Collapse
Affiliation(s)
- Han Xu
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Fan Yang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Groeger D, Murphy EF, Tan HTT, Larsen IS, O'Neill I, Quigley EMM. Interactions between symptoms and psychological status in irritable bowel syndrome: An exploratory study of the impact of a probiotic combination. Neurogastroenterol Motil 2023; 35:e14477. [PMID: 36178333 PMCID: PMC10078522 DOI: 10.1111/nmo.14477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 09/20/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Stress is an exacerbator of irritable bowel syndrome (IBS) symptoms, and anxiety and depression are co-morbidities. Bifidobacterium longum strains 1714® and 35642® attenuate stress responses in healthy people and reduce symptoms in IBS, respectively. Here, we explore relationships between the psychological and visceral effects of the two strains (COMBO) in IBS subjects and biomarkers of stress and inflammation. METHODS We recruited 40 patients with IBS (Rome III) and mild to moderate anxiety (HADS-A) and/or depression (HADS-D) and 57 asymptomatic female controls with low or moderate stress. IBS patients were fed COMBO (1 × 109 cfu/day) for 8 weeks with an 8-week washout. IBS symptoms, psychometric measures, salivary cortisol awakening response (CAR), and plasma inflammatory biomarkers were assessed every 4 weeks. KEY RESULTS Compared to healthy controls, IBS subjects had a blunted CAR. Treatment with COMBO restored CAR and improved IBS symptoms compared to baseline during the treatment phase. The COMBO reduced HADS-D, HADS-A score, and TNF-α, while sleep quality improved significantly from baseline to the end of the intervention. Surprisingly, these parameters improved further once treatment ended and maintained this improvement by Week 16. CONCLUSIONS AND INFERENCES These findings suggest that the stress response is a major driver of IBS symptoms. The time course of the beneficial effect of COMBO on IBS symptoms suggests that this is achieved through a restoration of the stress response. In contrast, the time course of the effects of COMBO on anxiety and depression in IBS paralleled an anti-inflammatory effect as indicated by a reduction in circulating levels of TNF-α.
Collapse
Affiliation(s)
| | | | | | | | - Ian O'Neill
- Department of Microbiology, APC Microbiome IrelandNational University of IrelandCorkIreland
| | - Eamonn M. M. Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist HospitalWeill Cornell Medical CollegeHoustonTexasUSA
| |
Collapse
|
8
|
He Q, Si C, Sun Z, Chen Y, Zhang X. The Intervention of Prebiotics on Depression via the Gut-Brain Axis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123671. [PMID: 35744797 PMCID: PMC9230023 DOI: 10.3390/molecules27123671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
The imbalance of intestinal microbiota can cause the accumulation of endotoxin in the main circulation system of the human body, which has a great impact on human health. Increased work and life pressure have led to a rise in the number of people falling into depression, which has also reduced their quality of life. The gut–brain axis (GBA) is closely related to the pathological basis of depression, and intestinal microbiota can improve depressive symptoms through GBA. Previous studies have proven that prebiotics can modulate intestinal microbiota and thus participate in human health regulation. We reviewed the regulatory mechanism of intestinal microbiota on depression through GBA, and discussed the effects of prebiotics, including plant polysaccharides and polyphenols on the regulation of intestinal microbiota, providing new clues for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Qinghui He
- Amway (China) R&D Centre Co., Ltd., Guangzhou 510730, China;
| | - Congcong Si
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Zhenjiao Sun
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Yuhui Chen
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
9
|
Ding Y, Bu F, Chen T, Shi G, Yuan X, Feng Z, Duan Z, Wang R, Zhang S, Wang Q, Zhou J, Chen Y. A next-generation probiotic: Akkermansia muciniphila ameliorates chronic stress-induced depressive-like behavior in mice by regulating gut microbiota and metabolites. Appl Microbiol Biotechnol 2021; 105:8411-8426. [PMID: 34617139 DOI: 10.1007/s00253-021-11622-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is a neurasthenic disease, which is the second-largest burden of disease globally. Increasing studies have revealed that depression is associated with abnormalities in gut microbiota and metabolites. Several species of bacteria have been classified as psychobiotics, which confer mental health benefits through interactions with commensal gut microbiota. Therefore, it is essential to identify new psychobiotics and elucidate their mechanisms in the treatment of depression. This study aims to evaluate the antidepressant effect of Akkermansia muciniphila (AKK) in a mouse model of depression induced by chronic restraint stress (CRS). C57BL/6 male mice were divided into three groups: mice subjected to CRS, mice not subjected to CRS, and mice treated with AKK for 3 weeks. Behavioral tests were performed, and hormone, neurotransmitter, and brain-derived neurotrophic factor (BDNF) levels were measured. Cecal microbiota was analyzed using 16S rRNA gene sequencing, and serum metabolites were detected using untargeted metabolomics. In addition, correlations between altered gut microbiota and metabolites with significant variations in serum associated with AKK ameliorating depression were analyzed using Pearson's correlation coefficient. The results revealed that AKK significantly ameliorated depressive-like behavior and restored abnormal variations in depression-related molecular (corticosterone, dopamine, and BDNF). Moreover, AKK altered chronic stress-induced gut microbial abnormalities. Untargeted metabolomics analysis revealed 23 potential biomarkers in serum that could be associated with the mechanisms underlying CRS-induced depression and the therapeutic effects of AKK. Pearson's correlation coefficient analysis revealed that AKK predominantly upregulated β-alanyl-3-methyl-L-histidine and edaravone to relieve depression. Furthermore, β-alanyl-3-methyl-L-histidine and edaravone exhibited the antidepressant phenotype in mice subjected to CRS. In conclusion, the study demonstrated that AKK ameliorates chronic stress-induced depressive symptoms in mice by regulating gut microbiota and metabolites. KEY POINTS: • AKK reduces depressive-like behaviors induced by chronic stress. • AKK regulates the gut microbial structure and metabolomics of serum under the chronic stress. • Antidepressant effect of AKK correlates with the increase of β-alanyl-3-methyl-l-histidine and edaravone.
Collapse
Affiliation(s)
- Yang Ding
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Bu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tuo Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guoping Shi
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Xiaomin Yuan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zeyu Feng
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhenglan Duan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rong Wang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sumin Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiong Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinyong Zhou
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yugen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Zhang L, Zhang Z, Xu L, Zhang X. Maintaining the Balance of Intestinal Flora through the Diet: Effective Prevention of Illness. Foods 2021; 10:2312. [PMID: 34681359 PMCID: PMC8534928 DOI: 10.3390/foods10102312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
The human body is home to a complex community of dynamic equilibrium microbiota, including bacteria, fungi, parasites, and viruses. It is known that the gut microbiome plays a crucial role in regulating innate and adaptive immune responses, intestinal peristalsis, intestinal barrier homeostasis, nutrient uptake, and fat distribution. The complex relationship between the host and microbiome suggests that when this relationship is out of balance, the microbiome may contribute to disease development. The brain-gut-microbial axis is composed of many signal molecules, gastrointestinal mucosal cells, the vagus nerve, and blood-brain barrier, which plays an essential role in developing many diseases. The microbiome can influence the central nervous system function through the brain-gut axis; the central nervous system can also affect the composition and partial functions of the gut microbiome in the same way. Different dietary patterns, specific dietary components, and functional dietary factors can significantly affect intestinal flora's structure, composition, and function, thereby affecting human health. Based on the above, this paper reviewed the relationship between diet, intestinal flora, and human health, and the strategies to prevent mental illness through the dietary modification of intestinal microorganisms.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Z.Z.)
| | - Zhenying Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Z.Z.)
| | - Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
11
|
Wang Z, Yu Y, Liao J, Hu W, Bian X, Wu J, Zhu YZ. S-Propargyl-Cysteine Remodels the Gut Microbiota to Alleviate Rheumatoid Arthritis by Regulating Bile Acid Metabolism. Front Cell Infect Microbiol 2021; 11:670593. [PMID: 34422677 PMCID: PMC8378902 DOI: 10.3389/fcimb.2021.670593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a long-term autoimmune disorder characterized by chronic inflammation that results in swollen and painful joints and even cartilage and bone damage. The gut microbiota, a novel anti-inflammatory target, is considered an important environmental factor in the development of RA. S-propargyl-cysteine (SPRC), an amino acid analogue, exerts anti-inflammatory, cardioprotective effects, and neuroprotective effects on various diseases. In recent studies, an SPRC treatment exerted anti-inflammatory effects on RA. Meanwhile, gut microbiome dysbiosis in individuals with RA has also been reported by many researchers. However, the relationship between SPRC and gut microbiota in individuals with RA remains unclear. METHODS Thirty male Sprague-Dawley (SD) rats were randomly divided into three groups of 10 each, including the Control, Model, and SPRC groups. Adjuvant-induced arthritis (AIA) rats in SPRC group were treated with SPRC. Measurement of paw volume and serum tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels were applied to evaluate the inflammatory status. Fecal samples were collected on the 14th day and 28th day. Gut microbiota were analyzed using 16S ribosomal RNA (rRNA) gene amplicon sequencing. Untargeted metabolomics on plasma samples was applied to investigate the metabolic changes induced by the altered gut microbiota by using derivatization-UHPLC-Q-TOF/MS. FINDINGS Using 16S rRNA amplicon sequencing, we found that SPRC significantly altered the gut microbiota structure in AIA rats. In particular, Bifidobacterium, a genus of BSH (Bile Salt Hydrolase)-producing microbes, was overrepresented in SPRC-treated AIA rats. Additionally, a subsequent metabolomics analysis indicated that bile acid metabolism was also altered by SPRC treatment. Interestingly, glycochenodeoxycholic acid (GCDCA) and glycocholic acid (GCA), which are formed with the participation of BSH-producing microbes in the intestine, were identified as crucial biomarkers responding to SPRC treatment with significantly lowered levels. INTERPRETATION A mechanistic link between the gut microbiota and plasma metabolites was revealed in this study, which provides insights into the mechanism of SPRC treatment for RA from the perspective of the gut microbiota.
Collapse
Affiliation(s)
- Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau, Macau
| | - Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau, Macau
| | - Junyi Liao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau, Macau
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau, Macau
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau, Macau
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau, Macau
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau, Macau
- Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Salami M. Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Front Neurosci 2021; 15:613120. [PMID: 33642976 PMCID: PMC7904897 DOI: 10.3389/fnins.2021.613120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract hosts trillions of microorganisms that is called “gut microbiota.” The gut microbiota is involved in a wide variety of physiological features and functions of the body. Thus, it is not surprising that any damage to the gut microbiota is associated with disorders in different body systems. Probiotics, defined as living microorganisms with health benefits for the host, can support or restore the composition of the gut microbiota. Numerous investigations have proved a relationship between the gut microbiota with normal brain function as well as many brain diseases, in which cognitive dysfunction is a common clinical problem. On the other hand, increasing evidence suggests that the existence of a healthy gut microbiota is crucial for normal cognitive processing. In this regard, interplay of the gut microbiota and cognition has been under focus of recent researches. In the present paper, I review findings of the studies considering beneficial effects of either gut microbiota or probiotic bacteria on the brain cognitive function in the healthy and disease statuses.
Collapse
Affiliation(s)
- Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Qi M, Tan B, Wang J, Liao S, Deng Y, Ji P, Song T, Zha A, Yin Y. The microbiota-gut-brain axis: A novel nutritional therapeutic target for growth retardation. Crit Rev Food Sci Nutr 2021; 62:4867-4892. [PMID: 33523720 DOI: 10.1080/10408398.2021.1879004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth retardation (GR), which commonly occurs in childhood, is a major health concern globally. However, the specific mechanism remains unclear. It has been increasingly recognized that changes in the gut microbiota may lead to GR through affecting the microbiota-gut-brain axis. Microbiota interacts with multiple factors such as birth to affect the growth of individuals. Microbiota communicates with the nerve system through chemical signaling (direct entry into the circulation system or stimulation of enteroendocrine cells) and nervous signaling (interaction with enteric nerve system and vagus nerve), which modulates appetite and immune response. Besides, they may also influence the function of enteric glial cells or lymphocytes and levels of systemic inflammatory cytokines. Environmental stress may cause leaky gut through perturbing the hypothalamic-pituitary-adrenal axis to further result in GR. Nutritional therapies involving probiotics and pre-/postbiotics are being investigated for helping the patients to overcome GR. In this review, we summarize the role of microbiota in GR with human and animal models. Then, existing and potential regulatory mechanisms are reviewed, especially the effect of microbiota-gut-brain axis. Finally, we propose nutritional therapeutic strategies for GR by the intervention of microbiota-gut-brain axis, which may provide novel perspectives for the treatment of GR in humans and animals.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuankun Deng
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California, USA
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
14
|
Adjunctive treatment with probiotics partially alleviates symptoms and reduces inflammation in patients with irritable bowel syndrome. Eur J Nutr 2020; 60:2553-2565. [PMID: 33225399 DOI: 10.1007/s00394-020-02437-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Irritable bowel syndrome (IBS) is a functional bowel disorder. This study aimed to assess the effect of a probiotic product (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8, and Bifdobacterium animalis subsp. lactis V9) as an adjunct to a routine regimen in IBS management. METHODS Forty-five patients with IBS were randomized into the probiotic (n = 24) and control (n = 21) groups, receiving the routine regimen with or without probiotics for 28 days, respectively. Serum and fecal samples were collected and analyzed. RESULTS The IBS-symptom severity score (P < 0.01), serum levels of IL-6 (P < 0.01) and TNF-α (P < 0.001) were significantly lower in the probiotic group than the control group at day 28. The probiotic adjunctive treatment resulted in significant decreases in some bacterial genera that worsen IBS, such as Bacteroides (P < 0.01), Escherichia (P < 0.05), and Citrobacter (P < 0.05), significant decreases were also observed in some beneficial genera in the control group, including Bifidobacterium (P < 0.05), Eubacterium (P < 0.05), Dorea (P < 0.01), and Butyricicoccus (P < 0.05). Furthermore, significant correlations were found between some monitored parameters and compositional changes in the fecal microbiota, suggesting that the clinical improvement of IBS was likely associated with gut microbiota modulation. The enterotype analysis revealed that the initial fecal microbiota composition could influence clinical outcomes. CONCLUSIONS The adjunctive use of probiotics with a routine regimen showed additional clinical effectiveness compared to the routine regimen alone in managing IBS. A pretreatment gut microbiome analysis might help tailor a personalized probiotic regimen to optimize treatment effects.
Collapse
|
15
|
Abstract
Preclinical evidence strongly suggests a role for the gut microbiome in modulating the host central nervous system function and behavior. Several communication channels have been identified that enable microbial signals to reach the brain and that enable the brain to influence gut microbial composition and function. In rodent models, endocrine, neural, and inflammatory signals generated by gut microbes can alter brain structure and function, while autonomic nervous system activity can affect the microbiome by modulating the intestinal environment and by directly regulating microbial behavior. The amount of information that reaches the brain is dynamically regulated by the blood-brain barrier and the intestinal barrier. In humans, associations between gut microbial composition and function and several brain disorders have been reported, and fecal microbial transplants from patient populations into gnotobiotic mice have resulted in the reproduction of homologous features in the recipient mice. However, in contrast to preclinical findings, there is little information about a causal role of the gut microbiome in modulating human central nervous system function and behavior. Longitudinal studies in large patient populations with therapeutic interventions are required to demonstrate such causality, which will provide the basis for future clinical trials. © 2020 American Physiological Society. Compr Physiol 10:57-72, 2020.
Collapse
Affiliation(s)
- Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Clair R Martin
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
16
|
Gu Y, Zhou G, Qin X, Huang S, Wang B, Cao H. The Potential Role of Gut Mycobiome in Irritable Bowel Syndrome. Front Microbiol 2019; 10:1894. [PMID: 31497000 PMCID: PMC6712173 DOI: 10.3389/fmicb.2019.01894] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
The human gut is inhabited by diverse microorganisms that play crucial roles in health and disease. Gut microbiota dysbiosis is increasingly considered as a vital factor in the etiopathogenesis of irritable bowel syndrome (IBS), which is a common functional gastrointestinal disorder with a high incidence all over the world. However, investigations to date are primarily directed to the bacterial community, and the gut mycobiome, another fundamental part of gut ecosystem, has been underestimated. Intestinal fungi have important effects on maintaining gut homeostasis just as bacterial species. In the present article, we reviewed the potential roles of gut mycobiome in the pathogenesis of IBS and the connections between the fungi and existing mechanisms such as chronic low-grade inflammation, visceral hypersensitivity, and brain-gut interactions. Moreover, possible strategies targeted at the gut mycobiome for managing IBS were also described. This review provides a basis for considering the role of the mycobiome in IBS and offers novel treatment strategies for IBS patients; moreover, it adds new dimensions to researches on microorganism.
Collapse
Affiliation(s)
| | | | | | | | | | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Tian T, Xu B, Qin Y, Fan L, Chen J, Zheng P, Gong X, Wang H, Bai M, Pu J, Lu J, Zhou W, Zhao L, Yang D, Xie P. Clostridium butyricum miyairi 588 has preventive effects on chronic social defeat stress-induced depressive-like behaviour and modulates microglial activation in mice. Biochem Biophys Res Commun 2019; 516:430-436. [DOI: 10.1016/j.bbrc.2019.06.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
18
|
Guo Y, Xie JP, Deng K, Li X, Yuan Y, Xuan Q, Xie J, He XM, Wang Q, Li JJ, Luo HR. Prophylactic Effects of Bifidobacterium adolescentis on Anxiety and Depression-Like Phenotypes After Chronic Stress: A Role of the Gut Microbiota-Inflammation Axis. Front Behav Neurosci 2019; 13:126. [PMID: 31275120 PMCID: PMC6591489 DOI: 10.3389/fnbeh.2019.00126] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Stress disturbs the balance of the gut microbiota and stimulates inflammation-to-brain mechanisms. Moreover, stress leads to anxiety and depressive disorders. Bifidobacterium adolescentis displays distinct anti-inflammatory effects. However, no report has focused on the anxiolytic and antidepressant effects of B. adolescentis related to the gut microbiome and the inflammation on chronic restraint stress (CRS) in mice. We found that pretreatment with B. adolescentis increased the time spent in the center of the open field apparatus, increased the percentage of entries into the open arms of the elevated plus-maze (EPM) and the percentage of time spent in the open arms of the EPM, and decreased the immobility duration in the tail suspension test as well as the forced swimming test (FST). Moreover, B. adolescentis increased the sequence proportion of Lactobacillus and reduced the sequence proportion of Bacteroides in feces. Furthermore, B. adolescentis markedly reduced the protein expression of interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), p-nuclear factor-kappa B (NF-κB) p65 and Iba1 and elevated brain derived neurotrophic factor (BDNF) expression in the hippocampus. We conclude that the anxiolytic and antidepressant effects of B. adolescentis are related to reducing inflammatory cytokines and rebalancing the gut microbiota.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,School of Basic Medical Sciences, Kunming Medical University, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Ke Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yun Yuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qun Xuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Jing Xie
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Ming He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qian Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Juan-Juan Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Li N, Wang Q, Wang Y, Sun A, Lin Y, Jin Y, Li X. Oral Probiotics Ameliorate the Behavioral Deficits Induced by Chronic Mild Stress in Mice via the Gut Microbiota-Inflammation Axis. Front Behav Neurosci 2018; 12:266. [PMID: 30459574 PMCID: PMC6232506 DOI: 10.3389/fnbeh.2018.00266] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 01/23/2023] Open
Abstract
In recent years, a burgeoning body of research has revealed links between depression and the gut microbiota, leading to the therapeutic use of probiotics for stress-related disorders. In this study, we explored the potential antidepressant efficacy of a multi-strain probiotics treatment (Lactobacillus helveticus R0052, Lactobacillus plantarum R1012, and Bifidobacterium longum R0175) in a chronic mild stress (CMS) mouse model of depression and determined its probable mechanism of action. Our findings revealed that mice subjected to CMS exhibited anxiety- and depressive-like behaviors in the sucrose preference test, elevated plus maze, and forced swim test, along with increased interferon-γ, tumor necrosis factor-α, and indoleamine 2,3-dioxygenase-1 levels in the hippocampus. Moreover, the microbiota distinctly changed from the non-stress group and was characterized by highly diverse bacterial communities associated with significant reductions in Lactobacillus species. Probiotics attenuated CMS-induced anxiety- and depressive-like behaviors, significantly increased Lactobacillus abundance, and reversed the CMS-induced immune changes in the hippocampus. Thus, the possible mechanism involved in the antidepressant-like activity of probiotics is correlated with Lactobacillus species via the gut microbiota-inflammation-brain axis.
Collapse
Affiliation(s)
- Nannan Li
- Department of Geriatrics Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Qi Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wang
- Department of Mental Health Center, China Medical University, Shenyang, China
| | - Anji Sun
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yiwei Lin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Ye Jin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Inserra A, Rogers GB, Licinio J, Wong ML. The Microbiota-Inflammasome Hypothesis of Major Depression. Bioessays 2018; 40:e1800027. [PMID: 30004130 DOI: 10.1002/bies.201800027] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/13/2018] [Indexed: 01/06/2025]
Abstract
We propose the "microbiota-inflammasome" hypothesis of major depressive disorder (MDD, a mental illness affecting the way a person feels and thinks, characterized by long-lasting feelings of sadness). We hypothesize that pathological shifts in gut microbiota composition (dysbiosis) caused by stress and gut conditions result in the upregulation of pro-inflammatory pathways mediated by the Nod-like receptors family pyrin domain containing 3 (NLRP3) inflammasome (an intracellular platform involved in the activation of inflammatory processes). This upregulation exacerbates depressive symptomatology and further compounds gut dysbiosis. In this review we describe MDD/chronic stress-induced changes in: 1) NLRP3 inflammasome; 2) gut microbiota; and 3) metabolic pathways; and how inflammasome signaling may affect depressive-like behavior and gut microbiota composition. The implication is that novel therapeutic strategies could emerge for MDD and co-morbid conditions. A number of testable predictions surface from this microbiota-gut-inflammasome-brain hypothesis of MDD, using approaches that modulate gut microbiota composition via inflammasome modulation, fecal microbiota transplantation, psychobiotics supplementation, or dietary change.
Collapse
Affiliation(s)
- Antonio Inserra
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, 5001, SA, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, SA, Australia
- Centre for Neuroscience, Flinders University, Bedford Park, 5042, Australia
| | - Geraint B Rogers
- Infection and Immunity Theme, South Australia Health and Medical Research Institute, North TerracAdelaide, 5001, SA, Australia
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Bedford Park, 5001, SA, Australia
| | - Julio Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, 5001, SA, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, SA, Australia
- State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Ma-Li Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, 5001, SA, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, SA, Australia
- State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
21
|
Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol 2018; 6:133-148. [PMID: 30023410 PMCID: PMC6047317 DOI: 10.1016/j.jcmgh.2018.04.003] [Citation(s) in RCA: 775] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases.
Collapse
Key Words
- 2BA, secondary bile acid
- 5-HT, serotonin
- ANS, autonomic nervous system
- ASD, autism spectrum disorder
- BBB, blood-brain barrier
- BGM, brain-gut-microbiome
- CNS, central nervous system
- ECC, enterochromaffin cell
- EEC, enteroendocrine cell
- FFAR, free fatty acid receptor
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- GF, germ-free
- GI, gastrointestinal
- GLP-1, glucagon-like peptide-1
- GPR, G-protein–coupled receptor
- IBS, irritable bowel syndrome
- Intestinal Permeability
- Irritable Bowel Syndrome
- LPS, lipopolysaccharide
- SCFA, short-chain fatty acid
- SPF, specific-pathogen-free
- Serotonin
- Stress
- TGR5, G protein-coupled bile acid receptor
- Trp, tryptophan
Collapse
Affiliation(s)
| | | | | | - Emeran A. Mayer
- Correspondence Address correspondence to: Emeran A. Mayer, MD, G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California at Los Angeles, MC737818-10833 Le Conte Avenue, Los Angeles, California 90095-7378. fax: (310) 825-1919.
| |
Collapse
|